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Abstract
We study a natural competitive-information-design variant for the Pandora’s Box problem [31], where

each box is associated with a strategic information sender who can design what information about the box’s
prize value to be revealed to the agent when she inspects the box. This variant with strategic boxes is
motivated by a wide range of real-world economic applications for Pandora’s box. The main contributions of
this article are two-fold: (1) we study informational properties of Pandora’s Box by analyzing how a box’s
partial information revelation affects the search agent’s optimal decisions; and (2) we fully characterize the
pure symmetric equilibrium for the boxes’ competitive information revelation, which reveals various insights
regarding information competition and the resultant agent utility at equilibrium.

1 Introduction
The Pandora’s Box problem, as formalized in the seminal work of Weitzman [31], is a foundational framework for
studying how the cost of acquiring information affects the adaptive decisions about what information to acquire
— the obtained information from the past will affect whether additional information is needed, and if so which
information to acquire next. Specifically, the Pandora’s Box problem is described as follows. An agent is presented
with n boxes; each contains an unknown random prize. The value of the prize inside each box is independently
sampled from its distribution. While the agent knows each box’s prize distribution, he does not know its realized
value. Nevertheless, the agent can open any box (in any order) to learn its realized prize value but suffers an
associated opportunity cost for opening the box. The agent can stop at any time and claim one prize from some
opened box, upon which the game terminates. The agent’s goal is to maximize the expected prize value minus
the total box-opening costs. This basic model finds applications in numerous economic applications and thus,
unsurprisingly, has been extensively studied in the economics, operations research, and computer science literature.
For example, in house hunting, a home buyer incurs cost to search for information about each potential house
(e.g., attending its open house) and, at some point, decide to purchase one of the searched house and terminate
the procedure. Similarly, many online customers spend time on free trials to obtain information about different
digital services and, at some point, decide to subscribe to some tried service.

A surprisingly simple and elegant policy provided by Weitzman [31] has been shown to be optimal for the
Pandora’s Box problem, despite its seemingly complex sequential decision process. Specifically, Weitzman [31]
defines certain reservation value for each box, which is determined by both the box’s prize distribution and opening
cost. The optimal policy simply sorts boxes in decreasing order of their reservation values, and then open boxes in
this order until the thus-far maximum realized prize value exceeds the next box’s reservation value. The agent
then terminates the search by selecting that maximum realized prize.

An important assumption of the classic Pandora’s Box problem — which is the one we intend to relax in this
work — is that each box is an inanimate object and, once opened, will fully disclose its realized prize to the agent.
Yet this may not be the case in many real-world applications where boxes often correspond to real strategic agents
who may have incentives to selectively disclose information for their own interest [2, 11, 29]. This is usually the
case when information is not controlled by nature but by humans or algorithms. The following are two of many
such examples.

Example 1.1. (Open Houses in Housing Markets) During open houses, many house sellers typically would
design events to highlight their house qualities and these event schedules will be sent to potential buyers. This
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corresponds to the boxes’ design and commitment to an information disclosure policy. Informed with these policies
(i.e., learning what he expects to see), a buyer will decide which open houses to visit in what sequence, and during
this process the buyer may make a purchase decision (i.e., stop searching). In this example, it is costly for a buyer
to obtain the information from any box due to the time spent to travel and visit. Moreover, the seller usually
selectively disclose information in order to maximize the chance of sale. Built upon Weitzman’s elegant solution to
the classic Pandora’s box for the buyer’s search, our work studies the house sellers’ competitive information design
problem and how sellers’ revealed information affects the agent’s total utility.

Example 1.2. (Free Trials of Digital Services) Consider online services like Youtube Music, Spotify, and
Amazon Music. To attract users for subscription, these services often offer free trials (e.g., a one-month free trial
with access to a limited set of functionalities of the service) before the user picks one service to subscribe. These
free trials, including the functionalities included in this period, can be seen as a committed information revelation
policy designed by the service provider. The user needs to pay search costs (i.e., time spent to explore) to obtain
the information. Moreover, these information policies are usually not full-information revealing due to limited trial
periods and limited functionality access. In contrast to the fully observable prize value in classic Pandora’s Box,
the user here can only form a posterior belief about the service quality before choosing a subscription.

Motivated by real-world applications like the above, this paper studies a natural information design variant
of the celebrated Pandora’s Box problem by viewing each box as an economic agent with its own actions and
incentives. We assume that, before the agent opens any box, each box commits to an information revelation policy
— a.k.a., a signaling scheme which stochastically maps the underlying prize to a random signal — to selectively
disclose information about the prize. Afterwards, the agent engages in a costly search across boxes, i.e., solving
a standard Pandora’s Box problem, in order to collect the most-rewarding prize in expectation. Notably, after
opening any box, the agent now is only able to observe a realized signal that carries partial information about the
underlying prize value, but cannot directly observe the prize value. We study a model where there are n symmetric
boxes, competing with each other for being selected by the agent. The agent is assumed to initially hold the same
common prior belief H about each boxes’ prize distribution, i.e., there is no ex-ante asymmetry among prizes.

We assume boxes are decentralized (e.g., corresponding to different product sellers). Each box can choose any
signaling scheme to strategically reveal information about his own prize. This gives rise to a natural competitive
information design problem in the Pandora’s Box with many senders, e.g., the boxes. Assuming a risk-neutral agent
by convention, the agent is only concerned with the expected prize value upon seeing any signal after opening a
box. Consequently, each box’s information design problem boils down to choosing a distribution over the expected
prize value, each conditioned on a signal, that respects the Bayes’ plausibility constraint [25]. It is well-known
that in this case the strategy of each box is precisely a mean-preserving spread (henceforth MPS) Gi of the prior
prize distribution H [6, 10]. Given all boxes’ strategy profile {Gi}i∈[n], the agent conducts a costly search cross
{Gi}i∈[n] to learn the corresponding prize values. Naturally, we assume the agent performs the optimal search
policy as prescribed by Weitzman [31]. Our focus is to study the game among the senders’ competitive information
design. This leads to a Stackelberg game with multiple leaders (i.e., the boxes) and a single follower (the agent). 1

1.1 Our Contribution Our contributions are two-fold: (1) we study informational properties of Pandora’s
Box by analyzing how a box’s partial information revelation affects the agent’s optimal decisions and utilities; and
(2) we fully characterize the pure symmetric equilibrium for the boxes’ competitive information revelation, and
reveals various insights regarding information competition and the resultant agent payoff at equilibrium.

Informational Properties of Pandora’s Box and the Agent’s Payoff. Our first main result shows that
whenever a box uses a strategy that is more informative, the agent obtains a weakly higher expected payoff.2
While this might appear obvious at first, a closer look reveals it is not a-priori clear at all that more information
from any box would always benefit the agent. Recall that the agent’s optimal inspection strategy depends on
the order of reservation values of boxes’ strategies. To prove the above result, we first show that the reservation
value is always weakly larger if the corresponding strategy is more informative. Now suppose a box with very
bad expected prize value chooses to disclose more information, this box’s reservation value will also increase and

1Note that once boxes’ choices {Gi}i∈[n] are determined, it is a subgame perfect equilibrium for the agent to use the optimal
inspection strategy.

2We note that this result holds generally with the need of assuming symmetry on boxes’ prior prize distribution.
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thus it will be inspected early. However, it is not clear whether inspecting such a “bad” box earlier by lowering
the priority of other possibly better boxes will always benefit the agent. Our main result gives an affirmative
answer. Our proof heavily hinges on various properties of MPS in order to argue that the benefit of getting more
information from any box can offset the possible harm of lowering the priority of other boxes.

A natural corollary of the above result in our competitive information design environment is that, when all
boxes fully reveal the information about their prizes, the agent obtains the highest expected payoff. Nevertheless,
we strengthen this observation by showing that the agent can derive the highest expected payoff as long as each
box use a strategy which reveals full information whenever the value of the prize is below its reservation value.
We refer to this class of strategies as essentially full information strategy. We provide necessary and sufficient
conditions on when this strategy is the equilibrium strategy next.

Equilibrium Characterizations. Our second main result is to identify a necessary and sufficient condition
for the existence of a pure symmetric Nash equilibrium. Moreover, if a pure symmetric equilibrium exists, our
result provides a straightforward, and also computationally tractable, way to identify the equilibrium strategy.
Specifically, we show that a pure symmetric equilibrium strategy G, if exists, must be fully characterized by the
following three conditions:

(i) Maximum reservation value: strategy G must have maximum reservation value.

(ii) G’s shape below reservation value: function Gn−1 is convex over its support, and linear whenever the
strategy G does not equal to the prior H.

(iii) No deviation incentive: there exists a reservation value σ∗ such that deviating to a strategy that has this
reservation value σ∗ is not profitable.

We prove that the first two conditions above can already uniquely pin down a strategy as an equilibrium candidate.
Core to our characterization is the third condition which verifies whether this strategy candidate is indeed an
equilibrium or not. The verification in condition (iii), including the reservation value σ∗, has a closed form and
can be easily computed given the structure of the identified strategy G from conditions (i) and (ii).

Next we describe additional insights conveyed by the above main result and discuss how the competition
and the agent’s cost affect the boxes’ equilibrium strategy. Utilizing our conditions above, we can show that
essentially full information strategy is the equilibrium strategy if and only if function Hn−1 is convex in [0, σH ].
Build upon this result, we are able to show that the essentially full information strategy is more likely to become
the equilibrium strategy when increasing the competition (i.e., increasing the number of boxes) or increasing the
cost. The former is because, intuitively, increasing competition “convexifies” the shape of function Hn−1 and
makes the condition more likely to be satisfied. The later is because the cost affects the reservation value σH and
thus the structure of (possible) equilibrium strategy G. First, we can see that the essentially full information
strategy is the equilibrium strategy under a larger cost if it is already the equilibrium strategy under a smaller
cost. This is due to the monotonicity of reservation value σH over the cost, i.e., a larger cost leads to a smaller σH .
Second, as the cost goes to 0, the above characterized behavior of G below its reservation value in condition (ii)
spans to the whole interval [0, 1].3 Third, the cost also plays a role in condition (iii) as it determines the choice of
reservation value σ∗.

We highlight two predominant challenges in deriving our main result on equilibrium characterizations, followed
by our approaches to tackle these challenges. First, to see whether a strategy profile (G, . . . , G) is an equilibrium,
we need to argue that no box has a profitable deviation under this strategy profile. A box’s best response problem
can be formulated as a linear program, after fixing all other boxes’ strategies to be G. Prior works [5, 24] have
investigated a special case of our setting where there is no cost and the agent observes all realized prizes. They
have utilized this linear program approach to demonstrate that the box’s best response strategy is indeed G itself
if G is a certain equilibrium strategy candidate. Note that in their setting, no matter what the response strategy
is, the box’s expected payoff when realizing prize with value x ∈ [0, 1] has a succinct and well-structured form:
G(x)n−1. However, in our setting, different strategies have different reservation values, which impact the order of
the agent inspecting the box, and thus making the box’s payoff function different and more complex. Consequently,
there is no single linear program that can characterize a box’s best response problem. Instead, for each possible

3To ease exposition consider that the value of prize is in [0, 1].
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reservation value σ, we consider a corresponding linear program which characterizes the best response strategy
subject to a constraint that it has the same reservation value σ (requiring a strategy to have a reservation value σ
can be formulated as a linear constraint). We then prove that the optimal objective value of the linear program,
as a function of the given reservation value σ, is a single-peaked function with the peak achieved at some σ∗.

Second, for any reservation value σ, solving its corresponding linear program (i.e., the program to solve a
box’s best response problem) is highly non-trivial. Let F denote the response strategy used by the box and all
other boxes use the strategy G. There are two major constraints in this program: one constraint accounts for the
feasibility of the strategy F , i.e., H is an MPS of F ; and the other accounts for the reservation value constraint
as it requires that the reservation value of strategy F equals to σ. Dworczak and Martini [17] developped an
optimality verification technique based on strong duality for the special case with only the first constraint (later
employed by [24]). Unfortunately, this technique does not directly apply to our more general case in presence
of the second constraint as well. To overcome this barrier, we generalize the approach in [17] to account for the
additional constraint and characterize corresponding optimal dual solution (of a new format). This then allows us
to verify the optimality of certain desired information structure based on the complementary slackness.

1.2 Related Work This paper is built on the seminar work of Pandora’s Box by Weitzman [31]. The Pandora’s
Box problem has been extensively studied in computer science [8, 13, 14, 27], economics [15, 30], and operation
research [1, 20, 22].

Our paper studies an information design variant of Pandora’s Box, with the formulation following the Bayesian
persuasion setup by Kamenica and Gentzkow [26], who studies the game between a single sender (a.k.a., box)
and a receiver (a.k.a., agent). Their work has inspired an active line of research in information design games
[e.g., see the recent surveys by 7, 16, 25]. Our work extends this line of research by exploring the competition
in information design in the setup of Pandora’s Box and discusses the role of competition and inspection cost
on the agent’s payoff and boxes’ information strategies in equilibrium. This paper relates closely to the works
in the multiple sender Bayesian Persuasion literature [18, 19, 21], especially those examining situations with ex
ante symmetric information among multiple senders [4, 5, 12, 24]. Our model is similar to theirs since each box is
associated with a sender who provides information only about his own prize. Our work differs from theirs in that
they assume there is no inspection cost for the agent, and the agent can simply observe all realized values and
then select a best one, while we consider the setting in which the agent needs to pay cost to acquire information.
The introduction of the cost makes the analysis significantly more complex. Another related line of works is the
(competitive) information design problem in searching market [3, 23, 32]. Our work differs from this literature in
that we consider the setting where the agent uses the optimal inspection strategy, while in their setting, the agent
uses a random searching strategy. Another closely related work is by Au [3], who studies the same agent model as
ours, but they only address a simplified setting where the prize is binary, while ours addresses the continuously
distributed prizes.

Lastly, we mention recent technical developments on using the duality theory to characterize the optimal
persuasion scheme in information design. In particular, Dworczak and Martini [17], Kolotilin [28] study the
sender’s problem on how to optimize the sender’s (indirect) payoff as a function of expected value (state) he
induces, subject to the feasible information strategy constraint. Our work differs from theirs as we study the
equilibrium in a strategic environment. Moreover, though we can write the box’s payoff as a function of the
expected prize value, this payoff function further depends on the reservation value of the box’s strategy (and other
boxes’ reservation values), and thus, their results does not apply directly. Instead, we extend their results to
account for the additional reservation value constraint, and use the extended results to characterize the optimal
dual (primal) solution.

2 A Model of Competitive Information Design for Pandora’s Box
In this section, we first revisit the formulation of the classic Pandora’s Box problem, and then formally introduce
our setting as its natural variant with competitive information design.

2.1 The Pandora’s Box Problem In the Pandora’s Box problem, a risk-neutral agent is presented with a
set of n boxes. Each box i ∈ [n] contains a prize of value xi ∈ [0, 1]. The value xi is distributed according to a
distribution Gi, independent of the values of other boxes. For each box i, the agent does not know the value xi but
knows the value distribution Gi. Moreover, the agent can pay a cost ci to inspect box i and observe the value xi.
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The agent can choose to inspect any number of boxes in any order and take one of the values from the inspected
boxes. The goal of the agent is to maximize the value from the chosen box minus the total cost for inspecting
boxes.

The agent’s strategy π is a rule that determines adaptively, at any time t ≥ 0, whether to terminate the
inspection and, if not, which box to inspect next. The strategy also determines which box to select after the
inspection ends. Following the terminology in Kleinberg et al. [27], given a strategy π, let Ii denote the indicator
for whether box i is inspected and Ai denote the indicator for whether box i is chosen according to π. The agent’s
goal is to choose a strategy π which maximizes the following expected payoff

E

[∑
i

[Aixi − Iici]

]
.(2.1)

Importantly, the agent can only claim one prize but must pay for all inspection costs.
To describe the agent’s optimal inspection strategy, we utilize the notion of reservation value [31]. This notion

is critical for our analysis and is formally defined as follows:

Definition 2.1. (Reservation Value – Weitzman [31]) For any distribution G ∈ ∆([0, 1]), the value σG
satisfying σG = sup{σ : Ex∼G[max{x− σ, 0}] = c} is referred to as the reservation value.

With the notion of reservation value, the agent’s optimal inspection strategy can be characterized by the simple
procedure below.

Theorem 2.1. (Weitzman [31]) Given the boxes’ value distributions (G1, . . . , Gn), the agent’s optimal inspection
strategy runs as follows: the agent inspects each box in order of decreasing σGi , stopping when the largest observed
value xi∗ exceeds all uninspected σG−i and claims box i∗’s value.

2.2 Pandora’s Box with Competitive Information Design In this paper, we consider a natural
competitive information design variant of the Pandora’s Box problem. Specifically, each box is associated
with a strategic sender4 who can design what information about the prize value the agent will see when he inspects
the box. Similar to the classic problem, the agent does not know the values in boxes but holds some prior beliefs
about the distribution of each value xi. However, different from the classic problem, when the agent pays a cost ci
to inspect box i, he does not directly observe the value xi. Instead, he observes some information signal, designed
by the sender of box i, that is related to the prize xi. Following the literature in information design, this can be
formalized as follows: each sender i can choose a signaling scheme {Φi(q|x),Mi}, whereMi is a signal space and
Φi(q|x) ∈ [0, 1] specifies the conditional distribution of signal q ∈Mi when the value x is realized. The senders’
signaling schemes {Φi(q|x),Mi}i∈[n] are known to the agent in advance. When the agent inspects box i, he
observes a realized signal q drawn according to the conditional distribution Φi and forms a posterior distribution
about the underlying value xi. Since the agent is risk neutral, only the conditional expected value E[xi | q] matters
for the agent’s decision. The agent’s goal is to determine a strategy π to inspect boxes to maximize her expected
payoff in (2.1). In our setting, each box i (a.k.a., sender i) is competing with each other for the final selection
from the agent. Specifically, the payoff of each sender i can be expressed as

1{Ai = 1} .(2.2)

Namely, a sender obtains payoff 1 if he is selected and payoff 0 if he is not selected. We note that our results in
this paper can be generalized to the setting where each sender i gets different ri ≥ 0 payoff if he is finally chosen
by the agent.

In the paper, we assume that senders are ex ante symmetric, in the sense that the prior distribution for
the values and the costs for inspection among all senders are the same. In particular, let c ≡ ci,∀i denote the
common inspection cost, and H ∈ ∆([0, 1]) denote the common prior distribution over the values, which has mean
λ = Ex∼H [x] and continuously differentiable density. 5

4In the following discussion, we interchangeably use “box” and “sender”.
5Our results can be readily generalized to an arbitrary interval [a, b]. To simplify the presentation, in this paper, we restrict our

attention to the interval [0, 1].
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Senders’ strategies. Recall that upon seeing a signal q from sender i’s signaling scheme {Φi(q|x),Mi}, given
prior H, the agent forms a posterior belief about sender i’s value xi, i.e., a sender’s signaling scheme begets
a distribution over posterior distributions of this sender’s value. Since the risk-neutral agent’s strategy only
depends on her posterior means of senders’ values, each sender’s payoff depends only on the mean of the agent’s
posterior induced by the sender’s signal and the means of the posterior beliefs induced by other senders’ signals
(instead of the detailed characteristics of the distributions). We can represent a sender’s information strategy
by a distribution over posterior means. A natural next question is which distributions over posterior means can
indeed be implemented by some signaling schemes given prior H. This question can be answered using the notion
of mean-preserving spread (MPS), which characterizes feasible distributions to represent senders’ information
strategies.

Definition 2.2. (Mean-preserving Spread) A distribution H ∈ ∆([0, 1]) is a Mean-preserving Spread (MPS)
of a distribution G ∈ ∆([0, 1]), represented as H � G, if and only if for all σ ∈ [0, 1]:∫ 1

σ

G(x) dx ≥
∫ 1

σ

H(x) dx ,(2.3)

where the inequality holds as equality for σ = 0.

It turns out that a distribution G over posterior means can be induced by some signaling scheme from prior H if
and only if H is an MPS of G.

Lemma 2.1. (Aumann et al. [6], Blackwell and Girshick [10]) There exists a signaling scheme that in-
duces the distribution G over posterior means if and only if H � G.

With Lemma 2.1, we can without loss of generality assume that each sender i’s strategy6 is to directly choose a
distribution Gi ∈ ∆([0, 1]) that satisfies Gi : H � Gi, without the need of concerning the design of the underlying
signaling scheme {Φi(q|x),Mi}. In the following discussion, we directly refer to Gi as sender i’s strategy. Moreover,
following Blackwell’s ordering of informativeness [9], we say a strategy G′ is more informative than G if G′ is an
MPS of G, i.e., G′ � G.

To illustrate the connection between the signaling schemes and the distributions of posterior means, consider the
following two simple strategies. (1) No information strategy – in this strategy, the signal is completely uninformative
(i.e., the distribution Φi(q|x) of q does not depend on the realized value x). Therefore, the distribution of posterior
means Gi is a single point mass at the prior mean λ. (2) Full information strategy – in this strategy, the signal
perfectly reveals sender’s value to the agent (e.g., Φi(q ≡ x|x) = 1 for every realized x ∈ [0, 1]), and thus, the
posterior mean distribution Gi coincides with the prior distribution H.

Solution concept. The timing of our competitive information design game can be detailed as follows: First, each
sender commits to a strategy (a.k.a., a signaling scheme). Second, the agent observes all senders’ strategies, and
uses an inspection strategy π to determine how to inspect and when to terminate the inspection. Finally, the
agent chooses the sender that has the maximum value among all inspected senders. When the agent is indifferent
between multiple senders, he chooses one of them uniformly at random.

Note that in this game, after the senders determine their strategies, it is the agent’s best response to use
the optimal strategy as characterized by Theorem 2.1. Therefore, in this paper, we assume that the agent is
always using the optimal inspection strategy, and our discussion focuses on the senders’ game of competitive
information design: choosing information strategies to maximizing the chance of being selected. Following the
earlier works [18, 19], throughout the paper, we focus on the solution concept of pure-strategy equilibria. Similar
to previous works, when analyzing the equilibrium strategy, we assume that senders in our setting are symmetric
ex ante, our analysis in this part will thus focus on symmetric equilibria [5, 24]. We aim to investigate how the
competition and agent’s inspection cost affect the senders’ information strategies at equilibrium,7 and how the
information strategy at equilibrium affects the ability of the agent to take her optimal decision.

6We will use sender’s strategy synonymously with sender’s information strategy.
7We will use equilibrium synonymously with pure symmetric equilibrium.
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3 Informational Properties of Pandora’s Box
In this section, we investigate how senders’ strategies affect the agent’s payoff under optimal inspection strategy.
To this end, we provide several properties about the reservation values which will be useful for our later equilibrium
analysis in Section 4. While reservation values have been well-studied in the Pandora’s Box problem, to our
knowledge, the informational properties we present in this section are not known before.

Below we present the main result in this section. Intuitively, the result shows that the agent obtains a higher
payoff whenever a box becomes more informative.

Theorem 3.1. For any two sets of value distributions (G1, . . . , Gi, . . . Gn) and (G1, . . . , G
′
i, . . . Gn) that only differ

in the distribution of box i, if G′i � Gi, the agent obtains a weakly higher expected payoff under (G1, . . . , G
′
i, . . . Gn)

with optimal inspection strategy.

Importantly, it is worth noting that the above results do not require the assumption of symmetric prior prize
distribution. With the results in Theorem 3.1, an important corollary is that, when all senders are performing
full information strategy, i.e., Gi = H for all i, the agent obtains the highest payoff. Below we demonstrate a
stronger version of the above claim. We define the following essentially full information strategy which fully reveals
information whenever the value is no larger than its reservation value.

Definition 3.1. (Essentially Full Information Strategy) A strategy G : H � G is essentially full
information strategy if G satisfies that G(x) = H(x),∀x ∈ [0, σH ], where σH is the reservation value of the
prior H.

We can show that, for the agent to achieve the highest payoff, it suffices that all senders use essentially full
information strategy.

Corollary 3.1. Let G be an essentially full information strategy. The agent obtains the highest expected payoff
σH −

∫ σH
0

H(x)ndx under (G, . . . , G) among all possible (symmetric or asymmetric) strategy profiles.

The basic intuition behind the above Corollary 3.1 is that in Pandora’s Box, when the agent uses the optimal
inspection strategy, after he inspects sender i, as long as the mean of the posterior for sender i after inspection is
higher than its reservation value, the agent will take the same action: stop inspection and choose sender i. This
observation demonstrates that, the distribution above the reservation value for the sender’s strategy does not
change the agent’s decisions and payoffs.

Note that since the agent chooses exactly one sender at the end, the total payoff to all senders is 1 no matter
what the agent’s inspection strategy is and what the senders’ strategies are. Therefore, when all senders use
essentially full information strategy, it not only maximizes the agent’s payoff, it also achieves the maximum social
welfare. Given this desired property for essentially full information strategy, in Section 4, we characterize the
sufficient and necessary condition for all senders to use essentially full information strategy (see Corollary 4.1).

Additional useful properties. Before presenting the proof of Theorem 3.1, we describe a few other informational
properties of Pandora’s Box. First, as discussed earlier, we say a distribution G′ is more informative than G if G′
is an MPS of G, i.e., G′ � G. This partial order of informativeness is from Blackwell’s information theorem [9].
En route to proving Theorem 3.1, we also show the following total order on the reservation values induced by
information strategies.

Proposition 3.1. For any cost c ≥ 0 and two distributions G′ and G, if G′ � G, σG′ ≥ σG.

That is, a more informative sender strategy leads to a higher reservation value. Since the agent inspects the
senders in an decreasing order of their reservation values, the proposition confirms the intuition that the agent
would first inspect the sender who uses more informative strategy. Below we give the lower and upper bounds of
the reservation values for any feasible sender’s strategy G given prior H. Moreover, we provide conditions on when
the sender’s strategy G has the lowest or highest reservation value, corresponding to the most uninformative or
most informative strategy.

Corollary 3.2. Given the prior H and the cost c ≥ 0, for any strategy G that satisfies H � G, we have
λ− c ≤ σG ≤ σH . Moreover,
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• σG = λ− c if and only if G has no support over [0, λ− c];

• σG = σH if and only if H is an MPS of G over the interval8 [0, σH ], denoted by H �[0,σH ] G.

The above corollary characterizes the sender’s strategies that reach the lowest and highest reservation values.
We should expect when the sender uses no (full) information strategy, the strategy should lead to the lowest
(highest) reservation value. As a sanity check, when the sender uses no information strategy, the corresponding G
contains a single point mass at λ, and it is easy to see that corresponding reservation value is λ− c. When the
sender uses full information strategy, i.e., the corresponding G equals to the prior, the reservation value is σH .
We conclude this section with two additional properties which will be useful for our later analysis: Lemma 3.1
provides an alternative definition of the reservation value, and Lemma 3.2 is a natural implication of the above
Corollary 3.2. The proofs of these two properties are provided in Appendix A.

Lemma 3.1. For any G with mean λ and for any c ≥ 0, σG = σ if and only if
∫ σ

0
G(x)dx = σ − (λ− c).

Lemma 3.2. For any H, a strategy G : H � G satisfying σG = σH must have G(σH) = H(σH).

3.1 Proof of Theorem 3.1 We first provide an overview of our proof. In the agent’s optimal inspection
strategy (as specified in Theorem 2.1), both the selection rule and the stopping rule depend on the reservation
value. To see how the agent’s payoff changes if one sender uses a different strategy, one needs to understand how
the reservation value ties with sender’s strategy. Therefore, our first step for proving Theorem 3.1 is to show that
the reservation value is always weakly larger if the strategy is more informative (see Proposition 3.1). With this
characterization, armed with an already known result which shows the expected payoff of any agent’s inspection
policy is bounded above by the expectation of highest “capped” reservation value (see Lemma 3.3), we can then
prove Theorem 3.1. Below we first provide the proof of Proposition 3.1. We will then utilize it to prove the
theorem.

Proof of Proposition 3.1. When c = 0, we have σG = σG′ = +∞. Below we prove the result for c > 0. From
Lemma 3.1, we know

σG′ − σG =

∫ σG′

0

G′(x)dx−
∫ σG

0

G(x)dx
(a)
=

∫ 1

σG

G(x)dx−
∫ 1

σG′

G′(x)dx

(b)
≥
∫ 1

σG

G(x)dx−
∫ 1

σG′

G(x)dx ,

where (a) is due to
∫ 1

0
G(x)dx =

∫ 1

0
H(x) = 1− λ, (b) is due to Definition 2.2. Now suppose σG′ < σG,

σG − σG′ ≤
∫ σG

σG′

G(x)dx
(a)
≤ σG − σG′ ,

where (a) holds only when G(x) = 1,∀x ∈ [σG′ , σG]. However we note that it cannot be G(σG′) = 1 when σG′ < σG.
Suppose G(σG′) = 1 when σG′ < σG, then we have G(σG) = 1 and Ex∼G[(x− σG)+] = 0 6= c. As a result, when
G(σG′) < 1, we have σG − σG′ ≤

∫ σG
σG′

G(x)dx < σG − σG′ , which contradicts itself. Thus, we must have σG′ ≥ σG.
�

Proof of Theorem 3.1. To prove Theorem 3.1, we use the following result which characterizes the best payoff
that any central planner can possibly hope to achieve. Fix a strategy G and its corresponding σG, define following
capped value:

κG := min{x, σG}, x ∼ G .(3.4)

Given a strategy profile (G1, . . . , Gn), the below lemma shows that the optimal agent’s payoff is the highest capped
value among senders.

8Let W (y) :=
∫ y
0

[
H(x)−G(x)

]
dx. We say H is an MPS of G over [a, b] if and only if W (a) = W (b) = 0, and W (y) ≥ 0, ∀y ∈ [a, b].
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Lemma 3.3. (Kleinberg et al. [27]) The procedure defined in Theorem 2.1 can achieve the agent’s optimal
expected payoff E[maxi κi], i.e., the highest expected capped value he obtains.

Below we use uA(G1, . . . , Gn) to denote the agent’s expected payoff when the agent is using the optimal inspection
strategy, i.e., uA(G1, . . . , Gn) = EG1,...,Gn [maxi κi]. To simplify the notation, we interchangeably use κi and κGi .

We are now ready prove Theorem 3.1. We first observe that for any strategy G such that Ex∼G[x] = λ, we
have EG[κG] = λ− c. To see this, note that

EG[κG] =

∫ σG

0

xg(x)dx+ σG

∫ 1

σG

g(x)dx = λ−
(
c+ σG

∫ 1

σG

g(x)dx

)
+ σG

∫ 1

σG

g(x)dx = λ− c .

Given a strategy profile (G1, . . . , Gi, . . . Gn), from Lemma 3.3, the agent’s optimal expected payoff is the
expectation of the maximum of n independent random variables {κi}i∈[n] with the mean λ − c. Let κ−i :=
maxG−i{κ1, . . . , κi−1, κi+1, . . . , κn}, where G−i := (Gj)j∈[n],j 6=i. Now observe that,

EG1,...,Gn

[
max
i
κi

]
= EG−i [EGi [max {κi, κ−i}]] .

Below, we show that for all possible κ−i = b, the following holds

EG′i [max {κi, b}] ≥ EGi [max {κi, b}] .(3.5)

Recall that from Proposition 3.1, we have σG′i ≥ σGi . We now consider the following three cases:

• When b ≥ σG′i , (3.5) holds naturally as EG′i [max {κi, b}] = b = EGi [max {κi, b}].

• When σGi ≤ b < σGi′ , we have EGi [max {κi, b}] = b, and

EG′i [max {κi, b}] =

∫ b

0

max{x, b}dGi(x) +

∫ 1

b

max{κi, b}dGi(x) ≥ b ,

thus, (3.5) holds true.

• When b < σGi , in this case, we have

EGi [max {κi, b}] =

∫ b

0

bdG(x) +

∫ 1

b

max{κi, b}dGi(x)

= bG(b) +

∫ 1

b

min{x, σGi}dGi(x)

(a)
= bG(b) + λ− c−

∫ b

0

xdGi(x)
(b)
= λ− c+

∫ b

0

Gi(x)dx ,

where (a) uses the earlier observation EG[κG] = λ − c, and (b) uses integration by parts. Recall
that G′i is an MPS of Gi, we have

∫ b
0
Gi(x)dx ≤

∫ b
0
G′i(x)dx, ∀b. As a result, we conclude that

EGi [max {κi, b}] ≤ EG′i [max {κi, b}].

Putting all pieces together, (3.5) holds for any b ∈ [0, 1], which completes the proof. �
The above proof essentially shows that the capped value of a more informative strategy is second-order

stochastically dominated by the capped value of a less informative strategy. Then by the convexity of the maximum
operator, one can also achieve the result in Theorem 3.1.

4 Equilibrium Analysis
In this section, we characterize the equilibrium for the senders’ game of competitive information design for any
prior H and any cost c ≥ 0. In particular, we give sufficient and necessary conditions of the existence of pure
symmetric equilibrium. We also characterize the unique equilibrium strategy if the pure symmetric equilibrium
exists.

Before stating our results, we first define a special structure for senders’ strategies.
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Definition 4.1. (Alternating (n− 1)–linear MPS – Hwang et al. [24]) Given a prior H, G exhibits
alternating (n− 1)–linear MPS behavior in the interval [a, b] if whenever G is not fully revealing information in a
subinterval [x1, x2] ⊆ [a, b], Gn−1 is linear over [x1,min{x2,maxx∈[a,b]{x : x ∈ supp [G]}] and H �[x1,x2] G.

With the above structure, our main result in this section can be stated as follows.

Theorem 4.1. For any prior H and any cost c ≥ 0, given a strategy G and its x̄G := max{x ∈ [0, σH ] : x ∈
supp [G]}, (G, . . . , G) is an equilibrium if and only if

(i) σG = σH ;

(ii) Gn−1 is convex over [0, x̄G] and G exhibits alternating (n− 1)–linear MPS behavior over [0, σH ];

(iii) deviating to a strategy F where σF = max{x̄G, λ− c} is not profitable. More concretely,

(a) if λ− c ≥ x̄G, then the optimal deviation value G(λ− c)n−1 ≤ 1/n;

(b) if λ− c < x̄G, then the optimal deviation value
∫ x†

0
G(x)n−1dH(x) +H(σH)n−1(1−H(x†)) ≤ 1/n where

x† uniquely satisfies
∫ 1

x†
(x− x̄G)dH(x) = c.

We interpret and examine each condition in the theorem below. Condition (i) indicates that the reservation
value of the equilibrium strategy G must achieve its maximum. This aligns with the intuition that the sender
prefers to be inspected earlier than later. Condition (ii) characterizes the structure of feasible equilibrium strategy.
As we elaborate shortly, the first two conditions can uniquely9 pin down a distribution G. Lastly, condition (iii)
verifies whether G that satisfies the first two conditions is indeed an equilibrium strategy. Essentially, there are
only two scenarios: (a) If λ − c ≥ x̄G, deviating to no information strategy for a sender is the most profitable.
(b) If λ− c < x̄G, it is the most profitable to deviate to a strategy F , with reservation value x̄G, which satisfies
F (x) = H(x),∀x ≤ x† and has no support between x† and x̄G (see the blue dotted line in Figure 1b). 10 In either
case, the optimal deviation value can be computed in a closed form, so we can verify whether G is an equilibrium
strategy.

Note that in the special case where the inspection cost c = 0, our problem reduces to a simpler setting,
in which the agent does not need to choose which senders to inspect and in what order as he can inspect
all senders for free. In this setting, Hwang et al. [24]11 show that there always exists a unique equilibrium
strategy that every sender takes G that satisfies the conditions that Gn−1 is convex over the support of G, and
G exhibits the above alternating behavior over [0, 1]. Our result strictly generalizes their result. First, we can
see that our conditions (i)–(iii) are always satisfied when c = 0: When there is no inspection cost, both σG
and σH approach +∞. For our condition (ii), G exhibiting alternating behavior over [0, σH ] is equivalent to
exhibiting alternating behavior over [0, 1]. For condition (iii), given a distribution G satisfying condition (ii)
over [0, 1], we always have λ − c = λ < x̄G as G has no support over [x̄G, 1]. When c = 0, we have x† = 1,
and

∫ x†
0
G(x)n−1dH(x) +H(σH)n−1(1−H(x†)) =

∫ 1

0
G(x)n−1dH(x) ≤ 1/n holds for sure. To see this, note that

Hwang et al. [24] have showed that such G is the equilibrium strategy when c = 0. Thus, by definition, we have∫ 1

0
G(x)n−1dH(x) ≤

∫ 1

0
G(x)n−1dG(x) = 1/n.

When inspection cost c > 0, a pure symmetric equilibrium might not exist. We present two examples (see
Figure 1) where the pure symmetric equilibrium does not exist. Each of the examples violates one of the cases in
condition (iii).

9The uniqueness here means the behavior of G over [0, σH ] is unique. Note that Theorem 4.1 only states the conditions for the
support of G that is in [0, σH ]. Indeed, one can show that if (G, . . . , G) is an equilibrium, then (G, . . . , G′, . . . , G) is also an equilibrium
as long as G′(x) = G(x), ∀x ∈ [0, σH ]. The reason is that once we pin down the reservation value of all senders’ strategies to be σH ,
each sender’s expected payoff only depends on the behavior of his strategy in [0, σH ] (see Corollary 4.6 for detailed discussions).

10This specific structure of F is largely due to the convexity of Gn−1 over [0, x̄G], it will be proved in Lemma 4.4.
11 In their model, the agent firstly observes all realized {xi}i∈[n], and then selects the sender that has the maximum value. This is

equivalent to our setting with c = 0. To see this, note when c = 0, the reservation value of any strategy goes to infinity. Thus, though
the agent sequentially inspects senders, he would inspect all senders and select the best one.
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x̄G σH

(a)

x† x̄G σH

(b)

Figure 1: In both figures, the prior H is the gray solid line, the distribution G that satisfies conditions (i)–(ii) in
Theorem 4.1 is the deep gray solid line. The profitable deviation F is then the black dashed line. See the detailed
descriptions in Example 4.1 and Example 4.2. (a): Equilibrium does not exist as it violates the the case (a) in
condition (iii). (b): Equilibrium does not exist as it violates the case (b) in condition (iii).

Example 4.1. (Pure symmetric equilibrium may not exist – violate case (a) in condition (iii))
Consider prior H(x) = x0.3 (the gray solid line in Figure 1a), n = 2, and a cost c = 0.11. With this prior, one can
compute λ = 0.2308, σH = 0.2431, and σNI = λ− c = 0.1208. Using the conditions (i)–(ii) in Theorem 4.1, one
can compute a unique G (where x̄G = 0.1122). However, such G is not an equilibrium strategy as one can deviate
to a No information disclosure strategy GNI to achieve a higher payoff G(σNI) = 0.6542 > 0.5.

Example 4.2. (Pure symmetric equilibrium may not exist – violate case (b) in condition (iii))
Consider prior H(x) = 1

1+( x
1−x )

−3 (the gray solid line in Figure 1b), n = 2, c = 0.005, λ = 0.5, σH = 0.6938,

x† = 0.5961, and x̄G = 0.6571. Such G is not an equilibrium as one can deviate to a strategy F to a higher
payoff 0.5048 > 0.5. F has reservation value σF = x̄G, and F (x) = H(x),∀x ∈ [0, x†], and F has no support over
[x†, x̄G].

4.1 Applications and Implications of Theorem 4.1 Theorem 4.1 provides a general characterization of the
equilibrium for competitive information design for Pandora’s Box. Here we discuss the applications of the theorem
in some interesting/important cases and their implications. All the proofs in this section are in Appendix B.

First of all, as discussed in Corollary 3.1, every sender deploying essentially full information strategy is a
desired equilibrium as it leads to the highest agent payoff and the highest social welfare. Utilizing Theorem 4.1, we
can characterize the sufficient and necessary condition for essentially full information strategy to be the equilibrium.

Corollary 4.1. Essentially full information strategy is the equilibrium strategy if and only if Hn−1 is convex
over [0, σH ].

We can observe a couple of interesting implications of Corollary 4.1. First, increasing competition makes
it more likely to reach essential full information disclosure. This implication is from the the fact that when
we fix inspection cost, the shape of the function Hn−1 becomes more convex as n increases. Moreover, for an
arbitrary prior H and any cost, one can show that there always exists a number of senders such that essentially
full information is the equilibrium. We can also show that for any prior H, as long as the number of senders is
high enough, essentially full information strategy can be the equilibrium strategy, as formalized below.

Corollary 4.2. For any prior H and cost c ≥ 0, there exists a n ∈ N+, such that for any n ≥ n, essentially full
information strategy is the equilibrium strategy.
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Another implication of Corollary 4.1 is that, increasing inspection cost makes it more likely to reach essential
full information disclosure. This implication follows from when we fix the number of senders, if essentially full
information is the equilibrium with a smaller inspection cost, it is also the equilibrium with a larger cost. This is
because when increasing the cost, the corresponding reservation value σH is decreasing. Therefore, if Hn−1 is
already convex on a larger interval [0, σH ], it is also convex on a smaller interval. To illustrate this observation, for
a general class of priors – the prior that has single-peaked density – we can characterize the lower bound cost for
the essentially full information to be the equilibrium. In particular, when Hn−1 has single-peaked density,12 it
is always first convex and then concave (see example in Figure 1b). Thus, as long as the reservation value σH
falls below the inflection point of Hn−1 (i.e., the point where the function Hn−1 changes from being convex to
concave), essentially full information is the equilibrium.

Corollary 4.3. Fix n and H which Hn−1 has single-peaked density over [0, σH ] and its inflection point x, let c
be an inspection cost where σH = x, then for any cost c ≥ c, essentially full information is the equilibrium.

In below, we exemplify the use of Corollary 4.3 to identify the condition of the inspection cost for common
distributions that admit the existence of essentially full information equilibrium strategy when there are two
senders.

Example 4.3. (Uniform Prior) Suppose H is the uniform prior over [a, b] with a ≥ 0, it can be shown that
for any inspection cost c ≥ 0, essentially full information strategy is an equilibrium strategy, namely, a strategy
G = H satisfies all conditions in Theorem 4.1.

Example 4.4. (Gaussian Prior) Suppose H is the Gaussian prior with mean λ > 0 and variance υ2 where
υ ≥ 0, it can be shown that essentially full information strategy is an equilibrium strategy if and only if the
inspection cost c satisfies c ≥ λ/2 + υ/

√
2π.

In addition to characterizing the equilibirum conditions, we can also show that, under the condition that
essentially full information is the equilibrium, the agent’s payoff decreases as the inspection cost increases and
increases as the number of senders increases.

Corollary 4.4. Under essentially full information equilibrium, the agent’s payoff is decreasing with respect to
the inspection cost and increasing with respect to the number of senders.

Below we provide one more example on how Theorem 4.1 can help us characterize the equilibrium in different
cases. When Hn−1 is concave over [0, σH ], using the conditions (i)–(ii), we can characterize a unique distribution
G such that Gn−1 will be firstly linear over [0, x̄G] and then flat over [x̄G, σH ] (see the example in Figure 1a).
Using the linearity of Gn−1, we can show that to verify whether such G is an equilibrium strategy, it only suffices
to check whether G(λ− c)n−1 ≤ 1/n.

Corollary 4.5. Given prior H in which Hn−1 is concave over [0, σH ]. Let G be a distribution satisfying the
conditions (i)–(ii) in Theorem 4.1, then G is an equilibrium strategy if and only if G(λ− c)n−1 ≤ 1/n.

We also exemplify below the use of corollary 4.5 to identify the condition of the inspection cost for common
distribution that admit the existence of equilibrium strategy when there are two senders.

Example 4.5. (Exponential Prior) Suppose H is the exponential prior over [0,+∞) with the parameter
µ ≥ 0, namely, H(x) = 1 − exp(−µx). Since H is concave over the whole support [0,+∞), it can be shown
that there exists an equilibrium strategy G (in particular, one can deduce the behavior of strategy G over
[0, σH ] where σH = − ln(µc)/µ as follows: G(x) = H(σH)

2σH−
2(σH−(1/µ−c))

H(σH )

x,∀x ∈ [0, 2σH − 2(σH−(1/µ−c))
H(σH) ];G(x) =

H(σH),∀x ∈ [2σH − 2(σH−(1/µ−c))
H(σH) , σH ]) if and only if the inspection cost c ≥ 0 and the parameter µ

satisfy (µc)3 − 3(µc)2 + 2µc + µc ln(µc) ≥ 0. Note that when fixing any inspection cost c > 0, function
(xc)3 − 3(xc)2 + 2xc + xc ln(xc) crosses x-axis over (0, 1/c) once and it crosses from below. Intuitively, this
suggests that for any fixed cost c > 0, it is more likely to admit the existence of a symmetric equilibrium if the
parameter µ is larger, i.e., the prior has smaller variance.

12As long as the density function h is log-concave over [0, σH ], Hn−1 has single-peaked density for any n over [0, σH ].
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4.2 Proof of Theorem 4.1 In this section, we present our proof for Theorem 4.1.

Technical challenges and proof overview. Determining whether a particular strategy profile (G, . . . , G) is an
equilibrium can be challenging, as it depends on the full set H of feasible strategies, i.e., H := {F : H � F}, that
each sender can deviate to. When the agent uses the optimal inspection strategy, however, using the observation
we obtain in Proposition 3.1, one can first show that a strategy G can be an equilibrium strategy only if it
satisfies σG = σH . This observation shrinks the set that contains any possible equilibrium strategy to the set
H(σH) := {F : H � F ∧ σF = σH}. Next, using the conditions provided in Corollary 3.2, and examining the fixed
point problem over the set H(σH), we can uniquely pin down the behavior of G over the interval [0, σH ] if G is the
equilibrium strategy.

The above procedure helps us pin down the necessary conditions for G to be the equilibrium strategy. To verify
whether the identified G is indeed the equilibrium strategy, we need to show that no sender has profitable deviation
under the strategy profile (G, . . . , G). This step is challenging since we again need to examine all possible deviations
that one sender can deviate to when all other senders use strategy G. Different deviation strategies have different
reservation values, which impact the order that the agent inspects the senders, and change the deviation payoff. In
a more detail, when a deviation strategy F has reservation value σF = σ < σH , let US(x) be the sender’s deviation
payoff as a function of the realized value x ∼ F , it can be shown that US(x) = min{G(x)n−1, G(σ)n−1}, in which
the shape of US(·) depends on the choice of σ. Thus, there is no single program that can encode sender’s deviation
problem. Instead, our solution is that, for every possible reservation value σ, we consider the corresponding linear
program (note that the constraint σF = σ can be formulated as a linear constraint), and then characterize its
optimal deviation strategy. We then show that the optimal deviation value is single-peaked (with the peak at
σ∗ := max{σNI, x̄G}) w.r.t. σ ∈ [σNI, σH). To this end, to account for the additional constraint σF = σ, we extend
the verification tool provided in Dworczak and Martini [17] to show what the optimal dual solution must look like,
and then show there exists an optimal primal solution that satisfies complementary slackness.

To summarize, the analysis mainly consists of following steps:

• Step 1. In this step, we prove the condition (i) in Theorem 4.1, namely, for any H, if there exists an
equilibrium (G, . . . , G), it must be that σG = σH (see Lemma 4.1).

• Step 2. In this step, we show that no sender has profitable deviation to a strategy F ∈ H(σH) if all other
senders use strategy satisfying conditions (i)–(ii) in Theorem 4.1 (see Lemma 4.2).

• Step 3. In this step, we show that when all other senders use strategy G satisfying conditions (i)–(ii) in
Theorem 4.1, then no sender has profitable deviation if and only if condition (iii) holds (see Lemma 4.3).

Below, we first provide detailed analysis of the above steps. The proof of the main result Theorem 4.1 follows
from combining the results of these steps.

Step 1 – Characterizing the reservation value of equilibrium strategy.

Lemma 4.1. For any H, if there exists an equilibrium (G, . . . , G), it must be that σG = σH . Each sender’s
expected payoff is 1/n at any equilibrium.

Proof Sketch of Lemma 4.1. Given any symmetric strategy (G, . . . , G) where σG < σH , each sender i’s expected
payoff can be expressed as

uSi (G, . . . , G) := Pr[Ai = 1|Ii = 1] · Pr[Ii = 1] ,

where Pr[Ii = 1] is the probability of sender i being inspected by the agent and Pr[Ai = 1|Ii = 1] is the expected
payoff conditional on being inspected. As there always exists probability such that sender i is never inspected by
the agent, thus, we have

Pr[Ii = 1] ≡ 1− δ < 1 .

Now let USi (x) denote the sender i’s expected payoff conditional on being inspected and the value x realizing.
Then we have

Pr[Ai = 1|Ii = 1] =

∫ 1

0

USi (x)dG(x) .
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Now let F : H � F be a strategy satisfying σF > σG and also∫ 1

0

USi (x)dF (x) >

∫ 1

0

USi (x)dG(x)− ε ,

for a small ε > 0. Note as σG < σH , such F must exist (we defer the detailed construction of such F to the
Appendix B). Then by deviating to strategy F , from Proposition 3.1, we know sender i’s probability of being
inspected is increased to 1. Thus,

uSi (G, . . . , F, . . . , G)− uSi (G, . . . , G) >

∫ 1

0

USi (x)dF (x)−
∫ 1

0

USi (x)dG(x) · (1− δ)

= δ ·
∫ 1

0

USi (x)dG(x)− ε > 0 ,

where the last inequality is by choosing a sufficiently small ε. As a result, such deviation is profitable.
Clearly, each sender’s expected payoff is 1/n at any equilibrium. Suppose not, then the sender who has expected

payoff smaller than 1/n can improve his expected payoff by simply mimicking another sender’s strategy who has
higher payoff than 1/n .

Step 2 – Characterizing the behavior of G over the interval [0, σH ]. Now we use the result in Lemma 3.2
and the characterization in Corollary 3.2 to prove the condition (ii).

Lemma 4.2. Given prior H, under the strategy profile (G, . . . , G) where G satisfies the conditions (i)–(ii) in
Theorem 4.1, then no sender has a profitable deviation to a strategy F where σF = σH . Meanwhile, if (G, . . . , G)
is an equilibrium, then the behavior of G over the interval [0, σH ] must satisfy the condition (ii) in Theorem 4.1.

The intuition for the proof is straightforward. Given all other senders using strategy G and sender i using strategy
F where σF = σH , with the result in Lemma 3.2, it can be shown that sender i’s expected payoff only depends
on the behavior of F over the interval [0, σH ]. Then using the characterization in Corollary 3.2, and the earlier
results in Hwang et al. [24], we show sender i’s best deviation in the set H(σH) is indeed G itself.

Proof of Lemma 4.2. We first prove the first part of the statement. Given a prior H, let G be the distribution
satisfying conditions (i)–(ii) in Theorem 4.1. We now consider sender i’s best response strategy F that is subject
to σF = σH given all other senders using strategy G. For notation simplicity, define following quantile value
pF := 1− F (σF ), pG := 1−G(σG), and pH := 1−H(σH). Observe that whenever sender i is inspected, there are
two possible cases, either the realized xi ≥ σH where the agent will stop the inspection and claim xi from sender
i; or the realized xi < σH where the agent claims xi from sender i only if he inspects all senders and finds out
i = argmaxj xj . With the above observation, we have following sender i’s expected payoff on deviating to strategy
F :

uSi (G, . . . , F, . . . , G) =
n∑
j=1

(
pF · (1− pG)j−1 +

∫ σH

0

G(x)n−1dF (x)

)
· 1

n

(a)
=

1

n
·
n−1∑
j=0

pF · (1− pG)j +

∫ σH

0

G(x)n−1dF (x) ,

where in (a) we use pF = pH = pG due to Lemma 3.2. Now we consider following sender i’s best response problem
that is subject to deviating to strategies in H(σH):

max
F∈H(σH)

1

n
·
n−1∑
j=0

pH · (1− pH)j +

∫ σH

0

G(x)n−1dF (x) .

Given a prior H, pH is a constant. The above program can be further reduced to

max
F∈H(σH)

∫ σH

0

G(x)n−1dF (x) .(4.6)
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Recall that from Corollary 3.2, the constraint σF = σH is equivalent to requiring H �[0,σH ] F . To complete
the proof, we note that Hwang et al. [24] have shown when c = 0, a strategy G that satisfies the properties in
Definition 4.1 over the interval [0, 1] is the best response strategy to itself, i.e., G is the solution to the program
maxF∈H

∫ 1

0
G(x)n−1dF (x). Now given a strategy that satisfies the conditions (i)–(iii), it is easy to see that any

strategy G∗ that satisfies G∗(x) = G(x),∀x ∈ [0, σH ] is the optimal solution to the program (4.6). The second
part of the statement follows from the necessity the equilibrium strategy G when c = 0 in Hwang et al. [24].

Step 3 – Verifying whether G is indeed an equilibrium strategy. Now to argue whether G, which satisfies
the conditions (i)–(ii) in Theorem 4.1, is an equilibrium strategy, it remains to show that no sender has a
profitable deviation to a strategy F that has σF < σH if all other senders use the strategy G. In other words,
we need to show that whenever we fix a σ ∈ [σNI, σH), the best payoff for a sender i to deviate to a strategy
F ∈ H(σ) := {F : H � F ∧ σF = σ} is no larger than 1/n. Given sender i using F where σF = σ < σH , and other
senders using G, we have

uSi (G, . . . , F, . . . , G) = G(σ)n−1 ·
∫ 1

σ

dF (x) +

∫ σ

0

G(x)n−1dF (x) .

Using integral by parts and rearranging the terms, we can get

uSi (G, . . . , F, . . . , G) =

∫ 1

0

min
{
G(x)n−1, G(σ)n−1

}
dF (x) .(4.7)

The proof of Lemma 4.2 and the above deviation payoff have following implication that only the behavior over the
interval [0, σH ] of the strategy G matters for the equilibrium.

Corollary 4.6. Given a prior H, if (G, . . . , G) is an equilibrium, then the strategy profile (G1, . . . , Gn) where
∀i, Gi(x) = G(x),∀x ∈ [0, σH ] is also the equilibrium.

Fix a σ ∈ [σNI, σH), we now consider following sender i’s best response strategy that is subject to the constraint
σF = σ

max
F∈H(σ)

∫ 1

0

min
{
G(x)n−1, G(σ)n−1

}
dF (x) .(4.8)

Given σ, let OPTσ denote the optimal value of the above program. Essentially, G is equilibrium strategy must
satisfy that

max
σ:σ∈[σNI,σH)

OPTσ ≤
1

n
.(4.9)

In below analysis, we characterize the most profitable deviation given all other senders using strategy G. In
particular, to guarantee (4.9), we show that, depending on the relative value σNI and x̄G, it suffices to only consider
one deviation: either deviating to no information disclosure strategy (if σNI > x̄G) or deviating to a strategy whose
reservation value equals to x̄G (if σNI ≤ x̄G).

Lemma 4.3. Fix a prior H and the cost c > 0, given all other senders using G that meets the conditions (i)–(ii)
in Theorem 4.1, then

(a) if σNI = λ− c > x̄G, the most profitable deviation is no information strategy;

(b) if σNI = λ− c ≤ x̄G, the most profitable deviation is a strategy F where σF = x̄G.

The condition (iii) in Theorem 4.1 simply follows by ensuring that the value of most profitable deviation is no
larger than 1/n. To prove Lemma 4.3, for the case σNI ≤ x̄G, we separate our discussions in two regimes: for
σ ∈ [σNI, x̄G) we show the optimal value OPTσ is increasing w.r.t. σ; for σ ∈ [x̄G, σH), we show the optimal value
OPTσ is decreasing w.r.t. σ. The analysis of other case where σNI > x̄G follows similarly. To show the monotoncity
of OPTσ, we first characterize optimal solution Fσ for any σ ∈ [σNI, σH), and then examine the optimal deviation
value OPTσ under the deviation Fσ. In the remaining of the paper, due to the space limit, we mainly present the
proof for first regime of the case σNI ≤ x̄G.
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Lemma 4.4. Given a prior H, and distribution G satisfying the conditions (i)–(ii) in Theorem 4.1, when σNI ≤ x̄G,
then for any σ ∈ [σNI, x̄G], a distribution Fσ that satisfies following structure is an optimal solution to the
program (4.8)

(4.10) Fσ(x) =


H(x), ∀x ∈ [0, x†)

H(x†), ∀x ∈ [x†, x‡)

1, ∀x ∈ [x‡, 1]

where x† satisfies that
∫ σ

0
Fσ(x)dx = σ − (λ − c). Furthermore, the optimal value OPTσ is increasing w.r.t.

σ ∈ [σNI, x̄G].

The structure of the optimal solution Fσ admits the following interpretations. Let u(x) := min
{
G(x)n−1, G(σ)n−1

}
.

As we can see, for any σ ≤ x̄G, u is convex over [0, σ] (recall the convexity Gn−1 in [0, x̄G]) and is constant over
[σ, 1]. Then if a solution F has support below σ, ideally, by Jensen’s inequality, F should allocate its support as
much dispersed as possible in this interval. In other words, the MPS constraint should bind for the support of F
that is in [0, σ]. At the same time, u attains maximum for any values above σ, F thus should put as much mass as
possible above σ. Due to the equal-mean constraint (i.e.,

∫
xdF (x) = λ), F should put their support that is in

[0, σ] as close to 0 as possible (and simultaneously as much dispersed as possible) so that F can allocate more
mass above σ. Note that the constraint σF = σ is a linear constraint, and it thus determines the cutoff x† of the
portion where F satisfies the property in Lemma 3.1.

Proof of Lemma 4.4. We first prove the optimal structure of Fσ for σ ∈ [σNI, x̄G]. We begin with analyzing
following general problem for any σ ∈ [σNI, σH),

(4.11) max
F∈H

∫ 1

0

u(x)dF (x) s.t.
∫ σ

0

F (x)dx = σ − (λ− c) .

The above program has two major constraints, one is F ∈ H to account for the feasibility of strategy F , and the
other one accounts for σF = σ (recall Lemma 3.1). The above optimization problem is non-trivial as sender i can
deviate to any possible strategy F ∈ H(σ), and this is an infinite-dimensional linear program. Nevertheless, some
recent technical developments in the information design literature are useful to our problem. In particular, we
use the following result obtained by Dworczak and Martini [17], which provides a duality theory for optimization
problems with MPS constraints. To be more precise, they consider the problem maxF :H�F

∫ 1

0
u(x)dF (x), and

show that if F is the solution to this program, then there must exist a convex function p(x) : [0, 1]→ R such∫ 1

0

p(x)dF (x) =

∫ 1

0

p(x)dH(x) ,(4.12)

and F is also the optimal solution to the program maxF̃∈∆([0,1])

∫ 1

0
(u(x)− p(x))dF̃ (x). In our problem, additional

to the MPS constraint, we also have a linear constraint that the strategy F has σF = σ. Follow the similar analysis,
one can deduce that if Fσ is the optimal solution to the program (4.11), it must also exist a convex function p(·)
where (4.12) holds for Fσ, and there exists α ∈ R such that

Fσ ∈ argmaxF̃∈∆([0,1])

{∫ 1

0

(u(x)− p(x))dF̃ (x)− α ·
(
σ

∫ σ

0

dF̃ (x)−
∫ σ

0

xdF̃ (x)− σ + (λ− c)
)}

,

where we have used integration by parts in the reservation value constraint. Observe that we can always add a
constant to p(·) without changing any of its properties. Thus, by complementary slackness, one must have

(4.13)

if x ∈ [0, σ) ∧ x ∈ supp [Fσ] : u(x) = p(x) + α · (σ − x)

if x ∈ [0, σ) ∧ x /∈ supp [Fσ] : u(x) ≤ p(x) + α · (σ − x)

if x ∈ [σ, 1] ∧ x ∈ supp [Fσ] : u(x) = p(x)

if x ∈ [σ, 1] ∧ x /∈ supp [Fσ] : u(x) ≤ p(x) .
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Now to prove the optimal solution defined as in (4.10), it suffices to show that there exists a convex function p(·)
and a value α ∈ R that satisfies the conditions in (4.12) and (4.13) with u(x) = min

{
G(x)n−1, G(σ)n−1

}
. We

consider

α = −G(σ)n−1 −G(x†)n−1

σ − x†
; p(x) =

{
G(x)n−1 − α · (σ − x), ∀x ∈ [0, x†)

G(σ)n−1, ∀x ∈ [x†, 1]

To check the convexity of p, note that ∂p(x)
∂x = ∂G(x)n−1

∂x + α is increasing over [0, x†] since Gn−1 is convex over

[0, x†]. Moreover, ∂p(x
†)

∂x†
= (G(x†)n−1)′ + α ≤ 0 as Gn−1 is convex over [0, σ], and limx→(x†)− p(x) = G(σ)n−1.

Thus, p(·) is global convex over [0, 1].
To satisfy the condition (4.13), note for x ∈ [x†, σ], we have

p(x) + α · (σ − x)−G(x)n−1 = G(σ)n−1 − G(σ)n−1 −G(x†)n−1

σ − x†
· (σ − x)−G(x)n−1

= (σ − x) ·
(
G(σ)n−1 −G(x)n−1

σ − x
− G(σ)n−1 −G(x†)n−1

σ − x†

)
≥ 0

⇒ p(x) + α · (σ − x) ≥ G(x)n−1, ∀x ∈ [x†, σ] .

Together with p(x) = G(σ)n−1,∀x ∈ [σ, 1], we know that p(·) satisfies the condition (4.13).
Lastly, to satisfy the condition (4.12), as Fσ(x) = H(x),∀x ∈ [0, x†], it suffices to ensure∫ 1

x†
p(x)dFσ(x) =

∫ 1

x†
p(x)dH(x) ,

where the above holds true as they both equal to G(σ)n−1 · (1−H(x†)). Thus the constructed p and α satisfy the
conditions in (4.12)–(4.13), implying the solution in (4.10) is an optimal solution.

With the above characterized Fσ, we now prove the second part of the above result, i.e., OPTσ is monotone
increasing w.r.t. σ ∈ [σNI, x̄G]. By definition, we have

OPTσ =

∫ x†

0

G(x)n−1dH(x) +G(σ)n−1 · (1−H(x†)) .(4.14)

Recall that x† satisfies
∫ x†

0
H(x)dx+ (σ − x†) ·H(x†) = σ − (λ− c), thus, σ =

∫ x†
0

H(x)dx−x†H(x†)+(λ−c)
1−H(x†)

. Define a

function σ(x) :=
∫ x
0
H(t)dt−xH(x)+(λ−c)

1−H(x) . Now back to (4.14), we have

OPTσ =

∫ x†

0

G(x)n−1dH(x) +G(σ(x†))n−1 · (1−H(x†)) .

Consider a function f(x) :=
∫ x

0
G(t)n−1dH(t) +G(σ(x))n−1 · (1−H(x)). Let g(·) denote the density function of

distribution G. Now observe that

∂f(x)

∂x
= G(x)n−1h(x) + (n− 1)G(σ(x))n−2g(σ(x))σ(x)′(1−H(x))−G (σ(x))

n−1
h(x)

= h(x) ·
((

G(x)n−1 −G (σ(x))
n−1
)

+ (n− 1)G(σ(x))n−2g(σ(x)) · (σ(x)− x)

)
= h(x) ·

((
G(x)n−1 −G (σ(x))

n−1
)

+
∂G(σ(x))n−1

∂σ(x)
· (σ(x)− x)

) (a)
≥ 0 ,

where in (a), we use the convexity of Gn−1 over its support in [0, x̄G], and σ(x) ≥ x,∀x ∈ [0, x̄G], and h(x) ≥ 0,∀x.
This implies that the optimal deviation payoff is increasing w.r.t. x†, and thus increasing w.r.t. σ ∈ [σNI, x̄G].

For the value OPTσ for σ ∈ [x̄G, σH), we show that it is monotone decreasing w.r.t. σ ∈ [x̄G, σH).

Lemma 4.5. For any prior H, given a strategy G that satisfies conditions (i)–(ii) in Theorem 4.1, the value OPTσ
is monotone decreasing w.r.t. σ ∈ [x̄G, σH).
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To prove this result, for each σ ∈ [x̄G, σH), we first characterize the optimal solution Fσ to the program (4.8)
using a much more involved duality argument (see Lemma B.1 and its proof in Appendix B). Then with the
obtained Fσ, we prove the monotonicity of OPTσ. The proof uses the convexity of Gn−1 over [0, x̄G], and is in
Appendix B. Combine Lemma 4.4 and Lemma 4.5 will prove Lemma 4.3. Putting all pieces together can prove
Theorem 4.1 (see the end of Appendix B).

5 Conclusion
In this paper, we study the competitive information design for the Pandora’s Box problem. We characterize the
informational properties of Pandora’s Box by analyzing how a box’s partial information disclosure affects the agent’s
optimal decisions. We fully characterize the pure symmetric equilibrium for the boxes’ competitive information
disclosure with providing necessary and sufficient conditions that guarantee the existence and uniqueness of
competition equilibrium, and reveal various insights regarding information competition and the resultant agent
payoff at equilibrium.
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A Missing proofs of Section 3
Corollary 3.1. Let G be an essentially full information strategy. The agent obtains the highest expected payoff
σH −

∫ σH
0

H(x)ndx under (G, . . . , G) among all possible (symmetric or asymmetric) strategy profiles.

Proof of Corollary 3.1. Recall that from Theorem 3.1, we know

uA(H, . . . ,H) = max
Gi:H�Gi,∀i

uA(G1, . . . , Gn) .(A.1)

From Lemma 3.3, we know

uA(H, . . . ,H) = E
[
max
i
κi

]
= Exi∼H,∀i

[
max

{
min{x1, σH}, . . . ,min{xn, σH}

}]
= σH · (1−H(σH)n) + Exi∼H,∀i[max{x1, . . . , xn}|xi < σH ,∀i]

= σH · (1−H(σH)n) +

∫ σH

0

xdH(x)n

= σH −
∫ σH

0

H(x)ndx .

For an essentially full information disclosure strategy G, we have G(x) = H(x),∀x ∈ [0, σH ]. Thus,

uA(G, . . . , G) = σH −
∫ σH

0

G(x)ndx
(a)
= σH −

∫ σH

0

H(x)ndx = uA(H, . . . ,H) ,(A.2)

where (a) is from the definition of strategy G.

Corollary 3.2. Given the prior H and the cost c ≥ 0, for any strategy G that satisfies H � G, we have
λ− c ≤ σG ≤ σH . Moreover,

• σG = λ− c if and only if G has no support over [0, λ− c];

• σG = σH if and only if H is an MPS of G over the interval13 [0, σH ], denoted by H �[0,σH ] G.

Proof of Corollary 3.2. The condition for σG = λ − c is straightforward from Lemma 3.1. We next prove the
condition for σG = σH . For the “if” direction, note that from the definition of H �[0,σH ] G, we know W (σH) = 0,
i.e.,

∫ σH
0

H(x) =
∫ σH

0
G(x), thus

∫ σH
0

G(x) = σH − (λ− c). From Lemma 3.1, we then know σG = σH . For the
“only if” direction, from σG = σH , we know

∫ σH
0

G(x) = σH − (λ− c), thus
∫ σH

0
G(x)dx =

∫ σH
0

H(x)dx, implying
W (σH) = 0. As H � G, we know W (y) ≥ 0,∀y ∈ [0, σH ]. Thus, H �[0,σH ] G.

Lemma 3.1. For any G with mean λ and for any c ≥ 0, σG = σ if and only if
∫ σ

0
G(x)dx = σ − (λ− c).

Proof of Lemma 3.1. By definition, we have

c = Ex∼G[max{x− σG, 0}] =

∫ 1

σG

(x− σG)dG(x) = λ−
∫ σG

0

xdG(x)− σG(1−G(σG))

= λ+

∫ σG

0

G(x)dx− σG ,

where we have used the fact
∫
xdG(x) = λ and integral by parts. Rearranging the terms gives us the result.

Lemma 3.2. For any H, a strategy G : H � G satisfying σG = σH must have G(σH) = H(σH).

Proof of Lemma 3.2. Recall that if G satisfies σG = σH , from Lemma 3.1, we have
∫ σH

0
G(x)dx = σH − (λ− c) =∫ σH

0
H(x)dx. We now consider following two possible cases:

13Let W (y) :=
∫ y
0

[
H(x)−G(x)

]
dx. We say H is an MPS of G over [a, b] if and only if W (a) = W (b) = 0, and W (y) ≥ 0, ∀y ∈ [a, b].
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• Suppose that G(σH) > H(σH), as H is continuous over [0, 1], and G is nondecreasing, then there exists
x′ > σH such that G(x) > H(x),∀x ∈ (σH , x

′), then we have∫ x′

0

G(x)dx =

∫ σH

0

G(x)dx+

∫ σH

x′
G(x)dx >

∫ σH

0

H(x)dx+

∫ σH

x′
H(x)dx =

∫ x′

0

H(x)dx ,

which violates the definition of H � G.

• Suppose that G(σH) < H(σH), as H is continuous over [0, 1], and G is nondecreasing, then there exists
x′ < σH such that H(x) > G(x),∀x ∈ (x′, σH), then consider∫ σH

0

H(x)dx =

∫ x′

0

H(x)dx+

∫ σH

x′
H(x)dx >

∫ x′

0

G(x)dx+

∫ σH

x′
G(x)dx =

∫ σH

0

G(x)dx ,

which violates the condition that σG = σH .

B Missing proofs of Section 4
Corollary 4.1. Essentially full information strategy is the equilibrium strategy if and only if Hn−1 is convex
over [0, σH ].

Proof of Corollary 4.1. WhenHn−1 is convex over [0, σH ], it is easy to see that the unique distributionG that meets
conditions (i)–(ii) in Theorem 4.1 must satisfy that G(x) = H(x),∀x ∈ [0, σH ]. We now show how the condition
(iii) always holds when Hn−1 is convex over [0, σH ]. In this case, we know x̄G = σH , and σNI = λ− c < σH = x̄G,
thus, it suffices to show the case (b) in condition (iii) holds. Clearly, when x̄G = σH , we have x† = x̄G, and∫ x†

0

G(x)n−1dH(x) +H(σH)n−1(1−H(x†)) =

∫ σH

0

H(x)n−1dH(x) +H(σH)n−1(1−H(σH)

=
1

n
·H(σH)n +H(σH)n−1(1−H(σH)) ≤ 1

n
,

where the last inequality always holds by algebra for any n ≥ 2. Thus, G, i.e., the essentially full information
disclosure, is the equilibrium strategy.

Corollary 4.4. Under essentially full information equilibrium, the agent’s payoff is decreasing with respect to
the inspection cost and increasing with respect to the number of senders.

Proof of Corollary 4.4. Recall that from Corollary 3.1, we know under essentially full information equilibrium,
we have uA(G, . . . , G) = σH −

∫ σH
0

H(x)ndx . Consider function f(x, n) := x −
∫ x

0
H(t)ndt. Clearly, we have

∂f(x,n)
∂x = 1−H(x)n > 0. Thus, agent’s payoff under essentially full information equilibrium is strictly increasing

w.r.t. σH . This implies that agent’s payoff is decreasing w.r.t. the cost. On the other hand, when n increases, we
have Hn is more convex and the integral

∫ x
0
H(t)ndt is smaller, implying that agent’s payoff is increasing.

Corollary 4.5. Given prior H in which Hn−1 is concave over [0, σH ]. Let G be a distribution satisfying the
conditions (i)–(ii) in Theorem 4.1, then G is an equilibrium strategy if and only if G(λ− c)n−1 ≤ 1/n.

Proof of Corollary 4.5. When Hn−1 is concave over [0, σH ], it is easy to see that the unique distribution G that
meets condition (i)–(ii), must be that Gn−1 is linear over [0, x̄G], and G has no support over [x̄G, σH ]. If λ−c ≥ x̄G,
then G is equilibrium strategy if and only if G(λ− c)n−1 ≤ 1/n. If λ− c < x̄G, we now show that the case (b) in
condition (iii) is equivalent to ensure G(λ−c)n−1 ≤ 1/n. To see this, let k := H(σH)n−1

x̄G
denote the slope of the linear

portion of Gn−1. Then, for x† satisfying
∫ 1

x†
(x− x̄G)dH(x) = c, i.e.,

∫ x†
0
H(x)dx+ (x̄G− x†)H(x†) = x̄G− (λ− c),
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note that ∫ x†

0

G(x)n−1dH(x) +H(σH)n−1(1−H(x†))

= G(x†)n−1H(x†)− k
∫ x†

0

H(x)dx+H(σH)n−1(1−H(x†))

= G(x†)n−1H(x†)− k ·
(
x̄G − (λ− c)− (x̄G − x†)H(x†)

)
+H(σH)n−1(1−H(x†))

= k · (λ− c) = G(λ− c)n−1 ,

where we have used the linearity of Gn−1 over [0, x̄G]. Thus, combining above two cases, to guarantee G is the
equilibrium strategy, it suffices to ensure G(λ− c)n−1 ≤ 1/n.

Lemma 4.1. For any H, if there exists an equilibrium (G, . . . , G), it must be that σG = σH . Each sender’s
expected payoff is 1/n at any equilibrium.

Proof of Lemma 4.1. We prove the lemma using two senders case. The analysis for multiple senders can be easily
carried over. Given a symmetric strategy (G,G) where σG 6= σH , let x̄G = max{x : x ∈ supp [G] ∧ x ≤ σG}, we
now consider following possible scenarios:
• G(x) = H(x),∀x ∈ [0, x̄G]. In this case, we must have x̄G < σG, otherwise we have σG = σH . Consider
(sufficiently small) ε and ε′, and let x† := min{x : G(x) ≥ H(x̄G + ε)}. Consider sender 1 deviating to a new
strategy F where

(B.3) F (x) =


G(x), ∀x ∈ [0, x̄G)

H(x), ∀x ∈ [x̄G, x̄G + ε)

H(x̄G + ε), ∀x ∈ [x̄G + ε, x† + ε′)

G(x), ∀x ∈ [x† + ε′, 1],

where ε′ further satisfies that ∫ x†

x̄G

(F (x)−G(x))dx =

∫ x†+ε′

x†
(G(x)− F (x))dx.(B.4)

By construction, we have F � G as
∫ σ

0
(F (x) − G(x))dx ≥ 0,∀σ, and H � F as

∫ σ
0

(H(x) − F (x))dx ≥ 0,∀σ.
Let ∆ε := H(x̄G + ε)−H(x̄G). Now consider∫ 1

σG

(x− σG)dF (x)−
∫ 1

σG

(x− σG)dG(x) =

∫ 1

σG

xdF (x)−
∫ 1

σG

xdG(x)− σG ·
(∫ 1

σG

dF (x)−
∫ 1

σG

dG(x)

)
=

∫ σG

0

xdG(x)−
∫ σG

0

xdF (x) + σG ·∆ε

= σGG(σG)−
∫ σG

0

G(x)dx− σGF (σG) +

∫ σG

0

F (x)dx+ σG ·∆ε

=

∫ σG

0

F (x)dx−
∫ σG

0

G(x)dx > 0,

⇒
∫ 1

σG

(x− σG)dF (x) > c .

As
∫ 1

σ
(x− σ)dF (x) is strictly decreasing w.r.t σ, we thus have σF > σG. Now let uSa := pG +

∫ σG
0

G(x)dG(x)
and consider

uS1 (F,G)− uSa =

∫ 1

σG

dF (x) +

∫ σG

0

G(x)dF (x)− uSa

=

∫ x̄G+ε

x̄G

G(x)dF (x)−∆ε = (1− pG)−∆ε = −pG∆ε
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Choose ε such that pG∆ε < uSa − 1
2 , we then have

uS1 (F,G) = uSa − pG∆ε >
1

2
= uS1 (G,G).

• ∃x ∈ [0, x̄G], G(x) 6= H(x). In this case, we consider two possible scenarios:

1. When G(σG) > H(σG). In this case, as we have
∫ σG

0
G(x)dx <

∫ σG
0

H(x)dx, there must exist a point
x† := max{x ∈ [0, x̄G] : G(x) ≥ H(x) ∧G(x) < H(x)}. Now consider following new strategy F :

F (x) =



G(x), ∀x ∈ [0, x† − ε)
H(x), ∀x ∈ [x† − ε, x†)
G(x), ∀x ∈ [x†, x‡)

G(x‡), ∀x ∈ [x‡, x‡ + ε′)

G(x), ∀x ∈ [x‡ + ε′, 1],

where x‡ ≥ σG and ε, ε′ are sufficiently small such that they satisfy the following∫ x†

x†−ε
(F (x)−G(x))dx =

∫ x‡+ε′

x‡
(G(x)− F (x))dx.

By construction, F � G as
∫ σ

0
(F (x)−G(x))dx ≥ 0,∀σ, and H � F as

∫ σ
0

(H(x)− F (x))dx ≥ 0,∀σ. Now
consider∫ 1

σG

(x− σG)dF (x)−
∫ 1

σG

(x− σG)dG(x) =

∫ 1

σG

xdF (x)−
∫ 1

σG

xdG(x)− σG ·
(∫ 1

σG

dF (x)−
∫ 1

σG

dG(x)

)
=

∫ σG

0

xdG(x)−
∫ σG

0

xdF (x)

= σGG(σG)−
∫ σG

0

G(x)dx− σGF (σG) +

∫ σG

0

F (x)dx

=

∫ σG

0

F (x)dx−
∫ σG

0

G(x)dx > 0.

Thus, we have σF > σG. As a result, let uSa := pG +
∫ σG

0
G(x)dG(x) and

uS1 (F,G)− uSa =

∫ 1

σG

dF (x) +

∫ σG

0

G(x)dF (x)− uSa =

∫ x†

x†−ε
G(x)dF (x)−

∫ x†

x†−ε
G(x)dG(x)

=

∫ x†

x†−ε
G(x) · (h(x)− f(x))dx

Choose ε such that
∫ x†
x†−εG(x) · (h(x)− f(x))dx < uSa − 1

2 , we then have

uS1 (F,G) = uSa −
∫ x†

x†−ε
G(x) · (h(x)− f(x))dx >

1

2
= uS1 (G,G).

2. When G(σG) ≤ H(σG). In this case, consider the point x† := max{x ∈ [0, x̄G] : G(x) ≤ H(x) ∧ G(x) >
H(x)}. Now consider following new strategy F :

F (x) =



G(x), ∀x ∈ [0, x†)

H(x), ∀x ∈ [x†, x† + ε)

H(x† + ε), ∀x ∈ [x† + ε, x̄)

G(x), ∀x ∈ [x̄, x‡)

G(x‡), ∀x ∈ [x‡, x‡ + ε′)

G(x), ∀x ∈ [x‡ + ε′, 1],
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where x‡ ≥ σG, and x̄ satisfies G(x̄) = H(x† + ε). Moreover, ε, ε′ are sufficiently small such that they satisfy
the following ∫ x̄

x†
(F (x)−G(x))dx =

∫ x‡+ε′

x‡
(G(x)− F (x))dx.

Follow the earlier analysis, we have σF > σG, and with sufficiently small ε, ε′, we have uS1 (F,G) > uS1 (G,G).
Putting pieces together, the proof then completes.

Corollary 4.6. Given a prior H, if (G, . . . , G) is an equilibrium, then the strategy profile (G1, . . . , Gn) where
∀i, Gi(x) = G(x),∀x ∈ [0, σH ] is also the equilibrium.

Proof of Corollary 4.6. It suffices to show that given (G1, . . . , Gn), no sender has profitable deviation. Consider
following two kinds of deviation: one is deviating to a strategy that has reservation value σH , then from Lemma 4.2,
we know there exists no such profitable deviation; for any σ < σH , the other is deviating to a strategy that has
reservation value σ, then from (4.7) and the definition of (G, . . . , G), we know there exists no such profitable
deviation.

Lemma B.1. Given a prior H, and a unique distribution G satisfying the conditions (i)–(ii) in Theorem 4.1, for
any σ ∈ [max{σNI, x̄G}, σH), let ∆ satisfy σ − (λ− c) +H(σ + ∆) ·∆ =

∫ σ+∆

0
H(x)dx, and let x∗ := xm, i.e., the

last point where Gn−1 is strictly convex, a distribution Fσ satisfying following structure is an optimal solution to
the program (4.8)

1. if
∫ x∗

0
H(x)dx+ (x̄G − x∗) ·H(x∗) + (σ − x̄G) ·H(σ + ∆) > σ − (λ− c), then

(B.5) Fσ(x) =


H(x), ∀x ∈ [0, x†)

H(x†), ∀x ∈ [x†, x̄G)

H(σ + ∆), ∀x ∈ [x̄G, x
‡)

1, ∀x ∈ [x‡, 1]

where x† ∈ [0, x∗) satisfies
∫ σ

0
Fσ(x)dx = σ − (λ− c).

2. if
∫ x∗

0
H(x)dx+ (x̄G − x∗) ·H(x∗) + (σ − x̄G) ·H(σ + ∆) ≤ σ − (λ− c), then

(B.6) Fσ(x) =


H(x), ∀x ∈ [0, x∗)

H(x∗), ∀x ∈ [x∗, x′)

H(σ + ∆), ∀x ∈ [x′, x‡)

1, ∀x ∈ [x‡, 1]

where x′ ∈ [x∗, x̄G] satisfies
∫ σ

0
Fσ(x)dx = σ − (λ− c).

Proof of Lemma B.1. We first show the unique existence of ∆ such that σ−(λ−c)+H(σ+∆) ·∆ =
∫ σ+∆

0
H(x)dx.

Fix σ ∈ [x̄G, σH), consider a function f(x) := σ− (λ− c) +H(σ+x) ·x−
∫ σ+x

0
H(t)dt. Clearly, f(·) is continuously

differentiable and increasing over [0, 1− σ]. Note that

f(σH − σ) = σ − (λ− c) +H(σH) · (σH − σ)−
∫ σH

0

H(t)dt = (σH − σ) · (H(σH)− 1) ≤ 0

f(1− σ) = σ − (λ− c) +H(1) · (1− σ)−
∫ 1

0

H(t)dt = c > 0 .

Thus, there must exist a unique ∆ ∈ (σH − σ, 1− σ) such that f(∆) = 0. In below, we show the optimality of
solution (B.5) and (B.6) via constructing a dual solution that satisfies the complementary slackness conditions
in Equations (4.12) and (4.13). Fix a σ ∈ [x̄G, σH), and its corresponding ∆. For notation simiplicity, we define
p† := H(x†)n−1 in first case and p∗ := H(x∗)n−1 in second case, and pH := H(σH)n−1.
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• When
∫ x∗

0
H(x)dx+ (x̄G − x∗) ·H(x∗) + (σ − x̄G) ·H(σ + ∆) > σ − (λ− c), in this case, let αG := pH−p†

x̄G−x† , and
consider following dual solution

α = −αG · (σ + ∆− x†) + p† − pH
∆

;

p(x) =


G(x)n−1 − α · (σ − x), ∀x ∈ [0, x†)

αp · (x− x†) + p† − α · (σ − x†), ∀x ∈ [x†, σ + ∆)

pH , ∀x ∈ [σ + ∆, 1]

where αp := α+αG. We now show that the above constructed p(·) is global convex over [0, 1], and p(·), α satisfy
the complementary slackness conditions in Equations (4.12) and (4.13).
To see the convexity of p, note that for any x ∈ [0, x†], ∂p(x)

∂x = (G(x)n−1)′ +α is increasing due to the convexity
Gn−1 over [0, x†]. Moreover,

lim
x→(x†)−

∂p(x)

∂x
= (G(x†)n−1)′ + α ≤ αp = α+ αG ;

lim
x→(σ+∆)−

∂p(x)

∂x
= αp = α+ αG = −αG · (σ + ∆− x†) + p† − pH − αG ·∆

∆

= −αG · (σ − x
†)− (pH − p†)
∆

= −(pH − p†) ·
σ−x†
x̄G−x† − 1

∆
≤ 0 .

To check the continuity of p, note that

lim
x→(x†)−

p(x) = G(x†)n−1 − α · (α− x†) = p† − α · (α− x†) = p(x†) ;

lim
x→(σ+∆)−

p(x) = αp · (σ + ∆− x†) + p† − α · (σ − x†)

= α ·∆ + αG · (σ + ∆− x†) + p† = pH .

Thus, p(·) is convex over [0, 1].
To satisfy the condition (4.13), note that for x ∈ [x†, x̄G), we have

p(x) + α · (σ − x)−G(x)n−1 = αp · (x− x†) + p† − α · (σ − x†) + α · (σ − x)−G(x)n−1

= (x− x†)(αp − α)− (G(x)n−1 − p†)

= αG · (x− x†)− (G(x)n−1 − p†)
(a)
≥ 0 ,

⇒ p(x) + α · (σ − x) ≥ G(x)n−1, ∀x ∈ [x†, x̄G) .

where (a) is from the convexity of Gn−1 over [0, x̄G). Note Fσ has non-zero support on x̄G. For x ∈ [x̄G, σ), we
know

p(x̄G) = αp · (x̄G − x†) + p† − α · (σ − x†) = (α+ αG) · (x̄G − x†) + p† − α · (σ − x†)
= pH − α(σ − x̄G) ;

p(x) + α · (σ − x)−G(x)n−1 = p(x) + α · (σ − x)− pH
= αG · (x− x†)− (pH − p†) ≥ 0

⇒ p(x) + α · (σ − x) ≥ pH , ∀x ∈ [x̄G, σ) .

For x ∈ [σ, σ + ∆], we already know αp ≤ 0 and p(σ + ∆) = pH , thus we have p(x) ≥ pH ,∀x ∈ [σ, σ + ∆].
Lastly, to satisfy condition (4.12), as Fσ(x) = H(x),∀x ∈ [0, x†], it suffices to ensure∫ 1

x†
p(x)dFσ(x) =

∫ 1

x†
p(x)dH(x) .
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Now note that ∫ 1

x†
p(x)dFσ(x) = (H(σ + ∆)−H(x†)) · p(x̄G) + (1−H(σ + ∆)) · pH .(B.7) ∫ 1

x†
p(x)dH(x) = pH − p(x†) ·H(x†)−

∫ 1

x†
H(x)dp(x)

= pH − p(x†) ·H(x†)− αp ·
∫ σ+∆

x†
H(x)dx .(B.8)

Consider

(B.7)− (B.8) = H(x†) · (p(x†)− p(x̄G)) +H(σ + ∆) · (p(x̄G)− pH) + αp ·
∫ σ+∆

x†
H(x)dx

= − αp ·

(
H(x†) · p(x

†)− p(x̄G)

−αp
+H(σ + ∆) · p(x̄G)− pH

−αp
−
∫ σ+∆

x†
H(x)dx

)
(a)
= − αp ·

(
H(x†) · (x̄G − x†) +H(σ + ∆) · (σ + ∆− x̄G)−

∫ σ+∆

x†
H(x)dx

)
(b)
= − αp ·

(
σ − (λ− c) +H(σ + ∆)∆−

∫ σ+∆

0

H(x)dx

)
(c)
= 0 ,

where (a) uses the definition of p(·) over [x†, σ + ∆], (b) uses the definition of x†, namely,
∫ x†

0
H(x)dx+ (x̄G −

x†)H(x†) + (σ − x̄G)H(σ + ∆) = σ − (λ− c), and (c) is from the definition of ∆.
Putting all pieces together, we know the above α, and p is a dual solution that satisfies the complementary
slackness, leading the optimality of Fσ in (B.5).

• When
∫ x∗

0
H(x)dx+ (x̄G − x∗) ·H(x∗) + (σ − x̄G) ·H(σ + ∆) ≤ σ − (λ− c), in this case, let αG := pH−p∗

x̄G−x∗ , i.e.,
the slope of the last linear portion of G, and consider following dual solution

(B.9)

α = −αG · (σ + ∆− x∗) + p∗ − pH
∆

;

p(x) =


G(x)n−1 − α · (σ − x), ∀x ∈ [0, x∗)

αp · (x− x∗) + p∗ − α · (σ − x∗), ∀x ∈ [x∗, σ + ∆)

pH , ∀x ∈ [σ + ∆, 1]

where αp := αG+α. Follow the analysis in earlier case, one can show that the above constructed p is convex over
[0, 1], and α, p satisfy the complementary slackness conditions in (4.12) and (4.13), showing that the solution in
(B.6) is an optimal solution.

The proof then completes.

Lemma 4.5. For any prior H, given a strategy G that satisfies conditions (i)–(ii) in Theorem 4.1, the value OPTσ
is monotone decreasing w.r.t. σ ∈ [x̄G, σH).

We first show following monotonicity result.

Claim B.1. Fix a σ ∈ (x̄G, σH) and its corresponding ∆ such that σ − (λ− c) +H(σ + ∆) ·∆ =
∫ σ+∆

0
H(x)dx.

When σ increases, the value σ + ∆ will decrease.

Proof of Claim B.1. To prove the above result, consider a function ν(σ, y) := σ−(λ−c)+H(y) ·(y−σ)−
∫ y

0
H(t)dt.

Clearly ∂ν(σ,y)
∂σ = 1−H(y) ≥ 0 and ∂ν(σ,y)

∂y = H(y) + h(y)(y − σ)−H(y) ≥ 0 for y ≥ σ. Consider σ1, σ2 where
σ1 < σ2, and their corresponding ∆1,∆2 such that ν(σ1, σ1 + ∆1) = 0 and ν(σ2, σ2 + ∆2) = 0. Then by
monotonicity of τ(σ, ·) and τ(·, y), we have

τ(σ2, σ2 + ∆2) = 0 = τ(σ1, σ1 + ∆1) ≤ τ(σ2, σ1 + ∆1) ⇒ σ2 + ∆2 ≤ σ1 + ∆1 .(B.10)
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We are now ready to present our proof for Lemma 4.5.

Proof of Lemma 4.5. We consider following possible cases based on the value of σNI = λ− c and x̄G.

• When λ − c ≥ x̄G, we know that σ > x̄G,∀σ ∈ [σNI, σH). Thus, for any σ ∈ [σNI, σH), the optimal
deviation Fσ follows the characterizations in Lemma B.1. Fix a σ and its corresponding ∆ where
σ − (λ− c) +H(σ + ∆) ·∆ =

∫ σ+∆

0
H(t)dt.

In first case of Lemma B.1, with structure of Fσ, we can write the payoff of deviating to Fσ as follows:

OPTσ =

∫ x†

0

G(x)n−1dH(x) +H(σH)n−1 · (1−H(x†)) .(B.11)

We will now show that OPTσ is decreasing w.r.t σ ∈ [σNI, σH). Recall that x′ = x† satisfies∫ x†

0

H(x)dx+ (x̄G − x†)H(x†) + (σ − x̄G)H(σ + ∆) = σ − (λ− c) .

Thus, with the definition of ∆, we have

H(σ + ∆) · (σ + ∆− x̄G) +H(x†) · (x̄G − x†) =

∫ σ+∆

x†
H(t)dt .

Now consider following function τ : [σ, 1]× [0, x̄G]→ R

τ(y, x) := H(y) · (y − x̄G) +H(x) · (x̄G − x)−
∫ y

x

H(t)dt .

Clearly, we have

∂τ(y, x)

∂y
= h(y) · (y − x̄G) ≥ 0;

∂τ(y, x)

∂x
= h(x)(x̄G − x) ≥ 0 .

Consider σ1, σ2 where σ1 < σ2, and their corresponding ∆1,∆2, x
†
1, x
†
2, such that τ(σ1 + ∆1, x

†
1) = 0 and

τ(σ2 + ∆2, x
†
2) = 0 Then by monotonicity of τ(y, ·) and τ(·, x), we have

τ(σ2 + ∆2, x
†
2) = 0 = τ(σ1 + ∆1, x

†
1) ≥ τ(σ2 + ∆2, x

†
1) ⇒ x†2 ≥ x

†
1 ,

where we have used the result in Claim B.1. Thus, we have showed that when σ increases, the value x† will
also increase.
Now back to (B.11), consider a function f(x) :=

∫ x
0
G(t)n−1dH(t)+H(σH)n−1 · (1−H(x)), then ∀x ∈ [0, x̄G],

∂f(x)

∂x
= G(x)n−1h(x)−H(σH)n−1h(x) = h(x) · (G(x)n−1 −H(σH)n−1) ≤ 0 ,

implying that f(x) is strictly decreasing w.r.t x ∈ [0, x̄G]. Consequently, we have showed that the value OPTσ
is decreasing w.r.t σ.
In second case of Lemma B.1, we have

OPTσ =

∫ x∗

0

H(x)dx+ (H(σ + ∆)−H(x∗)) ·G(x1)n−1 +H(σH)n−1 · (1−H(σ + ∆)) ,(B.12)

where x1 satisfies that∫ x∗

0

H(x)dx+ (x1 − x∗)H(x∗) + (σ − x1)H(σ + ∆) = σ − (λ− c)

⇒ x1 =

∫ x∗
0
H(x)dx− x∗H(x∗) + σH(σ + ∆)− (σ − (λ− c))

H(σ + ∆)−H(x∗)

=

∫ x∗
0
H(x)dx− x∗H(x∗) + (σ + ∆)H(σ + ∆)−

∫ σ+∆

0
H(t)dt

H(σ + ∆)−H(x∗)
,
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where we have used the definition of ∆ in last equation. Recall that ∆ ∈ (σH − σ, 1− σ), and x1 ∈ [x∗, x̄G].
Define a function κ(x) : [σH , 1]→ [x∗, x̄G]

κ(x) :=

∫ x∗
0
H(x)dx− x∗H(x∗) + xH(x)−

∫ x
0
H(t)dt

H(x)−H(x∗)
.

Now back to (B.12) and consider following function f : [σH , 1]→ R:

f(x) :=

∫ x∗

0

H(t)dt+ (H(x)−H(x∗)) ·G(κ(x))n−1 +H(σH)n−1(1−H(x)) .

Observe that
∂f(x)

∂x
= h(x)G(κ(x))n−1 + (n− 1)(H(x)−H(x∗))G(κ(x))n−2g(κ(x))(κ(x))′ −H(σH)n−1h(x)

= h(x) · (G(κ(x))n−1 −H(σH)n−1) + (n− 1)(H(x)−H(x∗))G(κ(x))n−2g(κ(x))·

xh(x) · (H(x)−H(x∗))−
(∫ x∗

0
H(x)dx− x∗H(x∗) + xH(x)−

∫ x
0
H(t)dt

)
h(x)

(H(x)−H(x∗))2

= h(x) · (G(κ(x))n−1 −H(σH)n−1) + (n− 1)G(κ(x))n−2g(κ(x)) · (xh(x)− h(x)κ(x))

= h(x) ·
(
G(κ(x))n−1 −H(σH)n−1) +

∂G(κ(x))n−1

∂κ(x)
· (x− κ(x))

)
≥ 0 .(B.13)

Recall that in Claim B.1, we have showed larger σ will induce smaller σ + ∆. Together with (B.13), we can
conclude that the value OPTσ is decreasing w.r.t σ.
Combined with the earlier analysis for the first case of Lemma B.1, we can conclude that

max
σ:σ∈[σNI,σH)

OPTσ = OPTσNI
= G(σNI)

n−1 = G(λ− c)n−1 .

Thus, to ensure OPTσ ≤ 1/n, it suffices to ensure G(λ− c)n−1 ≤ 1/n.

• When λ− c < x̄G. Follow the analysis in case (i), for any σ ∈ [x̄G, σH), we know

OPTσ ≤ OPTx̄G .

Now consider the deviation F which satisfies σF ∈ [σNI, x̄G], from the proof for Lemma 4.4, we know

max
σ∈[σNI,x̄G]

OPTσ = OPTx̄G =

∫ x†

0

G(x)n−1dH(x) +H(σH)n−1(1−H(x†)) ,(B.14)

where x† satisfies
∫ x†

0
H(x)dx+ (x̄G − x†) ·H(x†) = x̄G − (λ− c), i.e.,

∫ 1

x†
(x− x̄G)dH(x) = c. As a result,

to ensure OPTσ ≤ 1/n, it suffices to ensure (B.14) ≤ 1/n.

Combine the above results, we now prove our main theorem.

Proof of Theorem 4.1. For the “if” direction, it suffices to show that no sender has profitable deviation under the
strategy profile (G, . . . , G) where G satisfies conditions (i)–(iii) in Theorem 4.1. Consider following two kinds
of deviations: one is deviating to a strategy F where σF = σH , i.e., F ∈ H(σH), and the other is deviating
to a strategy F where σF = σ < σH , i.e., F ∈ H(σ). From the first part of Lemma 4.2, we know there is no
such profitable deviation to a strategy F ∈ H(σH). From Lemma 4.3 and Lemma 4.4, we know there is no such
profitable deviation to a strategy F ∈ H(σ),∀σ < σH . Thus, (G, . . . , G) must be an equilibrium. For the “only if”
direction, Lemma 4.1 proves the condition (i). The condition (ii) follows from the second part of Lemma 4.2. The
conditions (iii) follows from the definition of equilibrium. Namely, it is not profitable to deviate to a strategy that
has the reservation value max{σNI, x̄G}, thus the optimal deviation value is no larger than 1/n, with Lemma 4.4,
this is exactly the statement of the condition (iii).
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