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Abstract. We dieruss a wellknown binary sequence called the Thuoe-
Moree srquence. or the Prouhet-Thae-Maorse sequence. This sequence was
mtradueed by Thne in 1806 and rediscovered by Moree in 1921, Howewer,
it wna plready implicit in an 1851 paper of Pronhes, The Probst-The-
Morees erqence appears to be somewhat abignitons, and we describe
many of its npparently unrelated soonTences.

1 Introduction

In his seminal 19406 and 1912 papers [65, 66]. the Norwegian mathematician Axel
Thie [ 18631922} noded that any binary sequence of leagtly > 4 muwsl contain a
pcpuare, Le., bwo consecubive ideotical blodes (the easy prood is left to the reades).
He than ashked whether it is possible bo fAnd an iofioile seaquence on theee letbens
withoul sgquares, Le, withoal bwo consecalive identical blocks, He also asked
wlhether it s possible to find an nfinite binary sequence that contains o cube,
L, no three consecubive identical blocks, or even oo overlap, La. no sabeblock
af the form awawa, whers o < -[ﬂ. 1]- and w is & binary block. The asawer to all
three gueastions s positive, Thoe waed a sequence & whose constructbon s given
in the next seckion,

t=01id1001e0o0L01 100000 LL0---

It happens that tlis sequemse € 38 peally abiguitous o the literature. Io this
paper we survey a few of lbs oocurrences in combinatorcs on wonls, diffecential
geomeabry, mumber theory, iberation of continaous Deinctions, and matbematical
physice. Nota that we do nob give ofl propertiss of the sequence L, but mather
ghow how It occurred as a “patural”™ answer bo various apparently uorelated
et bons,

2 Definition

We fiest give a formal definibion of tlee Proubet"Thue-Mores gaguence,



Definition 1. We denole by L = {!.]uzn the Pmuhel-ThuE-Eume EEIETCE
aner {ﬂ.l}. defined recuraroely by to = 0 and tim = ba, tiess = b for all n > i,
where, for o € {0, 1}, me define £=1— 2.

Dreqvioter by s (n) e sum of the digits n the basek represanbation of the
integer n. Since we clearly have s3(2n) = sz2(n) and 5202n + 1) = s2in)+ 1 e
every 1 > (), we easily obtain the following squivalent definition:

Proposition 1. The Prowfel- Thise- Morse sequence € a8 eguad Lo Mhe seguence
[ai[:l'i_:l sl 2],:.34:.

Yed anobher definition, easxily seen bo be sguivalent to e previows bwo, s

the following:

Proposition 2. Let X be an ondetermomale. Then we have

THit-x%) = (1 -x)1 - x%)i1 - x4
iz
=1-X-XK*4+X%4...

=y (-1 R

FE0

3 Combinatorics on words

3.1 The ploneering work of Thue

Ouar first Blyesrem s tlee ome we menbionsd in the inbrsduedion. L iz doe bo Thioe

[65. 66).
Theorem 1 (Thue). The Proubel. Thue Morse sequence U is onerlape free.

For 7 = 1 let oy e Lhe numiber of 178 batween Lee r'th amd [n+ 1}'!!. OECT T
of 1 in the pegquance €. Let v = (9a Jaz1. Hence

v=21020121012-.-

Tlhize provesd. as a corollacy of Theoren 1 abowe, tle following:
Corollary 1. The sequenice v = ['|:-,,.:I,.:::I 14 gqiaresree.

Thi= work of Tlue [(se=e also Berstel [2)] and references therein) was the
slarting point of an important brasch of combinatories. now called combemaberics
on words, IE s wordh noting that Thue explained he had no particalar application
in i, Buk he thought tlee problen was inbaresting epough o isell to dessrye
attention.

Thue's papers appeared in an obscure NMorwegian journal, and for a long Be
were nob widely known or appreciated, His original results were rediscovered Ty
meveral different authors, including Marston Morse; wes (38, 19].



Altlough there are nmeountably many overlap=free ssguences on two sy
bols, the Proohet-Thos-Morse seguence iz, roughly speaking. the “canonieal”
axample. For azample, if in addition to being overlap-fres we add sone axica
requiremment, then we often fod that the oaly sueh sequence = the Proubet-
Thus-Morse segquenes or a simple vafant, For example, consider the following

theorem of Beratel [Eﬂ:-

Theorem 2. The lemcographocally Tanpest overloperee biary sequence Degms
parig waldy 0 w5 L, Hhe Proufets Thue. Morse sogquenes,

Recently, bogether witly J. Currie [lﬂj- we generalized this theorem, provieg in
particular the following result:

Theorem 3. The lemcographocally lTanpest overlopefree binory sequence @ Dhe
seguerace TLILL0L.

3.2 The problem of infinjte play in chess

In a little-known 1920 paper, the Dutch chess grandmaster Machgielis | Max)
Euwe (1001-1981, world champion 1935-1937) iodependently discovered the
Proulset=ThieMogae seqquense b and applied it booan interesting problem in cless
a4

[ ]T].IE pomcalled Germnan rule states thal a draw occars i the same sequence
of mowes occiirs three llmes n awccssion,. Buwe proved, asiong the cibesfres
property of €, that under such a mile infinite games of cless are poasible,

For example, one can take the Proubet.ThoeMorse sequenee © = 8005+ -
amd map each 0 to the sequence of four mowes (Ngl-03, Ng8-1. Nil-gl, NiG-g3)
aml each 1 do the seguence of four moves [Nblc3, Nb8-ch, Ned=bl, Nef-b3 ).
Tlee resanlbing sequence of moves repressnts a legal infinite game of chess, and wo

EIE-H.H DOCIITH I.'I:I.LdEI.' !.hE GI.‘].'JII.-H.I'.I. :I"I.I.I.E.

Later, Morse redisoovered Llie sane bachubgoe [4'9 51].

3.3 Morphisms of the fres momnoid

Lat A be an alphabel, e, a Aoite sel of symbols. The st of words ower A4
(Le., blocks oF abrings of aymbals of A) equipped with the operation of
concalenation s denoted by A%: this is the free monoid genscatad by 4.

Definition 2, Lel 4 b an alplabel. Lot A% be Ui free monend generaled dy A,
A map oz AY — A7 a8 called o morphism of for off words 2 and 3 m A" we bave
ooyl = olzlr(y). Such o map 28 called o uniform morphism of all e dmages
by o wof elements of the sel A hawe he some number of lellers,

Mote that a morphism is defned by ils values oo the elements of 4, Node also
that the morphism o can be extended to infinite sequences by conbmuity [the
gt of finite and iofinite sequencs: being equipped with the topology of simple

convergence | This means thad, for an infinite sequence 8 = (36 ) 20, the sequence

o(w) is defined by ois) = ozo oz jor{z2]- -



Proposition 3. Define the morphaom g on the alphadet {0, 1} by p(0) = 01,
pily = 10, Then the Proubel- Thue-Morse sequence € 38 the unigue fized point of
i Mgl Degims wlf (0

Proofll We first node that i an iaflnibe sequence s a Bxed point of g, amd begins
with 0, ib must begin with @], Since @] = 01, the sequence must begin with
p(01) = {0 L}, hepce with w2 (). Terating, this means that the sequescs most
bewin with p* () for every k Z 1. This proves unbqueness, Sioce wll] begins with
b, we have Lhat pl'l'il:'ll] begins with p"‘[ﬂ_:l for every k. Hence the sequence of
worrls I:J.IE[“:I_:I*E-Q converges towards an infinibe sequence, say 2 = [2g)azo. Hal

clearly is a fixed point of g
MNow, for = £ {n-l]-. we have pjc) = 23, where, as previously, ¥ = 1 — =,
Sioce & is a fixed poiot of g, we thus have for every n > 0, that zoq = 2 amd
Tontl = Iny. Hence the sequence ® 58 sgqual bo the ProahetThoeMonse segquence,
O

Is it possible to build asother hinary segquence that s both overlap=free and
generated by a morphism? The next theorem, due to Séébold [62). answers this
question negatively. Another prool of this result was given by Berstel and Sédbold
in [21].

Theorem 4 {Séibnlll}. If g wiverlop-free rmary sequence @5 a fieed poad of
a monslrieral o, .I'.'lt'.ll al il_:i'ﬂl:r egual Lo L. the Proubets Thue Worse
BEIIETICE, a1 s ul-:rr.l-pfem:nl!- L= I:l'., _:ln.gu = LM LOL LML 000y -« -

The Thue-Morse sequence 1 Lhe protobype of a class of segquences called 2.
aubrmalic seguences. Houghly speaking, a segquence s baubtomatie if its a'th
bermn s generated by a foite-state machive which takes as inpub the base-k
expansion of 1. For mors about this class of sequences, ses, for example, (20,33,
4). For the general subject of combinatorics on words, ses [43].

4 Differential geometry

Tlee ProuletaThue-Morse sequence las Lhe nice property thal il exhibils regos
larity without being ultimately perbsdic. Mome rediscovered the ssquence ¢ in
1921 in connection with differential geometry [48]. He proved the following:

Thesrem & {Mnr:r}. (o surface of negalive curnalure. hanimg ol loasl Deo
different normal segments, Uiere enals o sel of geadesies thal are recurrent willi.
oul being periodic. and g sel has the power of Uhe conlannum.

T prowea this resalt, ome of e sleps was (e following proposition, given as a
lemuma in [48. p. 05, We say a sequence a = agage, < -« I8 uniformly recurrent i
for each finite Block of spmbols w occurring o a there exisls an inleger nosuch
that for all 2, the sub-block ;g ;-- o, conbains an occurrence of w. We say a
pequencs & = aodsias - - 18 altvmealely periodie i there exist integers p > LW > 1)
puch that o = aigpp forall © > N



Proposition 4. There eriels an infinite sequence oer {1, 2} which i uniformiy
recurrenl dul nol ullsmalely perusdie,

Tlee peqquence Lhat Morse gives s exactly L. whers (Vs have been replas=] by 1's
aml 1's by 27

5 Number theory

51 The Prouhet-Tarry-Escott problem

Az already noted by Adler and Li (2], the sequence t appearss implicitly in an
1851 paper of Prouhet [55). Proubet was jnterested in a problem that was alao
stigdied more than fifty pears later by Tarcy amd Escott, amd which s now koown
as the *Prouhet-Tarry-Eacott™ or “multigrades™ problem.

Proulset addrmsed tle followiog gquestion: s it possible Lo Gmd a partition of
the set {0, 1.2, ... 2% — 1} into two disjoint sets T and J, such that 37, 0° =
Ej“_;* for k= 0,1.2, ... 07 OF course we take 0" = 1, 2o that in particalar the
cass k= ) sloows that T oaond J st sasve the same number of elementa. Prouhet
proved Lhat sinecls s partition s possible IEN =0 4+ 1.

Thearem & {Pruu]:.cl.}. The Proufel Thue. Morse sequence L = |:'l,]-.,:3-|:| has
the following property. Define

F={ic{0,1.2,3,....2% —1}: 1, =0},
J={ie{01.2.3. .25 -1}: 1, =1}.

Then for 1 < & < N — 1 we have

YIRS 31

ied =
FLIA:I' I:?:-H.UJJJI.IE. b 1Ii'l.'l'\lE
[ L Iy LG [ L E I | Sy LT T L L L [ L Ly L

fork=0.1.2. %

Prouled actually stwdied the moee general problem of findiog & partition of
[ﬂ.q” - 1] ko g ks f,..fj....-fi, sch that the ¢ sams Eiefl:‘i (with 7 =
1.2...., gaml E=0.1...., N — 1] do nod depeand on 5. He gave the following
solution (for a proof mee eg., [42]): for mach ¢ > 2 define the sequenes T, =
[T“[Tl_:l].u =i bwy TF[TJ-:l = IF[T}:l mind g, Then lek f_l; = {ﬂ <1 g =1 TTI';:I = _1]-.

For an occurrence of related sequences, ses [50]. A wvery nice relationship
Detwesn magic cales, Prowhet sequences, and Cthe Proalet-Tarry-Escott problam
was given by Adler and Li [2]. For the state of art about the Proubet-Tarry-Escot L
problem the reader can ook at one of the surveys [24, 60,



5.2 Curious infinite products

Woods aaleed jEEj- whal s Llee limit of the sequeess

i | £
o
-
| = s
-3

1
/2. 3/

Rulbins [Eﬂj prowed Lliat this it = % Muore precisely, we have the following:

Proposition 5. Let £, = (-1}, where (ty]az0 @ the Proufet- Thue-Morse
seguerice. Tlen

IR AR A I 1y 2
OO E-RE-E w
a) \i) \& Uz 2
Proafl We give a simple proof, discowarsd by the et antlor in 1987, Led P oand
L) he the nfinite prodocts defloed Ty

F=1j3(:_:) o= (5%7)

Tlsen

oM (55) =2 lGa) TG)

OF course all prodiecis are convergent by Abel’s theoram, Now, soee €20 = Ea,
aml Eapgpl = —£q. we pel

ro=3 1 (m5:) (M (55)7) =%

a=1

Since @ # 0, this gives P? = 1/2. and the rsult follows sisce P Is positive. O

Mote that the myslefdous oumber §F dees nod appear in the final result! Mo
expresion for § o terms of known constants s currendly known, nor = i koown
6} 18 transcemd=ntal or even irratbonal. This mumber st oocurced o a paper of
Flajolet and Mariin [36], who studied a class of probabilistic connting algorithms
for estimating the number of distinet elenents o s large collection of data. Their
asymplolic asalyais involves the constant @ =TT - -« given by

- —17"=
a—ira o2 Hn+1}{4n+i})l :
—g-if2a2

p=127" 3.:.[[( dn(dn + 3]

whens y is Buler's conatant [36, Theorem 3.A]. It s clear that

Q=2 YTt



It b= precisaly while he was Eoying to compute € (aml hense @) that the Gt
author eame across the prood above,

The infinite product (1] suggests teying to obdain the expansion

1 +1 E +1 5_ 1

2 4 6)
of & pumber 3 [for instanee, 3;] by a gready algocitho, where Lhe signs i the
expeomeEnl are [beratively chosen s Uiat te prodoct thus far approscimates 3 as

closaly as posaible atb sach step. The following conjecture of Lhe second autlor
[EJ] wisa proved by the Arst author and H. Colsen jﬂ].

Theorem 7 (Allouche, Cohen). Define a sequence of signs (o azo by ap =
L. omed, af owg, exy. ..o ow, are Enown, defing a, g by

FLI(3)™ (3™ ()7 = 4

-Li (T @7 (2)7 < F

Th4l =

Then bhe sequenice (on)azo i eyual lo e Proulel Thue-Morse sequence on Bhe
alphabet {—1, +1}. f.e., an = (=1} for alln > 0.

For generalizations of thess resnlis, see [63,6, 13,7,

53 Partitions of the set of integers

Let A be the [lexicographically ) smallest sed of integers such that 0 and 1 belong
to A, amd for each n > 1 that belongs to A, the nomber 2n does not belong to
A, Hewes the first few elaments of 4 are

134570911 12 13 16 16 17 18 20 201 23 -.-

It is mol laed o gess that 4 amd 24 = {!h: o E 1-1.]- form a partition of tha
st of nom-uegalive integere: see (26,5, 64]. An unexpected connection with the
ThieMorse waquence, proved in [5], s given halow.

Theorem & (Allouche, Arnold, Berstel, Brlek, Jockusch, Plouffe,
Sagan|. et (gaazo=0 1 3 4 5 7 9 11 12 13 15 16 17 19 20 21 23 ---
e Lhe mcressing scguenice of e elements of A, Define the sequence 8 = [za)azo

L

% = “"-I'. —Hapn lir—ﬂ-l nll—ﬂ: P “"-l:n 41— Wrm ll:--r:l—l'-l-:n-l-l e
¥
wliere by e Jor e £ {fl-l}. we fean Lhe strmg oo- £, i ooller mords, Me se.

guerice of runs of & i Uhe firsl difference of the sequence (bs jazo. Then 2 08 equal
tor the Proubetl. Thue. Morse sequence.



5.4  Algebraicity of formal power series in positive characteristic

The Proubet=ThoeMorse real pumber %7 o027 was proved transcemdental
iy Mahler (44, p. 363]; also see Dekking [32]. What can be said about the formal
power series Yo 0 X" T This series is transcendental over Qi X), as noted,
for example, in [32]. But, considering this series modulo 2, we have the following

propost o
Proposition 8. Let F(X) =% X" Then F. considered as an element
of Fa[[ X, is quudratic oner Fo( X ). More precisely, we have

I+XPF 4+ X1+ XP*F+X =0 {2}

Proaf. This is an easy copsequencs of the recurrence relations aabisfied by the

peguienee b Namely, all compuatations being dope modulo 2, we luave

F= E [ E fag X 20 +Z:2_+LI'1‘“-1

P L] a0
=E¢nx-*=+x-LE[1+:njx-h
|0 |0
=F4x-t F?
+ Tt
1+ X X 14 X X
= —— F? = -
( X ) v ( X ) Farxpe

Henece, multiplying through by X1 + I:Ii. wie oblain Eq. (2). The [act that F
s nob a rational Tunetbon is an easy copssguence of the overlapsfres propecty of
the segiaence L.

More generally, a formal power series with coefficients in Fy, where p is a
prime mumber, is algebraic over the field F, [ X) if and ooly if the sequence of its
coeflicients is peantomatic. This theorem was proved by Cliristal [2'?]- and more
details are given in the paper of Chostol, Kamae, Mendis France and Baasy
28],

There s a theory of continued fractions for Laurent sefes with cosfficients in
a finite feld [16]). In particolar the contimed fraction expansion of a quadratic
weries §a ultimately periodic (see [47); see [61] for a careful stody when the ground
fiedd i= not finite). The contimesd fraction sxpansion of 3 o0 0 X ™™ s ultimately
periodic with a pleasantly short period. Tt s given by

S taX =0 X+1 X, X X3+ X, X|
a3

wlhers, as usual, the vipculom demotes the repeating portion of the ultimately
periodie continwed fraction,



5.5 A-Expansions

Representing real numbers in non-integer bases goes back to Rényd [5] and
Parry [54]. These expamsions — sometimes: called feexpansions — differ in some
respects [rom the usoal base-k expansions where & s an loteger. For exam.
ple. some numbers may have muoltiple representations. However, Komornik and

Loreti receutly proved the following theorsm [41]:

Theosrem @ {Knmumlk, Ll:lrl:l.l}. There exvals a smeadlest real number 3 an Lhe
indernad (1, 2), for which there eriels a unigue Jeexpansion of 1 in the form 1 =
E,uz:i B 37", wealh &y £ {ﬂ. l}. Furthermore, for thas smaallest 3. the sequence of
“dagrata ™ [ni.]uzl saliafies dy = 1 forn > 1. where bt = Lgtils -+ - 18 Lhe Prouhel.
TheesMWoree seguerace. The number @ a8 the wmigue posilioe rool of the sgualion
1= E:=1 L A7, and we luwe 3 = LLTRTI31650.

Komornik amd Loreti proved [41] that the above resull s a consequence of
the following proposition:

Proposition 7. The lesicograpfrically lenst binary sequence [y, o such that

Wl g gl = v < Wy wg--- i oy =1k
Wl Tlg g e v < Wy wg - i wy =1,

{uﬂl:n’ the order is lesicographice] order, and 1= 1, T = 0} satisfies w, =1, for
1.

The second asthor obseryed that this last resull was previously stated io a
alightly different form by the first aothor and M. Cospard in [8]. See (8] and

Section 7.1 below.

& Eemigruup and Eroup theur]r

The Proubet-Thue-Mome sequence t (or one of s variants) ooours in the se
Iutiom of the Buroside problem for groups: Ja enery group willh o findle number
of penerabors and salisfiing the ddendidy & = 1 findbeF The answer i= yes (and
well-konown) if n = 2, since the group moust be abelian in this case, But {he
auswer 18 no for large odd n. since, as Novikov and Adiaon showed [52], an iofi-
nite group IMm, n) on m geoerators and satisfyiog o = | for all © € I'men)
existe for all m = 1, and for all odd » with o > 4381, Adian’s book [1] gives
more details aboal the result and ks histocy, and Dmproves the constant 4381
b (65, Che of Lhe sleps o the prool consdsts of Goding a cobe-free binary pe
guence (see 1, po B} Actually the cube-fres binary sequence given there b= not
the Proubel=-Thie-Mope segquence, sioee 338 ool overlap-free, The autlor wses
a result of Arshon [15] in oeder to comstroct a cubefres binary sequence. but in
that pageer Araboo actually gave a cobe-free binary sequence that 24 eguol (o (he
Proulet-Thue-Morse sequence on the alplabet {1, 2} (se (15, p 779]).



One may also consider the Burnside problem for semigroups=. Az remarcked
liy Morse and Hedlund [50,57], with the aid of v, the square.free ssquence over
{0, 1.2} given above, ome can constroet an infinite semigronp § on thres gener.
ators such that #% = #* for all # € 5. Indeed. this i aceomplished by letting
S={012}) U {z}, whers z s the sero element (fe, wz = 2w = = for all
w S 5} amd subsject b the relation w? = = for all w £ 5. Related ueskions wers
disensned by Braosowaki, Culik. and Gabrielian [25].

There is another oecurcence of the Thoe-KMorse sequence in group theory,
[22], as follows:

Theosrem 10 I:Bulrn.l Point ). Define the Thue-Morse group sdenlalies Ty by
Toiz, g if # = g Tagalx.w) @ Byizy, ye). Then a finale group seliafies o Thue.
Morae adenately af and only of @l 18 an eclension of a nilpelent group by a 2egroup,

Tlee remder will bhave ooticed Lhat

Tofz, 9 W and ooly if 2=y

iz, ) i and ooly if 29 = we

o=, o) i and ooly if syye = yeey

Iz, @) i and only i sypeyscy = ypeegsyys

amd umderstood the terminology “Thue-Mores identities”. Ses [23] for a gener-
alization,

7 Real analysis

7.1 Iliteration of continuous functions

Ieerating & unimodal contimmous function from [0, 1] nte [0, 1] yields varioos
behaviors going from convergent orbits to chaos; see the general reference [340].
M. Cosnard and the first anthor proved the following theorern [B] (also see [3,
31.38)). Let [ be a continuous map from [0, 1] oo [0, 1], that is animeodal. e,
increasing for & between 0 and some ¢, then decreasing for © between ¢ aml 1.
Suppose that fi1) = 0. With the orbit { f™'[1) a0 we associabe the iinerary
(e oz, defined by ag = 0 0 < J1) < eand ay = 1 ife < =y < 1.
With the ssquance & = [oa Jaze we associate the ssquence a = [E-::,'II| wi defimed
by

=1
in = (Z..J] mod 2,
F=0

Muote thal the segquence a s the el diference, taken modalo 2, of the sequence
a.



Theorem 11 [ Allouche, Cosnard)., The sel of bnary sequences 8 = (dalaz1
corresporiding bo wnmodal conbmuras funclions @ eraclly e sel of bmary se-
guerices I defined by

F={b=ib)usi: by =b =1 ¥k b < Tb] < b},

where the order s lemicograplocal erder, where b= {E].::r_‘. = (1 — ba}azo. and
where e map T ax e shoft defined by T{{waazi1] = ((watiazi]. The leost
nomeperiodic element of T (fwhich is also the least sceumulation point of ') is
(Fajazy wliere t = tobils -« - 18 the Prowhels Thie-Morse sequence.

Mote that the classical approach does oot use the trassformation a — a; only
the itineraries a are comasbdersd. The order betwesn sequences is sommews hat moee

complicated., altloogl it boils down bo the lexioographical onder after applying
the transformation a — a. The sequence a such that 8 = (1, a5, Lo the fmt
diference of the Proulet=ThosMorse sequence, is

a=101100110 -

This sequence b= called tle periodsdoublmg seguence. L is mod hard to show tleat
a is a fixed poiot of the morphism & defined by #(1] = Lk &0} = 11. Fuw

connections with Gray code, aes [37].

Tl link betwesn Theorem 11 and Proposition T above is sasy (8], Note also Ut
Theor=m 11 can be reformulated in pumbser-tbheopetical terms:

Corollary 2. Let ' the ael of real numbers defined by
P={zc01]: ¥k>0 1-=< {2} < £},

where {y} denotes the fractionsl part of the mal number y. Then the least i
rational element of I (wlich is also the least secumulstion point of I} i the
number v = 3o 1,27 = LMW, where t = (b, Jazo 38 the Proubet-Thue-

Morse seguence,

The numbser + appears io obler contexts. For example, ot o be the probability
that & ramdomly=chosen language L over {0, 1} has the property that thers s at
least one word of each possible lengih. (We Hip a fair coln for sach word w o
decide if it s in L) Then, as the second author has observed,

p=[]it- 21_.]:2%:2-21
Y =0

7.2 The Knopp funclion

The Knopp function (see the ntrodwction of [34]) is defined, for a € (0. 1] and
be Ry, {ﬂ} by

Koz = i a®| b
=i



whens ||gf| i the distance from y o the nearest integer. In 19940, 5. Dubue and A
Elgortobi [34] came acros: the Proubet. Thues-Morse sequence t = [fa)azo while
stidying the mazimum of the Koopp lunction, They proved tlee followiog.

Theorem 12 I:I:Fu'l:mull:1 Elqurlnbi]l. Leba £ (0, 1) anad leb b be an enen inleger
= 3. Lel X7 (a, b} be the sel of points where the funelion Kqp takes ils mastmum.
Then Wee fomal of e sed X" (a b)), as a — |:'1||"Ir_:|__ 1 Lae ael {r-. 1- r]-. where
x = (W — B)/2) T ta [+,

8 Physics

Simce the ProubetThue-Maorss sequeace s both “easy bo generate”™ and “pon.
trivial™. i permits bo generate a kind of comtrolled disorder. In particalar this
pegquence las analogies {(bub also differences| with one-dimensional quasi-crystals
actually a typical one-dimensional quasiceyatal is the Fibomacel ssquence, e,
the fixed point of the Fibonacel morphism 0 — 01, 1 — k. Henee a large numbes
of papers 1o pliysies study the ProuhetsThoeMorse sequence. We ooly mention
[1?. 15]. and the papers given o the bibliograply of jlﬂ]-

9 Generalizations

Tle alterpative definitbons of the ProuletTloeMopse sequance given in Sec.
tion 2 each suggest possible approsches bo generalize te segquence,

For example, Proposition 1 suggests stwdying the genacalized Proubet-Thse-
Mo seguence bem = (se(n) mod mijezo for integers & > 2 and m > 1. For
axample, we have

tge=N12123230123 .-

Mote that the sequence bygq has bean studied by 1 Tromp amd the second
author in [E'irj- and that the sequence g, b= the sequence Ty of Section 5.1, Very
recently the authors proved the following theorem [l.{- which generalizes (he
work of Thie:

Theorem 13, Lel & > 2. m > 1 be mmbegers. The generalized Proufel- Thue.

Muorse sequence by o 8 overlap-free if and ondy of e > k.

Several olher generalizabions of the Proulet-ThosMorse sequence e baen
studied, see for scample |40, 45, 46, 53, 69].

10 Conclusion

Tlee Proulet-Thue Morse sequence occurs o varions felds, so that many appars
antly unrelated definitions of this sequence are equivalent. For example, Propo-
gibbon 1. Theorsm 2, Proposition 3, Theorem 4, Theorem 7, Theorem 8, Theo-
rem 9, Proposition 7, Theorsm 11, and even Theorem 10 or Corollary 2 can he
turmed boto defnitions. Auatomatic sequences, of which tlhe Prowlheb=T o= o



pequence = oa sinple example, are also useful becavse they are bolth “simpls o
generate” and “mon-tovial™: o physios as meokioos] above, bat alse in other
felds, such as musie (see for exampls [11]). Searching for the many secureences
of the Proolsed-Thus-Mome sequence o the likeratone can be used as a pretext
to take & delightful stroll through many fascinabiog areas of mathematies.
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