- + ε, x ∈ {−1, 1} Support function δ(q) for q = (0, 1)T True unknown value: 0.375 n Mean Q1 Q2 Q3 100 0.374 0.360 0.375 0.390 500 0.375 0.369 0.375 0.382 1000 0.375 0.371 0.375 0.380 2500 0.375 0.372 0.375 0.378 Table 7: Percentage of rejections for the test H0 : βr ∈ B. Non-smooth set.
Paper not yet in RePEc: Add citation now
- Also, under the conditions of Proposition 9, we have: E max( z> i yi , z> i yi )2 < ∞ so that F = {fθ; θ ∈ Θ} is a Donsker class (for instance, van der Vaart, 1998, page 271). By the definition of such a class, the empirical process, √ nÄn(q) = √ n( 1 n n X i=1 zqiwqi − E(zqiwqi)), converges in distribution, uniformly in Θ, to a Gaussian process with zero mean and covariance function: E(zqiwqizriwri) − E(zqiwqi)E(zriwri).
Paper not yet in RePEc: Add citation now
Andrews, D.W.K. and P., Guggenberger, 2009, â€ÂValidity of Subsampling and Plug-in Asymptotic Inference for Parameters Defined by Moment Inequalitiesâ€Â, Econometric Theory, 25:669-709.
- Andrews, D.W.K., 1994, â€ÂEmpirical Process Methods in Econometricsâ€Â, eds R.Engle and D.McFadden, Handbook of Econometrics, IV:2247-2294, North Holland: Amsterdam.
Paper not yet in RePEc: Add citation now
- Andrews, D.W.K., S., Berry and P. Jia, 2004, â€ÂConfidence Regions for Parameters in Discrete Games with Multiple Equilibria with an Application to Discount Chain Store Locationâ€Â, working paper.
Paper not yet in RePEc: Add citation now
Beresteanu, A. and F., Molinari, 2008, â€ÂAsymptotic Properties for a Class of Partially Identified Modelsâ€Â, Econometrica, 76:763-814.
Blundell, R.W., A. Gosling, H. Ichimura and C. Meghir, 2007, â€ÂChanges in the Distribution of Male and Female Wages Accounting for Employment Composition Using Boundsâ€Â, Econometrica, 75:323-363.
Bollinger, C.R., 1996, â€ÂBounding mean regressions when a binary regressor is mismeasured â€Â, Journal of Econometrics, 73:387-399.
- Bugni, F., 2009, â€ÂBootstrap Inference in Partially Identified Models†working paper, Duke University.
Paper not yet in RePEc: Add citation now
- Canay, I., 2009, â€ÂEL Inference for Partially Identified Models: Large Deviations Optimality and Bootstrap Validity,†Northwestern University.
Paper not yet in RePEc: Add citation now
- Chernozhukov, V., H. Hong, E. Tamer, 2007, â€ÂInference on Parameter Sets in Econometric Modelsâ€Â, Econometrica, 75:1243-1284.
Paper not yet in RePEc: Add citation now
- Chernozhukov, V., S. Lee and A.M. Rosen, 2009, â€ÂIntersection Bounds: Estimation and Inferenceâ€Â, CEMMAP WP 19-09.
Paper not yet in RePEc: Add citation now
- Chesher, A., 2005, â€ÂNon Parametric Identification under Discrete Variationâ€Â, Econometrica, 73:1525-1550.
Paper not yet in RePEc: Add citation now
Ciliberto F. and E. Tamer, 2004, â€ÂMarket structure and multiple equilibria in airline markets â€Â, forthcoming Econometrica.
- Define the estimate of δ∗ (q | B) as the value at the near minimizer: ˆ δ∗ n(q | B) = ˆ δ∗ n(sn | BU ). (C.24) First, standard arguments employed for Z-estimators (see van der Vaart, 1998, for instance) imply that: plimn→∞λn = λ0.
Paper not yet in RePEc: Add citation now
Erickson, T., 1993, â€ÂRestricting Regression Slopes in the Errors in Variables Model by Bounding the Error Correlationâ€Â, Econometrica, 61:959-69.
- Fr echet, M., 1951, â€ÂSur les tableaux de corr elation dont les marges sont donn eesâ€Â, Annales de l’Universit e de Lyon, III◦ S erie Sci. A, 53-77.
Paper not yet in RePEc: Add citation now
- Frisch, R., 1934, Statistical Confluence Analysis by Means of Complete Regression Systems, Oslo, Norway: University Institute of Economics.
Paper not yet in RePEc: Add citation now
- Galichon A., and M., Henry, 2009, â€ÂA Test of Non-Identifying Restrictions and Confidence Regions for Partially Identified Parametersâ€Â, forthcoming Journal of Econometrics.
Paper not yet in RePEc: Add citation now
- Gini, C., 1921, â€ÂSull’interpoliazone di una retta quando i valori della variabile indipendente sono affetti da errori accidentaliâ€Â, Metroeconomica, 1:63-82.
Paper not yet in RePEc: Add citation now
- Haile P. and E.Tamer, 2003, â€ÂInference with an Incomplete Model of English Auctionsâ€Â, Journal of Political Economy, 2003, 111:1-51.
Paper not yet in RePEc: Add citation now
- Hoeffding, W., 1940, â€ÂMasstabinvariante Korrelationstheorieâ€Â, Shriften des Mathematischen Instituts und des Instituts f ur Angewandte Mathematik der Universit at Berlin, 5(3): 179-233.
Paper not yet in RePEc: Add citation now
- Honor e, B. and A. Lleras-Muney, 2004, â€ÂBounds in Competing Risks Models and the War on Cancerâ€Â, Econometrica 74: 1675-1698.
Paper not yet in RePEc: Add citation now
- Horowitz, J.L. and C.F. Manski, 1995, â€ÂIdentification and Robustness with Contaminated and Corrupted Dataâ€Â, Econometrica, 63:281-302.
Paper not yet in RePEc: Add citation now
Imbens, G., and C.F., Manski, 2004, “Confidence Intervals for Partially Identified Parameters â€Â, Econometrica, 72:1845-1859.
Klepper S., and E.E., Leamer, 1984, â€ÂConsistent Sets of Estimates for Regressions with Errors in all Variablesâ€Â, Econometrica, 52:163-183.
- Leamer, E.E., 1987, â€ÂErrors in Variables in Linear Systemsâ€Â, Econometrica, 55(4): 893-909.
Paper not yet in RePEc: Add citation now
- Lehmann, E.L. and J.P Romano, 2005, Testing Statistical Hypotheses, Springer: New York.
Paper not yet in RePEc: Add citation now
Lewbel, A., 2000, “Semiparametric Qualitative Response Model Estimation with Unknown Heteroskedasticity or Instrumental Variablesâ€Â, Journal of Econometrics, 97:145-77.
Magnac, T. and E. Maurin, 2007, â€ÂIdentification and Information in Monotone Binary Modelsâ€Â, Journal of Econometrics, 139:76-104.
Magnac, T. and E. Maurin, 2008, â€ÂPartial Identification in Monotone Binary Models: Discrete Regressors and Interval Dataâ€Â, Review of Economic Studies, 75:835-864.
Manski, C.F., 1989, â€ÂAnatomy of the Selection Problemâ€Â, Journal of Human Resources, 24:343-60.
- Manski, C.F., 2003, Partial Identification of Probability Distributions, Springer-Verlag: Berlin.
Paper not yet in RePEc: Add citation now
Manski, C.F., and E. Tamer, 2002, “Inference on Regressions with Interval Data on a Regressor or Outcomeâ€Â, Econometrica, 70:519-546.
- Manski, C.F., and J.V. Pepper, 2009, â€ÂMore on monotone instrumental variablesâ€Â, The Econometrics Journal, 12:S200-216.
Paper not yet in RePEc: Add citation now
- McFadden, D., 1994, â€ÂContingent Valuation and Social Choiceâ€Â, American Journal of Agricultural Economics, 76:689-708.
Paper not yet in RePEc: Add citation now
- Pakes, A., J. Porter, K. Ho and J., Ishii, 2005, â€ÂMoment Inequalities and their Applications â€Â, working paper.
Paper not yet in RePEc: Add citation now
- Piketty, T., 2005, â€ÂTop Income Share in the Long Run: An Overviewâ€Â, Journal of the European Economic Association, 3:1-11.
Paper not yet in RePEc: Add citation now
- Ridder G. E. and R., Moffitt, 2007, â€ÂThe econometrics of data combinationâ€Â, in J. J.Heckman and E. E. Leamer (Eds.), Handbook of Econometrics, Volume 6, North-Holland, Amsterdam.
Paper not yet in RePEc: Add citation now
- Rockafellar, R.T., 1970, Convex Analysis, Princeton University Press: Princeton.
Paper not yet in RePEc: Add citation now
- Romano J.P., and A.M. Shaikh, 2009, â€ÂInference for Identifiable Parameters in Partially Identified Econometric Modelsâ€Â, working paper.
Paper not yet in RePEc: Add citation now
Rosen A.M., 2008, â€ÂConfidence sets for partially identified parameters that satisfy a finite number of moment inequalities,†Journal of Econometrics, 146:107-117.
- Standard arguments employed for Z-estimators (e.g. van der Vaart, 1998) when the objective function has a unique well separated minimum, imply that: plimn→∞qn = q0.
Paper not yet in RePEc: Add citation now
- Stoye, J., 2007, â€ÂBounds on Generalized Linear Predictors with Incomplete Outcome Dataâ€Â, Reliable Computing, 13: 293–302.
Paper not yet in RePEc: Add citation now
Stoye, J., 2009, â€ÂMore on Confidence Intervals for Partially Identified Parametersâ€Â, Econometrica, 77:1299-1315.
- Using Andrews (1994, p2251), the three steps prove that Än(q) is a consistent and asymptotically Gaussian random process. Step 1: According to what was developed above, the empirical stochastic process ÄU n (.), defined for s = (q, λ) ∈ Sm, the unit sphere in Rm , as, ÄU n (s) = √ n ˆ δ∗ n(s | BU ) − δ∗ (s | BU ) ,
Paper not yet in RePEc: Add citation now
- van der Vaart, A.W., 1998, Asymptotic Statistics, Cambridge University Press: Cambridge.
Paper not yet in RePEc: Add citation now
Vazquez-Alvarez, R., B., Melenberg and A., van Soest, 2001, â€ÂNonparametric bounds in the presence of item nonresponse, unfolding brackets, and anchoringâ€Â, working paper.