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Abstract

Classic mechanism/information design imposes the assumption that agents are fully rational,
meaning each of them always selects the action that maximizes her expected utility. Yet many
empirical evidence suggests that human decisions may deviate from this full rationality assump-
tion. In this work, we attempt to relax the full rationality assumption with bounded rationality.
Specifically, we formulate the bounded rationality of an agent by adopting the quantal response
model (McKelvey and Palfrey, 1995).

We develop a theory of rationality-robust information design in the canonical setting of
Bayesian persuasion (Kamenica and Gentzkow, 2011) with binary receiver action. We first iden-
tify conditions under which the optimal signaling scheme structure for a fully rational receiver
remains optimal or approximately optimal for a boundedly rational receiver. In practice, it
might be costly for the designer to estimate the degree of the receiver’s bounded rationality
level. Motivated by this practical consideration, we then study the existence and construction
of robust signaling schemes when there is uncertainty about the receiver’s bounded rationality
level.1
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1 Introduction

In modern computer science, an important branch of research studies computation that involves
multiple parties. One fundamental question raises in this area: how to ensure that different par-
ties do their computation correctly. In the field of mechanism design (which studies protocols for
strategic agents), literature imposes the rationality assumption on the participated agents – each
agent (a.k.a., party) acts (a.k.a., does computation) in a way to perfectly maximize their own utility.
In contrast, the system design literature favors fault tolerant systems (Cristian, 1991; Laprie, 1992;
Koren and Krishna, 2020), where the central protocol allows faults within some of the parties. Moti-
vated by the fault tolerance idea from the system design literature, it is interesting to study whether
and how the economic lessons derived under the full rationality assumption can be extended to more
practical scenarios where agents might make mistakes and thus are boundedly rational.

In this paper, we tackle this research direction on relaxing rationality assumption by studying a
canonical economic model – persuasion – in information design.2 In Bayesian persuasion (Kamenica
and Gentzkow, 2011), there is a sender and a receiver. Both players have their own utility functions
which depend on a state drawn from a common prior as well as an action selected by the receiver.
Once the state is realized, the sender observes the realized state, while the receiver only shares a
common prior about the state with the sender. The sender can commit to an information structure
(a.k.a., signaling scheme) which (possibly randomly) maps the realized state to a signal sent to the
receiver. Given the observed signal, the receiver forms a posterior belief about the state and then
selects her action (which impacts both her and the sender’s utilities). We say the receiver is fully
rational if she always (correctly) selects the best action which maximizes her expected utility given
her posterior belief about the state.

To capture the possible mistakes which the receiver can make in practice, we relax the full ratio-
nality assumption with the bounded rationality modeled by quantal response (cf. McKelvey and
Palfrey, 1995).3 To provide informal intuitions, for a fully rational receiver, she takes an action
that maximizes her expected utility. When there is no ties in action utility, this action choice is
deterministic. On the other hand, the quantal response accounts for the inherent randomness (and
error-proneness) in human decision making and models the human’s decision as a probabilistic pro-
cess. Specifically, in quantal response, for each action the receiver can take, a noise is added into
the receiver’s utility for taking this action. The receiver then takes an action that maximizes this
noisy version of the utility. This noise captures several realistic aspects of human decision making,
e.g., when there are additional inherent characteristics in the receiver’s utility estimation that we
cannot model, or when receiver is drawn from a population and individual differences need to be
accounted for. Shifting to the above boundedly rational behavior, two natural questions that our
work tries to answer are:

Does the structure of optimal signaling scheme for a fully rational receiver preserve or
approximately preserve when the receiver is boundedly rational?

Can the sender design robust signaling scheme when he has uncertainty of the receiver’s
boundedly rational behavior?

2Information design is a field closely related to mechanism design. Mechanism design builds the rule of the game
while holding the information structure (i.e., how information is transferred across agents and nature) fixed. In
contrast, information design builds information structure while holding the rule of the game fixed.

3The quantal response model is also known as multinomial logit model (cf. Talluri and Van Ryzin, 2004) and
conditional choice probability (Rust, 1987). There are other models which relax the rationality assumption. See
related works for more discussions.
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To answer the above questions, we focus on Bayesian persuasion with binary receiver action. Though
binary receiver action seems a little restrictive at first glance, it is a canonical persuasion model
studied extensively in both theoretical computer science and economics literature (see, e.g., Kolotilin
et al., 2017; Babichenko and Barman, 2017; Guo and Shmaya, 2019; Xu, 2020; Babichenko et al.,
2021). This model, serving as a fundamental cornerstone, has a wide range of applications in
practice, including but not limited to product advertising, targeting in sponsored search, recom-
mendation letter, and short video recommendation. See Appendix B.1 for detailed descriptions of
these examples. Our results provide both affirmative and negative answers to the above questions,
and we underscore that the binary-action setting is sufficiently intricate and challenging enough to
establish our main results within our rationality-robust framework. At a high-level, a critical con-
dition influencing our findings is the sender’s utility structure, specifically whether it is dependent
on the state. 4

1.1 Main Results and Techniques

Based on the practical applications, problems in Bayesian persuasion can be further partitioned
into state independent sender utility (SISU) environments where the sender’s utility does not de-
pend on the realized state; and state dependent sender utility (SDSU) environments where the
sender’s utility depends on both the realized state as well as the receiver’s action. For example,
as illustrated in Appendix B.1, the aforementioned product advertising and recommendation letter
example fall into SISU environments as the seller/advisor only cares whether the buyer buys the
product/recruiter hires the student, while short video recommendation and targeting in sponsored
search example fall into SDSU environments as the platform’s/search engine’s revenue also depends
on video content/impression attribute.

Revisiting censorship and direct signaling schemes. When the receiver is fully rational,
the optimal signaling schemes admit the same structure for both SISU environments and SDSU
environments. In a nutshell, the optimal signaling scheme partitions all states into two subsets –
high states and low states;5 and pools all high states into a single signal. On the other side, the
signaling structure for low states can be arbitrary and does not affect the optimality of the signaling
scheme. Two representative subclasses of signaling schemes have been studied extensively in the
literature – direct signaling schemes and censorship signaling schemes. Both of them pool all high
states, but have different signaling structures for low states. Specifically, direct signaling schemes
pool all low states, while censorship signaling schemes reveal every low state truthfully. To persuade
a fully rational receiver, the sender is indifferent between the optimal direct signaling scheme and
the optimal censorship signaling scheme, since both of them maximize the sender’s expected utility
over all signaling schemes.

The separation of optimal signaling schemes in SISU and SDSU environments. As
the first part of our main contributions, for a boundedly rational receiver, we show that in SISU
environments, censorship signaling schemes remain optimal, while direct signaling schemes are sub-
optimal; and both of them become sub-optimal in SDSU environments. Nonetheless, we also provide
the tight approximation bounds of censorship and direct signaling schemes in SDSU environments.

4As we elaborate later, for a fully rational receiver, the structure of optimal signaling scheme is well-characterized
for the binary-action setting, while for the multi-action setting, characterizing a succinct structure that is amenable
to theoretical analysis still remains as open question (cf. Dughmi and Xu, 2016; Bergemann et al., 2022a). Thus,
studying multi-action setting is beyond the focus on this work, and we leave it as an interesting future direction.

5Rigorously speaking, there might exists a threshold state such that a certain fraction of it belongs to high states
and the remaining fraction of it belongs to low states.
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Our results (summarized in Table 1) suggest that the structure of optimal signaling schemes for a
fully rational receiver is partially preserved (i.e., censorship remains optimal) in SISU environments,
and approximately preserved (i.e., up to an Θ(m)-approximation factor) in SDSU environments,
where m denotes the number of the states. Moreover, to persuade a boundedly rational receiver,
the sender prefers censorship than direct signaling schemes.

Table 1: Approximation ratio of censorship/direct signaling schemes under bounded rationality.
The number of states is m.

censorship signaling schemes direct signaling schemes

SISU 1 [Theorem 3.1] Θ(m) [Theorem 3.5, Theorem 4.5]

SDSU Θ(m) [Proposition 4.2, Theorem 4.5]

In more detail, in SISU environments, we show that for any boundedly rational receiver, censor-
ship is optimal among all signaling schemes (Theorem 3.1) and direct signaling scheme is Ω(m)-
approximation where m is the number of states (Theorem 3.5). We further provide structural
characterizations on how to determine the high/low states partition in the optimal censorship.In
particular, for a receiver with any bounded rationality level, including a fully rational receiver, the
subset of high states is nested (i.e., increasing) with respect to the bounded rationality level. Namely,
the optimal signaling scheme reveals less information for a more rational receiver.

To show the optimality of censorship signaling schemes for a boundedly rational receiver in SISU
environments, we first introduce a linear program POPT-Primal, in which the constraints regulate the
set of all feasible signaling schemes, and the objective function computes the expected sender utility
of a given signaling scheme. This linear program POPT-Primal is inspired by a connection between our
problem and public Bayesian persuasion for a continuum population of fully rational receivers with a
specific utility structure. Given the linear program POPT-Primal and its dual program, we characterize
the censorship structure in the optimal signaling scheme by constructing a dual assignment explicitly
and then invoke the strong duality of linear programs.

In SDSU environments, the optimal signaling scheme no longer admits the censorship nor direct
structure. We start by providing a SDSU example (Example 4.1) and showing that the approx-
imation of every censorship (resp. direct) signaling scheme is Ω(m) (Proposition 4.2). En route
to proving this lower bound, we present a stronger result, namely that any signaling scheme must
be an Ω(m/L)-approximation where L is the maximum number of signals induced by a state in
this signaling scheme (Theorem 4.1). Next, we provide the matching upper bound that for any
problem instance with m states, there exists a censorship (resp. direct) signaling scheme that is an
O(m)-approximation to the optimal signaling scheme (Theorem 4.5).

The key step in establishing the O(m)-approximation upper bounds for censorship (resp. direct)
signaling schemes (Theorem 4.5) is that we characterize a 4-approximation signaling scheme that
uses O(m) signals and has the following two structural properties (Lemma 4.6): (i) every signal is
used to pool at most two states; (ii) every pair of states is pooled at most one signal. Intuitively,
property (i) says that, in the signaling scheme that we characterize, a signal either fully reveals the
state or randomizes receiver’s uncertainty only on two states, and property (ii) says that there is
no need for the sender to pool a pair of states at multiple signals in order to have 4-approximation.
We then leverage the structure of this 4-approximation signaling scheme to show the existence of
O(m)-approximation censorship (resp. direct) signaling schemes. To prove this technical lemma
(Lemma 4.6), we build a connection between the signaling schemes satisfying properties (i) (ii) with
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fractional solutions in the generalized assignment problem (Shmoys and Tardos, 1993). In particular,
focusing on signaling schemes that have properties (i) (ii), we introduce a linear program which
shares the same format as the linear program relaxation of the generalized assignment problem. For
generalized assignment problem, Shmoys and Tardos (1993) show that the optimal integral solution
is a 2-approximation to the optimal fractional solution. We argue that the optimal integral solution
can be converted into a feasible signaling scheme that has properties (i) (ii), uses O(m) signals, and
suffers an additional two factor loss in its payoff.

Rationality-robust information design. As the second part of our main contributions, we in-
troduce rationality-robust information design – a framework in which a signaling scheme is designed
for a receiver whose bounded rationality level is unknown. In our previous discussions, designing
optimal signaling schemes in both SISU and SDSU environments is rationality-oriented – the sender
needs to know exactly the receiver’s bounded rationality level. In practice, the sender may not
be able to have (or require significant cost to learn) such perfect knowledge. Motivated by this
concern, the goal of rationality-robust information design is to identify robust signaling schemes –
ones with good (multiplicative) approximation to the optimal signaling scheme that is tailored to
any possible bounded rationality level of the receiver. Similar to our results above, we observe that
obtaining rationality-robust signaling scheme is much more tractable in SISU environments than
SDSU environments.

In SISU environments, by leveraging the structural property we mentioned before (i.e., the optimal
(censorship) signaling scheme reveals less information for a more rational receiver), we show that
the optimal censorship for a fully rational receiver achieves a 2 rationality-robust approximation
when the sender has no knowledge of the receiver’s bounded rationality level (Theorem 5.1). We
also provide an example to show the tightness of the result (Proposition 5.2). Our result suggests
that, up to a two factor, the knowledge of the receiver’s bounded rationality level are unimportant
in SISU environments. For the comparison, we also show that the optimal direct signaling scheme
for a fully rational receiver achieves unbounded rationality-robust approximation (Proposition 5.3).
This repeats the takeaway mentioned above – the sender prefers censorship than direct signaling
schemes in SISU environments under bounded rationality.

In contrast, in SDSU environments, we show that there exists no signaling scheme with bounded
rationality-robust approximation ratio, when the sender has no knowledge of the receiver’s bounded
rationality level (Theorem 5.4), and this result holds even if the state space is binary. Our result
suggests that, there exists a tradeoff between the knowledge of the receiver’s rationality level and
the achievable rationality-robustness in SDSU environments. To show this impossibility result, we
construct a binary-state problem instance and a set of carefully chosen possible bounded rationality
levels. The key to our approach is by introducing a factor-revealing program to lower bound the
optimal rationality-robust approximation ratio. By analyzing its dual program, we show that the
rationality-robust approximation ratio of any signaling scheme is unbounded. This impossibility
result indicates that there exists a tradeoff between the knowledge of the receiver’s rationality level
and the achievable rationality-robustness. Though it appears challenging to obtain a bounded-factor
rationality-robust approximation for arbitrary set of rationality levels, and general problem instances
in SDSU environments, we obtain a preliminary positive result under a boundedness condition on
the receiver’s rationality level. In particular, when the state space is binary, under a reasonable
multiplicative boundedness condition (i.e., learning the receiver’s bounded rationality level up to a
multiplicative error) on the receiver’s bounded rationality levels, we show that the sender is able
to design a signaling scheme whose rationality-robust approximation ratio depends linearly on the
multiplicative error (Proposition F.1).
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1.2 Related Work

In this section, we discuss the works that are closely related to our work, and we discuss further
related work in Appendix A.

There has been a growing interest in understanding how to design robust signaling schemes in
the face of uncertain receiver behavior. Our work contributes to this line of research by studying
robust signaling schemes when the receiver’s bounded rationality level is unknown. The approach
we take is similar to the approach often used in prior-independent mechanism design, examining
the approximation ratios of the designed mechanisms. Our work differs from previous works that
either focus on the regret minimization Babichenko et al. (2021); Chen and Lin (2023) or minimax
approach Dworczak and Pavan (2022); Kosterina (2022); Hu and Weng (2021). Notably, Babichenko
et al. (2021) present a negative result saying that there exists no nontrivial bound of the additive
regret if the sender has no knowledge about the receiver’s utilities. While this result shares a similar
message to our impossibility result in Section 5, there are notable differences between the two studies
that preclude direct comparison: (i) our impossibility result is under SDSU setting, whereas theirs is
under SISU setting (for which we have a positive result); (ii) the adversary in our setting is limited
to choosing the receiver’s behavior (i.e., the rationality level) in the quantal response model, whereas
theirs considers a worst-case adversary. Recent work by Chen and Lin (2023) also examines the
design of robust signaling schemes for non-best-responding receiver, but with a focus on the regret
minimization approach. Our persuasion setting with fully rational receiver can also be viewed as a
Stackelberg game where the sender moves first by committing to a signaling scheme, and the receiver
takes an action that best responds to sender’s signaling scheme. With bounded rationality, receiver
in our setting is not best-responding to sender’s signaling scheme. This shares similarity to recent
work by Gan et al. (2023) who study Stackelberg games with suboptimal follower response. However,
their work adopts a worst-case perspective and considers the worst possible follower behavior up to
some plausible ranges, while our work adopts a model-based approach and the follower is responding
with following a quantal response model.

2 Preliminaries

2.1 Model and Problem Definition

In this paper, we study the persuasion problem for a receiver with bounded rationality. There
are two players, a sender and a receiver. There is an unknown state θ drawn from a finite set
[m] , {1, 2, . . . ,m} according to a prior distribution λ ∈ ∆([m]), which is common knowledge
among both players. Throughout the paper, we use θ to denote the state as a random variable, and
i, j, k ∈ [m] as its possible realization. We use λi to denote the probability that the realized state
is i ∈ [m], i.e., λi , Pr[θ = i]. The receiver has a binary action set A = {0, 1}. Given a realized
state i ∈ [m], by taking action a ∈ A, the utility of the receiver is vi(a) and the utility of the sender
is ui(a). Following the standard convention (e.g., Anunrojwong et al., 2020; Alonso and Câmara,
2016b; Babichenko et al., 2021; Lingenbrink and Iyer, 2019), Throughout this paper, we focus on
the setting where ui(1) ≥ ui(0) for all i ∈ [m], and normalize ui(0) ≡ 0 and denote ui , ui(1). 6

The objective of the sender is to maximize his expected utility. Before the state θ is realized, the
sender commits to a signal space Σ and a signaling scheme π : [m] → ∆(Σ), a mapping from the
realized state into probability distributions over signals. We use πi(σ) to denote the probability

6A discussion of how our results could be extended without this assumption is provided in Appendix B.2.
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that signal σ ∈ Σ is realized when the realized state is state i. Upon seeing signal σ, the receiver
performs a Bayesian update and infers a posterior belief over the state. In particular, the posterior
probability of state i given realized signal σ is µi(σ) ,

λiπi(σ)∑
j∈[m] λjπj(σ)

.

In this paper, we assume that the receiver is boundedly rational by modeling her as a (logit)
quantal response player (McKelvey and Palfrey, 1995). Specifically, instead of taking the action
that maximizes the expected utility, a quantal player randomly selects an action with probability
proportional to the expected utility. In our model, given posterior belief µ ∈ ∆([m]) and its
induced expected utility v(a | µ) ,∑i∈[m] µi vi(a) for action a ∈ A, the receiver takes action 1 with

probability7

exp(β · v(1 | µ))
exp(β · v(1 | µ)) + exp(β · v(0 | µ)) =

1

1 + exp(β · (v(0 | µ)− v(1 | µ)))

Here β ∈ [0,∞) is the bounded rationality level. When the bounded rationality level β equals zero,
the receiver takes each action uniformly at random regardless of her posterior belief. When the
bounded rationality level β equals infinite, our model recovers the classic Bayesian persuasion for a
(fully) rational receiver who takes the action which maximizes her expected utility.

Let function8 W (β)(x) , 1/(1 + exp(βx)). When the bounded rationality level β is clear from the
context, we simplify W (β) with W . Given any posterior belief µ, we have v(0 | µ) − v(1 | µ) =∑

i∈[m] µi vi, where vi , vi(0)−vi(1) represents how much the receiver prefers action 0 over action 1
given state i. Without loss of generality, we assume {vi} is strictly increasing in i. With the above

definitions, we can rewrite the probability that the receiver takes action 1 as W
(∑

i∈[m] µi vi

)
.

Intuitively speaking, since the probability that receiver takes action 1 only depends on the expected
utility difference

∑
i∈[m] µi vi, it is without loss of generality to restrict to signaling scheme where

each signal δ represents its induced expected utility difference, i.e., δ ≡ ∑
i∈[m] µi(δ) vi. Recall

that µi(δ) is the posterior probability of state i given realized signal δ. We formalize this idea by
writing our problem as the following linear program POPT-Primal (and its dual program POPT-Dual)
with variables {πi(δ)}δ∈R,i∈[m].

9 See Proposition 2.1 and its proof in Appendix C.

max
π≥0

∑
i∈[m]

λiui

∫ ∞

−∞
πi(δ)W (δ) dδ s.t.

∑
i∈[m]

λi (vi − δ) πi(δ) = 0 δ ∈ (−∞,∞) 〈α(δ)〉
∫ ∞

−∞
πi(δ)dδ = 1 i ∈ [m] 〈η(i)〉

(POPT-Primal)

min
α,η

∑
i∈[m]

η(i) s.t.

λi (vi − δ)α(δ) + η(i) ≥ λiuiW (δ) δ ∈ (−∞,∞), i ∈ [m] 〈πi(δ)〉
(POPT-Dual)

7One explanation of this quantal response behavior is that the receiver faces a random shock when she is making
the decision. See Appendix B.4 for more details.

8We note that many results in Section 3, Section 4 hold for general function W . See Appendix B.3 for detailed
discussions.

9While we allow signaling schemes to have continuous signal space Σ, i.e., πi(·) can be interpreted as a probability
density function over Σ, all signaling schemes (as well as the optimal signaling schemes) considered in this paper have
finite signal space. Therefore, we abuse the notation and use πi(·) as the probability mass function when it is clear
from the context.
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Proposition 2.1. For every feasible solution {πi(δ)} in program POPT-Primal, there exists a signaling
scheme where for each state i ∈ [m], the boundedly rational receiver takes action 1 with probabil-
ity
∫∞
−∞ πi(δ)W (δ) dδ. Furthermore, the sender’s optimal expected utility (in the optimal signaling

scheme) is equal to the optimal objective value of program POPT-Primal.
The first constraint in the program POPT-Primal ensures that whenever a signal δ is realized, the
probability for the receiver for taking action 1 is exactly W (δ). Due to Proposition 2.1, in the
remaining of the paper, we describe signaling schemes by {πi(δ)} as the feasible solutions in pro-
gram POPT-Primal, and {πi(σ)} as the original definition interchangeably. We use Payoffβ[π] to
denote the expected sender utility of signaling scheme π (i.e., the objective value for feasible solu-
tion π in program POPT-Primal) for a receiver with bounded rationality level β. We drop subscript β
in Payoffβ[·] when it is clear from the context.

Our persuasion problem for the boundedly rationally receiver is equivalent to a public persuasion
problem for a continuum population of rational receivers with a specific utility structure, and thus
program POPT-Primal can be reinterpreted as the program for this public persuasion problem. See
Appendix B.4 for more details.

2.2 Optimal Signaling Schemes for A Fully Rational Receiver

Here we introduce two subclasses of signaling schemes – censorship signaling schemes and direct
signaling schemes, that will be discussed throughout this paper. Briefly speaking, a censorship (resp.
direct) signaling scheme partitions the state space [m] into three disjoint subsets:10 high states H,
threshold state {i†}, and low states L, and specifies a threshold state probability p† ∈ [0, 1]. It pools
all states in H as well as a (p†)-fraction of the threshold state i† into a pooling signal δ†, and fully
reveals other states (resp. pools all other states into another pooling signal δ‡). See Definition 2.1
and Definition 2.2 for the formal definitions.11

Definition 2.1. A censorship signaling scheme, parameterized by a state space partition H⊔{i†}⊔L,
and threshold state probability p† admits the form as follows

i ∈ H : πi(δ) = 1

[
δ = δ†

]

πi†(δ) = p† · 1
[
δ = δ†

]
+ (1− p†) · 1[δ = vi† ]

i ∈ L : πi(δ) = 1[δ = vi]

where δ† =
p†λ

i†
v
i†
+
∑

i∈H λivi
p†λ

i†
+
∑

i∈H λi
is the pooling signal.

Definition 2.2. A direct signaling scheme, parameterized by a state space partition H ⊔ {i†} ⊔ L,
and threshold state probability p† admits the form as follows

i ∈ H : πi(δ) = 1

[
δ = δ†

]

πi†(δ) = p† · 1
[
δ = δ†

]
+ (1− p†) · 1

[
δ = δ‡

]

i ∈ L : πi(δ) = 1

[
δ = δ‡

]

where δ† =
p†λ

i†
v
i†
+
∑

i∈H λivi
p†λ

i†
+
∑

i∈H λi
and δ‡ =

(1−p†)λ
i†
v
i†
+
∑

i∈L λivi
(1−p†)λ

i†
+
∑

i∈L λi
are the pooling signals.

10Namely, H∪ {i†} ∪ L = [m], H ∩ L = ∅, i† 6∈ H, and i† 6∈ L.
11Our definition is equivalent to censorship signaling schemes for persuasion problem with continuous state space

(see, e.g., Dworczak and Martini, 2019) by considering the quantile space of state space [m].
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The only difference between censorship signaling schemes and direct signaling schemes is the signal-
ing structure for the (1 − p†)-fraction of the threshold state i† and every state in L – censorship
signaling schemes fully reveal them, while direct signaling schemes pools them all together. As a
sanity check, note that censorship (resp. direct) signaling schemes are indeed the feasible solutions
of program POPT-Primal. We also highlight two standard censorship signaling schemes: the full-
information revealing signaling scheme which reveals all states separately, and the no-information
revealing signaling scheme which pools all states at a single signal.

When the receiver is fully rational (i.e., the bounded rationality level β = ∞), there exists a
censorship (resp. direct) signaling scheme that is indeed optimal.

Lemma 2.2. [See for example Renault et al., 2017] For a fully rational receiver (i.e., with bounded
rationality level β = ∞), it is optimal for the sender to adopt a censorship (resp. direct) signaling
scheme such that

(i) threshold state i† = argmax
i∈[m]

{
vi
ui

:
∑

j:
vj

uj
<

vi
ui

λjvj ≤ 0

}
;

(ii) high states H =
{
i ∈ [m] : vi

ui
<

v
i†

u
i†

}
, and low states L =

{
i ∈ [m] : vi

ui
>

v
i†

u
i†

}
;

(iii) threshold state probability p† = max
{
p ∈ [0, 1] : pλi†vi† +

∑
i∈H λivi ≤ 0

}
.

In fact, to achieve the optimality for a fully rational receiver, it only requires that all states in H
together with (p†)-fraction of threshold state i† are pooled into signal δ† where the assignments of
H, i†, p† and δ† are defined in Lemma 2.2 (Renault et al., 2017). In other words, no restrictions on
the signaling structure on the remaining (1 − p†)-fraction of threshold state i† and other states in
L are required. In this sense, the optimal censorship and optimal direct signaling scheme can be
thought as two extreme cases on the signaling structure for those states, i.e., fully revealing them or
pooling them all together, and both achieve the optimality over all signaling schemes. Therefore, for
a fully rational receiver, the sender is indifferent between the optimal censorship and the optimal
direct signaling schemes. However, as we shown in the later sections, there exists a separation
between these two types of signaling schemes when the receiver is boundedly rational.

3 State Independent Sender Utility (SISU) Environments

In this section, we consider the state independent sender utility (SISU) environments where the
sender’s utility {ui}i∈[m] is independent of the realized state. Namely, we assume ui ≡ 1 for every
state i ∈ [m]. Furthermore, for ease of presentation, this section assumes v1 < 0 and vm > 0.12

Recall that for a fully rational receiver, Lemma 2.2 shows the optimality of both censorship signaling
schemes and direct signaling schemes. However, when the receiver is boundedly rational, there exists
a separation between these two subclasses of signaling schemes. As the main result of this section,
Theorem 3.1 in Section 3.1 shows that in SISU environments, for a boundedly rational receiver,
it is optimal for the sender to adopt a censorship signaling scheme. In contrast, Theorem 3.5 in
Section 3.2 shows that there exists a SISU problem instance, where any direct signaling scheme is
Ω(m)-approximation.

12If vi ≤ 0,∀i ∈ [m], we can introduce one dummy state m + 1 such that vm+1 = 1 and λm+1 = 0. Similarly, we
can add one dummy state if vi ≥ 0,∀i ∈ [m]. Thus, v1 < 0 and vm > 0 is without loss of generality.
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3.1 Censorship as Optimal Signaling Schemes

In this subsection, we show that in SISU environments, for a receiver with bounded rationality
level β, it is optimal for the sender to adopt a censorship signaling scheme. Our result recovers
the optimal censorship signaling scheme of a fully rational receiver (Lemma 2.2). In other words,
the optimality of the censorship signaling schemes is preserved even when the receiver is boundedly
rational in SISU environments.

Theorem 3.1. In SISU environments, for a boundedly rational receiver with any bounded ratio-
nality level β, there exists a censorship signaling scheme π∗ that is the optimal signaling scheme.
Specifically,

(i) the threshold state i† and the threshold state probability p†, together with an auxiliary variable
δ‡, solve the following feasibility program PSISU-OPT:

(1− p†)(δ‡ − vi†) = 0 (complementary-slackness)
(
W (δ‡)−W (δ†)

)
−W ′(δ†)(δ‡ − δ†) = 0 (dual-feasibility-1)

max
i∈[m]
{vi : vi ≤ δ‡} = vi† (dual-feasibility-2)

δ† ≤ 0, δ‡ ≥ 0 (dual-feasibility-3)

0 ≤ p† ≤ 1 (primal-feasibility)

(PSISU-OPT)

where δ† =
∑

i:i<i†
λivi+p†λ

i†
v
i†∑

i:i<i†
λi+p†λ

i†
is the pooling signal;

(ii) high states H =
{
i ∈ [m] : i < i†

}
, and low states L =

{
i ∈ [m] : i > i†

}
.

In below, we first provide intuitions behind the constraints in the feasibility program PSISU-OPT, and
the properties as well as the implications of the above characterized optimal censorship signaling
scheme. Then, we provide the high-level proof idea of Theorem 3.1.

δ‡δ† vi† vi†+1

Figure 1: Graphical illustration for constraints dual-feasibility-1, dual-feasibility-2 and
dual-feasibility-3 in feasibility program PSISU-OPT. The gray solid curve is function W (·). Fix
an arbitrary δ‡ ∈ [0,∞). Constraint dual-feasibility-1 uniquely pins down δ† ∈ (−∞, 0] (and
thus constraint dual-feasibility-3 is satisfied as well) such that the black solid line through
point (δ†,W (δ†)) and point (δ‡,W (δ‡)) is tangent to curve W (·) at point (δ†,W (δ†)). Constraint
dual-feasibility-2 uniquely pins down i† , argmaxi{vi : vi ≤ δ‡}. The tangent line and the curve
W (δ),∀δ ≥ δ‡ forms a upper convex envelop for function W .
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Graphical interpretation of optimal signaling scheme. To develop intuition for optimal
censorship, we start with constraints dual-feasibility-1 and dual-feasibility-3. Recall that
W (x) = 1/(1 + exp(βx)) is concave in (−∞, 0] and convex in [0,∞). Constraint dual-feasibility-1

has the following graphical interpretation: the line through point (δ†,W (δ†)) and point (δ‡,W (δ‡))
is tangent to curve W (·) at point (δ†,W (δ†)). Notably, for every δ‡ ≥ 0, there exists a unique
δ† ≤ 0 which satisfies dual-feasibility-1. In particular, the mapping from δ‡ ∈ [0,∞) to δ† ∈
(−∞, 0] satisfying dual-feasibility-1 is monotone decreasing and is a bijection (See Figure 1 for
illustration). Constraint dual-feasibility-2 means that threshold state i† is the largest state index
such that vi ≤ δ‡, i.e., i† = argmaxi{vi : vi ≤ δ‡}.13 Hence, starting with an arbitrary δ‡ ≥ 0,
constraints dual-feasibility-1 and dual-feasibility-2 pin down a unique tuple (δ†, δ‡, i†, p†):
constraint dual-feasibility-1 pins down a unique δ† ≤ 0, constraint dual-feasibility-2 pins down
a unique i†, and then p† is uniquely determined as well by the relation between δ†, i†, p†.

Essentially, the tangent line segment from point (δ†,W (δ†)) to point (δ‡,W (δ‡)) and the part
of curve W (δ),∀δ ≥ δ‡ form a upper convex envelop for function W (·). It is easy to see that
there exist infinitely many such upper convex envelops for function W (·). However, the optimal
censorship is the unique one that the corresponding envelop ensures primal-feasibility and satisfies
complementary-slackness for the assignment on the threshold state i†.

Less rational, more information revealing. In SISU environments, for both fully rational
receiver and boundedly rational receiver, it is optimal for the sender to adopt censorship signaling
schemes (Lemma 2.2, Theorem 3.1).14 15 However, in the optimal censorship for different rationality
levels, the threshold state i† and the threshold state probability p† may not be the same. For example,
consider an instance where

∑
i∈[m] λivi < 0. Lemma 2.2 suggests that the optimal censorship π̂∗

for a fully rational receiver selects the threshold state î† and threshold state probability p̂† such
that the pooling signal δ̂† = 0. In contrast, Theorem 3.1 suggests that the optimal censorship π∗

selects the threshold state i† and threshold state probability p† such that the pooling signal δ† ≤ 0.
Thus, in this instance, the optimal censorship π̂∗ for a fully rational receiver pools more states
than the optimal censorship π∗ for a boundedly rational receiver, i.e., Ĥ ⊇ H. Here we generalize
this observation and show the monotonicity of threshold state i† and threshold state probability
p† with respect to the rationality level β. Its proof is based on the analysis for the feasibility
program PSISU-OPT, which we defer to Appendix D.2.

Proposition 3.2. In SISU environments, let π∗ (resp. π̂∗) be the optimal censorship for a boundedly
rational receiver with boundedly rational level β (resp. β̂). If β ≤ β̂, then the threshold state i† in
π∗ is weakly smaller than the threshold state î† in π̂∗, i.e., i† ≤ î†; and threshold state probability
p† ≤ p̂†.

One concrete insight behind the above result is that: The optimal (censorship) signaling scheme
requires the sender to reveal more information (i.e., Blackwell ordering, Blackwell, 1953) for a less
rational receiver. This insight can be also developed from the curvature of the function W (·). When
the receiver is less rational, i.e., the rationality level β becomes smaller, the curve W (·) becomes
flatter. Hence, the tangent point (δ†,W (δ†)) is farther away from the point (δ‡,W (δ‡)), and the
pooling probability p† has to be smaller to make the pooling signal δ† relatively smaller. Thus, the

13Recall we assume v1 < 0 without loss of generality, and thus i† = argmaxi{vi : vi ≤ δ‡} is well-defined for δ‡ ≥ 0.
14Recall we assume {vi} is weakly increasing and ui ≡ 1 for every state i ∈ [m]. Thus, i < i† if and only if

vi/ui ≤ v
i†/u

i†
and the construction of optimal censorship in Theorem 3.1 recovers the construction in Lemma 2.2 for

a fully rational receiver in the SISU environments.
15The feasibility program PSISU-OPT also recovers the structure of the optimal censorship for a fully rational receiver

in SISU environments. See Appendix D.1 for detailed discussions.
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threshold state and the threshold state probability must decrease in order to satisfy the feasibility
constraint in the program PSISU-OPT, which leads to more information revealing.

Proof overview of Theorem 3.1. Now we first provide a proof overview for Theorem 3.1, and
in the sequel, we present the detailed proof. At the heart of proof of Theorem 3.1, we use the
strong duality between the primal program POPT-Primal and its dual program POPT-Dual. Specifi-
cally, given a feasible solution in feasibility program PSISU-OPT, we explicitly construct a feasible
primal assignment in POPT-Primal and a feasible dual assignment in POPT-Dual and show the comple-
mentary slackness holds.16 In the formal proof, for each possible tuple (δ†, δ‡, i†, p†) described in
the graphical interpretation (i.e., satisfying constraints dual-feasibility-1, dual-feasibility-2,
dual-feasibility-3), we can construct a feasible assignment for dual program POPT-Dual. Notably,
each feasible solution to the dual program POPT-Dual forms a upper convex envelop for the function
W (·). To finish the proof with strong duality, we require such tuple to additionally satisfy constraint
primal-feasibility to ensure the feasibility of the constructed primal assignment, and constraint
complementary-slackness to ensure the complementary slackness of the constructed assignment on
the threshold state i†. The existence and uniqueness of such tuple is shown in Lemma 3.3, its proof
is in Appendix D.3.

Lemma 3.3. There exists a unique feasible solution in program PSISU-OPT.

Proof of Theorem 3.1. We prove the optimality of the signaling scheme π∗ defined in Theorem 3.1 by
constructing a feasible dual solution to the dual program POPT-Dual that satisfies the complementary
slackness. Let (δ†, δ‡, i†, p†) be the unique feasible solution to program PSISU-OPT.

Assignment construction. To facilitate the analysis, we explicitly write out the optimal signal-
ing scheme π∗ as follows,

i ∈ [i† − 1] : π∗
i (δ

†) = 1;

π∗
i†(δ

†) = p†, π∗
i† (vi†) = 1− p†;

i ∈ [i† + 1 : m] : π∗
i (vi) = 1

Due to constraint primal-feasibility in program PSISU-OPT, signaling scheme π∗ is feasible. Now,
consider the following dual assignment {α(δ), η(i)} of program POPT-Dual,

δ ∈ (∞, δ‡] : α(δ) = −W ′(δ†)

δ ∈ [δ‡, vi†+1] : α(δ) = −W (δ)−W (vi†+1)

δ − vi†+1

i ∈ [i† + 1 : m− 1], δ ∈ [vi, vi+1] : α(δ) = −W (δ)−W (vi)

δ − vi
δ ∈ [vm,∞) : α(δ) = 0

i ∈ [i†] : η(i) = λi

(
W (δ†) + (δ† − vi)α(δ

†)
)

i ∈ [i† + 1 : m] : η(i) = λiW (vi)

16Here the name of each constraint in PSISU-OPT indicates its usage in the assignment construction.
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Complementary slackness. We now argue the complementary slackness of the constructed
assignment. Namely, for each state i and δ ∈ (−∞,∞) such that π∗

i (δ) > 0, its corresponding
dual constraint holds with equality, i.e.,

W (δ) + (δ − vi)α(δ) =
η(i)

λi
(1)

We verify this for each state i ∈ [m] separately.

- Fix an arbitrary state i ∈ [i†− 1], note that π∗
i (δ) > 0 for δ = δ† only. Here equality (1) holds

by construction straightforwardly.

- Now consider threshold state i†, the same argument holds for equality (1) with π∗
i†
(δ†) > 0.

It is remaining to verify equality (1) associated with π∗
i†
(vi†) = 1 − p† > 0. When p† < 1,

constraint complementary-slackness in program PSISU-OPT ensures that δ‡ = vi† . Thus,

W (vi†) + (vi† − vi†)α(vi†)
(a)
= W (δ‡)

(b)
= W (δ†) + (δ† − δ‡)α(δ†)

(c)
= W (δ†) + (δ† − vi†)α(δ

†)
(d)
=

η(i)

λi

where equalities (a), (c) hold since vi† = δ‡; equality (b) holds due to constraint dual-feasibility-1
in program PSISU-OPT and the construction of α(δ†); and equality (d) holds since equality (1)
holds for π∗

i†
(δ†) shown above.

- Fix an arbitrary state i ∈ [i† + 1 : m], note that π∗
i (δ) > 0 for δ = vi only. Here equality (1)

holds by construction straightforwardly.

Dual feasibility. To verify whether the dual constraints associated with π∗
i (δ) for state i ∈ [i†]

hold, note that

η(i)

λi

(a)
= W (δ†) + (δ† − vi)α(δ

†)
(b)
= W (δ†)− (δ† − vi)W

′(δ†)

where equality (a) holds by the complementary slackness of π∗
i (δ

†) verified above; and equality (b)
holds by the construction of α(δ†). Thus, we can rewrite those dual constraints associated with
π∗
i (δ) for state i ∈ [i†] as

W (δ) + (δ − vi)α(δ) ≤W (δ†)− (δ† − vi)W
′(δ†) (2)

To verify whether the dual constraints associated with π∗
i (δ) for state i ∈ [i† + 1 : m] hold, by

the complementary slackness of π∗
i (δ

†) verified above, we can rewrite the dual constraints for state
i ∈ [i† + 1 : m] as

W (δ) + (δ − vi)α(δ) ≤W (vi) (3)

We verify both inequality (2) and inequality (3) for different values of δ in four cases separately: δ ∈
(−∞, δ‡]; δ ∈ [δ‡, vi†+1]; δ ∈ [vj , vj+1] for some j ∈ [i† + 1 : m− 1]; and δ ∈ [vm,∞). The argument
mainly uses the curvature of function W (·) and the constraints in feasibility program PSISU-OPT, and
the feasibility of the constructed dual assignment is summarized as follows:

Lemma 3.4. The constructed dual assignment is a feasible solution to the dual program POPT-Dual.
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In the main text below, we present the analysis for state i ∈ [i†] for the first two cases, together
with a graphical illustration of our argument (see Figure 2). The analysis of the third case is similar
to the second case, and the fourth case is trivial. Therefore, we defer the later two cases and the
analysis for the state i ∈ [i† + 1,m] to Appendix D.4.

- Fix an arbitrary δ ∈ (−∞, δ‡]. We illustrate this case in Figure 2a. Note that

W (δ) + (δ − vi)α(δ)
(a)
= W (δ)− (δ − vi)W

′(δ†)

= W (δ†)− (δ† − vi)W
′(δ†) +

(
W (δ) −W (δ†)

)
− (δ − δ†)W ′(δ†)

where equality (a) holds due to the construction of α(δ). Hence, to show inequality (2) in this
case, it is sufficient to argue that

(δ† − δ)W ′(δ†) ≤W (δ†)−W (δ) (4)

which is true due to the curvature of function W (·). Specifically, if δ ∈ (−∞, 0], inequality (4)
holds since function W (·) is concave in (−∞, 0]; if δ ∈ [0, δ‡], inequality (4) holds since

W ′(δ†)
(a)
=

W (δ‡)−W (δ†)

δ‡ − δ†

(b)

≥ W (δ)−W (δ†)

δ − δ†

where equality (a) holds due to constraint dual-feasibility-1 in program PSISU-OPT; and
inequality (b) holds due to the convexity of function W (·) on [0,∞).

- Fix an arbitrary δ ∈ [δ‡, vi†+1]. We illustrate this case in Figure 2b. By construction, α(δ) =
−(W (δ) −W (vi†+1))/(δ − vi†+1). After rearranging the terms, inequality (2) becomes17

−W (δ)−W (vi†+1)

δ − vi†+1

≤ −W (δ)−
(
W (δ†)−W ′(δ†)(δ† − vi)

)

δ − vi
(5)

Here we argue that it is sufficient to show inequality (5) holds when we replace vi with δ‡ ≥ vi.
To see this, note that the right-hand side of inequality (5) is monotone decreasing as a function
of vi. In particular, consider function f(x) , −(W (δ) − (W (δ†)−W ′(δ†)(δ† − x)))/(δ − x),

and compute its derivative f ′(x) = −W (δ)−W (δ†)−W ′(δ†)(δ−δ†)
(δ−x)2

≤ 0 where the last inequality

holds since W ′(δ†)(δ−δ†) ≤W (δ)−W (δ†) if δ ≥ δ‡, which is implied by constraint dual-feasibility-1
and the convexity of function W (·) on [0,∞). Hence,

−W (δ)−
(
W (δ†)−W ′(δ†)(δ† − vi)

)

δ − vi

(a)

≥ f(δ‡) = −W (δ)−
(
W (δ†)−W ′(δ†)(δ† − δ‡)

)

δ − δ‡

(b)
= −W (δ)−W (δ‡)

δ − δ‡

(c)

≥ −W (δ)−W (vi†+1)

δ − vi†+1

where inequality (a) holds due to the monotonicity of function f(·); equality (b) holds due
to constraint dual-feasibility-1 in program PSISU-OPT; and inequality (c) holds due to the
convexity of function W (·) on [0,∞). �

17Here we use the fact that δ − vi ≥ 0 for every state i ∈ [i†], since δ ≥ δ‡ ≥ vi† ≥ vi where the second inequality
holds due to constraint dual-feasibility-2 in program PSISU-OPT .
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3.2 Approximation Lower Bounds of Direct Signaling Schemes

When the receiver is fully rational, the optimality of direct signaling schemes follows from the stan-
dard revelation principle (Kamenica and Gentzkow, 2011). However, when the receiver is boundedly
rational, this standard revelation principle fails. In this subsection, we provide an approximation
lower bound for direct signaling schemes in SISU environment for a boundedly rational receiver.
The proof of Theorem 3.5 is straightforward and thus we defer it to Appendix D.5.

Theorem 3.5. In SISU environments, there exists a problem instance (Example D.1) such that for
any direct signaling scheme π, it is Ω(m)-approximation to the optimal signaling scheme.

In Theorem 4.5, we also give an O(m)-approximation upper bound for direct signaling schemes,
which shows the tightness of our result.

4 State Dependent Sender Utility (SDSU) Environments

In this section, we consider the state dependent sender utility (SDSU) environments where the
sender’s utility {ui}i∈[m] depends on both the realized state as well as the action of the receiver.18

Recall that or a fully rational receiver, Lemma 2.2 shows the optimality of both censorship signaling
schemes and direct signaling schemes. However, in SDSU environments, both censorship signaling
schemes and direct signaling schemes are sub-optimal for a boundedly rational receiver. As the
main result of this section, we first show that both censorship and direct signaling schemes are
Ω(m)-approximation (Proposition 4.2), and then we provide matching approximation upper bounds
of censorship and direct signaling schemes (Theorem 4.5).

4.1 Approximation Lower Bounds of Censorship and Direct Signaling Schemes

In this subsection, we provide approximation lower bounds for censorship and direct signaling
schemes. In fact, we present a stronger result that quantifies the optimal payoff loss of a signaling
scheme via its maximum number L of signals induced by each state.

Theorem 4.1. In SDSU environments, there exists a problem instance (Example 4.1) such that
for any signaling scheme π with signal space Σ, it is Ω(m/L)-approximation to the optimal signaling
scheme, where L , maxi∈[m] |{δ ∈ Σ : πi(δ) > 0}| denotes the maximum number of signals induced
by a state in this signaling scheme π.

The above result implies approximation lower bounds for censorship and direct signaling schemes.19

Proposition 4.2. In SDSU environments, there exists a problem instance (Example 4.1) such that
any censorship and any direct signaling scheme is Ω(m)-approximation to the optimal signaling
scheme.

18Recall that the sender’s utility is zero as long as the receiver takes action 0, and ui ≥ 0 denotes the sender’s
utility for realized state i and receiver taking action 1.

19Though it is not our focus, another broader class of signaling schemes that are studied in the literature is
the monotone partitional signaling scheme (Kolotilin, 2018; Dworczak and Martini, 2019; Candogan, 2019). Both
censorship signaling schemes and direct signaling schemes are also monotone partitional signaling schemes. A notably
fact about monotone partitional signaling schemes is that each state can only induce at most 3 signals. Thus,
Theorem 4.1 also implies that there exists a problem instance (Example 4.1) such that any monotone partitional
signaling scheme is an Ω(m)-approximate.
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Proof. The above results follow from the definition of censorship/direct signaling schemes which
have at most 2 signals induced from each state, namely, L ≤ 2, thus implying the results.

Note that the Ω(m)-approximation lower bound for censorship signaling schemes in SDSU environ-
ments (Proposition 4.2) stands in contrast to the optimality of censorship signaling schemes in SISU
environments (Theorem 3.1).

Proof outline of Theorem 4.1. In the remainder of this subsection we outline the proof of The-
orem 4.1 in three steps. All missing proofs from this subsection can be found in Appendix E.

Step 1- constructing problem instance and lower bounding the optimal payoff. We
first construct a problem instance (Example 4.1) with m states and a carefully chosen bounded
rationality level β that has the following properties: (i) the sender can only obtain utility from state
m, i.e., ui > 0 only when i = m; (ii) the prior probability for each state i ∈ [m− 1] is exponentially
increasing with respect to the state. With the above two properties, we are able to lower bound
the optimal expected sender utility by Ω(K1K2m) where K1,K2 are problem-specific normalization
terms (Lemma 4.3).

Example 4.1. Given an arbitrary m ∈ N+, consider a problem instance as follows: There are m
states. The receiver has bounded rationality level β such that β/log(β) ≥ 2m. The sender utility {ui},
the receiver utility difference {vi} are ui = 1[i = m] , vi = i,∀i ∈ [m]. Let K1 , 1/

∑
i∈[m−1] exp(βi).

The prior {λi} over state space [m] is λi = K1K2

(
m− i− 1

β

)
β exp(βi),∀i ∈ [m − 1];λm = K2

where K2 is the normalization term such that
∑

i∈[m] λi = 1.

Lemma 4.3. In Example 4.1, the optimal expected sender utility Payoff[π∗] ≥ Ω(K1K2m).

Step 2- upper bounding the payoff via censorship signaling schemes. In this step, we
show that for any signaling scheme, we can upper bound expected sender utility in Example 4.1
via the utility from a set of censorship signaling schemes. In particular, for each state i ∈ [m −
1], given any possible pooling signal δ ∈ [vi, vm], we define following censorship signaling scheme
where state i and state m are pooled on signal δ, and other states are fully revealed. Let δavg ,
(λii+ λmm)/(λi + λm) be the pooling signal which state i and state m are fully pooled together. We
consider following censorship signaling scheme π(i,δ): if δ ≤ δavg, signaling scheme π(i,δ) admits the
form as follows

π
(i,δ)
i (δ) = 1; π(i,δ)

m (δ) =
λi

λm

δ − i

m− δ
; π(i,δ)

m (m) = 1− λi

λm

δ − i

m− δ
; π

(i,δ)
j (j) = 1 ∀j 6= i,m

and if δ ≥ δavg, signaling scheme π(i,δ) admits the form as follows

π
(i,δ)
i (i) = 1− λm

λi

m− δ

δ − i
; π

(i,δ)
i (δ) =

λm

λi

m− δ

δ − i
; π(i,δ)

m (δ) = 1; π
(i,δ)
j (j) = 1∀j 6= i,m

Fix any signaling scheme π where the signals induced by state m are {δℓ}ℓ∈L. By definition,

Payoff[π] ≤
∑

ℓ∈[L]

∑

i∈[m−1]

Payoff
[
π(i,δℓ)

]
.

Now it remains to upper bound Payoff
[
π(i,δℓ)

]
for each state i ∈ [m− 1] and each ℓ ∈ [L].
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Step 3- upper bounding Payoff
[
π(i,δ)

]
. In this step, we upper bound the expected sender utility

under the signaling scheme π(i,δ). We below provide two characterizations on the upper bound of
the expected sender utility Payoff

[
π(i,δ)

]
(Lemma 4.4), depending on the value of pooling signal δ.

The proof of this lemma is deferred to Appendix E.2.

Lemma 4.4. In Example 4.1, for any state i ∈ [m− 1], the expected sender utility Payoff
[
π(i,δ)

]
=

O(K1K2) for any δ ∈ [i, i+m log(β)/β]; and Payoff
[
π(i,δ)

]
= o(K1K2/m) for any δ ∈ [i+m log(β)/β,m].

With the above two characterizations on Payoff
[
π(i,δ)

]
, we are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. Let L′ , |{δ ∈ Σ : πm(δ) > 0}| be the number of signals induced by state
m, and denote these L′ signals as {δℓ}ℓ∈[L′]. For each ℓ ∈ [L′], since β/log(β) ≥ 2m, there exists an
most one state j ∈ [m − 1] such that δℓ ∈ [j, j + m log(β)/β]. Invoking Lemma 4.4, we know that∑

i∈[m−1] Payoff
[
π(i,δℓ)

]
= O(K1K2). Thus, invoking Lemma 4.3, we have

Payoff[π∗]

Payoff[π]
=

Ω(K1K2m)

L′ · O(K1K2)
= Ω

(m
L′

)
,

which concludes the proof for Theorem 4.1.

4.2 Approximation Upper Bounds of Censorship and Direct Signaling Schemes

In this subsection, we discuss the approximation upper bounds of censorship and direct signaling
schemes. The approximation upper bounds we provide here are indeed tight according to the lower
bounds we established in Section 4.1.

Theorem 4.5. In SDSU environments, for a boundedly rational receiver, there exists a censor-
ship/direct signaling scheme that is an O(m)-approximation to the optimal signaling scheme.

We would like to highlight that designing censorship or direct signaling scheme with O(m)-approximation
is not in-hindsight straightforward. For example, even for a fully rational receiver, the approximation
of the full/no-information revealing or the better of the two could be unbounded. To establish Theo-
rem 4.5, we start with characterizing a 4-approximation signaling scheme that has desired structure
properties – the sender’s signal either reveals the true state, or randomizes the receiver’s uncertainty
on only two states, then we utilize the structure of this 4-approximation signaling scheme to show
the existence of O(m)-approximation censorship/direct signaling schemes.

Lemma 4.6. In SDSU environments, for a boundedly rational receiver, there exists a 4-approximation
signaling scheme using at most 2m signals, and it has the following two properties:

(i) each signal σ ∈ Σ∗ is induced by at most two states, i.e., |supp(µ(σ))| ≤ 2;

(ii) each pair of states (i, j) is pooled at most one signal, i.e., |{σ ∈ Σ∗ : supp(µ(σ)) = {i, j}}| ≤ 1.

Furthermore, at most m signals are induced by two distinct states, i.e., |{σ : |supp(µ(σ))| = 2}| ≤
m.20

We now provide intuitions of the two properties of the signal scheme characterized in Lemma 4.6.
Property (i) ensures that whenever the receiver sees a signal, she can infer that the realized state
must be one of two particular states. From a practical perspective, this property is beneficial to
a boundedly rational receiver as it makes the receiver’s state inference easier. From the sender’s

20Recall property (i) requires that for every σ, |supp(µ(σ))| ≤ 2.
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perspective, property (ii) ensures that, for any pair of states, the sender only needs to design at
most one pooling signal. We provide a proof overview of Lemma 4.6 in the end of this subsection
and defer its formal proof to Appendix E.4.

With the results in Lemma 4.6, we are now ready to prove the Theorem 4.5.

Proof of Theorem 4.5. We first prove that there always exists a censorship signaling scheme that
is O(m)-approximation. Let π† with signal space Σ† be the signaling scheme stated in Lemma 4.6.
We denote Uij as the expected sender utility induced by each pair of state (i, j), i.e., Uij ,∑

σ:π†
i (σ)>0∧π†

j (σ)>0
(λiuiπ

†
i (σ) + λjujπ

†
j(σ))W (σ). Let (i∗, j∗) = argmax(i,j) Uij. Note that by defi-

nition, and the property (i) of signaling scheme π† we have Payoff
[
π†
]
≤ m · Ui∗j∗ .

Consider a binary-state instance I = (m̂, {λ̂k}{v̂k}, {ûk}) induced by pair of states (i∗, j∗), i.e.,

m̂← 2, v̂1 ← vi∗ , v̂2 ← vj∗ , û1 ← ui∗ , û2 ← uj∗ ,

λ̂1 ←
λi∗

λi∗ + λj∗
, λ̂2 ←

λj∗

λi∗ + λj∗

It can be shown that the optimal signaling scheme for this binary-state instance is a censorship
signaling scheme (see Lemma E.5 and its proof in Appendix E.5). Let π‡ be the signaling scheme
which coincides with the optimal signaling scheme for this binary-state instance, and reveals all
other states. By construction, π‡ is again a censorship, and the expected sender utility

m ·Payoff
[
π‡
] (a)

≥ m · Ui∗j∗
(b)

≥ Payoff
[
π†
] (c)

≥ 1

4
·Payoff[π∗]

where π∗ is the optimal signaling scheme, (a) holds due to the construction of π‡; (b) holds due to
the definition of (i∗, j∗); and (c) holds since π† is a 4-approximation to the signaling scheme π∗.

The proof of the O(m)-approximation for direct signaling scheme follows the similar argument which
utilizes the structure of the signaling scheme π†, and thus is deferred to Appendix E.3.

Before finishing this subsection, we provide a proof overview for Lemma 4.6, and we defer the formal
proof to Appendix E.4. At a high-level, our proof consists of two main steps. In the first step, we
show that within the subclass of signaling schemes satisfying properties (i) (ii) in Lemma 4.6, there
exists a signaling scheme π∗ using at most O(m2) signals and achieving the optimality over all
signaling schemes. In the second step, we discuss how to construct the signaling scheme stated in
Lemma 4.6 based on the optimal signaling scheme π∗ identified in the first step. Specifically, we es-
tablish a connection to the fractional generalized assignment problem (Shmoys and Tardos, 1993). In
particular, by leveraging those two properties (i) (ii), we construct a linear program PSDSU-OPT based
on the optimal signaling scheme identified in the first step. This linear program upperbounds the op-
timal expected sender utility and has the same formulation as the fractional generalized assignment
problem. Shmoys and Tardos (1993) show that the optimal integral solution of program PSDSU-OPT
(which has at most m non-zero entries) is a 2-approximation to the optimal fractional solution
(which may have at most m2 non-zero entries). With this result, we then convert this optimal
integral solution to a signaling scheme stated in Lemma 4.6, which has at most 2m signals, and is
a 2-approximation to the objective value of the optimal integral solution.
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5 Rationality-Robust Information Design

In practice, the sender may not be able to have (or require significant cost to learn) the per-
fect knowledge of a receiver’s bounded rationality level. Motivated by this concern, we introduce
rationality-robust information design, in which a signaling scheme (a.k.a., information structure) is
designed for a receiver whose bounded rationality level is unknown. The goal is to identify robust
signaling schemes – ones with good (multiplicative) rationality-robust approximation to the optimal
signaling scheme that is tailored to the receiver’s bounded rationality level.

Definition 5.1. Fixing any problem instance I = (m, {λi}, {vi}, {ui}), the rationality-robust ap-
proximation ratio Γ(π,B) of a given signaling scheme π and a set of possible bounded rationality
levels B ⊆ [0,∞) is

Γ(π,B) , max
β∈B

Payoffβ[OPT(β)]

Payoffβ[π]

where OPT(β) is the optimal signaling scheme21 for a receiver with bounded rationality level β (char-
acterized in Lemma 2.2, Theorem 3.1, Lemma E.1); and Payoffβ[OPT(β)] (resp. Payoffβ[π]) is the
expected sender utility of signaling scheme OPT(β) (resp. π) for bounded rationality level β.

In the above definition, the rationality-robust approximation ratio is defined in worst-case over the
set B of possible bounded rationality levels. Ideally, one would like to have a signaling scheme
that is approximately optimal under any bounded rationality level, i.e., B = [0,∞). This is the
scenario illustrated in Section 5.1, in which we show that in SISU environments, the optimal cen-
sorship signaling scheme for a fully rational receiver can achieve 2 rationality-robust approximation
for any receiver’s bounded rationality level (Theorem 5.1). This suggests that, up to a two factor,
the knowledge of the bounded rationality level are unimportant in SISU environments; and directly
optimizing under fully rational receiver model is robust enough. In contrast, as we show in Sec-
tion 5.2, there exists no signaling scheme with bounded rationality-robust approximation ratio in
SDSU environments, when the sender has no knowledge of the receiver’s bounded rationality level
(Theorem 5.4). This impossibility result indicates that (a) there exists a tradeoff between the knowl-
edge of the receiver’s rationality level and the achievable rationality-robustness; and (b) even if the
adversary is restricted to pick receiver’s behavior in the quantal response model, designing robust
signaling scheme still requires additional knowledge. Finally, we show a preliminary positive result
in SDSU environments: for problem instances with binary state, when the actual rationality robust
level is sufficiently large, learning the bounded rationality level up to a multiplicative error enables
the sender to design signaling schemes with good rationality-robust approximation guarantee.

5.1 Rationality-Robust Signaling Schemes in SISU Environments

In SISU environments, we show that for any problem instance, the optimal censorship signaling
scheme (defined in Lemma 2.2) for a fully rational receiver achieves a 2 rationality-robust approx-
imation when the sender has no knowledge of the receiver’s bounded rationality level. We also
provide an example to show the tightness of the result.

Theorem 5.1. In SISU environments, for any problem instance, the optimal censorship signaling
scheme π̂∗ (defined in Lemma 2.2) for a fully rational receiver has rationality-robust approximation
ratio Γ(π̂∗, [0,∞)) ≤ 2.

21Here we write the optimal signaling scheme with bounded rationality level β as OPT(β), instead of π∗ in previous
sections, to emphasize its dependency on the rationality level β.
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To understand the intuition behind the above theorem, recall that the structural property of optimal
censorship signaling scheme established in Proposition 3.2: The optimal censorship for a less rational
receiver requires the sender to reveal more information. As a result, the optimal censorship for
receiver with β = ∞ reveals least information and pools most states compared to other optimal
censorship for receiver with β < ∞. Meanwhile, the pooling signal δ̂† ≡ 0 in π̂∗ ensures that the
utility contributed from those pooled states is at least half of the utility contributed from those
states in the optimal censorship with less rational receiver.

Proof of Theorem 5.1. Fix any bounded rationality level β ∈ B. For signaling scheme π̂∗,

Payoffβ [π̂
∗] =

∑

i∈[̂i†−1]

λiW (0) + λî†

(
p̂†W (0) +

(
1− p̂†

)
W
(
vî†
))

+
∑

i∈[̂i†+1:m]

λiW (vi)

≥
∑

i∈[̂i†−1]

λiW (0) +
∑

i∈[̂i†:m]

λiW (vi)

where î†, p̂† is the threshold state, the threshold state probability of π̂∗.22 Moreover, by Theorem 3.1,
the optimal expected sender utility under the bounded rationality level β is

Payoffβ[OPT(β)] =
∑

i∈[i†−1]

λiW (δ†) + λi†

(
p†W (δ†) +

(
1− p†

)
W (vi†)

)
+

∑

i∈[i†+1:m]

λiW (vi)

≤
∑

i∈[i†]

λiW (δ†) +
∑

i∈[i†+1:m]

λiW (vi)

Recall Proposition 3.2 implies that î† ≥ i†. Hence,

Payoffβ[OPT(β)]

Payoffβ [π̂
∗]

≤ max

{
max
i∈[i†]

λiW (δ†)

λiW (0)
, max
i∈[i†+1:̂i†−1]

λiW (vi)

λiW (0)
, max
i∈[̂i†:m]

λiW (vi)

λiW (vi)

}
=

W (δ†)

W (0)

(a)

≤ 2

where inequality (a) holds since W (0) = 1/2 ≥ W (δ)/2 for all δ ∈ (−∞,∞).

The below result (its proof is deferred to Appendix F.1) shows the tightness of the robust-rationality
approximation ratio established in Theorem 5.1.

Proposition 5.2. In SISU environments, for any ε > 0, there exists a problem instance such that
the optimal censorship π̂∗ (defined in Lemma 2.2) for a fully rational receiver has rationality-robust
approximation ratio Γ(π̂∗, [0,∞)) ≥ 2− ε.

We conclude this subsection by noting that the robust signaling scheme π̂∗ used in Theorem 5.1 is
the optimal censorship for a fully rational receiver. However, as we show in Proposition 5.3 below
(its proof is straightforward and is deferred to Appendix F.2), the optimal direct signaling scheme π̃∗

(defined in Lemma 2.2) for a fully rational receiver cannot achieve any meaningful rationality-robust
approximation guarantee. This again mirrors the analogous separation results on the censorship
and direct signaling schemes we show in previous sections.

Proposition 5.3. In SISU environments, there exists a problem instance such that the optimal
direct signaling scheme π̃∗ for a fully rational receiver has rationality-robust approximation ratio
Γ(π̃∗, [0,∞)) =∞.

22Here we use the superscriptˆ to denote the concepts in signaling scheme π̂∗.
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5.2 Rationality-Robust Signaling Schemes in SDSU Environments

Unlike SISU environments where the knowledge of the rationality level is unimportant up to a two
factor (Theorem 5.1), in this subsection, we first present the following negative result that without
the knowledge of the rationality level, there exists no signaling scheme with bounded rationality-
robust approximation ratio, even if the state space is binary (Theorem 5.4). Nonetheless, we also
provide a positive result for binary-state problem instances under a reasonable condition of receiver’s
bounded rationality levels (Proposition F.1).

Theorem 5.4. In SDSU environments, there exists a problem instance (Example 5.2) with binary
state such that for any signaling scheme π and any β0 ≥ 0, the rationality-robust approximation
ratio with respect to B = [β0,∞) is unbounded, i.e., Γ(π, [β0,∞)) =∞.

Proof overview of Theorem 5.4. The formal proof of Theorem 5.4 is deferred to Appendix F.3.
Here we sketch the high-level idea behind the proof. Our proof proceeds with two steps as follows.
In the first step, we construct a binary-state problem instance in Example 5.2. We further provide
a finite set B , {βℓ}ℓ∈[L] where23 βℓ , Lℓ. Recall that when the state space is binary, the optimal
signaling scheme is a censorship signaling scheme (Lemma E.5). The construction in Example 5.2
ensures that the contribution in the optimal (censorship) signaling scheme mainly comes from the
pooling signal δ†. Similar to the analysis in Theorem 4.1, the value of δ† is quite sensitive to
the rationality level βℓ. As a consequence, for any β1, β2 ∈ B such that β1 6= β2, it satisfies
that Payoffβ2

[OPT(β1)] ≪ Payoffβ2
[OPT(β2)], which says that the optimal signaling scheme under

a specific rationality level must have a very bad performance if sender implements such optimal
signaling scheme with a receiver who has a different bounded rationality level.
Example 5.2. Consider the following problem instance with binary state (i.e., m = 2),

λ1 =
1

2
, λ2 =

1

2
, v1 = 1, v2 = 2, u1 = 0, u2 = 1.

In the second step, given the above constructed binary-state problem instance and the set B of
rationality levels, we introduce the following factor-revealing program to lower bound the optimal
rationality-robust approximation ratio, i.e., minπ Γ(π,B).

min
π≥0,Γ≥0

Γ s.t.

λ1π1(δ) · (δ − v1) + λ2π2(δ) · (δ − v2) ≥ 0 δ ∈ (−∞,∞)∫ ∞

−∞
πi(δ)dδ = 1 i ∈ [2]

πi(δ) ≥ 0 δ ∈ (−∞,∞), i ∈ [2]
Payoffβℓ

[π] ≥ 1
Γ

1
βℓ exp(βℓ)

, ℓ ∈ [L]

In this program, the variables π can be interpreted as a signaling scheme, and Γ can be interpreted as
its rationality-robust approximation ratio. In particular, the last constraint requires the expected
sender utility of signaling scheme π for a receiver with bounded rationality level βℓ is at least a
Γ-approximation to 1/βℓ exp(βℓ), which, as we show in the proof, is a lower bound of the optimal
expected sender utility Payoffβℓ

[OPT(βℓ)]. Notably, this program is essentially a linear program.
Hence, by explicitly constructing a dual assignment in its dual program and then invoking the weak
duality, we can lower bound its optimal objective value by Ω(L). Finally, setting L to be infinite
finishes the proof of Theorem 5.4.

23Here L is a sufficiently large constant, which goes to infinite in the end of the analysis.
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Positive result for binary-state instances in SDSU environments. Theorem 5.4 highlights
the importance of the knowledge of the receiver’s bounded rationality level in SDSU environments.
Namely, even there are only two states, if the sender does not have any knowledge about receiver’s
bounded rationality level, then it is impossible to hope for a robust signaling scheme that would
have bounded rationality-robust approximation ratio.

In Appendix F.4, we present a positive result for problem instances with binary states (see Propo-
sition F.1 and its the proof in Appendix F.4), which shows that if the sender learns the receiver’s
bounded rationality level up to a multiplicative error K ≥ 1, i.e., B = [β0,Kβ0], and β0 is larger than
an instance-dependent bound,24 then there exists (censorship) signaling schemes whose rationality-
robust approximation ratio depends linearly on multiplicative error K.

6 Conclusions and Future Important Directions

In this work, we develop a theory of rationality-robust information design in the canonical setting
of Bayesian persuasion with binary receiver action. We first identify conditions under which the
optimal signaling scheme structure for a fully rational receiver remains optimal or approximately
optimal for a boundedly rational receiver. We then study the existence and construction of robust
signaling schemes when there is uncertainty about the receiver’s bounded rationality level. Below
we highlight the following natural and important directions of future research.

The most general direction from this paper is to develop a theory of information design or mechanism
design for agents with bounded rationality. Most existing results on this direction restrict attention
to specific problems (see Appendix A for more details). An interesting question is whether there exist
conditions under which the optimal/approximately optimal results for fully rational agents extend
to boundedly rational agents under a broad class of information/mechanism design problems. For
agents with bounded rationality, the standard revelation principle fails, and it is no longer without
loss of generality to impose incentive compatibility. In this sense, the bounded rationality also
provides a motivation and new perspective on the recent literature on non-truthful mechanism design
(e.g., Feng and Hartline, 2018; Cai et al., 2019; Daskalakis et al., 2020; Assadi et al., 2022).

The bounded rationality specifies how agents select their actions. Therefore, similar to our find-
ings, mechanisms that are equivalent under fully rationality (e.g., second-price auction and English
auction) may lead to different outcomes under bounded rationality. Exploring our first question in
mechanism design context may provide an alternative justification on practical preference of certain
mechanisms format (cf. Akbarpour and Li, 2020). For information design problems, action sets of
agents are given exogenously. In contrast, for mechanism design problems, action sets for agents
are usually designed endogenously. Thus, it is also interesting to systematically develop theory to
understand how to design action sets (a.k.a., mechanism formats) and preference over classic format.

For our Bayesian persuasion problem, there are also several interesting open questions. In SISU
environments, a natural question is whether there exists a signaling scheme that can beat the 2
rationality-robust approximation ratio achieved by the optimal censorship for the fully rational
receiver. In SDSU environments, one immediate question is whether there exists a robust signaling
scheme for problem instances with multiple states under a reasonable boundedness condition on the

24Recall our negative result (Theorem 5.4) shows that there exists no signaling scheme with finite rationality-robust
approximation ratio with respect to B = [β0,∞) for any β0 ≥ 0. It remains as an open question whether similar
rationality-robust signaling schemes exists for small β0.
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receiver’s bounded rationality levels. More importantly, what is the fine-grained tradeoff between
the knowledge on receiver’s behavior and the achievable rationality-robustness of signaling schemes?
Conceptually, these questions share similar flavor with the prior-independent mechanism design
framework (e.g., Dhangwatnotai et al., 2015; Fu et al., 2015; Allouah and Besbes, 2020; Hartline
et al., 2020).

Finally, another direction of interest is to characterize the computational complexity of computing
an optimal (or approximately optimal) signaling scheme in different environments. Note that when
the receiver is fully rational, the optimal signaling scheme can be computed in polynomial time.
When the receiver is boundedly rational, in Appendix G, we present some preliminary results on
characterizing the complexity of computing the (approximately) optimal signaling scheme in both
SISU/SDSU environments. Whether our results can be strengthened is an interesting and important
future direction.
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A Further Related Work

Our work on relaxing rationality assumption in information design is conceptually similar to a large
literature in mechanism design without/relaxing rationality assumption. For example, Braverman
et al. (2018) and follow-up works Deng et al. (2019a,b) study revenue-maximization for a single buyer
who uses no-regret algorithm in a repeated game with a seller. Camara et al. (2020) study a repeated
Stackelberg game where both players use no-regret learning algorithm. Behavioral mechanism design
(Easley and Ghosh, 2015) study how departures from standard economic models of agent behavior
affect mechanism design. Chawla et al. (2018) study the revenue-maximization when the buyer’s
behavioral model is beyond expected utility theory and characterize mechanism that is robust to
the buyer’s risk attitude. Other related works in mechanism design include Fu et al. (2013); Chawla
et al. (2022); Dughmi and Peres (2012).

Our work relates to a rich literature on information design. Since the seminal work (Kamenica and
Gentzkow, 2011) that setup the Bayesian persuasion problem that studies the game on strategic
communication between a sender and a receiver, the framework has inspired an active line of research
in information design games (e.g., see the surveys by Dughmi, 2017; Kamenica, 2019; Bergemann and
Morris, 2019). In addition to applications mentioned in introduction, Bayesian persuasion has also
been studied in other different applications like online ad auction (Emek et al., 2014; Cummings et al.,
2020; Arieli and Babichenko, 2019; Bergemann et al., 2022b), recommendation Mansour et al. (2022);
Feng et al. (2022), and voting (Alonso and Câmara, 2016a,b). Our work extends this line of research
by relaxing the standard rationality assumption. In particular, we consider a boundedly rational
receiver by modeling her as a (logit) quantal response player, while standard framework usually
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assumes that the receiver is fully rational, i.e., an expected utility maximizer. Relaxing rationality
assumptions has been studied in other information design literature. For example, Clippel and
Zhang (2022) study how receiver’s mistakes in probabilistic inference impact optimal persuasion,
Anunrojwong et al. (2020) study a persuasion problem where the receiver’s utility may be nonlinear
in her belief, and Tang and Ho (2021); Yu et al. (2023) run behavioral experiments and relax the
Bayesian rational assumption in a simple persuasion setting. Castiglioni et al. (2020, 2021) also
relax traditional assumptions in an online setting. Our work also conceptually relates to recent
papers that focus on settings where the receiver has limited attention to process and utilize the
information (Lipnowski et al., 2020; Bloedel and Segal, 2020). Since it has been shown that the
optimal stochastic response of a rationally inattentive receiver takes a “logit” form (Matějka and
McKay, 2015), similar to our results in Section 3, Bloedel and Segal (2020) show that the optimal
information policy in SISU environments for inattentive receivers has a censorship structure. Our
work differs from their work as we consider a more general sender payoff structure while the payoff
in Bloedel and Segal (2020) depends linearly on the state. Moreover, in addition to characterizing
the optimal information policy, we also study the design of approximately optimal and rationality-
robust information polices for boundedly rational receivers in both SISU and SDSU environments.
We also mention that our persuasion problem for the boundedly rational receiver is equivalent to a
public persuasion problem (Dughmi and Xu, 2017; Xu, 2020) for a continuum population of rational
receivers with a specific utility structure (see Appendix B.4 for more detailed discussions).

Our work has utilized and compared with censorship and direct signaling schemes. As a general
class of signaling schemes, censorship has been studied in the recent literature. Kolotilin et al. (2022)
consider the setting where the sender’s utility depends only on the expected state. They show that
a censorship is optimal if and only if the sender’s marginal utility is quasi-concave. Kolotilin (2018)
and Alonso and Câmara (2016a) provide sufficient conditions for the optimality of censorship in
different contexts. Our paper departs from these works by not only considering the optimality of
censorship signaling schemes under a different context (i.e., with boundedly rational receiver), but
also studying its approximation guarantees when it is not optimal. Direct signaling scheme has
also been studied in persuasion setting with binary action (Dughmi and Xu, 2017; Babichenko and
Barman, 2017; Xu, 2020; Feng et al., 2022). On the other hand, signaling schemes like censorship
in finite state space use at most m signals, and direct signaling schemes use at most 2 signals,
Gradwohl et al. (2022) analyze optimal persuasion subject to limited signals constraint. However,
neither of the two specific classes of problems they consider – symmetric instances and independent
instances – is applicable to our problem, and thus cannot inform any approximation guarantees
in our setting. Other related works on persuasion with limited communication constraint include
Dughmi et al. (2016); Le Treust and Tomala (2019); Aybas and Turkel (2019).

B Motivating Example and Extensions

B.1 Motivating Examples in Section 1

In the example of product advertising (Emek et al., 2014; Arieli and Babichenko, 2019), a grocery
store (i.e., sender), who observes the true product quality (i.e., state) with exogenous prices, per-
forms advertising (i.e., signaling scheme) to a consumer (i.e., receiver) who makes binary purchasing
decisions. In recommendation letter (Dughmi, 2017), an advisor, who observes the true ability of
students, writes recommendation letter to a recruiter who makes binary hiring decision. In short
video recommendation (Mansour et al., 2022; Feng et al., 2022), a short video platform (e.g., Tik-
Tok, Reels) who observes the content of short videos, makes recommendation to a user who decide
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to either watch or skip the video. In targeting in sponsored search (Badanidiyuru et al., 2018;
Bergemann et al., 2022b), a search engine (e.g., Bing, Google) who observes the attribute of an
impression (i.e., a match between advertiser and user), does targeting to an advertiser who decides
bid or not bid for this impression.

In the examples of product advertising and recommendation letter, when the grocery store only cares
about whether the buyer buys the product, and the advisor only cares whether the student is hired,
the sender’s utility is independent of the realized state. Under these scenarios, both examples can be
formulated as SISU environments in our work. In the examples of short video recommendation and
targeting in sponsored search, the sender’s utility could depend on the realized state. For example,
the short videos could be sponsored by some companies, and these sponsored videos might bring
different revenue to the platform if the user chooses to watch the videos. Similarly, in targeting of
sponsored search, different impressions could lead to different click-through rates, the revenue will
be generated to the the search engine if the displayed advertising is clicked. Under these scenarios,
both examples can be formulated as SDSU environments in our work.

B.2 Extensions on without Assuming ui(1) ≥ ui(0)

By the definition of SISU environments, we would like to first note that this assumption (i.e.,
ui(1) ≥ ui(0) for all states i ∈ [m]) trivially holds in SISU environments. In SDSU environments,
all our lower bound results (including the impossibility result in rationality-robust information
design) also hold without this assumption. The preliminary positive result Proposition F.1 also
holds via a similar duality argument. It would be an interesting future direction to explore whether
Theorem 4.5 still holds without this assumption.

B.3 Extensions to General Quantal Response Curve W

Our results in Section 3 and Section 4 on characterizing the optimal signaling schemes can be readily
extended to a more general quantal response behavior W . For example, the characterization on the
optimality of censorship signaling scheme for SISU environments (i.e., Theorem 3.1), the structure
characterization of the optimal signaling scheme for SDSU environments (i.e., Lemma E.1) hold as
long as the function W is S-shaped.

B.4 Reinterpretation via Public Persuasion

One explanation of a quantal response receiver is that she faces a action-specific random shock
{ε(a)}a∈A when she is making the decision (see Rust, 1987; McKelvey and Palfrey, 1995). In
particular, given posterior belief µ ∈ ∆([m]), the receiver takes the best action a∗ which maximizes
her expected utility (after the normalization by the bounded rationality level β) plus the action-
specific random shock, i.e., a∗ = argmaxa∈A β · v(a | µ) + ε(a). Under the standard assumption
that the action-specific random shock {ε(a)}a∈A is drawn i.i.d. from the Type I extreme value
distribution,25 the probability that action a ∈ A is selected over the randomness of {ε(a)}a∈A is
exactly exp(β · v(a | µ))/(exp(β · v(0 | µ)) + exp(β · v(1 | µ))).
Recall vi , vi(0) − vi(1). Let δ , (ε(1) − ε(0))/β. By definition, the cumulative function and den-
sity function of random variable δ is F (δ) , exp(βδ)/(1 + exp(βδ)) and f(δ) , β exp(βδ)/(1 + exp(βδ))2,
respectively. Given posterior belief µ, the receiver with the action-specific random shock {ε(a)}a∈A
takes action 1 if and only if

∑
i∈[m] µi · (δ − vi) ≥ 0. Thus, our problem can be interpreted as the

25The cumulative function of the Type I extreme value distribution is G(ε) = exp(− exp(−ε)).
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public persuasion problem (Xu, 2020; Dughmi and Xu, 2017) for a continuum population of rational
receivers. Specifically, f(δ) fraction of receiver population is associated with type δ ∈ (−∞,∞),
who has utility δ − vi for action 1 and utility zero for action 0 for each state i ∈ [m].

The linear program POPT-Primal can then be interpreted for the aforementioned public persuasion
problem. Specifically, variables {πi(δ)} specify a public signaling scheme where each variable πi(δ)
corresponds to the probability that receivers with type greater or equal to δ take action 1 while
receivers with type less than δ take action 0. The first (resp. second) constraint in POPT-Primal
guarantees the persuasiveness (resp. feasibility) of the public signaling scheme.

C Omitted Proofs in Section 2

In this section, we present the omitted proof of Proposition 2.1 in Section 2.

Proposition 2.1. For every feasible solution {πi(δ)} in program POPT-Primal, there exists a signaling
scheme where for each state i ∈ [m], the boundedly rational receiver takes action 1 with probabil-
ity
∫∞
−∞ πi(δ)W (δ) dδ. Furthermore, the sender’s optimal expected utility (in the optimal signaling

scheme) is equal to the optimal objective value of program POPT-Primal.

Proof. Fix an arbitrary feasible solution {πi(δ)} in program POPT-Primal. We construct a signaling
scheme π† as follows.26 Let the signal space Σ† ← {δ : ∃i ∈ [m], πi(δ) > 0}. For each realized
state i, let π†

i (δ)← πi(δ) for each δ ∈ Σ†. Due to the second constraint in program POPT-Primal, the
constructed signaling scheme π† is valid. When signal δ ∈ Σ† is realized, the posterior belief µ†

i (δ)

equals λiπi(δ)∑
j∈[m] λjπj(δ)

. Due to the first constraint in program POPT-Primal, we know that
∑

i∈[m] µ
†
i (δ) ·

(vi − δ) = 0, which implies δ =
∑

i∈[m] µ
†
i (δ) · vi. Thus, given realized signal δ, the receiver takes

action 1 with probability W (δ).

So far, we have shown that the sender’s optimal expected utility is weakly higher than the optimal
objective value of program POPT-Primal . We finish our proof by converting the optimal signaling
scheme π∗ (with signal space Σ∗) into a feasible solution {π‡

i (δ)} of program POPT-Primal whose
objective value equals to the sender’s optimal expected utility in π∗.27 The construction works as
follow. First, we initialize π‡

i (δ)← 0 for all i ∈ [m], δ ∈ (−∞,∞). Next, we enumerate each signal
σ ∈ Σ∗, let µ∗(σ) be the induced posterior belief and δ ,

∑
i∈[m] µ

∗
i (σ)vi. By definition, given

posterior belief µ∗(σ), the boundedly rational receiver takes action 1 with probability W (δ). We
update π‡

i (δ)← π‡
i (δ)+π∗

i (σ) for every state i ∈ [m]. After enumerating every signal σ ∈ Σ∗, it can
be verified that the constructed solution π‡ is feasible and its objective value equals the sender’s
expected utility.

D Omitted Proofs in Section 3

In this section, we present the omitted proofs in Section 3.

26Here we use the superscript † to denote the constructed signaling scheme.
27Here we use the superscript ‡ to denote the constructed feasible solution.
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D.1 Interpreting Program PSISU-OPT for Optimal Censorship of Fully Rational

Receiver.

The feasibility program PSISU-OPT recovers the structure of the optimal censorship for a fully rational
receiver in SISU environments. For a fully rational receiver (whose bounded rationality level β =∞),
function W (·) becomes W (x) = 1[x ≤ 0]. In this case, there is no longer a bijection between δ‡ ∈
[0,∞) and δ† ∈ (−∞, 0] satisfying constraint dual-feasibility-1. Instead, the feasible solutions
of constraint dual-feasibility-1 admit one of the two forms: either (i) {δ‡ ∈ [0,∞), δ† = 0};
or (ii) {δ‡ = ∞, δ† ∈ (−∞, 0]}. Note that (i) {δ‡ ∈ [0,∞), δ† = 0} corresponds to instances
where

∑
i∈[m] λivi < 0 and thus the optimal censorship in Lemma 2.2 selects the threshold state

and the threshold state probability such that δ† = 0, i.e., the fully rational receiver is indifferent
between action 0 and action 1 when the pooling signal δ† is realized. On the other side, (ii)
{δ‡ = ∞, δ† ∈ (−∞, 0]} corresponds to instances where

∑
i∈[m] λivi ≥ 0 and thus the optimal

censorship in Lemma 2.2 sets the threshold state i† = argmaxi{vi : vi ≤ δ‡} = m, i.e., pools all
state together and reveals no information.

D.2 Omitted Proof of Proposition 3.2

Below we present the omitted proof of Proposition 3.2. To simplify the analysis, we first introduce
the following definition. For any δ ∈ [0,+∞), we define κ(δ) ∈ (−∞, 0] such that

W ′(κ(δ)) =
W (δ) −W (κ(δ))

δ − κ(δ)
. (6)

Clearly, we have δ† = κ(δ‡) where δ† and δ‡ are defined in Theorem 3.1. By the curvature of the
function W , namely, W is concave over (−∞, 0] and convex over [0,+∞), we have the following
property about κ(·):
Lemma D.1. κ(·) is a bijection function from [0,+∞) to (−∞, 0], i.e, for any δ ∈ [0,+∞), there
exists a unique κ(δ) ∈ (−∞, 0] that (6) holds. Moreover, κ(·) is decreasing as δ ∈ [0,+∞) increases.

Proof. Recall that W (x) = 1
1+exp(βx) , and W ′(x) = −β · exp(βx)

(1+exp(βx))2
, from (6), for a fixed δ ≥ 0,

κ(δ) is the root of the following function

f(x, δ) , −β · exp(βx)

(1 + exp(βx))2
· (x− δ) − 1

1 + exp(βx)
+

1

1 + exp(βδ)
.

Inspecting its first-order partial derivatives, we can see that f(x,δ)
∂x > 0,∀x < 0; f(x,δ)

∂δ

∣∣∣
x=κ(δ)

> 0. As

a consequence, given δ2 > δ1 > 0, we have 0 = f (κ(δ1), δ1) < f (κ(δ1), δ2). From f (κ(δ2), δ2) = 0,
we know κ(δ2) < κ(δ1), which proves the statement.

With the above definition (6), we also define

pi , −
∑

j:j<i λj · (vj − κ(vi))

λi · (vi − κ(vi))
. (7)

Lemma D.2. For any state i ∈ [m] with vi ≥ 0, if the corresponding pi < 0, then it must have
pj < 0,∀j > i.
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Proof. Consider following two states i1, i2 where i1 < i2, vi1 ≥ 0

pi1 = −
∑

j:j<i1
λj(vj − κ(vi1))

λi1 · (vi1 − κ(vi1))
, pi2 = −

∑
j:j<i2

λj(vj − κ(vi2))

λi2 · (vi2 − κ(vi2))
.

Suppose pi1 < 0. Since vi1 − κ(vi1) > 0, it must imply that
∑

j:j<i1
λj(vj − κ(vi1)) > 0. Observe

that
∑

j:j<i2

λj(vj − κ(vi2)) =
∑

j:j<i1

λj(vj − κ(vi2)) +
∑

j:i1≤j<i2

λj(vj − κ(vi2)) >
∑

j:i1≤j<i2

λj(vj − κ(vi2)) > 0 ,

where the last inequality follows from the fact that vj > 0,∀i1 ≤ j < i2 and κ(vi2) < 0. Hence, with
the fact that vi2 − κ(vi2) > 0, one must have pi2 < 0.

We are now ready to prove Proposition 3.2.

Proposition 3.2. In SISU environments, let π∗ (resp. π̂∗) be the optimal censorship for a boundedly
rational receiver with boundedly rational level β (resp. β̂). If β ≤ β̂, then the threshold state i† in
π∗ is weakly smaller than the threshold state î† in π̂∗, i.e., i† ≤ î†; and threshold state probability
p† ≤ p̂†.

Proof. We begin the analysis with showing the following observation: Fix a δ ∈ [0,+∞), let κ(δ)
(resp. κ̂(δ)) be the value that satisfies (6) for the bounded rationality level β (resp. β̂). Then we
have

κ(δ) ≤ κ̂(δ) < 0, if β ≤ β̂ . (8)

To see this, recall that W (x) = 1
1+exp(βx) , and ∂W (x)

∂x = −β · exp(βx)
(1+exp(βx))2

, from (6), κ(δ) is the root
of the following function

f(x, β) , −β · exp(βx)

(1 + exp(βx))2
· (x− δ) − 1

1 + exp(βx)
+

1

1 + exp(βδ)
.

Inspecting its first-order partial derivatives, we can see that f(x,β)
∂x ≥ 0,∀x ≤ 0; f(x,β)

∂β

∣∣∣
x=κ(δ)

≤ 0.

As a consequence, given β̂ ≥ β, we have f
(
κ(δ), β̂

)
≤ f (κ(δ), β) = 0. From f

(
κ̂(δ), β̂

)
= 0, we

know κ̂(δ) ≥ κ(δ).

Now given a state i where vi ≥ 0, consider the bounded rationality level β, β̂, from (8), we have
κ(vi) ≤ κ̂(vi), implying

∑

j:j<i

λj · (vj − κ(vi)) ≥
∑

j:j<i

λj · (vj − κ̂(vi)) and 0 > − 1

λi · (vi − κ(vi))
≥ − 1

λi · (vi − κ̂(vi))
;

⇒ pi = −
∑

j:j<i λj · (vj − κ(vi))

λi · (vi − κ(vi))
≤ −

∑
j:j<i λj · (vj − κ̂(vi))

λi · (vi − κ̂(vi))
= p̂i . (9)

The above inequality ensures that the threshold state î† for a larger bounded rationality level β̂ is
no smaller than the threshold state i† for a smaller bounded rationality level β. If î† = i†, one still
has p† = min{pi† , 1} ≤ p̂† = min{pî† , 1}.
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D.3 Omitted Proof of Lemma 3.3

Here we present the omitted proof of Lemma 3.3. With the two properties (see Lemma D.1 and
Lemma D.2) for κ(·) and pi we established in Appendix D.2, we prove Lemma 3.3 as follows:

Lemma 3.3. There exists a unique feasible solution in program PSISU-OPT.

Proof. When the set {i ∈ [m] : vi ≥ 0} is not empty, then from the definition (6) and the definition
(7), we know that every feasible solution to the program PSISU-OPT must be that the threshold
state i† = argmaxi∈[m]:vi≥0{pi : pi ≥ 0} and p† = min{pi† , 1}. From Lemma D.2, we know
that such threshold state and the pooling probability is unique. On the other hand, if the set
{i ∈ [m] : vi ≥ 0} is empty, then Theorem 3.1, together with the definition (6) and the definition
(7), say that i† = argmaxi∈[m]:vi≤0{vi} and p† = 1, which also guarantees uniqueness of the feasible
solution to the program PSISU-OPT.

D.4 Omitted Proof of Lemma 3.4

Here we present the omitted proof of Lemma 3.4.

δ‡δ†δ δ

(a)

δ‡δ† vi†+1δvi

(b)

Figure 2: Graphical illustration of the dual assignment feasibility for inequality (2) in the proof
of Theorem 3.1. The gray solid curve is function W (·). (a): For δ ∈ (−∞, δ‡], the dual assignment
α(δ) is the absolute value of the slope of the black solid line. We prove that inequality (2) holds by
showing that the slope of the black dotted (resp. dashed) line is larger (resp. smaller) than the slope
of the black solid line if δ ∈ (−∞, δ†] (resp. δ ∈ [δ†, δ‡]). (b): For δ ∈ [δ‡, vi†+1], the dual assignment
α(δ) is the absolute value of the slope of the black dotted line. We prove that inequality (2) holds by
showing that the slope of the black dash-dotted line is smaller than the slope of the black dotted line.
More specifically, we rewrite inequality (2) as inequality (5). The right-hand side of inequality (5)
is the absolute value of the slope of the black dash-dotted line. We lower bound this term by the
absolute value of the slope of the black dashed line, which is due to convexity of the function W (·),
is larger than the absolute value of the slope of the black dotted line, i.e., the left-hand side of
inequality (5).

Lemma 3.4. The constructed dual assignment is a feasible solution to the dual program POPT-Dual.

Proof. We first present the analysis for the state i ∈ [i†] for the latter two cases:

- Fix an arbitrary j ∈ [i† + 1 : m − 1] and an arbitrary δ ∈ [vj , vj+1]. Similar to the previous
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case, after rearranging the terms, inequality (2) becomes

−W (δ)−W (vj+1)

δ − vj+1
≤ −W (δ)−

(
W (δ†)−W ′(δ†)(δ† − vi)

)

δ − vi

Due to the convexity of function W (·) on [0,∞),

−W (δ)−W (vj+1)

δ − vj+1
≤ −W (δ)−W (vi†+1)

δ − vi†+1

and thus the analysis in the previous case can be carried over directly.

- Fix an arbitrary δ ∈ [vm,∞). By construction α(δ) = 0. Inequality (2) becomes

W (δ) ≤W (δ†)− (δ† − vi)W
′(δ†) (10)

If vi ≤ δ†, inequality (10) holds since function W (·) is monotone decreasing. Otherwise, i.e.,
if δ† ≤ vi ≤ δ‡, inequality (10) holds since

W (δ†)− (δ† − vi)W
′(δ†) ≥W (δ†)− (δ† − δ‡)W ′(δ†)

(a)
= W (δ‡)

(b)

≥ W (δ)

where inequality (a) holds due to constraint dual-feasibility-1 in program PSISU-OPT; and
inequality (b) holds due to the monotonicity of function W (·).

Finally, we verify dual constraints associated with π∗
i (δ) for state i ∈ [i† + 1 : m].

- Fix an arbitrary δ ∈ (−∞, δ‡]. By construction, α(δ) = −W (δ†). By rearranging the terms,
inequality (3) becomes

W ′(δ†) ≤ W (vi)−W (δ)

vi − δ

which holds since

W (vi)−W (δ)

vi − δ

(a)

≥ W (δ‡)−W (δ)

δ‡ − δ

(b)

≥ W (δ‡)−W (δ†)

δ‡ − δ†
(c)
= W ′(δ†)

where inequality (a) holds due to the convexity of function W (·) on [0,∞) and vi > δ‡; and
inequality (b) and equality (c) hold due to the concavity of function W (·) on (−∞, 0] and
constraint dual-feasibility-1 in program PSISU-OPT.

- Fix an arbitrary δ ∈ [δ‡, vi†+1]. By construction, α(δ) = −(W (δ)−W (vi†+1)/(δ − vi†+1). By
rearranging the terms, inequality (3) becomes

W (vi†+1)−W (δ)

vi†+1 − δ
≤ W (vi)−W (δ)

vi − δ

which holds due to the convexity of function W (·) on [0,∞) and δ ≤ vi†+1 ≤ vi.

- Fix an arbitrary j ∈ [i† + 1 : m − 1] and an arbitrary δ ∈ [vj , vj+1]. By construction,
α(δ) = −(W (δ) −W (vj+1)/(δ − vj+1). For state i ∈ [i† + 1 : j], by rearranging the terms,
inequality (3) becomes

W (vj+1)−W (δ)

vj+1 − δ
≥ W (vi)−W (δ)

vi − δ
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which holds due to the convexity of function W (·) on [0,∞) and vi ≤ δ ≤ vj+1. Similarly, for
state i ∈ [j + 1 : m], by rearranging the terms, inequality (3) becomes

W (vj+1)−W (δ)

vj+1 − δ
≤ W (vi)−W (δ)

vi − δ

which holds due to the convexity of function W (·) on [0,∞) and δ ≤ vj+1 ≤ vi.

- Fix an arbitrary δ ∈ [vm,∞). By construction, α(δ) = 0. Here inequality (3) holds by the
monotonicity of function W (·) straightforwardly.

D.5 Omitted Proof of Theorem 3.5

Here we present the omitted proof of Theorem 3.5.

Theorem 3.5. In SISU environments, there exists a problem instance (Example D.1) such that for
any direct signaling scheme π, it is Ω(m)-approximation to the optimal signaling scheme.

Example D.1. Given an arbitrary m ∈ N+, consider a problem instance as follows: There are m
states. The receiver has bounded rationality level β such that β ≥ exp(m). The sender utility {ui},
the receiver utility difference {vi}, and prior {λi} over state space [m] are

i ∈ [m] : ui = 1, vi = i, λi = K (exp(βi) + 1)

where K , 1/(m +
∑

j∈[m] exp(βj)).

Proof. First, we lowerbound the expected sender utility in the optimal signaling scheme π∗ by
computing the expected sender utility in the full-information revealing signaling scheme,

Payoff[π∗] ≥
∑

i=1

λiW (vi) = m ·K

Next, we upperbound the expected sender utility in the optimal direct signaling scheme π̂. Suppose
the optimal direct signaling scheme π̂ partitions the state space into H ⊔ {i†} ⊔ L. Due to the
convexity of function W (·) on [0,∞), the expected sender utility in the optimal direct signaling
scheme π̂ is upperbounded by the expected sender utility in signaling scheme π̃ defined as follows,

i ∈ H : π̃i(δ) = 1

[
δ =

∑
i∈H λivi∑
i∈H λi

]

π̃i†(δ) = 1[δ = vi† ]

i ∈ L : π̃i(δ) = 1

[
δ =

∑
i∈L λivi∑
i∈L λi

]

Let kh = maxH and kl = maxL. We have

Payoff[π̂] ≤ Payoff[π̃]

=

(
∑

i∈H

λi

)
W

(∑
i∈H λjvj∑
j∈H λj

)
+ λi†W (vi†) +

(
∑

i∈L

λi

)
W

(∑
j∈L λjvj∑
j∈L λj

)

≤ 2λkhW

(
vkh −

1

β

)
+ λi†W (vi†) + 2λklW

(
vkl −

1

β

)

≤ (4e + 1) ·K
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where the second inequality holds since β ≥ exp(m).

Finally, combining the lower bound (i.e., m ·K) of Payoff[π∗] and the upper bound (i.e., (4e+1) ·K)
of Payoff[π̂] finishes the proof.

E Omitted Proofs in Section 4

E.1 Omitted Proof of Lemma 4.3

Proof. We prove the lemma statement by constructing a feasible signaling scheme π with Payoff[π] =
Θ(K1K2m). In particular, consider the following construction of signaling scheme π:

i ∈ [m− 1] : πi

(
i+

1

β

)
= 1; πm

(
i+

1

β

)
= K1 exp(βi)

It is straightforward to verify by algebra that signaling scheme π constructed above is a feasible
solution of program POPT-Primal.28 The expected sender utility Payoff[π] of signaling scheme π is

Payoff[π] =
∑

i∈[m−1]

λmumπm

(
i+

1

β

)
W

(
i+

1

β

)

=
∑

i∈[m−1]

K2K1 exp(βi)
1

1 + exp(β(i + 1
β ))

= Θ(K1K2m)

E.2 Omitted Proof of Lemma 4.4

Lemma 4.4. In Example 4.1, for any state i ∈ [m− 1], the expected sender utility Payoff
[
π(i,δ)

]
=

O(K1K2) for any δ ∈ [i, i+m log(β)/β]; and Payoff
[
π(i,δ)

]
= o(K1K2/m) for any δ ∈ [i+m log(β)/β,m].

Proof. We first prove the case Payoff
[
π(i,δ)

]
= O(K1K2) for any δ ∈ [i, i + m log(β)/β]. Recall that

in signaling scheme π(i,δ), state i and state m are pooled on signal δ, and all other states are fully
revealed, i.e.,

π
(i,δ)
i (δ) = 1; π(i,δ)

m (δ) =
λi

λm

δ − i

m− δ
; π(i,δ)

m (m) = 1− λi

λm

δ − i

m− δ
; π

(i,δ)
j (j) = 1∀j 6= i,m .

The expected sender utility Payoff
[
π(i,δ)

]
of signaling scheme π is

Payoff
[
π(i,δ)

]
= λmum

(
π(i,δ)
m (δ)W (δ) + π(i,δ)

m (m)W (m)
)

where

λmumπ(i,δ)
m (m)W (m) ≤ K2

1

1 + exp(βm)

(a)
= o(K1K2)

λmumπ(i,δ)
m (δ)W (δ) = K2K1

(
m− i− 1

β

)
β exp(βi)

δ − i

m− δ

1

1 + exp(βδ)

= K1K2

m− i− 1
β

m− δ

exp(βi)

1 + exp(βδ)
β(δ − i)

(b)
= O(K1K2)

28Specifically, in signaling scheme π, each state i ∈ [m − 1] is pooled fully (i.e., πi(i + 1/β) = 1) on signal i + 1/β
with the last state m (with probability πm(1 + 1/β) = exp(βi)/K1).
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Here equality (a) holds since 1/(1 + exp(βm)) = o(K1); equality (b) uses two facts that (i) (m− i− 1/β)/(m− δ) =

O(1) since β/log(β) ≥ 2m and thus δ ≤ i+m log(β)/β ≤ i+1/2; and (ii) exp(βi)
1+exp(βδ)β(δ−i) ≤

β(δ−i)
exp(β(δ−i)) =

O(1).

We now prove the case Payoff
[
π(i,δ)

]
= o(K1K2/m) for any δ ∈ [i+ m log(β)/β,m]. It is clear that for

every δ ≥ δavg, the expected sender utility Payoff
[
π(i,δ)

]
≤ Payoff

[
π(i,δavg)

]
. Thus, it is sufficient

to show Payoff
[
π(i,δ)

]
= o(K1K2/m) for every δ ∈ [i+ m log(β)/β, δavg]. By definition,

Payoff
[
π(i,δ)

]
= λmum

(
π(i,δ)
m (δ)W (δ) + π(i,δ)

m (m)W (m)
)

where

λmumπ(i,δ)
m (m)W (m) ≤ K2

1

1 + exp(βm)

(a)
= o

(
K1K2

m

)

Here equality (a) holds since 1/(1 + exp(βm)) = o(K1/m). It remains to show term λmumπ
(i,δ)
m (δ)W (δ) =

o(K1K2/m). We show this in two cases based on the value of δ.

- Fix an arbitrary δ ∈ [i+ m log(β)/β,m− 1/2]. Note that

λmumπ(i,δ)
m (δ)W (δ) = K2K1

(
m− i− 1

β

)
β exp(βi)

δ − i

m− δ

1

1 + exp(βδ)

(a)

≤ K1K2mβ
m

2
exp(β(i− δ))

(b)

≤ K1K2mβ
m

2
exp

(
β

(
i−
(
i+

m log(β)

β

)))

= o

(
K1K2

m

)

where inequality (a) holds since m− i− 1/β ≤ m, (δ − i)/(m− δ)) ≤ m/2; and inequality (b) holds
since δ ≥ i+ m log(β)/β.

- Fix an arbitrary δ ∈ [m−1/2, δavg]. Let δ̄avg ,
λm−1(m−1)+λmm

λm−1+λm
be the signal on which state m−

1 and state m are fully pooled together. It is clear that Payoff
[
π(i,δ)

]
≤ Payoff

[
π(m−1,δ̄avg)

]

if δ ≥ δ̄avg. For δ ≤ δ̄avg, note that

λmumπ(i,δ)
m (δ)W (δ) = K2K1

(
m− i− 1

β

)
β exp(βi)

δ − i

m− δ

1

1 + exp(βδ)

(a)

≤ K1K2mβ
m

m− δ
exp(β(m− 1− δ))

= K1K2m
2β

exp(β(m− 1− δ))

m− δ

where inequality (a) holds since m−i−1/β ≤ m, δ−i ≤ m and exp(βi)/(1 + exp(βδ) ≤ exp(β(m−
1− δ)).

Denote function f(δ) , K1K2m
2β exp(β(m−1−δ))

m−δ . Notably, f(δ̄avg) also upperbounds Payoff
[
π(m−1,δ̄avg)

]
.

Hence, it is sufficient to show f(δ) = o(K1K2/m) for all δ ∈ [m − 1/2, δ̄avg]. Now consider the
derivative of function f(·),

df(δ)

dδ
= K1K2m

2β
exp(β(m− 1− δ))(1 − β(m− δ))

(m− δ)2
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whose sign is determined by the term 1−β(m−δ)). Since we are considering δ ∈ [m−1/2, δ̄avg],
we conclude the proof by showing that f(m− 1/2) = o(K1K2/m), and 1− β(m− δ̄avg) ≤ 0. By
definition,

f

(
m− 1

2

)
= K1K2m

2β
exp

(
β
(
m− 1−

(
m− 1

2

)))

m− (m− 1
2)

= o

(
K1K2

m

)

and

δ̄avg =
λm−1(m− 1) + λmm

λm−1 + λm

=
K1K2

(
1− 1

β

)
β exp(β(m− 1))(m − 1) +K2m

K1K2

(
1− 1

β

)
β exp(β(m− 1)) +K2

=

1∑
j∈[m−1] exp(βj)

(
1− 1

β

)
β exp(β(m− 1))(m − 1) +m

1∑
j∈[m−1] exp(βj)

(
1− 1

β

)
β exp(β(m− 1)) + 1

(a)

≤
1
2

(
1− 1

β

)
(m− 1) +m

1
2

(
1− 1

β

)
+ 1

≤ m− 1

3

(b)

≤ m− 1

β

where inequalities (a) and (b) hold for every m ≥ 3.

E.3 Omitted Proof of Theorem 4.5

Remaining Proof of Theorem 4.5. We now prove that there always exists a direct signaling scheme
that is O(m)-approximation. Similarly, let π† with signal space Σ† be the signaling scheme stated in
Lemma 4.6. Suppose the signal σij ∈ Σ† is induced from the pair of state (i, j). We use Ũij denote
the expected sender utility induced from the signal σij, i.e., Ũij , (λiuiπ

†
i (σij)+λjujπ

†
j(σij))W (σij).

Let (̃i, j̃) , argmax(i,j) Ũij. Then, together with the properties (i)-(ii) and |Σ†| ≤ 2m, we know

that Payoff
[
π†
]
≤ 2m · Ũĩj̃. Now consider the following direct signaling scheme π̃:

π̃̃i(δ) = π†
i (σ̃ij̃)1

[
δ = σ̃ĩj

]
, π̃̃i(δ) =

(
1− π†

i (σ̃ij̃)
)
1

[
δ = δ̃

]
;

π̃j̃(δ) = π†
j(σ̃ij̃)1

[
δ = σ̃ĩj

]
, π̃j̃(δ) =

(
1− π†

j(σ̃ij̃)
)
1

[
δ = δ̃

]
;

i ∈ [m] \ {̃i, j̃}, π̃i(δ) = 1

[
δ = δ̃

]

where δ̃ ,
λ
ĩ
(1−π†

i (σĩj̃
))ṽ

i
+λ

j̃
(1−π†

j (σĩj̃
))v

j̃
+
∑

i∈[m]\{̃i,j̃}
λivi

λ
ĩ
(1−π†

i (σĩj̃
))+λ

j̃
(1−π†

j (σĩj̃
))+

∑
i∈[m]\{̃i,j̃}

λi

. Essentially, direct signaling scheme π̃ has

the same signaling structure as the signaling scheme π† on inducing the signal σ̃ij̃ , and then pools

all remaining states at the same signal δ̃. By construction, it is easy to verify that Payoff[π̃] ≥ Ũĩj̃,
which gives an O(m)-approximation of the signaling scheme π̃.

E.4 Omitted Proof of Lemma 4.6

We start with the first step – a characterization of an optimal signaling scheme that has the same
two properties as in Lemma 4.6.
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Step 1- a characterization of the structure of an optimal signaling scheme.

Lemma E.1. In SDSU environments, for a boundedly rational receiver, there exists an optimal
signaling scheme π∗ using at most m(m + 1)/2 signals and this optimal signaling scheme π∗ satisfies
the two properties (i) (ii) in Lemma 4.6.

We provide a graphical illustration for the structure of optimal signaling schemes characterized in
the above Lemma E.1.

v1

v2

v3

v4

v5

(a)

v1

v2

v3

v4

v5

(b)

Figure 3: Structure graphical illustration for optimal signaling schemes characterized in Theo-
rem 3.1 (Figure 3a) and Lemma E.1 (Figure 3b) in a SISU environment. Each state is the black
dot, and all the states in a gray shaded region imply that there exists a signal induced from these
states. In both figures, the receiver is fully rational, i.e., β =∞. The SISU environment is specified
as below: v1 = −1.5, v2 = 0.5, v3 = 1, v4 = 1.5, v5 = 2, and ui = 1, λi = 0.2,∀i ∈ [5]. For this
problem instance, it can be shown that a censorship signaling scheme π̃∗ (Figure 3a) is optimal:
Σ̃∗ = {σ1, σ2, σ3} , π̃∗

i (σ1) = 1,∀i ∈ [3]; π̃∗
4(σ2) = 1; π̃∗

5(σ3) = 1. Meanwhile, a signaling scheme π∗

(Figure 3b) that satisfies the two properties in Lemma E.1 is also optimal: Σ∗ = {σ1, σ2, σ3, σ4},
π∗
1(σ1) = 1/3, π∗

2(σ1) = 1;π∗
1(σ2) = 2/3, π∗

3(σ2) = 1;π∗
4(σ3) = 1;π∗

5(σ4) = 1.

Remark E.1. We would like to note that an application of the Caratheodory’s theorem shows that
m signals are sufficient for optimal signaling scheme. However, such characterization does not
shed much light on the structure of optimal signaling scheme. To prove Lemma 4.6, we resort to
characterizing an optimal signaling scheme that uses more signals but has more structural properties
that we can leverage to study censorship/direct signaling schemes.

Proof overview of Lemma E.1. At a high level, the proof of Lemma E.1 proceeds in two
steps. In step 1a, we present a reduction from arbitrary signaling schemes to signaling schemes that
satisfy property (i). Specifically, given an arbitrary signaling scheme π, we can construct a new
signaling scheme π† which satisfies property (i) and achieves the same expected sender utility as the
original signaling scheme.29 In step 1b, we provide an approach to convert any signaling scheme π†

which satisfies property (i) to a new signaling scheme π‡ which satisfies both properties (i) (ii), and
achieves weakly higher expected sender utility. Informally, given a signaling scheme π† from the
first step, we can obtain the signaling scheme π‡ by optimizing the pooling structure for each pair
of states while holding signals from all other pairs fixed. Loosely speaking, this reduces our task to
identify optimal signaling scheme when the state space is binary. Hence, we introduce a technical
lemma (Lemma E.5), showing that the optimal signaling schemes are censorship signaling schemes
when the sate space is binary, which may be of independent interest.

29In the remaining of this subsection, we use superscript † to denote the constructed signaling schemes satisfying
property (i), and superscript ‡ to denote the constructed signaling schemes satisfying properties (i) (ii).
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Below we provide detailed discussion and related lemmas for the above mentioned two steps. In the
end of this subsection, we combine all pieces together to conclude the proof of Lemma E.1.

Step 1a- reduction to signaling schemes with property (i). In this step, we argue that it
is without loss of generality to consider signaling schemes that satisfy property (i) in Lemma E.1.

Lemma E.2. In SDSU environments, for a boundedly rational receiver, for an arbitrary signaling
scheme π, there exists a signaling scheme π† with signal space Σ† such that

- each signal σ ∈ Σ† is induced by at most two states,

- signaling scheme π† achieves the same expected sender utility as signaling scheme π.

Informally, we can construct the signaling scheme π† in Lemma E.2 as follows. For each signal σ in
the original signaling scheme π, we decompose it into multiple signals, each of which is induced by
at most two states, and satisfies some other requirements. The feasibility of this decomposition is
guaranteed by the following lemma.

Lemma E.3 (Feng et al., 2022). Let X be a random variable with discrete support supp(X). There
exists a positive integer K, a finite set of K random variables {Xk}k∈[K], and convex combination

coefficients f ∈ [0, 1]K with
∑

k∈[K] fk = 1 such that:

(i) Bayesian-plausibility: for each k ∈ [K], E[Xk] = E[X];

(ii) Binary-support: for each k ∈ [K], the size of Xk’s support is at most 2, i.e., |supp(Xk)| ≤ 2

(iii) Consistency: for each x ∈ supp(X), Pr[X = x] =
∑

k∈[K] fk · Pr[Xk = x]

Proof of Lemma E.2. Fix an arbitrary signaling scheme π with signal space Σ. Recall that πi(σ) is
the probability mass (or density) that signal σ is realized when the realized state is state i.

Now we describe the construction of π† and its signal space Σ†. Initially, we set Σ† ← ∅. For each
signal σ ∈ Σ, let µi(σ) ,

λiπi(σ)∑
j∈[m] λjπj(σ)

be its induced posterior belief for each state i. Consider the

following random variable X where Pr[X = vi] = µi(σ) for each i ∈ [m]. Let integer K, random vari-
ables {Xk}k∈[K], and convex combination coefficients f ∈ [0, 1]K be the elements in Lemma E.3 for
the aforementioned random variable X. Add K signals {σ(1), . . . , σ(K)} into the signal space Σ†, i.e.,
Σ† ← Σ† ∪ {σ(1), . . . , σ(K)}. For each k ∈ [K], set π†

i (σ
(k)) ← 1

λi
fk · Pr[Xk = vi] · (

∑
j∈[m] λjπj(σ)).

Note that this construction ensures that

∑

k∈[K]

π†
i (σ

(k)) =
∑

k∈[K]

1

λi
fk · Pr[Xk = vi] ·


∑

j∈[m]

λjπj(σ)


 (a)

=
1

λi
Pr[X = vi] ·


∑

j∈[m]

λjπj(σ)


 = πi(σ)

where equality (a) holds due to the “consistency” property in Lemma E.3. Hence, the constructed
signaling scheme π† is feasible.

Additionally, the “binary-support” property in Lemma E.3 ensures that signaling scheme π† satisfies
that each signal from Σ† is induced by at most two states.

Finally, to see that signaling scheme π† achieves the same expected sender utility as signaling scheme
π, consider the following coupling between these two signaling schemes: whenever signal σ ∈ Σ is
realized in signaling scheme π, sample the corresponding signal σ(k) with probability fk for each
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k ∈ [K]. This coupling is well-defined due to the “consistency” property in Lemma E.3. Invoking
the “Bayesian-plausibility” property in Lemma E.3, from the receiver’s perspective, her expected
utility given the posterior belief µ(σ(k)) under signaling scheme π† is the same as her expected utility
given the posterior belief µ(σ) under signaling scheme π. Thus the probabilities that the receiver
takes action 1 are the same in both signaling schemes, yielding the same expected utility to the
sender.

Step 1b- reduction to signaling schemes with properties (i) and (ii). In this step, we
argue that it is without loss of generality to consider signaling schemes which satisfy properties (i)
and (ii) in Lemma E.1.

Lemma E.4. In SDSU environments, for a boundedly rational receiver, given any signaling scheme π†

with signal space Σ† where each signal σ ∈ Σ† is induced by at most two states, there exists a signaling
scheme π‡ with signal space Σ‡ such that

- each signal σ ∈ Σ‡ is induced by at most two states,

- each pair of states is pooled at most one signal,

- signaling scheme π‡ achieves weakly higher expected sender utility as signaling scheme π†.

Proof. Fix an arbitrary signaling scheme π† with signal space Σ† where each signal is induced by
at most two states. Below we describe the construction of π‡ and its signal space Σ‡. Initially, we
set Σ‡ ← ∅.
For each pair of states (i, j), let Σ†

ij ⊆ Σ† be the subset of signals, each of which is induced by state

i and state j, i.e., Σ†
ij , {σ ∈ Σ† : supp(µ(σ)) = {i, j}}. For ease of presentation, we introduce

auxiliary notations p(1)ij (resp. p(2)ij ) to denote the probability that the realized state is i (resp. j), and

the realized signal is from Σ†
ij, i.e., p(1)ij ,

∫
σ∈Σ†

ij

λiπ
†
i (σ) dσ and p

(2)
ij ,

∫
σ∈Σ†

ij

λjπ
†
j(σ) dσ. Consider

the program POPT-Primal on the following binary-state instance Iij = (m̂, {λ̂k}, {v̂k}, {ûk}):

m̂← 2, v̂1 ← vi, v̂2 ← vj , û1 ← ui, û2 ← uj ,

λ̂1 ←
p
(1)
ij

p
(1)
ij + p

(2)
ij

, λ̂2 ←
p
(1)
ij

p
(1)
ij + p

(2)
ij

Notably,

{
λiπ

†
i (σ)

p
(1)
ij

· 1
[
σ ∈ Σ†

ij

]
,
λjπ

†
j (σ)

p
(2)
ij

· 1
[
σ ∈ Σ†

ij

]}
is a feasible solution of program POPT-Primal on

the binary-state instance Iij. Now, let {π̂∗
1(σ), π̂

∗
2(σ)} with signal space Σ̂∗

ij be the optimal solution

of program POPT-Primal on the binary-state instance Iij. We add signals from Σ̂∗
ij into the signal

space Σ‡, i.e., Σ‡ ← Σ‡ ∪ Σ̂∗
ij , and set π‡

i (σ) ←
p
(1)
ij

λi
· π̂∗

1(σ), π
‡
j(σ) ←

p
(2)
ij

λj
· π̂∗

2(σ) for each signal

σ ∈ Σ̂∗
ij . It is straightforward to verify that the constructed signaling scheme π‡ with signal space

Σ‡ is feasible, and each signal σ ∈ Σ† is induced by at most two states by construction.

Now we argue that each pair of states in signaling scheme π‡ is pooled at most one signal. By our
construction of signaling scheme π‡, it is sufficient to show that for each pair of states (i, j), the
optimal solution {π̂∗

i (σ), π̂
∗
j (σ)} in program POPT-Primal on binary-state instance Iij is a censorship

signaling scheme (and thus it is pooled at most one signal). We prove this statement by leveraging
the following lemma (Lemma E.5) that characterizes the optimal signaling scheme of any binary
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state instance is indeed a censorship signaling scheme. The proof, deferred to Appendix E, is based
on a primal-dual analysis similar to the one for Theorem 3.1.

Lemma E.5. In SDSU environments with binary state space (i.e., m = 2), there exists a censorship
signaling scheme that is an optimal signaling scheme.

The proof of Lemma E.5 follows similar primal-dual analysis of the one for Theorem 3.1, we thus
defer to proof to Appendix E.5.

Finally, we verify that expected sender utility Payoff
[
π‡
]

is weakly higher than the expected sender
utility Payoff

[
π†
]
. Note that

Payoff
[
π†
]

(a)
=
∑

(i,j)

∫

σ∈Σ†
ij

(
λiuiπ

†
i (σ) + λjujπ

†
j(σ)

)
W (σ) dσ

=
∑

(i,j)

(
p
(1)
ij + p

(2)
ij

)∫

σ∈Σ†
ij

(
p
(1)
ij

p
(1)
ij + p

(2)
ij

ui
λiπ

†
i (σ)

p
(1)
ij

+
p
(2)
ij

p
(1)
ij + p

(2)
ij

ui
λjπ

†
i (σ)

p
(2)
ij

)
W (σ) dσ

(b)

≤
∑

(i,j)

(
p
(1)
ij + p

(2)
ij

) ∫

σ∈Σ†
ij

(
p
(1)
ij

p
(1)
ij + p

(2)
ij

ui
λiπ

‡
i (σ)

p
(1)
ij

+
p
(2)
ij

p
(1)
ij + p

(2)
ij

ui
λjπ

‡
i (σ)

p
(2)
ij

)
W (σ) dσ

=
∑

(i,j)

∫

σ∈Σ†
ij

(
λiuiπ

‡
i (σ) + λjujπ

‡
j(σ)

)
W (σ) dσ

(c)
= Payoff

[
π‡
]

where equalities (a) (c) use Proposition 2.1. To see why inequality (b) holds, note that the left-hand

side of inequality (b) is the objective value of solution

{
λiπ

†
i (σ)

p
(1)
ij

· 1
[
σ ∈ Σ†

ij

]
,
λjπ

†
j (σ)

p
(2)
ij

· 1
[
σ ∈ Σ†

ij

]}

in program POPT-Primal on binary-state instance Iij, while the right-hand side of inequality (b), by
the construction of π‡, is the optimal objective value in this program.

Now we are ready to prove Lemma E.1.

Proof of Lemma E.1. Invoking Lemma E.2 and Lemma E.4, we know that there exists an optimal
signaling scheme where (i) each signal is induced by at most two states, and (ii) each pair of states
pools on at most one signal. Note that property (i) and property (ii) together imply that its signal
space has m(m+1)

2 signals.

In below, we provide the analysis of the second step for the proof of Lemma 4.6.

Step 2- a connection to fractional generalized assignment problem. Due to properties (i)
and (ii) of the optimal signaling scheme π∗ stated in Lemma E.1, there is at most one signal realized
by each pair of states (i, j), i.e., |{σ : π∗

i (σ) > 0 ∧ π∗
j (σ) > 0}| ≤ 1. For ease of presentation, we

assume |{σ : π∗
i (σ) > 0 ∧ π∗

j (σ) > 0}| = 1 for each pair (i, j), and denote it as σij .30 Furthermore,

we define set of pairs E , {(i, j) : π∗
i (σij) ≥ π∗

j (σij)}. Note that the expected sender utility

30The analysis in this subsection extends trivially if |{σ : π∗
i (σ) > 0 ∧ π∗

j (σ) > 0}| = 0 for some pair (i, j).
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Payoff[π∗] =
∑

(i,j)∈E(λiuiπ
∗
i (σij) + λjujπ

∗
j (σij))W (σij) can be upper bounded by the optimal

value of the following linear program,

max
x≥0

∑

(i,j)∈E

(
λiui + λjuj

π∗
j (σij)

π∗
i (σij)

)
W (σij)xij s.t.

∑

j:(i,j)∈E

xij ≤ 1 i ∈ [m]

∑

i:(i,j)∈E

π∗
j (σij)

π∗
i (σij)

· xij ≤ 1 j ∈ [m]

(PSDSU-OPT)

Lemma E.6. The expected sender utility Payoff[π∗] of the optimal signaling scheme π∗ is at most
the optimal objective value of program PSDSU-OPT.

Proof. Consider the following assignment x of program PSDSU-OPT,

i ∈ [m], j ∈ [m] : xij ← π∗
i (σij)

By construction, the objective value of the constructed assignment equals Payoff[π∗]. Now, we
show the feasibility of the constructed assignment. Note the feasibility of optimal signaling scheme
π∗ implies that for each state i ∈ [m],

∑
j∈[m] π

∗
i (σij) = 1. Thus,

∑

j∈[m]

xij =
∑

j∈[m]

π∗
i (σij) ≤ 1;

∑

i∈[m]

π∗
j (σij)

π∗
i (σij)

· xij =
∑

i∈[m]

π∗
j (σij)

π∗
i (σij)

· π∗
i (σij) =

∑

i∈[m]

π∗
j (σij) ≤ 1

which finishes the proof.

We remark that the program PSDSU-OPT has the same formulation as the fractional generalized as-
signment problem: there are m items and m bins. Each bin has a unit budget. Each pair of item
i and bin j such that (i, j) ∈ E has value (λiui + λjujπ∗

j (σij)/π∗
i (σij))W (σij) and cost π∗

j (σij)/π∗
i (σij).

With this connection to the generalized assignment problem, we use the following established result
about the optimal integral solution of program PSDSU-OPT.
Lemma E.7 (Theorem 2.1 and its proof in Shmoys and Tardos, 1993). The optimal integral solution
of program PSDSU-OPT is a 2-approximation to the optimal fraction solution of program PSDSU-OPT.
Now we are ready to prove Lemma 4.6.

Proof of Lemma 4.6. Let x
† be the optimal integral solution of program PSDSU-OPT. Consider a

signaling scheme π† constructed as follows. First, initialize the signal space Σ† ← ∅. Second, for
each pair of state (i, j) ∈ E, if x†ij > 0, update Σ† ← Σ† ∪ {σij}, π†

i (σij) ← x†
ij/2, and π†

j(σij) ←
(x†

ijπ
∗
j (σij))/(2π∗

i (σij)). Third, for each state i ∈ [m], if
∑

σ∈Σ† π
†
i (σ) < 1, update Σ† ← Σ† ∪ {vi},

π†
i (vi)← 1−∑σ∈Σ† π

†
i (σ).

Now we verify that the constructed signaling scheme π† is feasible, i.e., for each state i ∈ [m],∑
σ∈Σ† π

†
i (σ) = 1. By construction, the feasibility is guaranteed since that for each state i ∈ [m],

∑

j:(i,j)∈E

π†
i (σij) +

∑

j:(j,i)∈E

π†
i (σji) =

∑

j:(i,j)∈E

1

2
x†ij +

∑

j:(j,i)∈E

1

2

π∗
i (σji)

π∗
j (σji)

x†ji ≤
1

2
+

1

2
= 1
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where the inequality holds due to the feasibility of solution x
†.

Next, we verify that the constructed signaling scheme π† satisfies properties stated in Lemma 4.6.
Note the two properties same as in Lemma E.1 are guaranteed by construction straightforwardly.
By construction, the expected sender utility Payoff

[
π†
]

is a 2-approximation to the objective value
of the optimal integral solution x

†. Invoking Lemma E.6 and Lemma E.7, we conclude that signaling
scheme π† is 4-approximation to the optimal signaling scheme.

Finally, since the optimal integral solution x
† has at most m non-zero entries, i.e., |{x†ij : x†ij >

0}| ≤ m, the constructed signal space Σ† has at most |{x†ij : x
†
ij > 0}| +m ≤ 2m signals.

E.5 Proof of Lemma E.5

We now present a more detailed statement for Lemma E.5 and then present its associated proof.

Lemma E.8. In SDSU environments with binary state space (i.e., m = 2), there exists an optimal
signaling scheme π∗ for a boundedly rational receiver that is a censorship signaling scheme. In

particular, define γ(δ) , v1−δ
v2−δ + W (v2)−W (δ)

v2−δ · 1
W ′(δ) ·

(
1− v1−δ

v2−δ

)
. Let δ̂ satisfy γ(δ̂) = u1/u2, and

define δ† , min
{
max

{
v1, δ̂

}
, λ1v1 + λ2v2

}
; p† ,

λ1(δ†−v1)
λ2(v2−δ†)

. Then the optimal signaling π∗ is

π∗
1

(
δ†
)
= 1; π∗

2

(
δ†
)
= p†, π∗

2 (v2) = 1− p† . (11)

A few useful observations of the above result are as follows. First, by inspecting the first-order
derivative, we know that the function γ(·) is monotone decreasing. Second, we always have δ† ∈
[v1, λ1v1 + λ2v2] and thus p† ∈ [0, 1]. Third, (a) when δ̂ ≤ v1, we have δ† = v1 and p† = 0, and
thus full information revealing is optimal; (b) when v1 < δ̂ < λ1v1 + λ2v2, we have δ† = δ̂ and
p† ∈ (0, 1), and thus partial information revealing is optimal; (c) when δ̂ > λ1v1 + λ2v2, we have
δ† = λ1v1 + λ2v2 and p† = 1, and thus no information revealing is optimal.

Proof of Lemma E.8. We prove the optimality of the signaling scheme (11) by constructing a feasible
dual solution to the dual program POPT-Dual that satisfies the complementary slackness.

Based on the signaling scheme (11), we give our dual solution to the program POPT-Dual as follows:

δ ∈ (∞, v1] : α(δ) = max
i∈[2]
−ui · (W (δ) −W (δ†)) + α(δ†) · (δ† − vi)

δ − vi

δ ∈ (v1, v2] : α(δ) =
−u2(W (δ) −W (δ†)) + max

{
−u2(W (v2)−W (δ†))

v2−δ†
,−(λ1u1 + λ2u2)W

′(δ†)
}
(δ† − v2)

δ − v2
δ ∈ (v2,∞] : α(δ) = 0

i = 1 : η(1) = λ1u1 ·
(
W (δ†) + α(δ†) · δ

† − v1
u1

)

i = 2 : η(2) = λ2u2 ·
(
W (δ†) + α(δ†) · δ

† − v2
u2

)
;

(12)
Given the above constructed dual assignment, we first argue that when No information revealing
is optimal, namely, p† = 1, we have α(δ†) = −(λ1u1 + λ2u2) · W ′(δ†) where δ† = λ1v2 + λ2v2,
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otherwise we have α(δ†) = −u2·(W (δ†)−W (v2))
δ†−v2

where δ† ∈ [v1, λ1v2 + λ2v2). For notation simplicity,

let δavg , λ1v2+λ2v2. To see this, note that when p† = 1, it must be the case γ(δ†) = γ(δavg) ≥ u1
u2

.
Recall that

γ(δavg) =
v1 − δavg

v2 − δavg
+

W (v2)−W (δavg)

v2 − δavg
· 1

W ′(δavg)
·
(
1− v1 − δavg

v2 − δavg

)

= −λ2

λ1
+

W (v2)−W (δavg)

v2 − δavg
· 1

W ′(δavg)
·
(
1 +

λ2

λ1

)

Hence, we have

−λ2

λ1
+

W (v2)−W (δavg)

v2 − δavg
· 1

W ′(δavg)
·
(
1 +

λ2

λ1

)
≥ u1

u2
.

Rearranging the above inequality gives us

−(λ1u1 + λ2u2) ·W ′(δavg) ≥ −u2 · (W (δavg)−W (v2))

δavg − v2
,

which implies the dual assignment of α(δavg) when No information revealing is optimal. As a
consequence, we have η(2) = λ2u2W (v2) when No information revealing is not optimal, and η(2) =

λ2u2

(
W (δavg)− (λ1u1 + λ2u2) ·W ′(δavg) · δavg−v2

u2

)
when No information revealing is optimal.

In below, we show that the above constructed dual solution (12) is indeed a feasible solution to the
dual program POPT-Dual (i.e., the following constraint (14) holds), and also, complementary slackness
holds between (11) and (12) (i.e., the following constraint (13) holds).

W (δ) + α(δ) · δ − vi
ui

=
η(i)

λiui
, if π∗

i (δ) > 0, ∀i ∈ [2], (complementary-slackness) (13)

W (δ) + α(δ) · δ − vi
ui

≤ η(i)

λiui
, if π∗

i (δ) = 0, ∀i ∈ [2], (dual-feasibility) (14)

Complementary slackness. We now argue the complementary slackness of the constructed
assignment. Namely, for each state i ∈ [2] and δ ∈ (−∞,∞) such that π∗

i (δ) > 0, its corresponding
dual constraint holds with equality, i.e., the above equality (13). We verify this for each state i ∈ [2]
separately.

- Fix state 1, note that π∗
1(δ) > 0 for δ = δ† only. Here equality (13) holds by construction.

- Fix state 2, note that π∗
2(δ) > 0 for δ = δ† and δ = v2 only. When δ = δ†, the equality (13)

holds for π∗
2(δ

†) > 0. To see this, when No information revealing is not optimal, we have

W (δ†) + α(δ†) · δ
† − u2
u2

(a)
= W (δ†)− u2 · (W (v2)−W (δ†))

v2 − δ†
· δ

† − v2
u2

= W (v2)
(b)
=

η(2)

λ2u2
,

where the equality (a) holds due to the assignment α(δ†), and the equality (b) holds due to
the assignment η(2). When No information revealing is optimal, we have

W (δavg) + α(δavg) · δ
avg − u2
u2

(a)
=

η(2)

λ2u2
,

where the equality (a) directly follows from the assignment of η(2). Now it is remaining verify
equality (13) for π∗

2(v2). To see this, note that this must be the case where η(2) = λ2u2W (v2):

W (v2) + α(v2) ·
v2 − u2

u2

(a)
= W (v2)

(b)
=

η(2)

λ2u2
,

where the equalities (a) (b) hold due to the assignment α(δ†) and the assignment η(2).
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Dual feasibility. when No information revealing is not optimal. Note that

η(1)

λ1u1

(a)
= W (δ†) + α(δ†) · δ

† − v1
u1

,
η(2)

λ2u2
= W (δ†) + α(δ†) · δ

† − v2
u2

.

Thus, we can rewrite those dual constraints associated with π∗
1(δ) for state 1 and those dual con-

straints associated with π∗
2(δ) for state 2 as follows

W (δ) + α(δ) · δ − v1
u1

≤W (δ†) + α(δ†) · δ
† − v1
u1

; (15)

W (δ) + α(δ) · δ − v2
u2

≤W (δ†) + α(δ†) · δ
† − v2
u2

. (16)

We verify the above inequalities for different values of δ in three cases separately.

- Fix an arbitrary δ ∈ (−∞, v1]. Note by the construction of the dual assignment in (12), we
have

α(δ) ≥ −u1(W (δ) −W (δ†))

δ − v1
+ α(δ†)

δ† − v1
δ − v1

, α(δ) ≥ −u2(W (δ) −W (δ†))

δ − v2
+ α(δ†)

δ† − v2
δ − v2

after rearranging the terms, the above inequalities directly imply the inequality (15) and and
the inequality (16).

- Fix an arbitrary δ ∈ (v1, v2).

In this case, we first argue the feasibility of dual assignment (11) when No information revealing
is not optimal. By construction, we have α(δ) = −u2·(W (δ)−W (v2))

δ−v2
, which directly implies the

inequality (16). To ensure the inequality (15), it is remaining to show that the following holds
for all δ ∈ (v1, v2)

−u2 · (W (δ)−W (v2))

δ − v2
≤ −u1 · (W (δ) −W (δ†)) + α(δ†) · (δ† − v1)

δ − v1
,

which is equivalent to show the following holds for all δ ∈ (v1, v2)

u2
u1
·
(
−W (δ)−W (v2)

δ − v2
+

W (δ†)−W (v2)

δ† − v2
· δ

† − v1
δ − v1

)
≤ W (δ†)−W (δ)

δ − v1
. (17)

We define following function f(δ) ,
(
−W (δ)−W (v2)

δ−v2
+ W (δ†)−W (v2)

δ†−v2
· δ†−v1

δ−v1

)
· δ−v1
W (δ†)−W (δ)

. Then

the inequality (17) is equivalent to show that

∀δ ∈ (v1, δ
†], f(δ) ≥ u1

u2
; and ∀δ ∈ (δ†, v2), f(δ) ≤

u1
u2

. (18)

Inspecting the first-order derivative of the function f(·), we know that f ′(δ) < 0,∀δ ∈ (v1, v2).
Moreover, observe that

lim
δ→(δ†)+

f(δ) =
v1 − δ†

v2 − δ†
+

W (v2)−W (δ†)

v2 − δ†
· 1

W ′(δ†)
·
(
1− v1 − δ†

v2 − δ†

)
(a)
= γ(δ†) ,

where the equality (a) follows from the definition of the function γ(·). Recall that by definition,
when δ† ∈ (v1, λ1v1 + λ2v2), we must have γ(δ†) = u1

u2
, which proves the inequality (18).
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When δ† = v1, it suffices to argue that ∀δ ∈ (v1, v2), f(δ) ≤ u1
u2

. To see this, note that for all

δ ∈ (v1, v2), we have f(δ) ≤ f(δ1) = limδ→(δ†)+ f(δ) = γ(δ†) ≤ γ(δ̂) = u1
u2

, where we have used

the definition of δ̂, and the function γ(·) is decreasing.

We now argue the feasibility of dual assignment (11) when No information revealing is optimal.
Note that to ensure that the inequalities (15) and and (16) hold for dual assignment (11), it
is remaining to show that

u2(W (δavg)−W (δ)) + α(δavg)(δavg − v2)

δ − v2
≤ u1(W (δavg)−W (δ)) + α(δavg)(δavg − v1)

δ − v1

Rearranging the terms, it suffices to show that

α(δavg) ≥ u2(δ − v1)− u1(δ − v2)

(v2 − v1)(δ − δavg)
· (W (δavg)−W (δ)), ∀δ ∈ (v1, δ

avg];

α(δavg) ≤ u2(δ − v1)− u1(δ − v2)

(v2 − v1)(δ − δavg)
· (W (δavg)−W (δ)), ∀δ ∈ (δavg, v2] .

Consider the function f(δ) , u2(δ−v1)−u1(δ−v2)
(v2−v1)(δ−δavg) ·(W (δavg)−W (δ)), then we have limδ→δavg f(δ) =

−(λ1u1 + λ2u2) ·W ′(δavg) = α(δavg). Furthermore, it can be shown that f(δ) ≤ α(δavg),∀δ ∈
(v1, δ

avg], and f(δ) ≥ α(δavg),∀δ ∈ (δavg, v2].

- Fix an arbitrary δ ≥ v2. Then by construction, we have

α(δ) = 0 ≤ u1(W (δ†)−W (δ)) + α(δ†)(δ† − v1)

δ − v1
; α(δ) = 0 ≤ u2(W (δ†)−W (δ)) + α(δ†)(δ† − v2)

δ − v2
,

which directly imply the inequalities (15) and (16).

F Omitted Proofs in Section 5

F.1 Omitted Proof of Proposition 5.2

Proof. Consider following problem instance with binary state (i.e., m = 2),

λ1 = 1− ε

4− ε
, λ2 =

ε

4− ε
, v1 = log

(
ε

4− ε

)
, v2 = −

λ1

λ2
v1.

In this problem instance, the optimal censorship π̂∗ for a fully rational receiver is the no-information
revealing signaling scheme, in which both states are pooled at î† = 0. Now, consider a receiver with
bounded rationality level β = 1. Note that

Payoff1[π̂
∗] = W (0) =

1

2
.

On the other hand, the optimal expected sender utility Payoff1[OPT(1)] can be lower bounded by
the full-information revealing signaling scheme, i.e.,

Payoff1[OPT(1)] ≥ λ1W (v1) + λ2W (v2) > λ1W (v1) =

(
1− ε

4− ε

)
1

1 + ε
4−ε

= 1− ε

2

which completes the proof.
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F.2 Omitted Proof of Proposition 5.3

Proof. Given a sufficiently small ε > 0, consider following problem instance with three states (i.e.,
m = 3),

λ1 = ε, λ2 = λ3 =
1− ε

2
, v1 = −0.01, v2 = 0.01, v3 = 3 .

In this problem instance, the optimal direct signaling scheme π̃∗ for a fully rational receiver is
characterized as follows

π̃∗
1(δ) = 1[δ = 0]

π̃∗
2(δ) =

2ε

1− ε
1[δ = 0] , π̃∗

2(δ) =

(
1− 2ε

1− ε

)
1

[
δ =

0.01(1−3ε)
2 + 3(1−ε)

2

1− 2ε

]

π̃∗
3(δ) = 1

[
δ =

0.01(1−3ε)
2 + 3(1−ε)

2

1− 2ε

]
.

On the other hand, for a sufficiently small ε, it can be shown that from Theorem 3.1, the optimal
signaling scheme OPT(β) for any bounded rationality level β < ∞ is full-information revealing,
yielding Payoffβ [OPT(β)] = εW (−0.01)+W (0.01)(1 − ε)/2+W (3)(1 − ε)/2. Numerically, it can be verified

that limβ→∞ limε→0
Payoffβ[OPT(β)]

Payoffβ[π̃
∗] =∞, which completes the proof.

F.3 Omitted Proof of Theorem 5.4

Theorem 5.4. In SDSU environments, there exists a problem instance (Example 5.2) with binary
state such that for any signaling scheme π and any β0 ≥ 0, the rationality-robust approximation
ratio with respect to B = [β0,∞) is unbounded, i.e., Γ(π, [β0,∞)) =∞.

Proof of Theorem 5.4. For the ease of the presentation, let Γ′ , 1
Γ . To analyze the rationality-

robust approximation ratio Γ of a certain signaling scheme π over all possible β ∈ B, we consider
following factor-revealing program

max
π≥0,Γ′≥0

Γ′ s.t.

λ1π1(δ) · (δ − v1) + λ2π2(δ) · (δ − v2) ≥ 0 δ ∈ (−∞,∞)∫ ∞

−∞
πi(δ)dδ = 1 i ∈ [2]

πi(δ) ≥ 0 δ ∈ (−∞,∞), i ∈ [2]
Payoffβℓ

[π] ≥ Γ′Payoffβℓ
[OPT(βℓ)] , ℓ ∈ [L]

(PFactor-Revealing)

We first lower bound the optimal expected sender utility under the bounded rationality level βℓ:

Payoffβℓ
[OPT(βℓ)] = Ω

(
1

βℓ·exp(βℓ)

)
. To see this, consider following signaling scheme π′:

π′
1

(
βℓ + 2

βℓ + 1

)
= 1; π′

2

(
βℓ + 2

βℓ + 1

)
=

1

βℓ
, π′

2 (2) = 1− 1

βℓ
.

Clearly, the above signaling scheme is a feasible solution to the program POPT-Primal with the above
constructed problem instance I . Thus, we have

Payoffβℓ
[OPT(βℓ)] ≥ Payoffβℓ

[
π′
]
≥ λ2 ·

1

βℓ
W

(
βℓ + 2

βℓ + 1

)
= Ω

(
1

βℓ exp(βℓ)

)
.
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Recall that u1 = 0, and thus Payoffβℓ
[π] = λ2u2

∫∞
−∞ πi(δ)W

(βℓ)(δ)dδ. To analyze the objec-
tive of the program PFactor-Revealing , we consider following dual program PFR-Dual of the program
PFactor-Revealing with relaxing its fourth constraint to Payoffβℓ

[π] ≥ Γ′ 1
βℓ exp(βℓ)

,∀ℓ ∈ [L]:31

min
α,η,τ

η(1) + η(2) s.t.

α(δ) · (1− δ) + 2η(1) ≥ 0 δ ∈ (−∞,∞)

α(δ) · (2− δ) + 2η(2) ≥
L∑

ℓ=1

τ(ℓ) · 1

1 + exp(βℓδ)
δ ∈ (−∞,∞)

L∑

ℓ=1

τ(ℓ) · 1

βℓ exp(βℓ)
≥ 1

α(δ) ≥ 0, δ ∈ (−∞,∞)
τ(ℓ) ≥ 0 ℓ ∈ [L]

(PFR-Dual)

Below we construct an assignment for the dual variables η(1), η(2) and {τ(ℓ)} for the dual program
PFR-Dual and show that together with an assignment of {α(δ)}, our constructed assignment is feasible
for sufficiently large L. Consider the following dual assignment of η(1), η(2) and {τ(ℓ)},

η(1)← 3

L
η(2)← 2

L
; τ(ℓ)← 1

L
(βℓ exp(βℓ)) ∀ℓ ∈ [L]

Note that the dual constraint for primal variable Γ is satisfied by construction. Next, we discuss
how to construct the assignment for {α(δ)}. We consider the three cases separately: δ ≤ 1, δ ≥ 2
and δ ∈ (1, 2).

- For every δ ≤ 1, let α(δ) =∞ is sufficient to satisfies the dual constraints for π1(δ) and π2(δ).

- For every δ ≥ 2, let α(δ) = 0 is sufficient to satisfies the dual constraints for π1(δ) and π2(δ).
To see this, note that the dual constraints for π1(δ) holds straightforwardly as η(1) = 3/L ≥ 0.
To satisfy the dual constraints for π2(δ), it is sufficient to show η(2) ≥ 1

2 ·
∑L

ℓ=1
τ(ℓ)

1+exp(βℓδ)
,

which holds for sufficiently large L. To see this, note that

1

2
·

L∑

ℓ=1

τ(ℓ)

1 + exp(βℓδ)
=

1

2
·

L∑

ℓ=1

1

L

βℓ exp(βℓ)

1 + exp(βℓδ)

(a)

≤ 1

2
·

L∑

ℓ=1

1

L

βℓ exp(βℓ)

1 + exp(2βℓ)

(b)

≤ 1

2
·

L∑

ℓ=1

1

L

1

L

=
1

2L
≤ η(2)

- Now we consider δ ∈ (1, 2). To satisfies the dual constraints for π1(δ) and π2(δ), it is sufficient
to show 2η(1)

δ−1 ≥ 0, which holds straightforwardly as δ > 1 as η(1) = 3/L > 0, and

1

2− δ
·
(

L∑

ℓ=1

τ(ℓ) · 1

1 + exp(βℓδ)
− 2η(2)

)
≤ 2η(1)

δ − 1
.

Rearranging the above inequality, we have

η(1) +
δ − 1

2− δ
· η(2) ≥ 1

2
· δ − 1

2− δ
·

L∑

ℓ=1

τ(ℓ)

1 + exp(βℓδ)
. (19)

31The the duality of our infinite-dimensional LP can be obtained formally from Theorem 3.12 in Anderson and
Nash (1987).
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To see why the above inequality (19) holds true, we consider two subcases δ ∈ [3/2, 2) and
δ ∈ (1, 3/2] separately.

Fix an arbitrary δ ∈ [3/2, 2). Note that for sufficiently large L

Left-hand side of (19) ≥ δ − 1

2− δ
η(2) ≥ 1

2− δ

1

L

Right-hand side of (19)
(a)

≤ 1

2

1

2− δ

L∑

ℓ=1

1

L

βℓ exp(βℓ)

1 + exp(32βℓ)

(b)

≤ 1

2

1

2− δ

L∑

ℓ=1

1

L

1

L
=

1

2− δ

1

2L

where inequality (a) holds since δ ∈ [3/2, 2); and inequality (b) holds since βℓ exp(βℓ)

1+exp( 3
2
βℓ)
≤ 1

L for

sufficiently large L.

Fix an arbitrary δ ∈ (1, 3/2]. Let k ∈ N be the index such that δ ∈
[
1 + 1

Lk+1
2
, 1 + 1

Lk− 1
2

]
.

Note that for sufficiently large L,

Left-hand side of (19) ≥ η(1) =
3

L

Right-hand side of (19)
(a)

≤ (δ − 1)

L∑

ℓ=1

1

L

βℓ exp(βℓ)

1 + exp(δβℓ)

= (δ − 1)
∑

ℓ∈[L]:ℓ 6=k

1

L

βℓ exp(βℓ)

1 + exp(δβℓ)
+ (δ − 1)

1

L

Lk exp(Lk)

1 + exp(δLk)

(b)

≤
∑

ℓ∈[L]:ℓ 6=k

1

L

1

L
+

1

e

1

L
≤ 2

L

where inequality (a) holds since δ ∈ (1, 3/2], and inequality (b) holds since (δ−1) βℓ exp(βℓ)
1+exp(δβℓ)

≤ 1
L

for every ℓ 6= k when L is sufficiently large, and (δ − 1) Lk exp(Lk)
1+exp(δLk)

≤ 1
e .

Hence, we have the optimal objective value of the program PFactor-Revealing is at most η(1)+η(2) =
5/L. As a result, the rationality-robust approximation ratio Γ(π,B) is at least L/5 for any signaling
scheme π. The proof now completes.

F.4 Positive Results for Binary-state Instances

Proposition F.1. In SDSU environments, for any problem instance I = (m, {λi}, {vi}, {ui}) with
binary state (i.e., m = 2), for any K ≥ 1 and β0 ≥ λ2

λ1
· 1
v2−max{v1,0}

· 1[v2 > 0], there exists a

signaling scheme π such that Γ(π, [β0,Kβ0]) ≤
(
4
√
eK + 1

)2
.

Here we sketch the high-level idea for the proof of Proposition F.1. Note that by definition, a
rationality-robust signaling scheme with rationality-robust approximation ratio Γ must imply that
it is also Γ-approximately optimal to the optimal signaling scheme OPT(β) under every possible
rationality level β ∈ B. Hence, to identify a robust signaling scheme, ideally, one needs to understand
how does the optimal sender expected utility (or a non-trivial upper bound of it) change when
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receiver’s bounded rationality level changes. However, it is difficult to characterize the optimal
sender expected utility32, let alone to understand its behavior over different rationality levels. We
tackle this challenge by first showing that a censorship signaling scheme whose pooling signal (i.e.,
roughly at v1 +Θ(1/β)) depends on the value of receiver’s rationality level is approximately optimal
to the optimal signaling scheme OPT(β). With this structure of censorship signaling scheme, a robust
signaling scheme can be constructed by fine-tuning the location of the pooling signal.

Lemma F.2. In SDSU environments, for any problem instance I = (m, {λi}, {vi}, {ui}) with binary
state (i.e., m = 2), for any receiver with bounded rationality level β, if β ≥ λ2

λ1
· 1
v2−max{v1,0}

·1[v2 > 0],

for any K ≥ 1, the optimal expected sender utility Payoff[OPT(β)] is at most

Payoff[OPT(β)] ≤ 16eKPayoff
[
π†
]
+ Payoff

[
π‡
]

,

where signaling scheme π† is a censorship signaling scheme with threshold state i† = 2 and pooling
signal δ† = min{λ1v1 + λ2v2,max{v1, 0} + 1/(Kβ)}, and signaling scheme π‡ is the full-information
revealing signaling scheme (i.e., also a censorship signaling scheme).

Proposition F.1 is a direct implication of Lemma F.2, whose proof is deferred to Appendix F.5.

Proof of Proposition F.1. Let π† be the signaling scheme with threshold state i† = 2 and pooling
signal δ† = min{λ1v1+λ2v2,max{v1, 0}+1/(Kβ0)}, and π‡ be the full-information revealing signaling
scheme. Now construct signaling scheme π , qπ†+(1− q)π‡ as the convex combination of signaling
scheme π† and π‡. We specify the convex combination factor q ∈ (0, 1) in the end of the analysis. By
construction, for any bounded rationality level β, Payoffβ[π] = qPayoffβ

[
π†
]
+(1− q)Payoffβ

[
π‡
]
.

To see the rationality-robustness of signaling scheme π, consider a receiver with an arbitrary bounded
rationality level β ∈ [β0,Kβ0], and note that

Payoffβ[OPT(β)]
(a)

≤ 16e
Kβ0
β

Payoffβ

[
π†
]
+ Payoffβ

[
π‡
]

(b)

≤ 16eKPayoffβ

[
π†
]
+ Payoffβ

[
π‡
]
≤
(
16eK

q
+

1

1− q

)
Payoffβ[π]

where inequality (a) holds from Lemma F.2, and inequality (b) holds since β0/β ≤ 1. We finishes
the proof by letting the convex combination factor q minimizes (16eK)/q + 1/(1− q).

F.5 Omitted Proof of Lemma F.2

Lemma F.2. In SDSU environments, for any problem instance I = (m, {λi}, {vi}, {ui}) with binary
state (i.e., m = 2), for any receiver with bounded rationality level β, if β ≥ λ2

λ1
· 1
v2−max{v1,0}

·1[v2 > 0],

for any K ≥ 1, the optimal expected sender utility Payoff[OPT(β)] is at most

Payoff[OPT(β)] ≤ 16eKPayoff
[
π†
]
+ Payoff

[
π‡
]

,

where signaling scheme π† is a censorship signaling scheme with threshold state i† = 2 and pooling
signal δ† = min{λ1v1 + λ2v2,max{v1, 0} + 1/(Kβ)}, and signaling scheme π‡ is the full-information
revealing signaling scheme (i.e., also a censorship signaling scheme).

32Although in Lemma E.5, we show that optimal signaling scheme OPT(β) for binary-state instances in SDSU
environments is a censorship signaling scheme, the pooling signal no longer admits a simple structure as in SISU
environments (see Lemma E.8). Moreover, unlike in SISU environments where the pooling signal is monotone with
respect to the rationality level, here, the pooling signal of optimal signaling scheme OPT(β) is no longer monotone.
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Proof. Since the expected sender utility generated from state 1 in the optimal signaling scheme
π∗ is at most Payoff

[
π‡
]
, it is sufficient to show that the expected sender utility generated from

state 2 in the optimal signaling scheme π∗ is at most 16eKPayoff
[
π†
]
. This can be further re-

formulated as showing Payoff[π∗] ≤ 16eKPayoff
[
π†
]

for all problem instances with sender utility
u1 = 0. We further assume v2 > 0.33 We show this inequality using the weakly duality of linear
program POPT-Primal with its dual program POPT-Dual.
First, consider following assignment for dual variables {η(1), η(2)},

η(1) = η(2) = 8eK W (δ†)

where p† = λ1(δ†−v1)
λ2(v2−δ†)

is the threshold state probability in signaling scheme π†.

Below we argue that there exists an assignment for dual variables {α(δ)}, which together with the
constructed dual assignment for {η(1), η(2)} above is feasible. For every δ ∈ (−∞,∞), there are
two dual constraints related to {α(δ)},

λ1 (v1 − δ)α(δ) + η(1) ≥ λ1u1W (δ); λ2 (v2 − δ)α(δ) + η(2) ≥ λ2u2W (δ)

If δ ∈ (−∞, v1] (resp. δ ∈ [v2,∞)), setting α(δ) = −∞ (resp. α(δ) =∞) satisfies the dual constraints.
If δ ∈ (v1, v2), plugging the assignment for dual variables {η(1), η(2)} constructed above as well as
u1 = 0, the two dual constraints are equivalent to

λ2(v2 − δ)

λ1(δ − v1)
p†W (δ†) + p†W (δ†) ≥ 1

8eK
W (δ) (20)

Let δavg , (λ1v1 + λ2v2). To establish the above inequality (20) with the dual assignment of
{η(1), η(2)}, we analyze two cases (i) δavg > max{v1, 0}+ 1/(Kβ) and (ii) δavg ≤ max{v1, 0}+ 1/(Kβ)

separately.

Suppose δavg > max{v1, 0}+ 1/(Kβ), and thus δ† = max{v1, 0}+ 1/(Kβ). Here we consider following
three subcases based on different values of δ:

- Fix an arbitrary δ ∈ (v1, δ
†]. Note that

λ2(v2 − δ)

λ1(δ − v1)
p†W (δ†) + p†W (δ†) ≥ λ2(v2 − δ)

λ1(δ − v1)
p†W (δ†)

(a)

≥ 1

p†
p†W (δ†)

(b)

≥ 1

1 + e
W (δ)

where inequality (a) holds since λ2(v2 − δ)/λ1(δ − v1) ≥ 1/p† due to the construction of p†; and
inequality (b) holds since W (δ†) ≥ W (δ)/(1 + exp(K)) due to the construction of δ† and K ≥ 1

33When sender utility u1 = 0 and receiver utility difference v2 ≤ 0, signaling scheme π† becomes the no-information
revealing signaling scheme, which is indeed optimal due to the concavity of function W (·) on (−∞, 0].
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- Fix an arbitrary δ ∈ (δ†, (max{v1, 0} + v2)/2]. Note that

λ2(v2 − δ)

λ1(δ − v1)
p†W (δ†) + p†W (δ†) ≥λ2(v2 − δ)

λ1(δ − v1)
p†W (δ†)

=
λ2(v2 − δ)

λ1(δ − v1)

λ1(δ
† − v1)

λ2(v2 − δ†)
W (δ†)

=
(v2 − δ)

(v2 − δ†)

(δ† − v1)

(δ − v1)
W (δ†)

(a)

≥ 1

2

1

2e

1

Kβ

1

δ − v1

1

exp(βv1)

=
exp(βδ)

2β(δ − v1) exp(βv1)
· 1

2eK

1

exp(βδ)

(b)

≥ 1

2eK
W (δ)

where inequality (a) holds since (v2 − δ)/(v2 − δ†) ≥ 1/2, δ† − v1 ≥ 1/(Kβ), and 2 exp(K)W (δ†) ≥
1/exp(βv1). To see why inequality (b) holds, first note that 1/exp(βδ) ≥ W (δ). Additionally,
β(δ − v1) ≥ 1, and thus exp(βδ)/(2β(δ − v1) exp(βv1)) ≥ exp(1)/2 ≥ 1.

- Fix an arbitrary δ ∈ ((max{v1, 0}+ v2)/2, v2). Note that

λ2(v2−δ)
λ1(δ−v1)

p†W (δ†) + p†W (δ†)

1
8eKW (δ)

≥ 8eKp†
W (δ†)

W (δ)

(a)

≥ 4eK
λ1(δ

† − v1)

λ2(v2 − δ†)

exp(β(δ −max{v1, 0}))
exp(1/K)

(b)

≥ 4K
λ1

1
Kβ

λ2(v2 −max{v1, 0})
(β(δ −max{v1, 0}))2

(c)

≥ λ1

λ2
β(v2 −max{v1, 0})

(d)

≥ 1

where inequality (a) holds since 2W (δ†)/W (δ) ≥ exp(β(δ−max{v1, 0}−1/(Kβ))) and the definition
of p†; inequality (b) holds since δ† − v1 ≥ 1/(Kβ), v2 − δ† ≤ v2 − max{v1, 0}, exp(β(δ −
max{v1, 0})) ≥ (β(δ −max{v1, 0}))2; inequality (c) holds since δ ≥ (max{v1, 0}+ v2)/2; and
inequality (d) holds since we assume that β ≥ λ2/(λ1(v2 −max{v1, 0})) and λ2/(λ1(v2 −max{v1, 0})) ≥
0 due to v2 > 0.

Suppose δavg ≤ max{v1, 0} + 1/(Kβ), and thus δ† = δavg. Note that in this case, the threshold state
probability p† = 1, and inequality (20) can be further simplified and relaxed as W (δ†) ≥ W (δ)/(1 + e)

which holds for every δ ∈ (v1, δ
†] due to the same argument as the previous case; and for every

δ ∈ [δ†, v2) due to the monotonicity of function W (·).
Finally, recall that the expected sender utility in signaling scheme Payoff

[
π†
]

is λ2u2(p
†W (δ†) +

(1 − p†)W (v2)), which is a (16eK)-approximation to the objective value of the constructed dual
assignment, i.e., η(1) + η(2) = 16eKλ2u2p

†W (δ†). Invoking the weak duality of linear program
finishes the proof.

53



G The Complexity on Computing Approximately Optimal Signal-

ing Schemes

In this section, we discuss the complexity on computing an approximately optimal signaling scheme
in both SISU and SDSU environments.

Proposition G.1. In SISU environments, there exists a poly(m) time algorithm that can find the
optimal signaling scheme.

Proof. Recall that by Theorem 3.1, the optimal signaling scheme in SISU environments is a censor-
ship signaling scheme. Thus, to find the optimal signaling scheme in SISU environments, it suffices
to find the threshold state i† and the threshold state probability p†. To identify i†, p†, consider the
following procedure: for every state i ∈ [m] where vi ≥ 0, compute the corresponding pi where pi
is defined as in (7). Then the threshold state i† = argmaxi:vi>0{pi}. If pi† > 1, then the threshold
state probability p† = 1, otherwise p† = pi† . It is easy to see that the above procedure has the
complexity at most O(m).

Unlike in SISU environments, determining the computational complexity of finding the optimal
signaling scheme in SDSU environments is much more challenging. One reason for this is the lack of
a clear structure for the optimal signaling scheme in SDSU environments. Nonetheless, we present
two complexity characterizations for finding the optimal signaling scheme in SDSU environments.
The first one applies to special instances with binary states, while the second one applies to general
problem instances.

Corollary G.2. In SDSU environments with binary states, there exists a O(1) time algorithm that
can find the optimal signaling scheme.

Proof. By Lemma E.5, we know that the optimal signaling scheme in SDSU environments with
binary states is also a censorship signaling scheme, then the above result immediately follows by
the similar analysis of Proposition G.1.

Proposition G.3. In SDSU environments, there exists a poly(m, β(vm − v1)/ε) time algorithm that
can find a (1 + ε)-approximate signaling scheme.

Proof. Given an arbitrary small ε0 > 0, we discuss how to solve a (1 + ε0)-approximate signaling
scheme with running time poly(m, β(vm − v1)/ε0).

Let ε = ε0/β. Define the set S , {v0, v0 + ε, v0 + 2ε, . . . , vm} ∪ {vi}i∈[m]. We consider the following
program and its optimal solution π̂∗:

π̂∗ = argmax
π≥0

∑
i∈[m]

λiui
∑

δ∈S

πi(δ)W (δ) s.t.

∑
i∈[m]

λi (vi − δ) πi(δ) = 0 δ ∈ S
∑

δ∈S

πi(δ) = 1 i ∈ [m]

(POPT-Primal(ε))

Essentially, the above program restricts the support of each conditional distribution πi, i ∈ [m] to be
the subset of the set S. Recall that from Lemma 4.6, we know that there exists an optimal signaling
scheme π∗ such that for every δ ∈ (−∞,∞), we have |{i : π∗

i (δ) > 0, i ∈ [m]}| ≤ 2. Based on the
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signaling scheme π∗, we below construct a new signaling scheme π̂ that is also a feasible solution to
the program POPT-Primal(ε). In particular, for every δ where |{i : π∗

i (δ) > 0, i ∈ [m]}| ≥ 1:

1. if |{i′ : π∗
i′(δ) > 0, i′ ∈ [m]}| = {i}, let π̂i(δ) = π∗

i (δ);

2. if |{i′ : π∗
i′(δ) > 0, i′ ∈ [m]}| = {i, j} where i < j, let δL , max{x ∈ S : x ≤ δ}, and let

δR , min{x ∈ S : x ≥ δ}. Let π̂i(δL) =
vj−δL
vj−vi

1
λi

π∗(δ)(δR−δ)
δR−δL

and π̂i(δR) = π∗
i (δ) − π̂i(δL);

π̂j(δL) =
δL−vi
vj−vi

1
λj

π∗(δ)(δR−δ)
δR−δL

and π̂j(δR) = π∗
j (δ) − π̂j(δL) where π∗(δ) = λiπ

∗
i (δ) + λjπ

∗
j (δ).

By construction, it is easy to verify that the signaling scheme π̂ is a feasible solution to the program
POPT-Primal(ε). Furthermore, when |{i′ : π∗

i′(δ) > 0, i′ ∈ [m]}| = {i}, the expected payoff contributed
from the induced δ in both signaling scheme π̂, π∗ equals to λiuiπ̂i(δ)W (δ); when |{i′ : π∗

i′(δ) >
0, i′ ∈ [m]}| = {i, j}, the expected payoff contributed from the induced δ in both signaling scheme
π̂, π∗ satisfy that

λiuiπ̂i(δL)W (δL) + λjuj π̂j(δL)W (δL) + λiuiπ̂i(δR)W (δR) + λjujπ̂j(δR)W (δR)

(a)

≥ λiuiπ
∗
i (δ) ·W (δ + ε) + λjujπ

∗
j (δ) ·W (δ + ε)j

where in inequality (a), we have used the fact that π∗
i (δ) = π̂i(δL)+ π̂i(δR), π

∗
j (δ) = π̂j(δL)+ π̂j(δR),

δL ≤ δ ≤ δR, δR ≤ δ + ε, and the fact that W (·) is monotone non-increasing. Summing over all δ
and rearranging the terms, we know that

∑

i∈[m]

λiui

∫

δ
π∗
i (δ)W (δ + ε)dδ ≤ Payoffβ[π̂]

Now observe that for any δ, we have W (δ)
W (δ+ε) ≤ exp(βε). Thus, with the above inequality, we have

Payoffβ[π
∗] ≤ exp(βε)Payoffβ[π̂] ≤ (1 + βε)Payoffβ[π̂] = (1 + ε0)Payoffβ[π̂].
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