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Abstract—In this paper, we present a new approach for
efficient regression-based object tracking. Our approach is
closely related to the Generic Object Tracking Using Regression
Networks (GOTURN) framework of Held et al. [1]. We make
the following contributions. First, we demonstrate that there is
a theoretical relationship between siamese regression networks
like GOTURN and the classical Inverse Compositional Lucas
& Kanade (IC-LK) algorithm. Further, we demonstrate that
unlike GOTURN IC-LK adapts its regressor to the appearance
of the current tracked frame. We argue that the lack of
such property in GOTURN attributes to its poor performance
on unseen objects and/or viewpoints. Second, we propose a
novel framework for object tracking inspired by the IC-LK
framework, which we refer to as Deep-LK. Finally, we show
impressive results demonstrating that Deep-LK substantially
outperforms GOTURN and demonstrate comparable tracking
performance against current state-of-the-art deep trackers on
high frame-rate sequences whilst being an order of magnitude
(100 FPS) computationally efficient.

I. INTRODUCTION

Regression-based strategies to object tracking have long
held appeal from a computational standpoint. Specifically,
they apply a computationally efficient regression function to
the current source image to predict the geometric transfor-
mation between frames. As noted by Held et al. [1], most
state-of-the-art trackers in vision adopt classification-based
approaches, classifying many image patches to find the target
object. Notable examples in this regard are correlation filter
methods [2], [3], [4], [5], [6], and more recent extensions
based on deep learning [7], [8], [9] can be also considered
as adhering to this classification-based paradigm to tracking.

Recently, Held et al. [1] proposed the Generic Object
Tracking Using Regression Networks (GOTURN) framework
for object tracking. As it is a regression-based approach, it
can be made to operate extremely efficiently — 100 frames
per second (FPS) on a high-end GPU. This is in stark
contrast to the latest classification-based deep networks for
tracking, e.g. MDNet [8] and ECO [6] with reported tracking
speeds of less than 10 FPS using a GPU. On the other
hand, classification-based methods to object tracking that
do not rely on deep learning, such as correlation filters,
are highly competitive with GOTURN in terms of com-
putational efficiency. However, they often suffer from poor
performance as they do not take advantage of the large
number of videos that are readily available to improve their
performance. Finally, regression-based strategies hold the
promise of being able to efficiently track objects with more
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sophisticated geometric deformations than just translation
(e.g. affine, homography, thin-plate spline, efc.) — something
that is not computationally feasible with classification-based
approaches.

Although showing much promise, GOTURN has a funda-
mental drawback. As noted by Held et al. [1], the approach
performs admirably on objects that have similar appearances
to those seen during training. However, when attempting to
apply GOTURN to objects or viewpoints that were not pre-
sented during training, the approach dramatically fails. This
type of poor generalization is not observed in classification-
based deep networks such as MDNet [8]. At first glance, this
is surprising as GOTURN employs a siamese network which
predicts the relative geometric deformation between frames.
This network architecture, along with the employment of
tracking datasets with large amounts of object variation,
should in principle overcome this generalization issue. It is
this discrepancy between theory and practice that is central
to the discussions of this paper.

We attempt to explain this discrepancy by looking back
at a classical algorithm in computer vision literature, namely
the Lucas & Kanade (LK) algorithm [10]. Specifically, we
demonstrate that Inverse Compositional LK (IC-LK) [11] can
be re-interpreted as a siamese regression network that shares
many similar properties to GOTURN. We note, however,
an important difference that drives the central thesis of our
paper — within the IC-LK algorithm, the regression function
adapts to the appearance of the previously tracked frame.
In GOTURN, their regression function is “frozen” and not
adaptable to new images, partially explaining why it per-
forms poorly on previously unseen objects and/or viewpoints.

While IC-LK enjoys the benefit of being adaptable and
efficient, it comes at the price of assuming an approximated
linear relationship between the image appearance and the
geometric displacement. In the concurrent work of Chang
et al. [12], this assumption is relaxed for planar alignment
by optimizing features. However, real-life videos are not
limited to predefined planar warp model and come with more
complicated variations, e.g. occlusion, appearance change,
articulated deformation and out-of-plane rotation. In this
work, we demonstrate that through end-to-end learning deep
features on real sequences, this gap between theory and
reality can be alleviated.

Based on the above insights, we propose a new algo-
rithm for efficient object tracking, which we refer to as
Deep-LK, that enjoys the same computational advantages of
GOTURN without the poor generalization. When evaluated
upon standard benchmarks such as VOT14 [13], our Deep-
LK method achieves very competitive results to state-of-



Fig. 1. Three typical types of variations which LK is sensitive to:
(a) occlusion; (b) illumination and appearance changes; (c) unmodeled
geometric transformation, such as out-of-plane rotation of the ball.

the-art classification-based methods (e.g. SiamFC, KCF),
and significantly outperforms GOTURN. Furthermore, we
demonstrate the superior generalization properites of Deep-
LK in comparison to GOTURN. We compare with state-of-
the-art trackers on 50 challenging higher frame-rate videos
(240 FPS) from the Need for Speed (NfS) [14] tracking
dataset. For these higher frame-rate videos, our approach is
on par with state-of-the-art classification-based deep trackers
while enjoying an order of magnitude higher computational
efficiency (100 FPS).

Notations. We define our notations throughout as follows:
lowercase boldface symbols (e.g. x) denote vectors, up-
percase boldface symbols (e.g. W) denote matrices, and
uppercase calligraphic symbols (e.g. Z) denote images, and
we use the notations Z(x) : R? — RX to indicate sam-
pling of the K-channel image representation at subpixel
location x = [z,] .

II. THE INVERSE COMPOSITIONAL LK ALGORITHM

The core assumption of LK is that the relationship of the
image appearance has an approximated linear relationship
with the geometric displacements. Given a predefined geo-
metric warp function parametrized by the warp parameters
P, this relationship can be written as

0Z(0)

op
which is the first-order Taylor expansion evaluated at the
identity warp p = 0.

Given a source image Z and a template image 7T to
align against, the Inverse Compositional (IC) LK algorithm
attempts to find the geometric warp update Ap on 7 that
could in turn be inversely composed to Z by minimizing the
sum of squared differences (SSD) objective

min [ Z(p) - T(Ap)|5 - 2
P

I(Ap) = I(0) + Ap, (1)

IC-LK further utilizes Equation 1 to linearize Equation 2 as
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Solving for Equation 3, we get the IC-LK update equation:
Ap = WIZ(p) — T(0)]. )

where T is the Moore-Penrose pseudo-inverse operator. W
is the so-called template image Jacobian, factorized as
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where V7, are the image gradients at pixle locations x;
which are solely a function of 7(0), and %’:‘0) is the
predefined warp Jacobian. The warp parameter p are updated
by:

p<po ! Ap, (6)

where we use the notation o~ to denote the inverse composi-
tion of the warp functions parametrized by p, and Ap. Since
the true relationship between appearance and geometric
deformation is not linear in most cases, Equations 4 and 6
need to be applied iteratively until convergence.

The advantage of the IC form of LK over the original
lies in its efficiency. Specifically, W' is evaluated on the
template image 7 at the identity warp p = 0; therefore,
W remains constant throughout as long as the template
image remains static. We refer the readers to [11] for a more
detailed treatment.

Recently, there has been a number of works that aims
to increase the robustness of the classical LK framework
by minimizing feature differences extracted from the im-
ages [15], [16], where the objective becomes

min [[$(Z(p)) — (T (Ap)Il5 , (7)

where ¢(-) is a feature extraction function. Following similar
derivations, the geometric warp update Ap in Equation 4
becomes

Ap = W[g(Z(p)) — &(T(0))] , ®)

Similarly, W = %p(o)) is also a sole function of ¢(7(0));
similar to the original IC-LK, W is fixed throughout the
iterative update, since ¢(7(0)) only needs to be evaluated
once at the identity warp.

A. Cascaded Linear Regression

Equation 8 can be written in a more generic form of linear
regression as

where R = W' and b = —~WT.¢(77(0)) are the regression
matrix and the bias term respectively. Therefore, the IC-LK
algorithm belongs to the class of cascaded linear regression
methods, as the warp update is iteratively solved for and
applied until convergence.

Cascaded regression has been widely used in pose esti-
mation and face alignment. Compared to directly solving
the problem with a single sophisticated model (e.g. a deep
neural network), cascaded regression can usually achieve
comparable results with a sequence of much simpler mod-
els [17], [18], [19], [20]. This is desirable to visual tracking,
as simpler models in most cases are computationally more
efficient and thus offer faster speed.



B. Connection to Siamese Regression Networks

Siamese regression networks for tracking predict the
geometric warp from concatenated features of the source
and template images together. This can be mathematically

expressed as
_ | 9(Z(p))
Ap = f( {¢(T(I(;)):|) )

where f(-) denotes a nonlinear prediction model. In the case
of GOTURN [1], ¢(-) is the convolutional features and f(-)
is a multi-layer perceptron trained through backpropagation.

We can also write the IC-LK formulation in Equation 8
in the form of Equation 10 as

_wit _wt ¢(I(p))]

ap = (w —wi] [S7E]
This insight elegantly links the IC-LK algorithm with GO-
TURN: while GOTURN models the non-linear prediction
function f with a heavily-parametrized multi-layer percep-
tron, IC-LK models f through cascaded linear regression. In
addition, W is a sole function of ¢(77(0)) and contains no
additional learnable parameters.

In comparison to GOTURN, whose weights are learned
offline and kept static during testing, the fully-connected
layer of IC-LK is formed directly from the template image.
In some sense, this is analogous to one-shot learning, since
the weights are “learned” from one single example 7 (0).
This is a very desirable property for tracking, as it allows
the tracker to cheaply adapt its parameters in real-time, and
as a result, generalize better to unseen objects.

(10)

(1)

C. Limitations

Although having these desired properties, prior works on
LK have the following limitations (illustrated in Fig. 1): they
are (a) sensitive to occlusion, (b) sensitive to appearance
variations, (c) intolerant to geometric transformations not
modeled by the warp Jacobian (e.g. out-of-plane rotation and
pose changes of articulated objects). In the scenario of object
tracking in a real-world sequence, this cannot be handled
simply by learning from synthetically created examples from
a single image [12]. All these limitations severely restrict the
application of LK framework in real world settings.

For the past three decades, there have been numerous
attempts to loosen the above restrictions, most of which
focused on dealing with the photometric variation. Those
techniques includes: estimating illumination parameters [21],
[22], using intrinsically robust similarity measures (e.g. mu-
tual information [23], [24] or normalized correlation [25]),
preprocessing images [26], [16], [27], or using hand-crafted
features (e.g. HOG [28], SIFT [29], or LBP [30], [15]) to
obtain features more robust to intensity variations. However,
none of them is robust against all these variations or shows
competitive results in object tracking.

Following the recent trend of deep learning, we propose to
improve the robustness of LK by learning a deep feature rep-
resentation specific to the LK framework. With the learned
representation, our Deep-LK tracker is the first in the LK
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Fig. 2. SSD Cost curves of comparing template images to source images
along horizontal shift with vanilla AlexNet’s conv5 feature (blue) and Deep-
LK’s learned feature (red). The curves of learned features not only have
correct global minimum (at O shift), but also exhibit less local minima, and
encourages smoother convergence. This characteristic is desirable in the LK
framework.

family to achieve competitive results on challenging object
tracking datasets and significantly outperforms GOTURN,
the state-of-the-art regression-based tracker.

III. DEEP-LK REGRESSOR

The validity of LK algorithm is based on the consistency
of the linear relationship between the pixel intensity/feature
value and warp parameter. Thus to improve the robustness
of LK against the aforementioned variations in videos, the
idea is to learn a deep convolutional network that projects
the template and source images to a feature space where this
linear relationship is best approximated.

Deep convolutional features pretrained on large-scale
datasets (e.g. ImageNet [31]) have shown great generaliz-
ability to a variety of tasks and demonstrated robustness
to a wide range of appearance variations. However, we
show in Fig. 2 that vanilla pretrained convolutional features
have great room of improvement in a tracking scenario. By
integrating LK into the end-to-end learning framework, the
cost curves of learned features become smoother with a more
apparent local minimum at the identity displacement. These
cost curves have a near-quadratic shape, which is also more
ideal for Gauss-Newton optimization in the LK framework.

A. Network Architecture

Fig. 3 summarizes the network architecture of Deep-LK.
Given an input source image Z, we extract deep convolu-
tional features ¢(-) and apply a single linear regression layer
in the feature space to predict the warp update. The linear
regression layer is formulated as:

Ap =Ry (1) - #(Z(P)) + by(7).- (12)
We abbreviate 7(0) as 7 to simplify notations.
Similar to IC-LK, R4 and by are formed through
—wt
Ry = W¢>(T) (13)
by = =Ry - ¢(T) (14)
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Left: we train the feature representation ¢ such that the warp parameter prediction is close to the ground truth. Right: during test time, given a

pair of template image and a source image, Deep-LK precomputes the feature for the template image and forms the regression matrix R and bias term b.
Then Deep-LK repeats the process of computing features for the current source image, estimating the warp by regression, and warping the source image.

where Wy = 3%(1:) is computed in the same way
as IC-LK. In contrast to conventional linear layers that
are learnable itself, our regression matrix and bias pair
(Ry(1), by(1)) is dependent on the template image 7 and
the feature extraction function that follows. Unlike IC-LK, on
the other hand, the adopted feature ¢(-) is learnable instead
of being hand-crafted like SIFT or HOG.

B. The Conditional LK Loss

There are several ways of formulating the learning ob-
jective to enforce the consistency of the linear relationship
between feature values and warp parameters. One option is to
use a generative loss, which directly penalizes the difference
between the source image and the linear approximation of the
template image with a ground truth warp parameter. Another
option is to train the feature representation such that the warp
parameter prediction is close to the ground truth. We refer
to this objective as the conditional LK loss.

It has been shown [32] that optimizing in terms of a
conditional objective usually leads to better prediction than
a generative objective. In our primary experiments, we also
confirm that in our case, using conditional LK loss leads
to far better tracking accuracy. This finding is in line with
the benefits of an end-to-end training paradigm in the deep
learning community.

Formally, the conditional LK loss is defined as:

Z £ (R¢(T<”)) (T (p)) + by 7y — Apg(zrtl)) ;

nes
15)
where S is the index set of all training data, £ is the loss
function, and pg; is the ground truth warp parameter. This is
optimized over the parameters of the feature extraction func-
tion ¢(-). We choose to use the Huber loss for optimization
as it is less sensitive to outliers compared to SSD.

The conditional LK loss is differentiable and can be
incorporated into a deep learning framework trained by back-
propagation. Please refer to the supplementary materials for
a detailed mathematical derivation.

Aadas
& MRS
lEEER

Template Image

Source images

Fig. 4. Source and template image pairs for training.

C. Training/Online Adaptation

1) Training: We train Deep-LK with pairs of source and
template images sampled from video sequences. First, a
template image is generated for each frame by cropping an
image region from an object bounding box. For each template
image, we randomly sample a set of source images from the
next frame. The source images are sampled by randomly
perturbing the bounding box to mimic small motion changes
between frames.

We follow the practice in GOTURN, which assumes the
motion between frames follows a Laplace distribution. The
scale changes are modeled as a Laplace distribution with zero
mean and scale by = 1/30; The translations of bounding box
are sampled using b, = 0.06. In addition, we further augment
the training set by adding random brightness, contrast and
saturation shift to both the template and source images.

Unlike GOTURN, we do not use synthetically perturbed
images from ImageNet to augment the training set. While all
the assumptions for LK (e.g. photometric consistency and the
geometric deformation model) hold in such ideal scenarios, it
offers little help for improving the feature robustness in real
video sequences, where appearance/geometric variations can
be more complex.

2) Online adaptation: When tested on video, we follow
the common practice in correlation filter trackers, which uses
a simple template adaptation strategy:

Sr'=(—a) ér +a-eZ@EY), 16



where (b}t represents the template feature used to generate
linear regression parameters at frame ¢, and « is the learning
rate. The computation cost of this online adaptation strategy
is cheap, and it effectively improves the robustness to pose,
scale and illumination changes.

IV. EXPERIMENT

A. Implementation Details

In this work, we use the conv5 feature of AlexNet [33] as
the deep convolutional feature extraction function ¢, which
maps an RGB image of size 227 x 227 to a feature map of
size 13 x 13 with 256 filter channels.

We collect our training samples from ALOV300++ [34],
which consists of 307 videos (with 7 videos removed because
of overlapping with VOT14 [13]). Limited by the number
of videos available, we only fine-tune the last convolutional
layer to avoid over-fitting.

Although Deep-LK is trained to be able to deal with both
translation and scale estimation, in test time we find that it
works best in practice to update translation first with scale
fixed and then update both together. In addition, we adopted
an early stopping mechanism in the LK updates to avoid
tracking failure caused by unreliable scale estimation: in each
iteration, we check if the squared distance between the source
image and template image is decreasing, otherwise, we stop
the update and report the resulting warp parameter.

We empirically set the learning rates o = 0.03 for 30-
FPS videos; for 240-FPS videos, we adjust « to be inversely
proportional to the video frame rate [14], which is 0.0037.

B. Experiment Setup

We evaluated the proposed Deep-LK tracker over four
sets of sequences, including the VOT14/VOT16 dataset [13],
[35], a set of 50 higher frame-rate videos borrowed from the
NfS dataset [14], and a small set of 15 videos captured by a
higher frame-rate (240 FPS) unmanned aerial vehicle (UAV)
camera from ground objects.

The sequences from the NfS dataset include generic ob-
jects in real-world scenarios captured by 240-FPS smart-
phone cameras (e.g. iPhone 6). The UAV videos allow us
to evaluate the generalization capacity of our tracker on
unseen viewpoints and objects. The reason we tested the
Deep-LK on videos with different capture rates (30-FPS in
VOT14, 240-FPS in NfS and UAV videos) is to explore the
robustness of our method for both lower and higher frame-
rate videos. We compared our proposed algorithm against
several state-of-the-art object trackers including deep trackers
(SiamFC [7], GOTURN [1], MDNet [8] and FCNT [9]),
CF trackers with hand-crafted features (SRDCF [2], Sta-
ple [5], DSST [36], SAMF [37], LCT [38], KCF [3] and
CFLB [4]), and CF trackers with deep features (HCF [39]
and HDT [40]). We do not report results on other pub-
lic datasets, like OTB [41] because our training set from
ALOV++ overlaps with their test videos.

Evaluation Methodology: We use the success metric to
evaluate all trackers [41]. Success measures the intersection
over union (IoU) of predicted and ground truth bounding
boxes. The success plot shows the percentage of bounding
boxes whose IoU is larger than a given threshold. We use the
area under curve (AUC) of success plots to rank the trackers.
We also compare all the trackers by the success rate at the
conventional threshold of 0.50 (IoU > 0.50) [41].

C. Feature Evaluation

The first experiment evaluates the effect of learned features
on Deep-LK’s tracking accuracy. To do so, we ran the
Deep-LK tracker using two different sets of deep features,
including features we learn over the conditional LK loss
and those directly borrowed from AlexNet (pretrained on
ImageNet). We also explored the effect of utilizing features
from different layers (e.g. conv3, conv4 and conv5).

The result on VOT14 sequences is presented in Fig. 5.
First, compared to AlexNet features, features optimized from
the conditional LK loss offer much higher accuracy and
robustness. Second, conv5 outperforms conv3 and conv4. We
also provide attribute-based comparison of such features in
Fig. 6. Similarly, this evaluation shows that features learned
from the conditional LK loss outperform those from AlexNet
for all attributes. Moreover, among different feature layers
learned from the conditional LK loss, conv5 features in
general are more robust in challenging situations such as
large camera motion, occlusion and scale changes. Based on
this observation, we choose to use the conv5 learned features
in our Deep-LK framework.

D. Evaluation on VOTI14 and VOT16

Fig. 8 illustrates the evaluation of Deep-LK on 25 chal-
lenging videos of the VOT14 dataset and 60 videos of
VOT16(Fig. 8). Following the VOT14 protocol [13], results
are reported by means of accuracy and robustness. The
comparison shows the superior accuracy and robustness of
our method to the leading methods in the VOT14 challenge,
such as DSST, KCF, SAMF and GOTURN.

Moreover, our method outperformed the correlation filter
tracker KCF and the deep tracker GOTURN, showing the
advantage of our method from three different perspectives.
First, unlike KCF which only relies on online adaptation of
hand-crafted features, Deep-LK adapts the regressor using
discriminative deep features. This offers a well-generalized
tracker which is more robust against challenging circum-
stances such as deformation and scaling. Second, compared
to SiamFC [7] which also uses offline trained deep features,
Deep-LK achieves comparable performance without the need
to do exhaustive search through space and scale. Finally,
compared to GOTURN, which is the only compared deep
regression-based tracker (see Fig. 7 for a finer-grained com-
parison), Deep-LK delivers much more robust tracking due
to its crucial ability to update the regressor with new frames.
This not only improves the generalization of this tracker to
unseen objects, but also increases its robustness to geometric
and photometric variations between two consecutive frames.
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We note that compared to Deep-LK, MDNet and CCOT
achieve better robustness and accuracy rank; however, these
trackers suffer from very expensive computation (less than
10 FPS on a high-end GPU), while Deep-LK runs almost an
order of magnitude faster on lower frame-rate sequences of
VOT (up to 75 FPS).

E. Evaluation on NfS Sequences

The results of this experiment are shown in Table I
and Fig. 9, comparing Deep-LK with the state-of-the-art
CF and deep trackers on 50 NfS videos. These sequences
are captured by 240-FPS cameras and thus exhibit less
appearance changes between two consecutive frames [14].
This is desirable characteristic for Deep-LK which directly
regresses from current frame to the next one with much less
appearance changes.

As summarized in Table I, our method achieves the highest
AUC (51.2), closely followed by MDNet (50.9) and SRDCF
(50.7). This result shows that on higher frame-rate videos,
our regression-based tracker can perform as accurate as

such classification/detection-based methods. Deep-LK also
demonstrates a significant improvement over GOTURN (~10
%). This is mainly because of Deep-LK’s ability to adapt its
regressor to the appearance of the currently tracker frame,
serving as a crucial key of outperforming GOTURN in
adapting to unseen scenarios.

In terms of tracking speed on CPUs, Deep-LK is faster
than all other deep trackers as well as several CF trackers
(SRDCEF, LCT, DSST, HCF and HDT). On GPUs, however,
GOTURN showed a tracking speed of 155 FPS, which is
50% faster than Deep-LK on the same GPU. During this
experiment, we observed that Deep-LK performs much faster
on higher frame-rate videos. The reason is that since inter-
frame difference in higher frame-rate videos is much less
than lower frame-rate ones, Deep-LK requires less iterations
to converge. This offers a tracking speed of 100 FPS on
GPUs, which is 25% faster than tracking lower frame rate
sequences of VOT14 (75 FPS).

Fig. 11 (a) visualizes tracking performance of Deep-
LK with SRDCF, Staple, MDNet and GOTURN on three
different scenarios. This qualitative result demonstrates the
robustness of our method against severe scale changes, out-
plane-rotation, occlusion and non-rigid deformation.

E Robustness to Unseen Objects and Viewpoints

The goal of this experiment is to evaluate the robustness
of Deep-LK to unseen objects and viewpoints, compared to
GOTURN (as the baseline). For this purpose, we captured
15 challenging higher frame-rate videos (240 FPS) using an
UAV (drone) camera. These videos contain ~100K frames
showing real-world scenarios of different objects such as
drones, cars, trucks, boats and humans (biking, running,
walking, or playing basketball).

The results in Fig. 10 demonstrate the notable accuracy
of our method (60.38%) compared to GOTURN (48.13%).
As mentioned earlier, the robustness of Deep-LK comes
from its ability to adapt its regressor to the appearance of
current frame. This, however, is not the case in GOTURN.
Its regression function is frozen and thus performs poorly on
unseen targets and viewpoints. Fig. 11 (b) visualizes the poor
generalization of GOTURN to the unseen aerial viewpoint
(of a truck) and object (drone). It also shows that Deep-LK
generalizes well to unseen viewpoint/object with challenging
appearance variation.

G. Speed Analysis of Deep-LK

As detailed in Sec. IV-A, Deep-LK updates iteratively
and stops when either it converges or meets other stopping
criteria. Therefore, its tracking speed is highly dependent on
1) the capture frame rate of the video, and 2) the motion
of the target object. To analyze the speed of Deep-LK, we
break down the computational cost of each operation within
the Deep-LK framework.

On GPUs, it takes 1.4ms to form the regression parame-
ters from a template image and approximately 3ms to run
an LK iteration (0.5ms for image cropping and resizing,
2.2 ~ 2.5ms to compute conv5 features and around 0.15ms
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Results on VOT14(left) and VOT16(right), comparing Deep-LK with the leading methods in the VOT challenges. Best trackers are closer to the

TABLE I
COMPARING DEEP-LK WITH THE RECENT CF TRACKERS ON 50 HIGHER FRAME-RATE SEQUENCES- FROM NFS. RESULTS ARE REPORTED AS AUCS
OF THE SUCCESS PLOT. TRACKING SPEED IS REPORTED IN FRAMES PER SECOND (FPS) ON THE CPU AND/OR GPU IF APPLICABLE.

Deep-LK SRDCF Staple LCT DSST SAMF KCF CFLB HCF HDT MDNet SiamFC FCNT GOTURN

Success rate (%)

AUC 512 507 454 379 48.1 478 369 225 413 504 509 492 500 40.8
Speed (CPU)  20.7 38 508 10 125 1704 855 108 9.7 0.7 2.5 32 39
Speed (GPU) 100 - - - - - - - 431 26 482 51.8 155.3

— — MDNet[50.87]
SRDCF [50.69]
HDT [50.37]

— = FCNT[49.95]
— = SFC[49.21]
DSST [48.06]
SAMF [47.82]
Staple [45.37)
—=—= HCF [41.34]

— — GOTURN [40.80]

LCT [37.89]
== === KCF [36.88]
— === CFLB [22.55]
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Fig. 9. Comparing Deep-LK with the state of the art CF and deep trackers
on 50 NfS videos. AUCs are reported in the legend.
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Fig. 10. Comparison Deep-LK with GOTURN on 15 UAV sequences.
AUCs are reported in the legend.

to perform regression). On VOT14 with lower frame rate
sequences, Deep-LK on average converges within 4 iterations
per frame, hence our average speed is about 75 FPS on
GPU. On NfS (and UAV) higher frame-rate sequences, since
there is much less inter-frame appearance changes, Deep-LK
converges much faster over 2 ~ 3 iterations per frame. This

e Det@p-LK GOTURN

¥ 01337]

(b)

Fig. 11.  Qualitative results. (a) shows tracking performance of Deep-
LK, SRDCEF, Staple, MDNet and GOTURN on 4 higher frame-rate videos
selected from NfS. Our method is robust against scaling, non-rigid defor-
mation, out-of-plane rotation and occlusion. (b) comparing the robustness
of our method to unseen object and viewpoint compared to GOTURN.



offers a tracking speed of 100 FPS on the same GPU.

On CPUs, on the other hand, Deep-LK requires relatively
longer time to compute convS features and update the
regressor. As a result, it performs ~15 FPS on lower frame
rate videos of VOT14, and ~20 FPS on higher frame-rate
videos of NfS and UAV data.

V. CONCLUSION

We propose a novel regression-based object tracking
framework, which successfully incorporates Lucas & Kanade
algorithm into an end-to-end deep learning paradigm. We
conclude that the combination of offline trained feature
representation and the efficient online adaptation of re-
gression parameters respect to template images, are crucial
advantages of our method to generalize well against real-
world siturations such as severe scaling, deformation and
unseen objects/viewpoints. Compared to the state-of-the-
art regression-based deep tracker, GOTURN, our Deep-LK
shows impressive robustness to unseen objects and view-
points. Moreover, we demonstrate that on higher frame-rate
sequences, Deep-LK offers comparable tracking performance
to current state-of-the-art trackers including both correlation
filter and deep framework trackers.
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