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Abstract In [24], a new size-change principle was proposed to verify ter-
mination of functional programs automatically. We extend this principle
in order to prove termination and innermost termination of arbitrary term
rewrite systems (TRSs). Moreover, we compare this approach with existing
techniques for termination analysis of TRSs (such as recursive path orders or
dependency pairs). It turns out that the size-change principle on its own fails
for many examples that can be handled by standard techniques for rewrit-
ing, but there are also TRSs where it succeeds whereas existing rewriting
techniques fail. Moreover, we also compare the complexity of the respective
methods. To this end, we develop the first complexity analysis for the depen-
dency pair approach. While the size-change principle is PSPACE-complete,
we prove that the dependency pair approach (in combination with classical
path orders) is only NP-complete. To benefit from their respective advan-
tages, we show how to combine the size-change principle with classical orders
and with dependency pairs. In this way, we obtain a new approach for au-
tomated termination proofs of TRSs which is more powerful than previous
approaches. We also show that the combination with dependency pairs does
not increase the complexity of the size-change principle, i.e., the combined
approach is still PSPACE-complete.

Keywords: Termination, Term Rewriting, Size-Change Principle, Depen-
dency Pairs

1 Introduction

The size-change principle [24] is a new technique for automated termina-
tion analysis of functional programs, which raised great interest in the func-
tional programming and automated reasoning community. Moreover, a sim-
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ilar principle is also used in approaches for termination analysis of logic
programs, e.g., [8]. However, up to now the connection between this prin-
ciple and existing approaches for termination proofs of term rewriting was
unclear. We introduce the basics of term rewriting and the size-change prin-
ciple in Section 2. Then we show in Section 3 which orders may be used in
connection with the size-change principle in order to yield a sound method
for termination and innermost termination proofs of arbitrary TRSs. This
also illustrates how to combine the size-change principle with existing orders
from term rewriting.

In Section 4 we compare the size-change principle with classical simplifi-
cation orders and show that it can simulate a certain form of lexicographic
and multiset comparison. Hence, the size-change principle in connection
with a very simple order can often prove termination of TRSs where one
would otherwise need more complex orders like the lexicographic or the
recursive path order. On the other hand, there are also examples where ter-
mination can be proved with classical orders from term rewriting, while the
size-change principle does not succeed.

In Section 5 we compare the size-change principle and the dependency
pair approach [2] for termination of TRSs. Again, the size-change princi-
ple can simulate and encompass certain ingredients of the dependency pair
method and there are examples where a termination proof with the size-
change principle is trivial, whereas dependency pairs do not succeed with
any classical order amenable to automation. On the other hand, there are
many TRSs where dependency pairs can easily prove termination, whereas
the size-change principle fails.

To combine their respective advantages, in Section 6 we develop a tech-
nique which integrates the size-change principle and dependency pairs. The
resulting technique improves upon both original techniques, since the con-
straints generated for termination proofs are considerably simplified. We
show that in this way, one can handle examples that could not be proved
terminating before. Moreover, for examples which could already be han-
dled with dependency pairs, our new combination technique often succeeds
in connection with much simpler orders than those required when using
dependency pairs.

In contrast to other recent techniques for termination analysis, the com-
plexity of the size-change principle has been formally analyzed in [24]. In
Section 7 we show that such a complexity analysis is also possible for both
the dependency pair approach and for the new technique from Section
6 which combines dependency pairs with the size-change principle. More
precisely, while the size-change principle is PSPACE-complete, we show
that the dependency pair approach is NP-complete (provided one uses the
dependency pair approach with argument filterings, with base orders in
NP, and with standard estimations of the dependency graph). Moreover,
our combination of dependency pairs and the size-change principle is still
PSPACE-complete (if one again uses argument filterings, base orders in NP
or PSPACE, and standard estimations of the dependency graph).
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The combined technique has been implemented in the system AProVE

[13] resulting in a very efficient and powerful automated method which im-
proves the original dependency pair approach significantly. A description of
the implementation and an empirical evaluation can be found in Section 8.

A preliminary version of this paper appeared in [30]. The current article
extends [30] by numerous new results and refinements: We prove that our
definition of size-change termination corresponds to the one of [24] (Lemma
6). Moreover, we give formal proofs for the comparison of the size-change
principle with standard rewrite orders based on lexicographic or multiset
comparison (Theorems 14 and 16). We also present a large example to
demonstrate the advantages of combining dependency pairs and the size-
change principle (Example 26). Another new contribution is Section 7 where
we present the first complexity results for the dependency pair approach and
examine the complexity of the combination with the size-change principle.
Finally, we added a section on the implementation and evaluation of our
results (Section 8).

2 Term Rewriting and the Size-Change Principle

We first recapitulate the basics of term rewriting in Section 2.1 and intro-
duce the size-change principle in Section 2.2.

2.1 Term Rewriting

This section briefly introduces the basic notions of term rewriting. For fur-
ther details and explanations we refer to [4], for example.

A signature F is a set of function symbols and for a set of variables V ,
T (F ,V) denotes the terms built from F and V . For a term t, V(t) is the set
of variables occurring in t and for t /∈ V , the root symbol root(t) denotes the
topmost symbol of t (i.e., root(f(s1, . . . , sn)) = f). As usual, a ground term
is a term without variables and � denotes the proper subterm relation.

A term rewrite system (TRS) over a signature F is a set of rules l → r,
where l, r ∈ T (F ,V), l /∈ V , and V(r) ⊆ V(l). Throughout the paper, we
restrict ourselves to finite signatures and TRSs.

For a TRS R, one can define the corresponding reduction relation →R

on terms (i.e., →R ⊆ T (F ,V) × T (F ,V)): for any s, t ∈ T (F ,V) we have
s →R t iff there exists a position p in s and a rule l → r ∈ R such
that s|p = lσ and t = s[rσ]p. In other words, the left-hand side l matches
the subterm s|p with the matching substitution σ and t results from s by
replacing this subterm by the right-hand side of the rule instantiated by
the matcher σ. Moreover, if no proper subterms of s|p are reducible, then
we speak of an innermost reduction step, denoted s i→R t. A term s is a
normal form if it cannot be reduced anymore, i.e., if s →R t does not hold
for any term t.
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We denote the transitive closure of a relation → by →+ and the transitive
and reflexive closure is denoted by →∗. So s →∗

R t means that s can be
reduced to t in several (possibly zero) steps.

For a TRS R over a signature F , the defined symbols D are the root
symbols of the left-hand sides of rules and the constructors are C = F \ D.
A TRS is called a constructor system if the left-hand sides of its rules are
terms of the form f(s1, . . . , sn) where all si are constructor terms (i.e.,
si ∈ T (C,V)). For any signature F we define the embedding rules EmbF =
{f(x1, . . . , xn) → xi | f ∈ F where n = arity(f), 1 ≤ i ≤ n}. A TRS is non-
overlapping if there are no rules l → r and l′ → r′ such that a non-variable
subterm of l unifies with l′; however, if the two rules are identical, then one
only needs to consider proper subterms of l.

A transitive and antisymmetric binary relation ≻ is an order and a tran-
sitive and reflexive binary relation is a quasi-order. A binary relation ≻ is
well founded iff there exists no infinite decreasing sequence t0 ≻ t1 ≻ t2 ≻
. . . A binary relation ≻ on terms is closed under substitutions (also called
“stable”) iff s ≻ t implies sσ ≻ tσ for all s, t ∈ T (F ,V) and all substitu-
tions σ. A binary relation ≻ on terms is closed under contexts (also called
“monotonic”) if si ≻ ti implies f(s1, . . . , si, . . . , sn) ≻ f(s1, . . . , ti, . . . , sn)
for all f ∈ F , all 1 ≤ i ≤ arity(f), and all terms sj and tj .

A TRS R is terminating iff →R is well founded and it is innermost
terminating iff i→R is well founded. The traditional method to prove ter-
mination of TRSs works by generating a suitable order such that all rules
are decreasing: a TRS R is terminating iff there exists a well-founded or-
der ≻ closed under substitutions and contexts such that l ≻ r holds for
all rules l → r ∈ R [25]. Most of the orders used for automation are sim-
plification orders. A simplification order is a well-founded order ≻ closed
under substitutions and contexts which also satisfies the subterm property
f(x1, . . . , xn) ≻ xi for all f ∈ F , all 1 ≤ i ≤ arity(f), and pairwise dif-
ferent variables xj . Examples for such orders include lexicographic path
orders LPO [17], recursive path orders (possibly with status) RPO(S ) [6],
Knuth-Bendix orders KBO [18], and many polynomial orders [22].

2.2 The Size-Change Principle

In [24], the size-change principle was presented for a functional program-
ming language with eager evaluation strategy and without pattern match-
ing. Such functional programs are easily transformed into TRSs which are
non-overlapping constructor systems whose ground normal forms only con-
tain constructors (i.e., all functions are “completely” defined). In this sec-
tion we introduce an extension of the original size-change principle which is
formulated for arbitrary TRSs.

We call (%,≻) a reduction pair on T (F ,V) if % is a quasi-order and
≻ is a well-founded order on terms where both % and ≻ are closed un-
der substitutions and compatible (i.e., % ◦ ≻ ⊆ ≻ and ≻ ◦ % ⊆ ≻,
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but ≻ ⊆ % is not required). In contrast to the definition of reduction
pairs in [21], neither % nor ≻ have to be closed under contexts. If % is
closed under contexts, we speak of a monotonic reduction pair. In Sec-
tion 3 we examine which additional conditions must be imposed on (%,≻)
in order to use the size-change principle for (innermost) termination proofs
of TRSs. Size-change graphs denote how the size of function parameters
changes when going from one function call to another.

Definition 1 (Size-Change Graph) Let (%,≻) be a reduction pair. For
every rule f(s1, . . . , sn) → r of a TRS R and every subterm g(t1, . . . , tm) of
r where g ∈ D, we define a size-change graph. The graph has n output nodes
marked with {1f , . . . , nf} and m input nodes marked with {1g, . . . , mg}.
Output nodes are nodes where one may have outgoing edges and input nodes
may have incoming edges. If si ≻ tj, then there is a directed edge marked
with “≻” from output node if to input node jg. Otherwise, if si % tj, then
there is an edge marked with “ %” from if to jg. If f and g are clear from
the context, then we often omit the subscripts from the nodes. So a size-
change graph is a bipartite graph G = (V, W, E) where V = {1f , . . . , nf} and
W = {1g, . . . , mg} are the labels of the output and input nodes, respectively,
and we have edges E ⊆ V × W × {%,≻}.

Example 2 Let R consist of the following rules.

f(s(x), y) → f(x, s(x)) (1) f(x, s(y)) → f(y, x) (2)

R has two size-change graphs G(1) and G(2) resulting from the rules (1)
and (2). Here, we use the embedding order on constructors C, i.e., (%,≻) =
(→∗

EmbC
,→+

EmbC
).

G(1) : 1f

≻ //
%

��>
>>

> 1f

2f 2f

G(2) : 1f %

��>
>>

> 1f

2f

≻

??����
2f

To trace the sizes of parameters along subsequent function calls, size-
change graphs (V1, W1, E1) and (V2, W2, E2) can be concatenated to multi-
graphs if W1 = V2, i.e., if they correspond to arguments {1g, . . . , mg} of the
same function g.

Definition 3 (Multigraph and Concatenation) For a TRS R, every
size-change graph of R is a multigraph of R and if G = ({1f , . . . , nf},
{1g, . . . , mg}, E1) and H = ({1g, . . . , mg}, {1h, . . . , lh}, E2) are multigraphs

w.r.t. the same reduction pair (%,≻), then the concatenation G·H =
({1f , . . . , nf}, {1h, . . . , lh}, E) is also a multigraph of R. For 1 ≤ i ≤ n
and 1 ≤ k ≤ l, E contains an edge from if to kh iff E1 contains an edge
from if to some jg and E2 contains an edge from jg to kh. If there is such
a jg where the edge of E1 or E2 is labelled with “≻”, then the edge in E
is labelled with “≻” as well. Otherwise, it is labelled with “%”. A multi-
graph G is called maximal if its input and output nodes are both labelled
with {1f , . . . , nf} for some f and if it is idempotent, i.e., G = G·G.
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Example 4 In Example 2 there are three maximal multigraphs (note that
G(1)·G(1) = G(1)·G(2)):

G(1)·G(2) : 1f

≻ //
≻

��=
==

==
1f

2f 2f

G(2)·G(1) : 1f 1f

2f
≻

//

≻
@@�����
2f

G(2)·G(2) : 1f

≻ // 1f

2f

≻ // 2f

For termination, in every maximal multigraph some parameter must be
decreasing.1

Definition 5 (Size-Change Termination) A TRS R over the signature
F is size-change terminating w.r.t. a reduction pair (%,≻) on T (F ,V) iff
every maximal multigraph contains an edge of the form i

≻
→ i.

In Example 4, each maximal multigraph contains the edge 1f

≻→ 1f or
2f

≻
→ 2f . So the TRS is size-change terminating w.r.t. the embedding order.

Note that classical path orders from term rewriting fail on this example (see
Section 4).

Since there are only finitely many possible multigraphs, they can be
constructed automatically. So for a given reduction pair (%,≻) where %

and ≻ are decidable, size-change termination is decidable as well. While
the formulation of size-change termination in Definition 5 is suitable for
automation and for a comparison with techniques from term rewriting, size-
change termination was defined in a slightly different way in [24]. Here,
instead of concatenating size-change graphs G1, . . . , Gn, one builds (possibly
infinite) graphs by identifying the input nodes of a size-change graph Gi

with the output nodes of the next size-change graph Gi+1. Then a program
is called size-change terminating iff there exists an infinite path in this
graph which contains infinitely many edges labelled with “≻”. The following
lemma (whose proof uses the same ideas as the proof of [24, Theorem 4])
states that our definition is equivalent to the one of [24]. Here, for two size-
change graphs or multigraphs G and H where G’s input nodes have the
same labels as H ’s output nodes, let G ◦ H be the graph resulting from
identifying G’s input and H ’s output nodes. So G ◦H differs from G·H in
that these nodes are not dropped.

Lemma 6 (Infinite Graphs Correspond to Multigraphs) Let Γ be a
finite set of size-change graphs. The following statements are equivalent.

(1) Every graph G1 ◦ G2 ◦ . . . with an infinite sequence G1, G2, . . . ∈ Γ has
an infinite path containing infinitely many edges labelled with “≻”.

1 Our definition of size-change termination generalizes the original one of [24]
by permitting arbitrary reduction pairs (%,≻). If one is restricted to the reduction
pairs used in [24], then size-change termination implies termination for functional
programs. However, if one may use arbitrary reduction pairs, then size-change
termination is no longer sufficient for termination. Therefore, in Section 3 we
identify classes of reduction pairs where size-change termination indeed implies
(innermost) termination of TRSs.
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(2) Every maximal multigraph G1·G2· . . .·Gn with G1, . . . , Gn ∈ Γ has an
edge of the form i

≻
→ i.

Proof We first prove “(1) ⇒ (2)”. Assume that there exists a maximal
multigraph G = G1· . . .·Gn which has no edge of the form i ≻→ i. On the
other hand, the graph G1 ◦ . . . ◦ Gn ◦ G1 ◦ . . . ◦ Gn ◦ . . . must have a path
containing infinitely many edges labelled with “≻”. Thus, this also holds
for the infinite graph G ◦ G ◦ . . . Obviously, for some i ∈ IN and f ∈ F ,
a node labelled with if must occur more than once in this path such that
an edge between these two occurrences is labelled with “≻”. Let k be the
length of the subpath from the first occurrence of if to the next occurrence
of if such that an ≻→-edge is on this subpath. Thus, there is a path from if
to if in the graph G ◦G ◦ . . . ◦G (where G is combined with itself k times)
and at least one edge of the path is labelled with “≻”. This means that
the multigraph G·G· . . .·G (where G is concatenated with itself k times),
contains an edge i

≻
→ i. Since G is idempotent, we have G·G· . . .·G = G

and thus, this contradicts the assumption that G does not have such edges.
Now we show “(2) ⇒ (1)”. Assume that there is an infinite graph G1◦G2

◦. . . that does not contain an infinite path with infinitely many
≻
→-edges. For

all pairs of numbers (n, m) with n < m let Gn,m be the multigraph resulting

from the concatenation of Gn, . . . , Gm−1, i.e., Gn,m = Gn· . . .·Gm−1. As
there are only finitely many possible multigraphs, by Ramsey’s theorem
there is an infinite set I ⊆ IN such that Gn,m is always the same graph
for all n, m ∈ I with n < m. We call this graph G. Note that G is a
maximal multigraph: for n1 < n2 < n3 with ni ∈ I, we have Gn1,n3

=

Gn1· . . .·Gn2−1·Gn2· . . .·Gn3−1 = Gn1,n2·Gn2,n3
, and thus G = G·G.

Let I = {n1, n2, . . .} with n1 < n2 < . . . Thus, for our original infinite
graph, we have

G1 ◦G2 ◦ . . . = G1 ◦ . . . ◦Gn1−1 ◦Gn1
◦ . . . ◦Gn2−1 ◦Gn2

◦ . . . ◦Gn3−1 ◦ . . .

Since by assumption, this graph did not contain an infinite path with in-
finitely many ≻→-edges, this also holds for the graph

Gn1· . . .·Gn2−1◦Gn2· . . .·Gn3−1◦. . . = Gn1,n2
◦Gn2,n3

◦. . . = G◦G◦. . .

But since G is a maximal multigraph, G contains an edge i ≻→ i. Thus, the
above infinite graph does contain an infinite path labelled with infinitely
many

≻
→-edges, which contradicts the assumption. ⊓⊔

3 Size-Change Termination and Termination of TRSs

In [24], the authors use reduction pairs (%,≻) where % and ≻ are relations
on constructor terms2 and where % is the reflexive closure of ≻. Then indeed,

2 More precisely, they use an underlying well-founded order > on “values” (i.e.,
constructor ground terms) and do not focus on the problem of comparing terms
with defined symbols.
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size-change termination implies termination of the corresponding functional
program.

However in general, one also has to compare terms containing defined
symbols when building size-change graphs. In particular, when regarding
TRSs instead of functional programs, defined symbols may occur both
in the input arguments and in the recursive arguments (i.e., in a rule
f(s1, . . . , sn) → . . . f(t1, . . . , tn) . . ., any terms si or ti may contain defined
symbols).

Therefore, in this section we investigate which reduction pairs may be
used in order to apply the size-change principle to TRSs. Unfortunately, in
general size-change termination does not imply termination if one may use
arbitrary reduction pairs in Definition 5.

Example 7 Consider the TRS with the rules f(a) → f(b) and b → a. If we
use the lexicographic path order ≻LPO [17] with the precedence a > b, then
the only maximal multigraph is 1f

≻LPO−→ 1f . So size-change termination can
be proved, although the TRS is obviously not terminating.

In this section we develop conditions on the reduction pair in Definition 5
which ensure that size-change termination indeed implies (innermost) termi-
nation. Then the size-change principle can be combined with classical orders
from term rewriting and becomes a sound (innermost) termination criterion
for TRSs.

Innermost termination is interesting, since then there are no infinite re-
ductions w.r.t. eager evaluation strategies. Moreover, for non-overlapping
TRSs, innermost termination already implies termination. Example 7 de-
monstrates that size-change termination w.r.t. an arbitrary reduction pair
does not imply innermost termination. Therefore, to obtain a sufficient cri-
terion for innermost termination, we will only use the restriction of the
reduction pair to the constructors C when building size-change graphs.

Definition 8 (G-restriction) For a subset G ⊆ F and a relation ≻ on
T (F ,V), its G-restriction ≻′ is defined as s ≻′ t iff s ≻ t and t ∈ T (G,V).
For a reduction pair (%,≻) its G-restriction (%′,≻′) consists of the G-
restrictions of % and ≻, respectively.

Strictly speaking, the G-restriction (%′,≻′) is not a reduction pair since
it is only closed under substitutions with terms from T (G,V). Nevertheless,
the definitions of size-change graphs and size-change termination can of
course be extended to any pairs (%′,≻′) of relations in a straightforward
way. This leads to the following theorem which shows how to use the size-
change principle for innermost termination proofs of TRSs.

Theorem 9 (Innermost Termination Proofs) Let R be a TRS over
the signature F with constructors C and let (%,≻) be a reduction pair on
T (F ,V). If R is size-change terminating w.r.t. the C-restriction of (%,≻),
then R is innermost terminating.
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Proof If R is not innermost terminating, then there is a minimal non-
innermost terminating term v0, i.e., all proper subterms of v0 are innermost
terminating. Let i→ε denote root reductions and let i→>ε denote reduc-
tions below the root. Then v0’s infinite innermost reduction starts with
v0

i→∗
>ε u1

i→ε w1 where all proper subterms of u1 are in normal form.
Since w1 is not innermost terminating, it has a minimal non-innermost ter-
minating subterm v1.

The infinite reduction continues in the same way. So for i ≥ 1, we have
vi−1

i→∗
>ε ui = liσ and vi = r′iσ for a rule li → ri, a subterm r′i of ri with

defined root, and a substitution σ which instantiates li’s variables with
normal forms. To ease readability we assume that different (occurrences of)
rules li → ri are variable disjoint. Then we can use the same substitution σ
for all i ≥ 1.

For each step from ui to vi there is a corresponding size-change graph
Gi. If R is size-change terminating, by Lemma 6 the graph G1 ◦ G2 ◦ . . .
contains an infinite path where infinitely many edges are labelled with “≻”.
Without loss of generality we assume that this path already starts in G1.
For every i, let ai be the output node in Gi which is on this path. So we
have li|ai

≻ r′i|ai+1
for all i from an infinite set I ⊆ IN and li|ai

% r′i|ai+1

for i ∈ IN \ I. As usual, “li|ai
” denotes the subterm of li at the position

ai. Note that li|ai
σ = ui|ai

and r′i|ai+1
σ = vi|ai+1

i→∗ ui+1|ai+1
. Recall that

r′i|ai+1
∈ T (C,V), as one only uses the C-restriction for the construction of

size-change graphs. Since σ instantiates li’s variables with normal forms,
since V(r′i) ⊆ V(li), and since r′i|ai+1

is a constructor term, we conclude
that r′i|ai+1

σ is a normal form. Hence, in the above reduction we can replace
“ i→∗” by “=” and obtain r′i|ai+1

σ = vi|ai+1
= ui+1|ai+1

.

Hence, we have ui|ai
≻ ui+1|ai+1

for all i ∈ I and ui|ai
% ui+1|ai+1

for
all i ∈ IN \ I. This is a contradiction to the well-foundedness of ≻. ⊓⊔

For the TRS in Example 2, when using the C-restriction of the reduction
pair (→∗

EmbC
, →+

EmbC
), we obtain the size-change graphs G(1) and G(2). Ex-

ample 4 shows that the TRS is size-change terminating w.r.t. this reduction
pair and hence, by Theorem 9, this proves innermost termination. However,
a variant of Toyama’s example [32] shows that Theorem 9 is not sufficient
to prove full (non-innermost) termination.

Example 10 Let R = {f(c(a, b, x)) → f(c(x, x, x)), g(x, y) → x, g(x, y) →
y}. We define % = →∗

S and ≻ = →+
S , where S is the terminating TRS with

the rule c(a, b, x) → c(x, x, x). The only size-change graph is 1f

≻→ 1f (since
the input argument c(a, b, x) is greater than the argument c(x, x, x) in the
recursive argument when compared w.r.t. the C-restriction of →+

S ). More-
over, concatenating this size-change graph with itself yields 1f

≻
→ 1f again,

i.e., this is the only maximal multigraph. Thus, R is size-change terminating
and by Theorem 9 it is innermost terminating. However, R does not termi-
nate as can be seen by the following cyclic reduction: f(c(a, b, g(a, b))) →
f(c(g(a, b), g(a, b), g(a, b))) →∗ f(c(a, b, g(a, b))).
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As in Example 10, reduction pairs (→∗
S ,→+

S ) can be defined using a ter-
minating TRS S. The following theorem shows that if S is a non-duplicating
TRS over C, then we may use the relation →S also on terms with de-
fined symbols and size-change termination even implies full termination. A
TRS is non-duplicating iff every variable occurs on the left-hand side of
a rule at least as often as on the corresponding right-hand side. So size-
change termination of the TRS in Examples 2 and 4 using the reduction
pair (→∗

EmbC
,→+

EmbC
) implies that the TRS is indeed terminating.

In order to prove the theorem, we need a preliminary lemma which
states that minimal non-terminating terms w.r.t. R ∪ S cannot start with
constructors of R. Again, here S must be non-duplicating. Otherwise, Ex-
ample 10 would be a counterexample, since c(a, b, g(a, b)) is a minimal non-
terminating term w.r.t. R∪ S that starts with a constructor of R.

Lemma 11 Let R be a TRS over the signature F with constructors C and
let S be a terminating non-duplicating TRS over the signature C.

If t1, . . . , tn ∈ T (F ,V) are terminating w.r.t. R∪ S and c ∈ C, then the
term c(t1, . . . , tn) is also terminating w.r.t. R∪ S.

Proof For any term s ∈ T (F ,V), let Ms be the multiset of the maximal
subterms of s whose root is defined, i.e., Ms = {s|p | root(s|p) ∈ D and
for all p′ above p we have root(s|p′ ) ∈ C}. Let ։R∪S be the extension
of (→R∪S ∪�) to multisets where M ։R∪S M ′ iff M = N ∪ {s} and
M ′ = N ∪ {t1, . . . , tn} with n ≥ 0 and with s (→R∪S ∪�) ti for all i. We
prove the following conjecture.

Let s ∈ T (F ,V) such that all terms in Ms are terminating w.r.t.
R ∪ S and let s →R∪S t. Then all terms in Mt are also terminating
w.r.t. R ∪ S. Moreover, Ms ։+

R∪S Mt or both Ms ⊇ Mt and s →S t.
(3)

Note that if a term is terminating w.r.t. R∪ S, then the term does not
start any infinite decreasing sequence w.r.t. →R∪S ∪� either. Hence, ։+

R∪S

is well founded on multisets like Ms which only contain terminating terms.
Termination of S implies that →S is also well founded and the lexicographic
combination of two well-founded orders preserves well-foundedness. Hence,
(3) implies that if all terms in Ms are terminating w.r.t. R ∪ S, then s is
terminating w.r.t. R ∪ S as well. So the lemma immediately follows from
Conjecture (3).

To prove (3), we perform induction on s. If s has a defined root symbol
then we have Ms = {s} ։R∪S {t} ։∗

R∪S Mt, where in the step from {t}
to Mt, t is replaced by its maximal subterms with defined root. Otherwise,
we have s = c(s1, . . . , sn) →R∪S t where c is a constructor. We distinguish
two cases: If the reduction is on the root position we must have used a rule
of S and get s →S t and Ms ⊇ Mt as S is non-duplicating. If the reduction
is below the root then there must be some si such that si →R∪S ti and
t = c(s1, . . . , ti, . . . , sn). By induction we conclude that Msi

։+
R∪S Mti

or both Msi
⊇ Mti

and si →S ti. As c is a constructor we know that
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Ms = Ms1
∪ · · · ∪ Msi

∪ · · · ∪ Msn
and Mt = Ms1

∪ · · · ∪ Mti
∪ . . .Msn

. In
either case we easily obtain Ms ։+

R∪S Mt or both Ms ⊇ Mt and s →S t. ⊓⊔

Now we can show the desired theorem.

Theorem 12 (Termination Proofs) Let R be a TRS over the signature
F with constructors C and let S be a terminating non-duplicating TRS over
C. If R is size-change terminating w.r.t. the reduction pair (→∗

S ,→+
S ) on

T (F ,V), then R (and even R∪ S) is terminating.

Proof We define R′ := R∪S. If R′ is not terminating, then as in the proof
of Theorem 9 we obtain an infinite sequence of minimal non-terminating
terms ui, vi with vi →

∗
>ε,R′ ui+1 where the step from ui to vi corresponds

to a size-change graph of R′. Thus, for all i there is a rule li → ri in R′ with
ui = liσ and vi = r′iσ for a subterm r′i of ri and a substitution σ. The reason
for vi = r′iσ is that by the minimality of ui = liσ, σ instantiates all variables
of li (and hence, of ri) by terminating terms. Hence, any non-terminating
subterm of riσ has the form r′iσ for a non-variable subterm r′i of ri.

By Lemma 11, the roots of ui and vi are defined symbols of R. So all
these size-change graphs are from R. As in Theorem 9’s proof, there are ai

with li|ai
→+

S r′i|ai+1
for all i from an infinite set I ⊆ IN and li|ai

→∗
S r′i|ai+1

for i ∈ IN \ I with i ≥ 1. Since →S is closed under substitution we also
have ui|ai

→+
S vi|ai+1

or ui|ai
→∗

S vi|ai+1
, respectively. Recall vi|ai+1

→∗
R′

ui+1|ai+1
and S ⊆ R′. So for I = {i1, i2, . . .} with i1 < i2 < . . . we have

ui1 |ai1
→+

R′ ui2 |ai2
→+

R′ . . . contradicting the minimality of the terms ui.
⊓⊔

With Theorems 9 and 12 we have two possibilities for automating the
size-change principle. Note that even for innermost termination, Theorem
9 and Theorem 12 do not subsume each other. Innermost termination of
Example 10 cannot be shown by Theorem 12 and innermost termination
of {g(f(a)) → g(f(b)), f(x) → x} cannot be proved with Theorem 9, since
f(a) 6≻′ f(b) for the C-restriction ≻′ of any order ≻. On the other hand,
termination is easily shown with Theorem 12 using S = {a → b}. In fact,
a variant of Theorem 12 also holds for innermost termination if S is in-
nermost terminating (and possibly duplicating). However, this variant only
proves innermost termination of R ∪ S and in general, this does not imply
innermost termination of R.

So Theorems 9 and 12 are new contributions that show which reduction
pairs are admissible in order to use size-change termination for termination
or innermost termination proofs of TRSs. In this way, size-change termina-
tion can be turned into an automatic technique, since one can use classical
techniques from termination analysis of term rewriting to generate suitable
reduction pairs automatically.
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4 Comparison with Orders from Term Rewriting

Most traditional techniques for termination of TRSs are based on simpli-
fication orders. A TRS is simply terminating iff there is a simplification
order ≻ such that l ≻ r holds for all rules l → r of the TRS. Equivalently, a
TRS R over a signature F is simply terminating iff R∪ EmbF terminates.
We now show that similar to these traditional techniques, the size-change
principle only verifies simple termination.

Theorem 13 (a) states that the size-change principle cannot distinguish
between the termination behavior of R and of R ∪ EmbF . For this reason,
the size-change principle is not suitable for non-simply terminating TRSs
(where R terminates and R∪EmbF does not). More precisely by Theorem
13 (b), the size-change principle for termination of TRSs from Theorem
12 can only prove simple termination if the underlying base order (i.e.,
the relation →+

S ) is a simplification order. In other words, the size-change
principle does not succeed when using simplification orders for termination
proofs of non-simply terminating systems.

Theorem 13 (Size-Change Principle and Simple Termination)

(a) A TRS R over a signature F is size-change terminating w.r.t. a reduc-
tion pair (%,≻) iff R∪ EmbF is size-change terminating w.r.t. (%,≻).

(b) Let S be a non-duplicating TRS as in Theorem 12. If S is simply termi-
nating and R is size-change terminating w.r.t. (→∗

S ,→+
S ) on T (F ,V),

then R∪ S is simply terminating.

Proof

(a) The “if” direction is obvious. For the “only if” direction, note that EmbF
yields no new size-change graphs. But due to EmbC , all constructors are
transformed into defined symbols. So from those R-rules with (former)
constructors in their right-hand side, we obtain additional size-change
graphs whose input nodes are labelled with constructors (i.e., 1c, . . . , nc

for c ∈ C). However, since output nodes are never labelled with con-
structors, this does not yield new maximal multigraphs (since there,
output and input nodes must be labelled by the same function). Hence,
size-change termination is not affected when adding EmbF .

(b) As in (a), adding EmbD to R yields no new size-change graphs and thus,
R ∪ EmbD is also size-change terminating w.r.t. (→∗

S ,→+
S ) and hence,

also w.r.t. (→∗
S∪EmbC

,→+
S∪EmbC

). Note that this is indeed a reduction
pair, since S ∪ EmbC is terminating by simple termination of S. Now
Theorem 12 implies termination of R ∪ EmbD ∪ S ∪ EmbC , i.e., simple
termination of R∪ S. ⊓⊔

The restriction to simple termination excludes many practically relevant
TRSs. Theorem 13 illustrates that the size-change principle cannot compete
with new techniques from term rewriting (e.g., dependency pairs [2] or the
monotonic semantic path order [5]) which can prove termination of non-
simply terminating TRSs using a simplification order as underlying base
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order. However, these new techniques still require methods to generate such
base orders. Hence, there is still an urgent need for powerful simplification
orders.

In the remainder of the section, we clarify the connection between size-
change termination and classical orders and show in Sections 4.1 and 4.2
that size-change termination and classical simplification orders do not sub-
sume each other in general.

4.1 Advantages of the Size-Change Principle

A major advantage of the size-change principle is that it can simulate the
basic ingredients of LPO and RPO(S ), i.e., the concepts of lexicographic
and of multiset comparison. Thus, by the size-change principle w.r.t. a very
simple reduction pair like the embedding order we obtain an automated
method for termination analysis which avoids the search problems of LPO
and RPO(S ) and which can still capture the idea of comparing tuples of ar-
guments lexicographically or as multisets. To simplify the presentation, here
we restrict ourselves to TRSs without mutual recursion. Thus, we only re-
gard TRSs where there exist no function symbols f 6= g such that f depends
on g and g depends on f . Here, every function symbol depends on itself and
moreover, a function symbol f depends on g if some symbol h which de-
pends on g occurs in the right-hand side of an f -rule. If there is no mutual
recursion, then for size-change termination it is sufficient only to build size-
change graphs which compare the left-hand side of a rule f(s1, . . . , sn) → r
with those subterms of r whose root is f .

We first show in Theorem 14 that lexicographic orders can be simulated
by the size-change principle. For a reduction pair (%,≻) and a permutation
π of 1, . . . , n, let ≻π

lex be the following order on n-tuples: (s1, . . . , sn) ≻π
lex

(t1, . . . , tn) iff there is an 1 ≤ i ≤ n such that sπ(i) ≻ tπ(i) and sπ(j) % tπ(j)

for all j < i.

Theorem 14 (Simulating Lexicographic Comparison) Let (%,≻) be
a reduction pair, let π be a permutation of 1, . . . , n. Moreover, let R be a
TRS without mutual recursion such that for every rule f(s1, . . . , sn) → r
and every subterm f(t1, . . . , tn) of r, we have (s1, . . . , sn) ≻π

lex (t1, . . . , tn).
Then R is size-change terminating w.r.t. (%,≻).

Proof All size-change graphs for recursive calls of f have an edge π(i)f
≻→

π(i)f for some i and π(j)f
%
→ π(j)f for all j < i. The concatenation of such

graphs again yields a graph of this form and thus, all maximal multigraphs
are also of this shape. Hence, they all contain an edge of the form π(i)f

≻→
π(i)f which proves size-change termination. ⊓⊔

Thus, size-change termination w.r.t. the same reduction pair (%,≻) can
simulate ≻π

lex for any permutation π used to compare the components of a
tuple.
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Example 15 For instance, regard the TRS {ack(0, y) → s(y), ack(s(x), 0)
→ ack(x, s(0)), ack(s(x), s(y)) → ack(x, ack(s(x), y))} computing the Acker-
mann function. By Theorem 14, the TRS is size-change terminating w.r.t.
the embedding order on constructors, whereas with traditional term rewrit-
ing techniques, one would have to use the lexicographic path order.

The next theorem shows that size-change termination can also simu-
late multiset comparison. For a reduction pair (%,≻), let (s1, . . . , sn) ≻mul

(t1, . . . , tn) hold iff {s1, . . . , sn} 6= {t1, . . . , tn} and for each t ∈ {t1, . . . , tn}\
{s1, . . . , sn} there is an s ∈ {s1, . . . , sn} \ {t1, . . . , tn} with s ≻ t. Here,
{s1, . . . , sn} and {t1, . . . , tn} denote multisets. So ≻mul compares tuples
(s1, . . . , sn) and (t1, . . . , tn) by replacing at least one si by zero or more
components tj that are ≻-smaller than si.

Theorem 16 (Simulating Multiset Comparison) Let (%,≻) be a re-
duction pair and let R be a TRS without mutual recursion such that for
every rule f(s1, . . . , sn) → r and every subterm f(t1, . . . , tn) of r, we have
(s1, . . . , sn) ≻mul (t1, . . . , tn). Then R is size-change terminating w.r.t.
(%,≻).

Proof In every size-change graph for recursive calls of f , one can select
a subset of edges with the following properties: (1) all input nodes have
exactly one selected incoming edge, (2) for each output node, if one selects
an outgoing edge labelled with “ %”, then no other edge starting in this
node may be selected, (3) at least one edge labelled with “≻” is selected.
The reason is that for all ti ∈ {t1, . . . , tn} \ {s1, . . . , sn}, there is an

≻
→-edge

ending in if and all other input nodes are reached by an
%
→-edge.

It is easy to see that if one concatenates such size-change graphs G1

and G2 and selects those edges which result from the concatenation of two
selected edges in G1 and G2, then the selected edges in the resulting multi-
graph also satisfy the conditions (1) – (3). Hence, the properties (1) – (3)
also hold for the maximal multigraphs. Due to (3), there exists a selected
edge if

≻
→ jf in each maximal multigraph. By (1), there is also a selected

edge kf → if reaching the input node marked with if . In the concatenation
of the multigraph with itself, kf → if

≻
→ jf would give rise to a (selected)

edge kf
≻→ jf . Since maximal multigraphs are idempotent, the multigraph

itself must already contain the (selected) edge kf
≻→ jf . Then (1) implies

that kf = if and hence, we have a selected edge kf = if → if . Due to (2),
this edge must be labelled with “≻” and thus, size-change termination is
proved. ⊓⊔

The construction in the above proof is illustrated in Figure 1, where we
only depicted the selected edges of the graphs. Thus, every input node is
reached by one unique edge (1) and every output node may have at most
one outgoing

%
→-edge (2). Moreover, there must be at least one ≻→-edge in

each graph (3). The example in Figure 1 demonstrates that the properties
(1) – (3) are indeed preserved under concatenation of graphs.
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Fig. 1 Multiset Comparison with Size-Change Graphs

For example by Theorem 16, the TRS {plus(0, y) → y, plus(s(x), y) →
s(plus(y, x))} where plus permutes its arguments is size-change terminating
w.r.t. the embedding order on constructors, whereas in existing rewriting
approaches one would have to use the recursive (multiset) path order.

Since both lexicographic and multiset comparison are simulated by the
size-change principle using the same reduction pair, in this way one can also
deal with TRSs where traditional orders like RPOS , KBO , or polynomial
orders fail.

Example 17 We extend the TRS of Example 2 by the rules for the Acker-
mann function from Example 15.

f(s(x), y) → f(x, s(x)) ack(0, y) → s(y)
f(x, s(y)) → f(y, x) ack(s(x), 0) → ack(x, s(0))

ack(s(x), s(y)) → ack(x, ack(s(x), y))

Classical path orders like RPOS (or KBO) cannot prove termination of the
f-rules. The reason is that in the first rule f(s(x), y) → f(x, s(x)) the ar-
guments of f have to be compared lexicographically from left to right and
in the second rule f(x, s(y)) → f(y, x) they have to be compared as mul-
tisets. Moreover, due to the rules for the Ackermann function, polynomial
orders fail as well. In contrast, the TRS is size-change terminating w.r.t. the
embedding order on constructors.

4.2 Disadvantages of the Size-Change Principle

However, compared to classical orders from term rewriting, the size-change
principle also has several drawbacks. One problem is that it can only sim-
ulate lexicographic and multiset comparison for the arguments of the root
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symbol (provided we again use a simple reduction pair like the embedding
order which itself does not feature lexicographic or multiset comparison).
Hence, if one adds a new function on top of all terms in the rules, this
simulation is no longer possible. For example, the TRS {f(plus(0, y)) →
f(y), f(plus(s(x), y)) → f(s(plus(y, x)))} is no longer size-change terminating
w.r.t. the embedding order, whereas classical path orders can apply lexico-
graphic or multiset comparisons on all levels of the term. Thus, termination
would still be easy to prove with RPO .

Perhaps the most serious drawback is that the size-change principle lacks
concepts to compare defined function symbols syntactically. For example,
consider a TRS with the rule log(s(s(x))) → s(log(s(half(x)))) and rules for
half such that half(x) computes ⌊x

2 ⌋. Whenever a function (like log) calls
another defined function (like half) in the arguments of its recursive calls,
one has to check whether the argument half(x) is smaller than the term s(x)
in the corresponding left-hand side. The size-change principle on its own
offers no possibility for that and its mechanizable versions (Theorems 9 and
12) fail since they only compare terms w.r.t. the C-restriction of an order or
w.r.t. an order given by a TRS over C. In contrast, classical orders like RPO
can easily show termination automatically using a precedence log > s > half

on function symbols.
Finally, the size-change principle has the disadvantage that it cannot

measure terms by combining the measures of subterms as in polynomial
orders or KBO .

Example 18 Term measures (or weights) are particularly useful if one pa-
rameter is increasing, but the decrease of another parameter is greater than
this increase. So termination of the TRS {plus(s(s(x)), y) → s(plus(x, s(y))),
plus(x, s(s(y))) → s(plus(s(x), y)), plus(s(0), y) → s(y), plus(0, y) → y} is
trivial to prove with polynomial orders or KBO , but the TRS is not size-
change terminating w.r.t. any reduction pair.

This drawback of being unable to measure terms is partly solved in a
recent improvement of the size-change principle [1]. Up to now, size-change
graphs and multigraphs state whether a parameter is strictly or weakly
decreasing, but they cannot express how big this decrease is. In the new
affine-based size-change principle (AB-SCP) of [1], size-change graphs and
multigraphs are annotated with Presburger constraints which give more de-
tailed information on the amount of the decrease. To illustrate this, consider
the TRS {f(s(s(x))) → g(x), g(x) → f(s(x))}. The size-change principle can-
not capture that the big decrease of the parameter in the first rule (from f to
g) compensates the small increase of the parameter in the second rule (from
g to f). In contrast, termination can be proved easily with the AB-SCP.
However, the AB-SCP still fails for Example 18: one obtains a maximal
multigraph with Presburger constraints which state that the sum of the
two parameters of plus is strictly decreasing. But since no single parame-
ter is guaranteed to decrease, the graph contains no edges. (Both in the
ordinary size-change principle and in the AB-SCP, the output and input
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nodes of multigraphs correspond to the parameters of the functions and an
edge from one parameter to another parameter indicates a (weak or strict)
decrease.) Since the maximal multigraph does not contain any edges (and
hence, no edge of the form i ≻→ i), the AB-SCP cannot prove termination.

Another advantage of the AB-SCP over the size-change principle is an
analysis that extracts and uses information about built-in arithmetic func-
tions and predicates. But the AB-SCP still has the drawback of the size-
change principle that it does not compare terms containing defined function
symbols like half automatically. However, this would be needed in order to
prove termination of algorithms like log above.

5 Comparison with Dependency Pairs

Now we compare the size-change principle with dependency pairs. In con-
trast to other recent techniques from term rewriting (e.g., [5,9]), the depen-
dency pair approach has a direct relationship to the size-change principle.
The reason is that both dependency pairs and size-change graphs are built
from function calls (i.e., from left-hand sides of rules and subterms of right-
hand sides which have a defined root symbol). This suggests to compare and
to combine these approaches to benefit from their respective advantages. In
Section 5.1 we briefly recapitulate the dependency pair approach and show
in Section 5.2 that there are examples where the size-change principle is ad-
vantageous to the dependency pair approach. Then in Section 5.3 we discuss
the drawbacks of the size-change principle compared to dependency pairs.

5.1 Dependency Pairs

We now introduce the dependency pair approach and refer to [2,10–12,
16,31] for refinements and motivations and to [12,15] for efficient algo-
rithms to automate the approach. Let F ♯ = {f ♯ | f ∈ D} be a set of
tuple symbols, where f ♯ has the same arity as f and we often write F for
f ♯, etc. If t = g(t1, . . . , tm) with g ∈ D, we write t♯ for g♯(t1, . . . , tm).
If l → r ∈ R and t is a subterm of r with defined root symbol, then
the rewrite rule l♯ → t♯ is called a dependency pair of R. So the TRS
R = {f(s(x), y) → f(x, s(x)), f(x, s(y)) → f(y, x)} from Example 2 has the
following dependency pairs.

F(s(x), y) → F(x, s(x)) (4) F(x, s(y)) → F(y, x) (5)

We always assume that different occurrences of dependency pairs are
variable disjoint. Then a TRS is (innermost) terminating iff there is no
infinite (innermost) chain of dependency pairs. A sequence s1 → t1, s2 →
t2, . . . of dependency pairs is a chain iff tiσ →∗

R si+1σ for all i and a suitable
substitution σ. The sequence is an innermost chain iff tiσ

i→∗
R si+1σ and

all siσ are in normal form.
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To estimate which dependency pairs may occur consecutively in (inner-
most) chains, one builds a so-called (innermost) dependency graph whose
nodes are the dependency pairs and there is an edge from s → t to v → w iff
s → t, v → w is an (innermost) chain. Since it is undecidable whether two
dependency pairs form an (innermost) chain, for automation one constructs
estimated graphs such that all edges in the real graph are also edges in the
estimated graph (see, e.g., [2,14,26]). For the TRS of Example 2 we obtain
the following dependency graph.

F(s(x), y) → F(x, s(x)) F(x, s(y)) → F(y, x)

A non-empty set P of dependency pairs is a cycle iff for any pairs s → t
and v → w in P there is a non-empty path from s → t to v → w in
the graph which only traverses pairs from P . In our example we have the
cycles {(4)}, {(5)}, and {(4), (5)}. If a cycle only contains dependency pairs
resulting from the rules R′ ⊆ R we speak of an R′-cycle of the dependency
graph of R. For every cycle of the graph, we generate a set of inequality
constraints such that the existence of a reduction pair (%,≻) satisfying
the constraints guarantees that there are no infinite (innermost) chains of
dependency pairs from the cycle. Since we only regard finite TRSs, every
infinite (innermost) chain would correspond to a cycle and hence, in this way
(innermost) termination is proved. Essentially, the constraints require that
at least one dependency pair from each cycle must be strictly decreasing
(w.r.t. ≻) and the remaining ones must be weakly decreasing (w.r.t. %).
Moreover, when going from the right-hand side of a dependency pair to
the left-hand side of the next dependency pair in a chain, we need a weak
decrease. Therefore, we restrict ourselves to monotonic quasi-orders % and
require l % r for all rules l → r.

When proving innermost termination, we do not have to demand l %
r for all rules l → r, but only for those rules that are usable to reduce
right-hand sides of dependency pairs if their variables are instantiated by
normal forms. For f ∈ D we define its usable rules U(f) as the smallest
set containing all f -rules and all rules that are usable for function symbols
occurring in right-hand sides of f -rules. In our example, the usable rules for
f are (1) and (2). For D′ ⊆ D let U(D′) =

⋃
f∈D′ U(f). Moreover, for a set

of dependency pairs P , we define U(P) = U( {f | f ∈ D occurs in t for some
s → t ∈ P } ).

Theorem 19 (Dependency Pair Approach [11]) A TRS R is termi-
nating iff for each cycle P in the (estimated) dependency graph there is
a monotonic reduction pair (%,≻) on T (F ∪ F ♯,V) such that

(a) s ≻ t for at least one s → t ∈ P and s % t for all remaining s → t ∈ P
(b) l % r for all l → r ∈ R

R is innermost terminating if for each cycle P in the (estimated) innermost
dependency graph there is a monotonic reduction pair (%,≻) on T (F ∪ F ♯,
V) such that
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(c) s ≻ t for at least one s → t ∈ P and s % t for all remaining s → t ∈ P
(d) l % r for all l → r ∈ U(P)

For the TRS in Example 2, in the cycle P = {(4), (5)} we have to find a
reduction pair such that one dependency pair is weakly decreasing and the
other one is strictly decreasing. Of course, we want to use standard tech-
niques to synthesize reduction pairs (%,≻) satisfying the constraints of the
dependency pair approach. Most existing techniques generate monotonic
orders ≻. However, for the dependency pair approach only the quasi-order
% must be monotonic, whereas ≻ does not have to be monotonic. For that
reason, before synthesizing a suitable order, some of the arguments of func-
tion symbols can be eliminated. To perform this elimination of arguments
resp. of function symbols, the concept of argument filtering was introduced
in [2] (here we use the notation of [21]).

Definition 20 (Argument Filtering) An argument filtering π for a sig-
nature F maps every n-ary function symbol to an argument position i ∈
{1, . . . , n} or to a (possibly empty) list [i1, . . . , im] of argument positions
with 1 ≤ i1 < . . . < im ≤ n. The signature Fπ consists of all function
symbols f with π(f) = [i1, . . . , im], where in Fπ the arity of f is m. Ev-
ery argument filtering π induces a mapping from T (F ,V) to T (Fπ,V), also
denoted by π, which is defined as:

π(t) =






t if t is a variable
π(ti) if t = f(t1, . . . , tn) and π(f) = i
f(π(ti1), . . . , π(tim

)) if t = f(t1, . . . , tn) and π(f) = [i1, . . . , im]

An argument filtering with π(f) = i for some f ∈ F is called collapsing.

For an argument filtering on F ∪ F ♯ and a relation ≻ on T (Fπ ∪ F ♯
π,V),

let ≻π denote the relation on T (F ∪ F ♯,V) with s ≻π t iff π(s) ≻ π(t). As
observed in [2], if (%,≻) is a monotonic reduction pair on T (Fπ ∪ F ♯

π,V),
then (%π,≻π) is a monotonic reduction pair on T (F ∪ F ♯,V). However,
while %π is monotonic, ≻π is usually not monotonic, even if ≻ is monotonic.
Thus, in order to find monotonic reduction pairs in Theorem 19 one may
first preprocess the terms in the inequalities by an argument filtering and
afterwards use standard techniques to search for a reduction pair satisfying
the filtered constraints.

5.2 Advantages of the Size-Change Principle

To continue the termination proof of the TRS from Example 2 using Theo-
rem 19, we may eliminate the second argument position of F by choosing an
argument filtering with π(F) = [1] (and π(s) = [1]). In this way, F becomes
unary and every term F(s, t) is replaced by F(π(s)). Then the constraint
F(s(x)) ≻ F(x) resulting from the dependency pair (4) is easily satisfied but
there is no reduction pair satisfying the constraint F(x) % F(y) from the
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second dependency pair (5). Indeed, there exists no argument filtering such
that the constraints resulting from the dependency pair approach would be
satisfied by a standard path order like RPOS or KBO . Moreover, if one
adds the rules f(x, y) → ack(x, y), ack(s(x), y) → f(x, x), and the rules for
the Ackermann function ack from Example 15, then the dependency pair
constraints are not satisfied by any polynomial order either.

Thus, termination cannot be proved with dependency pairs in combi-
nation with classical orders amenable to automation, whereas the proof is
very easy with the size-change principle and a simple reduction pair like
the embedding order on constructors. While the examples in [24] are eas-
ily handled by dependency pairs and RPOS , this shows that there exist
TRSs where the size-change principle is preferable to dependency pairs and
standard rewrite orders.

In fact, size-change termination encompasses the concept of argument fil-
tering for root symbols, since it concentrates on certain arguments of (root)
function symbols while ignoring others. This is an advantage compared to
dependency pairs where finding the argument filtering is a major search
problem. Moreover, the size-change principle examines sequences of func-
tion calls in a more sophisticated way. Depending on the different “paths”
from one function call to another, it can choose different arguments to be
(strictly) decreasing. In contrast, in the dependency pair approach such
choices remain fixed for the whole cycle.

5.3 Disadvantages of the Size-Change Principle

However, the size-change principle also has severe drawbacks compared to
dependency pairs. In addition to the drawbacks mentioned in Section 4,
a disadvantage of the size-change principle is that it is not modular, i.e.,
one has to use the same reduction pair for the whole termination proof
whereas the dependency pair approach permits different orders for different
cycles. The size-change principle also does not analyze arguments of terms
to check whether two function calls can follow each other, whereas such a
check is performed in the construction of (innermost) dependency graphs.
Again, the most severe drawback is that the size-change principle offers
no technique to compare terms with defined symbols, whereas dependency
pairs use inequalities of the form l % r for this purpose. For that reason, only
very restricted reduction pairs may be used for the size-change principle in
Theorems 9 and 12, whereas one may use arbitrary monotonic reduction
pairs for the dependency pair approach. In fact, dependency pairs are a
complete technique which can prove termination of every terminating TRS,
which is not the case for the size-change principle (see e.g., Example 18).

6 Combination with Dependency Pairs

After having analyzed their respective advantages and drawbacks, we now
introduce a new technique to combine dependency pairs and the size-change



The Size-Change Principle and Dependency Pairs 21

principle. A straightforward approach would be to use dependency pairs
as a preprocessing step and size-change termination as the “base order”
when trying to satisfy the constraints resulting from the dependency pair
approach. However, this would be very weak due to the restrictions on the
reduction pairs in Theorems 9 and 12.

Instead, we incorporate the size-change principle into the dependency
pair approach and use it when generating the constraints. The resulting
technique is stronger than both previous approaches: If (innermost) termi-
nation can be proved by the size-change principle or by dependency pairs
using certain reduction pairs, then it can also be proved with our new tech-
nique using the same reduction pairs. Moreover, there are many examples
which cannot be proved by the size-change principle and where dependency
pairs would require complicated reduction pairs (that can hardly be gener-
ated automatically), whereas with our combined technique the (automatic)
proof works with very simple reduction pairs. Of course, if one uses more
advanced reduction pairs in the combined method one obtains an even more
powerful approach for automated termination proofs, cf. Section 8.

Size-change graphs and dependency pairs have a close correspondence,
since both represent a call of a defined symbol g in the right-hand side of a
rule f(s1, . . . , sn) → . . . g(t1, . . . , tm) . . . Since we only need to concatenate
size-change graphs which correspond to cycles in the (innermost) depen-
dency graph, we now label size-change graphs by the corresponding depen-
dency pair and multigraphs are labelled by the corresponding sequence of
dependency pairs. Then two size-change graphs or multigraphs labelled with
(. . . , D) and (D′, . . .) may only be concatenated (for termination proofs) if
there is an arc from D to D′ in the (estimated) dependency graph. If one
proves innermost termination instead of termination, then concatenation is
allowed whenever there is an arc from D to D′ in the (estimated) inner-
most dependency graph. Another problem is that in size-change graphs one
only has output nodes 1f , . . . , nf and input nodes 1g, . . . , mg to compare
the arguments of f and g. Therefore, the size-change principle cannot deal
with TRSs like Example 18 where one has to regard the whole term in order
to show termination. For that reason we add another output node εf and
input node εg which correspond to the whole terms (or more precisely, to
the terms F (s1, . . . , sn) and G(t1, . . . , tm) of the corresponding dependency
pair).

Definition 21 (Extended Size-Change Graphs) Let (%,≻) be a reduc-
tion pair on T (F ∪ F ♯,V). For every rule f(s1, . . . , sn) → r of a TRS R and
every subterm g(t1, . . . , tm) of r with g ∈ D, the extended size-change graph
has n+1 output nodes if and m+1 input nodes jg where i ∈ {ε, 1, . . . , n}, j ∈
{ε, 1, . . . , m}. Let s = F (s1, . . . , sn) and t = G(t1, . . . , tm). Then there is
an edge if

≻
→ jg iff s|i ≻ t|j and otherwise, there is an edge if

%
→ jg iff

s|i % t|j. Moreover, every extended size-change graph is labelled by a one-
element sequence (F (s1, . . . , sn) → G(t1, . . . , tm)).

Concatenation of extended size-change graphs to extended multigraphs
works as in Definition 3. However, if G is a multigraph labelled with the se-
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quence (D1, . . . , Dk) and H is labelled with (D′
1, . . . , D

′
k′), then they can only

be concatenated if there is an arc from Dk to D′
1 in the (estimated) depen-

dency graph or in the (estimated) innermost dependency graph, respectively.
The concatenation G·H is labelled with (D1, . . . , Dk, D′

1, . . . , D
′
k′).

As an example, reconsider the TRS for the Ackermann function from
Example 15. The rule ack(s(x), 0) → ack(x, s(0)) gives rise to the following
extended size-change graph if we use the embedding order on constructors
and tuple symbols.

εack

≻

##G
GG

GG
εack

1ack ≻
// 1ack

2ack 2ack

This graph is labelled with the singleton sequence consisting of the depen-
dency pair ACK(s(x), 0) → ACK(x, s(0)). Thus, it cannot be concatenated
with itself, since there is no arc from this dependency pair to itself in the
estimation of the (innermost) dependency graph.

In the remainder, when we speak of size-change graphs or multigraphs,
we always mean extended graphs. Obviously, there may exist infinitely many
multigraphs due to the labelling with a sequence of dependency pairs. How-
ever, two multigraphs with labels (D1, . . . , Dk) and (D′

1, . . . , D
′
k′) are iden-

tified if their nodes and edges are identical and if D1 = D′
1, Dk = D′

k′ ,
and {D1, . . . , Dk} = {D′

1, . . . , D
′
k′}. Thus, for the label only the set of de-

pendency pairs and the first and last dependency pair of the sequences is
important. Then, there are again only finitely many different multigraphs.

To combine dependency pairs and the size-change principle, now we only
regard multigraphs labelled with a cycle P of the (estimated) dependency
or innermost dependency graph, respectively (i.e., they are labelled with
(D1, . . . , Dk) such that P = {D1, . . . , Dk}). Moreover, one may use differ-
ent reduction pairs for the multigraphs resulting from different cycles. To
benefit from the advantages of the size-change principle (i.e., combining lex-
icographic and multiset comparison and using different argument filterings
and strict inequalities within one cycle), we do not build inequalities but
size-change graphs out of the dependency pairs.

The following theorem combines dependency pairs and the size-change
principle (Theorem 12) for full termination. In contrast to Theorem 12 we
now allow arbitrary reduction pairs. However, to handle defined symbols
properly, then one has to require that all rules are weakly decreasing (like
in the dependency pair approach). Alternatively, as in Theorem 12 one may
also use reduction pairs (→∗

S ,→+
S ) for a terminating non-duplicating TRS

S over the constructors C of R and the tuple symbols F ♯ without requiring
that R’s rules are weakly decreasing. For example, in this way one can
prove termination of the Ackermann TRS with the embedding order (i.e.,
S = EmbC∪F♯). However, in order to use (→∗

S ,→+
S ) for some cycles and
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other reduction pairs (%,≻) for other cycles, one has to prove termination
of R∪ S instead of just R.

Example 22 To illustrate this, let R = {g(f(a)) → g(f(b)), f(b) → f(a)}
and S = {a → b}. The only cycle of R’s dependency graph is {G(f(a)) →
G(f(b))} and for this cycle, size-change termination can be shown using
(→∗

S ,→+
S ). Thus, if one only regards R instead of R ∪ S, one could falsely

“prove” termination of R. Instead, {F(b) → F(a)} must also be regarded,
since it is an R-cycle of the dependency graph of R∪S (because in R∪S,
a is a defined symbol). Moreover, for reduction pairs (%,≻) 6= (→∗

S ,→+
S ),

one has to demand l % r not only for the rules l → r of R, but for those
of S as well. Otherwise, the constraints for the cycle {F(b) → F(a)} would
falsely be satisfiable.

By Theorem 23, the resulting termination criterion is sound, complete,
and more powerful than the size-change principle or dependency pairs on
their own.

Theorem 23 (Termination Proofs) Let R be a TRS over F with con-
structors C and let S be a terminating non-duplicating TRS over C ∪ F ♯.
R ∪ S is terminating iff for each R-cycle P in the (estimated) dependency
graph of R∪S there is a monotonic reduction pair (%,≻) on T (F ∪ F ♯,V)
such that

(a′) all maximal multigraphs w.r.t. (%,≻) labelled with P
contain an edge i

≻
→ i

(b′) % = →∗
S and ≻ = →+

S or l % r for all l → r ∈ R ∪ S

The termination criterion with the conditions (a′) and (b′) encompasses
both size-change termination and the dependency pair approach: If R is size-
change terminating w.r.t. a reduction pair (→∗

S ,→+
S ) as in Theorem 12, then

the reduction pair (%,≻) := (→∗
S ,→+

S ) on T (F ∪ F ♯,V) also satisfies the
conditions (a′) and (b′) above. Moreover, if a reduction pair (%,≻) satisfies
Conditions (a) and (b) of Theorem 19 for termination with dependency
pairs, then (%,≻) also satisfies the conditions (a′) and (b′) above for S = ∅.

Proof The above criterion can simulate size-change termination (Theorem
12): if every maximal multigraph contains an edge i

≻
→ i then this also

holds for those maximal multigraphs that are labelled with P . It can also
simulate dependency pairs by choosing S = ∅: Condition (a) in Theorem 19
implies that every multigraph labelled with P must contain the edge ε ≻→ ε.
Since the dependency pair approach is complete for termination (even with
estimated or no dependency graphs), this also proves the “only if” direction.

For the “if” direction, suppose that R ∪ S is not terminating. Since S
terminates, by Lemma 11 and the soundness of dependency pairs, there
is an infinite chain s1 → t1, s2 → t2, . . . of R-dependency pairs such that
tiσ →∗

R∪S si+1σ for all i and a substitution σ, and each si has the form l♯i
for a minimal non-terminating term liσ w.r.t. R ∪ S. Those dependency
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pairs which occur infinitely often in this chain must form a cycle P of the
dependency graph of R∪S and since the chain only contains R-dependency
pairs, P is an R-cycle. Let i1 < i2 < . . . such that {sij

→ tij
, . . . , sij+1−1 →

tij+1−1} = P for all j ≥ 1, i.e., we partition the sequence into parts where
all dependency pairs of P occur. For all j, let Gj be the multigraph resulting
from the concatenation of the size-change graphs corresponding to sij

→
tij

, . . . , sij+1−1 → tij+1−1. Note that all Gj are labelled with P .

Due to (a′), every multigraph H resulting from concatenation of size-
change graphs contains an edge of the form i

≻
→ i, provided that H = H·H

and that H is labelled with P . Hence, every idempotent multigraph H =
H·H resulting from concatenating graphs from G1, G2, . . . also contains an
edge i ≻→ i. The reason is that since all Gj are labelled with P , H is also
labelled with P .

Let Γ = {G1, G2, . . .}. Obviously, Γ is finite since there can only be
finitely many multigraphs (as F is finite). Since every maximal multigraph
G1·G2· . . .·Gn with G1, . . . , Gn ∈ Γ has an edge of the form i ≻→ i,
Lemma 6 implies that there is an infinite path with infinitely many

≻
→-

edges in the graph G1 ◦ G2 ◦ . . . Hence, there is also such an infinite path
in the infinite graph resulting from the size-change graphs corresponding to
s1 → t1, s2 → t2, . . . Without loss of generality, we assume that the infinite
path already starts in the size-change graph corresponding to s1 → t1. For
every i, let ai be the output node in the size-change graph of si → ti which is
on this path. For infinitely many i we have si|ai

σ ≻ ti|ai+1
σ and otherwise,

we have si|ai
σ % ti|ai+1

σ, since % and ≻ are closed under substitutions.

If the reduction pair (%,≻) is (→∗
S ,→+

S ), then we proceed as in the
proof of Theorem 12: We have si|ai

σ ≻ ti|ai+1
σ →∗

R∪S si+1|ai+1
σ (i.e.,

si|ai
σ →+

S ti|ai+1
σ →∗

R∪S si+1|ai+1
σ) for infinitely many i and si|ai

σ %

ti|ai+1
σ →∗

R∪S si+1|ai+1
σ (i.e., si|ai

σ →∗
S ti|ai+1

σ →∗
R∪S si+1|ai+1

σ) for all

other i. Hence, s1|a1
σ = l♯1|a1

σ does not terminate w.r.t. R ∪ S. If a1 6= ε,

then l♯1|a1
σ is a subterm of l1σ which contradicts the minimality of the latter

term. If a1 = ε, then Lemma 11 implies that l♯1σ must have a proper subterm
which is non-terminating as well. This again contradicts the minimality of
l1σ. Otherwise if (%,≻) 6= (→∗

S ,→+
S ), we have ti|ai+1

σ % si+1|ai+1
σ due to

(b′) since ti|ai+1
σ →∗

R∪S si+1|ai+1
σ. Hence, we obtain an infinite decreasing

sequence w.r.t. ≻ which contradicts its well-foundedness. ⊓⊔

For the automation of Theorem 23 we choose S = ∅ which results in the
following corollary. Of course, this corollary does not encompass the termi-
nation criterion with the size-change principle of Theorem 12 anymore. For
example, in contrast to Theorem 12, this corollary can no longer prove ter-
mination of the Ackermann TRS with the embedding order. Nevertheless,
our experiments in Section 8 show that this corollary (which only replaces
Condition (a) of Theorem 19 by (a′)) already increases performance signif-
icantly.
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Corollary 24 (Automated Termination Proofs) A TRS R is termi-
nating iff for each cycle P in the (estimated) dependency graph there is a
monotonic reduction pair (%,≻) on T (F ∪ F ♯,V) such that

(a′) all maximal multigraphs w.r.t. (%,≻) labelled with P
contain an edge i ≻→ i

(b) l % r for all l → r ∈ R

In the corresponding approach for innermost termination, we integrate
the technique of Theorem 9 with dependency pairs. In the dependency pair
approach for innermost termination, only the usable rules for defined sym-
bols in right-hand sides t of dependency pairs s → t have to be weakly
decreasing. Here, one can benefit from the size-change principle, which re-
stricts the comparison of terms to certain arguments. Function symbols of
t which do not occur in the arguments being compared do not have to be
regarded as being “usable”. More precisely, if one uses the restriction of a
reduction pair where one can only compare s and t if t’s symbols come from
a subset D′ ⊆ D, then one only has to require weak decreasingness of U(D′).
Thus, here the size-change principle has the important advantage that one
can reduce the set of usable rules.

For example, the TRS for the Ackermann function from Example 15 has
the rule ack(s(x), s(y)) → ack(x, ack(s(x), y)) and therefore, we obtain the
dependency pair ACK(s(x), s(y)) → ACK(x, ack(s(x), y)). Since ack occurs in
the right-hand side of this dependency pair, in the dependency pair approach
we would have to require l % r for all ack-rules since they would be regarded
as being usable. For this reason, we would need a lexicographic comparison.
However, in our new technique, the ACK-dependency pairs are transformed
into size-change graphs and size-change termination can easily be shown
using the embedding order on constructor terms (i.e., D′ = ∅). In other
words, the second argument of ACK(x, ack(s(x), y)) is never regarded in this
comparison and therefore, the ack-rules are no longer usable. So instead of
LPO we only need the embedding order to satisfy the resulting constraints.
Hence, in the combined technique one can often use much simpler reduction
pairs than the reduction pairs needed with dependency pairs.

Theorem 25 (Innermost Termination Proofs) A TRS R is innermost
terminating if for each cycle P in the (estimated) innermost dependency
graph there is a subset D′ ⊆ D and a reduction pair on T (F ∪ F ♯,V) which
is monotonic if D′ 6= ∅, such that for its (C ∪ D′ ∪ F ♯)-restriction (%,≻)
we have

(c′) all maximal multigraphs w.r.t. (%,≻) labelled with P
contain an edge i

≻
→ i

(d′) l % r for all l → r ∈ U(D′)

The innermost termination criterion with the conditions (c′) and (d′) en-
compasses both size-change termination and the dependency pair approach:
If R is size-change terminating w.r.t. the C-restriction (%,≻) of a reduction
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pair as in Theorem 9, then (%,≻) also satisfies the conditions (c′) and (d′)
above for D′ = ∅. Moreover, if a reduction pair satisfies Conditions (c) and
(d) of Theorem 19 for innermost termination with dependency pairs, then
its (C ∪D′ ∪F ♯)-restriction (%,≻) also satisfies the conditions (c′) and (d′)
above, where D′ are the defined symbols of the TRS U(P).

Proof Theorem 25 can simulate the size-change principle: As in Theorem 23,
size-change termination implies (c′). Moreover, if (%,≻) is the C-restriction
of a reduction pair as in Theorem 9, then D′ = ∅ and thus, (d′) is also
satisfied.

To show that Theorem 25 can simulate dependency pairs, let (%̂, ≻̂) be
a reduction pair on T (F ∪ F ♯,V) satisfying Theorem 19 (c) and (d) for
some cycle P . By choosing D′ to consist of the defined symbols of the TRS
U(P), we have U(D′) = U(P) and all defined symbols occurring in some
right-hand side t with s → t ∈ P ∪ U(D′) are contained in D′. Thus, in
(c′) and (d′) one only compares terms s and t where t ∈ T (C ∪D′ ∪F ♯,V).
Hence, Theorem 19 (c) and (d) do not only imply that (c′) and (d′) hold for

the original reduction pair (%̂, ≻̂), but also for its (C ∪ D′ ∪ F ♯)-restriction
(%,≻).

The soundness of the above criterion is shown as for Theorem 23. If
R is not innermost terminating, then there is an infinite innermost chain
s1 → t1, s2 → t2, . . . with tiσ

i→∗
R si+1σ and all siσ are normal forms. As

in Theorem 23’s proof, this innermost chain corresponds to a cycle P of
the innermost dependency graph. Moreover, in the infinite graph resulting
from the corresponding size-change graphs there is an infinite path with
infinitely many “≻” labels. For every i, let ai be the output node in the
size-change graph corresponding to si → ti which is on this infinite path.

Let (%̂, ≻̂) be the reduction pair on T (F ∪ F ♯,V) whose (C ∪ D′ ∪ F ♯)-

restriction (%,≻) satisfies (c′) and (d′). To conclude ti|ai+1
σ %̂ si+1|ai+1

σ,
first note that si|ai

% ti|ai+1
or si|ai

≻ ti|ai+1
. Recall that ti|ai+1

∈ T (C ∪
D′ ∪ F ♯,V) and that σ instantiates all variables of si (and hence, of ti) to
normal forms. Thus, the only rules applicable to ti|ai+1

σ are from U(D′).
If D′ = ∅, then this implies ti|ai+1

σ = si+1|ai+1
σ. Otherwise, (d′) ensures

ti|ai+1
σ %̂ si+1|ai+1

σ by the stability and monotonicity of %̂. Since we also

have si|ai
≻̂ ti|ai+1

for infinitely many i and si|ai
%̂ ti|ai+1

for all remaining
i, we obtain an infinite decreasing sequence w.r.t. ≻̂ which contradicts its
well-foundedness. ⊓⊔

The combined technique handles TRSs where both original techniques
fail, since some rules require a lexicographic or multiset comparison and oth-
ers require polynomial orders. In the combined technique, a lexicographic
or multiset comparison is implicit since the size-change principle is incorpo-
rated. Thus, the resulting constraints are often satisfied by simple polyno-
mial orders. For example, we unite the plus-TRS (Example 18) with the ack-
TRS (Example 15), where ack(s(x), s(y)) → ack(x, ack(s(x), y)) is replaced
by ack(s(x), s(y)) → ack(x, plus(y, ack(s(x), y))). In the original dependency
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pair approach, both the ack- and plus-rules are usable for the correspond-
ing dependency pair and thus, no standard order amenable to automation
fulfills the resulting constraints. But in the combined technique, there are
no usable rules and hence, the innermost termination proof works with the
simple polynomial order on constructors and tuple symbols where s(x) is
mapped to x + 1 and PLUS(x, y) is mapped to x + y. In practice, there are
many TRSs where the combined technique simplifies the termination proof
significantly, cf. the following example and our experiments in Section 8.

Example 26 We consider the following TRS for sorting lists from [3, Ex-
ample 3.10]. Here, nil denotes the empty list, cons(n, x) represents the inser-
tion of the element n in front of the list x, rm(n, x) removes all occurrences
of n from the list x, and sort(x, nil) returns a sorted version of the list x
where duplicates are eliminated. To ease readability we use infix symbols
“=”, “≤”, and “++” for equality, comparison of natural numbers, and list
concatenation, respectively.

0 = 0 → true

0 = s(x) → false

s(x) = 0 → false

s(x) = s(y) → x = y

0 ≤ y → true

s(x) ≤ 0 → false

s(x) ≤ s(y) → x ≤ y

nil ++ y → y

cons(n, x) ++ y → cons(n, x ++ y)

min(cons(n, nil)) → n

min(cons(n, cons(m, x))) → ifmin(n ≤ m, cons(n, cons(m, x)))

ifmin(true, cons(n, cons(m, x))) → min(cons(n, x))

ifmin(false, cons(n, cons(m, x))) → min(cons(m, x))

rm(n, nil) → nil

rm(n, cons(m, x)) → ifrm(n = m, n, cons(m, x))

ifrm(true, n, cons(m, x)) → rm(n, x)

ifrm(false, n, cons(m, x)) → cons(m, rm(n, x))

sort(nil, nil) → nil

sort(cons(n, x), y) → ifsort(n = min(cons(n, x)), cons(n, x), y)

ifsort(true, cons(n, x), y) → cons(n, sort(rm(n, x) ++ y, nil))

ifsort(false, cons(n, x), y) → sort(x, cons(n, y))

To automate the dependency pair approach, the following algorithm
was suggested in [15]. One first solves the constraints of Theorem 19 for
the strongly connected components (SCC) of the (estimated) dependency
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graph. Here, an SCC is a maximal cycle, i.e., a cycle that is not properly
contained in any other cycle. Afterwards, one deletes all dependency pairs
s → t from the graph where the strict constraints s ≻ t were satisfied. After
the deletion one computes SCCs again and continues in this way.

Of course, it is particularly desirable for efficiency if already the deletion
of the dependency pairs s → t with s ≻ t from the initial SCCs results in
graphs with no further cycles. In other words, it would be advantageous if
the generated reduction pair also satisfies the following constraints instead
of just Constraint (a) of Theorem 19 for every (initial) SCC P :

(a)1 s % t for all s → t ∈ P
(a)2 s ≻ t for at least one s → t ∈ P ′ for each cycle P ′ ⊆ P

In our example, the most interesting part is to show termination of sort

and ifsort. The corresponding SCC consists of the following three dependency
pairs and has the following form.

SORT(cons(n, x), y) → IFsort(n = min(cons(n, x)), cons(n, x), y) (6)

IFsort(true, cons(n, x), y) → SORT(rm(n, x) ++ y, nil) (7)

IFsort(false, cons(n, x), y) → SORT(x, cons(n, y)) (8)

(6)

  A
AA

A

~~}}
}}

(7)

>>}}}}

(8)

``AAAA

In order to prove the absence of infinite chains built from (6), (7), and
(8), one can show that in each cycle either the sum of the list sizes of both
SORT-arguments is reduced or the sum remains equal and the list in SORT’s
first argument is shortened. So one uses two different measures to compare
SORT’s arguments and combines these measures lexicographically. The list
sizes can be expressed by simple linear polynomials, but the lexicographic
combination of these measures cannot be expressed with simple polynomi-
als. Therefore in [3], polynomials of degree 2 have been used to simulate the
lexicographic comparison.

In contrast to this, with the combined approach of Corollary 24 we do
not need complex polynomials, even when using the same reduction pairs
for all cycles of an SCC. The reason is that the lexicographic combination
can be simulated in the size-change graphs. We map cons(n, x) to n+x+1,
the symbols 0, true, false, nil, =, ≤ are mapped to 0, we map rm(x, y) and
ifrm(b, x, y) to y, we map min(x) and ifmin(b, x) to x, and x ++ y, sort(x, y),
SORT(x, y), ifsort(b, x, y), and IFsort(b, x, y) are mapped to x + y. Then all
constraints from the rules can be oriented (i.e., we have l % r for all rules
l → r) and we obtain the following three size-change graphs.3 To ease

3 In addition to the edges above, the output nodes labelled with ε have edges
to all input nodes. We did not depict all of these edges to improve readability.
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readability, we denoted
%
→-edges by dotted arrows and ≻→-edges by solid

arrows.

(6)

εsort
// εifsort

1ifsort

1sort
//

;;wwww
2ifsort

2sort
//

DD

3ifsort

(7)

εifsort
// εsort

1ifsort

��

2ifsort

##G
GG

G
1sort

3ifsort
// 2sort

(8)

εifsort
// εsort

1ifsort

2ifsort
// 1sort

3ifsort 2sort

In this example, there are eight maximal multigraphs (where we again iden-
tify multigraphs with the labels (D1, . . . , Dk) and (D′

1, . . . , D
′
k′) if D1 = D′

1,
Dk = D′

k′ , and {D1, . . . , Dk} = {D′
1, . . . , D

′
k′}, provided that their nodes

and edges are identical).

(6)·(7)

εsort
// εsort

1sort

##H
HHH

1sort

2sort
// 2sort

(6)·(8)

εsort
// εsort

1sort
// 1sort

2sort 2sort

(6)·(7)·(6)·(8)

εsort
// εsort

1sort 1sort

2sort 2sort

(6)·(7)·(6)·(8)·(6)·(7)

εsort
// εsort

1sort 1sort

2sort 2sort

(7)·(6)

εifsort
// εifsort

1ifsort
//

��

1ifsort

2ifsort

##H
HHH

;;vvvv
2ifsort

3ifsort
//

DD

3ifsort

(8)·(6)

εifsort
// εifsort

1ifsort 1ifsort

2ifsort
//

;;vvvv
2ifsort

3ifsort 3ifsort

(7)·(6)·(8)·(6)

εifsort
// εifsort

1ifsort 1ifsort

2ifsort 2ifsort

3ifsort 3ifsort

(8)·(6)·(7)·(6)·(8)·(6)

εifsort
// εifsort

1ifsort 1ifsort

2ifsort 2ifsort

3ifsort 3ifsort

It is easy to see that all maximal multigraphs either contain an
≻
→-edge

between their ε-nodes or there is an
%
→-edge between the ε-nodes and an

≻→-edge between the but-last argument nodes.

One should remark that in contrast to the approach for termination,
the dependency pair approach for innermost termination in Theorem 19
only provides a sufficient, but not a necessary criterion. An example of an
innermost terminating TRS where the constraints (c) and (d) of Theorem
19 are unsatisfiable is given in [2, Example 43]. Similarly, this example
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also shows that the combination of dependency pairs and the size-change
principle in Theorem 25 does not yield a necessary criterion for innermost
termination either.

To summarize, the combination of dependency pairs and the size-change
principle has two main advantages: First, one can now prove (innermost)
termination of TRSs automatically where up to now an automated proof was
impossible. Second, for many TRSs where up to now the termination proof
required complicated reduction pairs involving a large search space, one can
now use much simpler orders which increases efficiency. These advantages
are confirmed by our experiments in Section 8.

7 Complexity

In [24] it was shown that proving size-change termination is PSPACE-
complete. In contrast, up to now there have been no results about the com-
plexity of the dependency pair approach. To allow a comparison between
dependency pairs and the size-change principle, we present new contribu-
tions analyzing the complexity of both the dependency pair approach and
of the new technique from Section 6 which combines dependency pairs with
the size-change principle.

Section 7.1 shows that while the size-change principle is PSPACE-hard,
the dependency pair approach is only in NP if one uses standard estimation
techniques for the dependency graph, argument filterings, and base orders
in NP. Thus, although our experiments in Section 8 show that the depen-
dency pair approach is more powerful for termination proofs of practical
algorithms than the size-change principle, dependency pairs belong to a
lower complexity class, provided that NP ( PSPACE. (Nevertheless, these
are only asymptotic worst-case complexities and indeed, in our experiments
the dependency pair approach required significantly more runtime than the
size-change principle, cf. Section 8.) Moreover, compared to a direct ap-
plication of NP-complete base orders like LPO and RPO(S ), using them
together with the dependency pair approach improves power significantly
while the asymptotic worst-case complexity is not increased. To give a pre-
cise description of the complexity of the dependency pair approach, we prove
that even if we are restricted to a simple reduction pair like the embedding
order, the dependency pair approach is NP-hard (and thus, NP-complete).

In Section 7.2, we show that the complexity of the size-change prin-
ciple is not increased when combining it with dependency pairs. In other
words, with standard estimations of the dependency graph and base orders
in PSPACE, the combined method is still in PSPACE although it is far
more powerful than the size-change principle on its own. Moreover, we show
that every method that is at least as powerful as the size-change principle
is PSPACE-hard, which implies PSPACE-completeness of our combination
technique. These results indicate that dependency pairs or the combination
with dependency pairs are not only advantageous because of increase in
power, but they are also advantageous as far as complexity is concerned.
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7.1 Complexity of Dependency Pairs

We first show that the dependency pair technique (both for termination and
innermost termination) is in NP if one uses standard approximations of the
dependency graph, argument filterings, and a class of reduction pairs RP
such that for any set of inequality constraints, satisfiability of the constraints
by some reduction pair from RP is in NP. Examples for such classes are
reduction pairs based on LPO and RPO (here this problem is NP-complete
[20]) as well as the embedding order and KBO (here the problem is in
P [19]). For (general) polynomial orders, the problem is undecidable. For
the estimation of the (innermost) dependency graph, in the following theo-
rem we use an (innermost) dependency graph approximation algorithm est

which, given two dependency pairs s → t and v → w, can sometimes deter-
mine that these pairs do not form an (innermost) chain. So if est returns
“no”, then s → t, v → w is indeed no (innermost) chain. But if est re-
turns “yes”, then this does not guarantee that s → t, v → w is really an
(innermost) chain.

One can estimate (innermost) dependency graphs by such an algorithm
est by drawing an edge from s → t and v → w whenever est returns “yes”.
In this way, one indeed obtains a graph containing the real (innermost)
dependency graph. The following theorem states that if est is in NP (i.e., if
its non-deterministic runtime is polynomial in the size of the TRS), then a
termination proof using this estimated graph can also be performed in NP.

Theorem 27 (Dependency Pairs are in NP) Let RP be a class of re-
duction pairs such that satisfiability of constraints by some reduction pair
from the class is in NP. Moreover, let est be an (innermost) dependency
graph approximation algorithm in NP. If one estimates (innermost) depen-
dency graphs by est and if one is restricted to reduction pairs resulting from
arbitrary argument filterings and pairs from RP, then proving (innermost)
termination by Theorem 19 is in NP.

Proof For every term t, let |t| be the size of t (i.e., the number of symbols)
and let n =

∑
l→r∈R |l| + |r| be the size of the TRS R. We show that

the non-deterministic complexity for an (innermost) termination proof with
dependency pairs is polynomial in n.

From each rule l → r ∈ R one obtains at most |r| dependency pairs.
So the overall number of dependency pairs is bounded by n and for each
dependency pair s → t we also have |s| + |t| ≤ n.

To compute the estimated (innermost) dependency graph, we have to
check for all dependency pairs s → t and v → w whether s → t should
be connected to v → w. To this end we call the algorithm est which is
in NP. The input to est is bounded by 3n (2n for the two dependency
pairs and another n for R) and since we perform at most n2 of these calls,
the computation of the estimated graph can be done in (non-deterministic)
polynomial time.
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Once we have obtained the estimated graph, we can compute all SCCs
(i.e., all maximal cycles) in linear time using a standard graph algorithm.
Note that we do not compute every cycle in the graph, since there may be
exponentially many. Instead, we use the result of [15] that it is sufficient
to inspect SCCs repeatedly. As explained in Example 26, one first solves
the constraints for an SCC and afterwards, one deletes all dependency pairs
s → t from the graph where the strict constraints s ≻ t were satisfied. After
the deletion one computes SCCs again and continues in this way. As there
are at most n dependency pairs, we have at most n iterations with the cost
of a (linear) SCC analysis and the treatment of a single cycle. So it only
remains to show that handling one cycle can be done in NP.

In the innermost case, we first compute the set U(P) which can clearly be
done in polynomial time. Next, for both termination and innermost termi-
nation proofs, we non-deterministically choose one dependency pair which
we require to be strictly decreasing.4 Then we choose the argument fil-
tering non-deterministically in linear time. Finally, for the set of filtered
constraints, satisfiability by some reduction pair of RP is in NP. ⊓⊔

For the estimation techniques of the (innermost) dependency graph from
[2,14,26], the algorithm est to determine that two dependency pairs do not
have to be connected runs in polynomial time. Thus, with these standard es-
timations of dependency graphs and base orders like LPO , RPO(S ), KBO ,
or the embedding order, by Theorem 27 the dependency pair approach is
in NP.5

Next, we show that even if we are restricted to the embedding order,
the dependency pair approach (using argument filterings) is NP-hard. We
prove this result for any sound estimation of the (innermost) dependency
graph which can at least detect that two dependency pairs s → t and v → w
cannot be connected if t and v have different tuple symbols on their root
positions. Together with the previous theorem this implies NP-completeness
of dependency pairs.

Theorem 28 (Dependency Pairs are NP-hard) Both the termination
and the innermost termination technique of Theorem 19 are NP-hard if one
uses reduction pairs based on argument filterings and the embedding order.

Proof We give a reduction from the NP-complete problem 3-SAT. Let ϕ =
C0 ∧ . . . ∧ Cn be a formula in 3-conjunctive normal form over the variables
{v0, . . . , vm}. Every clause Ci has the form Ci = li,1∨ li,2∨ li,3 where each of
the literals li,1, li,2, li,3 is either a variable vj or a negated variable ¬vj with
0 ≤ j ≤ m. A formula ϕ is satisfiable iff there exists a variable assignment

4 Alternatively, we could loop over all dependency pairs, since there can be at
most n of them.

5 The proof of Theorem 27 also reveals that if one uses a class of reduction pairs
where satisfiability of constraints is in P, if est is in P, and if one does not use
argument filterings, then the dependency pair approach is in P as well.
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τ : {v0, . . . , vm} → {true, false} such that τ(ϕ) is equivalent to true using the
standard semantics of ∨, ∧, and ¬. In this case, we also write “τ(ϕ) = true”.

We will present a polynomial-time translation of formulas ϕ into TRSs
Rϕ such that ϕ is satisfiable iff (innermost) termination of Rϕ can be proved
by the dependency pair approach with argument filterings and the embed-
ding order. The idea is to define Rϕ in such a way that there is a correspond-
ence between variable assignments τ and argument filterings π: the formula
ϕ is satisfied under the variable assignment τ iff (innermost) termination of
Rϕ can be proved using the corresponding argument filtering π.

Let V be a set of fresh variables and let F be a signature with the binary
function symbols v0, . . . , vm and a constant ⊥. For any x ∈ V , we first define
a translation Tx from literals over {v0, . . . , vm} to terms from T (F ,V).

Tx(vj) = vj(x,⊥)
Tx(¬vj) = vj(⊥, x)

Now we can define our transformation from formulas ϕ as above to TRSs
Rϕ. For every clause Ci, we introduce two ternary symbols gi and hi and
moreover, our signature F must contain an additional unary symbol s.

Rϕ ={vj(x, x) → x | 0 ≤ j ≤ m} ∪{
gi(s(x1), s(x2), s(x3)) → hi(Tx1

(li,1), Tx2
(li,2), Tx3

(li,3))
hi(x, x, x) → gi+1mod n+1(x, x, x)

∣∣∣∣ 0 ≤ i ≤ n

}

Clearly, the transformation from ϕ to Rϕ can be computed in polynomial
time. It remains to show that (innermost) termination of Rϕ can be proved
by dependency pairs with argument filterings and the embedding order iff
ϕ is satisfiable.

Thus, we now analyze the structure of a possible (innermost) termina-
tion proof of Rϕ. Due to the rules vj(x, x) → x, the dependency graph and
the innermost dependency graph have edges between the dependency pairs
Gi(.) → Hi(.) and Hi(.) → Gi+1 modn+1(.). The reason is that by the sub-
stitution σ that replaces every variable by ⊥, we obtain σ(Hi(Tx1

(li,1), . . . ,
Tx3

(li,3))) = Hi(vi1 (⊥,⊥), . . . , vi3(⊥,⊥)) i→3 Hi(⊥,⊥,⊥) = σ(Hi(x, x, x))
for some i1, i2, i3 from {0, . . . , m}. Moreover, there is an edge from the
dependency pair Hi(.) → Gi+1 modn+1(.) to the pair Gi+1 modn+1(.) →
Hi+1 modn+1(.). Thus, the TRS Rϕ has the cycle P = {G0(.) → H0(.),
H0(.) → G1(.), . . . , Hn(.) → G0(.)} in its (innermost) dependency graph. It
is easy to see (and can be detected by every approximation algorithm for the
(innermost) dependency graph that inspects at least the tuple symbols to es-
timate (innermost) chains) that there are no other cycles in the graph of Rϕ.
Hence, the (innermost) termination proof of Rϕ using Theorem 19 is equiva-
lent to solving the constraints arising from P . In the termination case, these
have the following form if one uses an argument filtering π and the embed-
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ding order ≻Emb (where ≻Emb = →+
Emb

Fπ∪F
♯
π

and �Emb = →∗
Emb

Fπ∪F
♯
π

).

π(vj(x, x)) �Emb π(x) (9)

π(gi(s(x1), s(x2), s(x3))) �Emb π(hi(Tx1
(li,1), Tx2

(li,2), Tx3
(li,3))) (10)

π(hi(x, x, x)) �Emb π(gi+1 mod n+1(x, x, x)) (11)

π(Gi(s(x1), s(x2), s(x3))) �Emb π(Hi(Tx1
(li,1), Tx2

(li,2), Tx3
(li,3))) (12)

π(Hi(x, x, x)) �Emb π(Gi+1 modn+1(x, x, x)) (13)

Moreover, one of the dependency pair constraints of the form (12) or (13) has
to be strictly decreasing. In the innermost termination case, the constraints
(10) and (11) are missing.

As we use the embedding order as base order, in a successful proof we
have to filter away all symbols on the right-hand sides of the constraints
that do not occur in the corresponding left-hand side. This implies that
we have to use a collapsing argument filtering for the symbols Hi and Gi,
i.e., π(Hi), π(Gi) ∈ {1, 2, 3}. In the termination case, we also have to use a
collapsing filtering for hi and gi due to the constraints (10) and (11). Then
the constraints (11) and (13) result in x �Emb x which is obviously satisfied.
This shows that one of the constraints (12) must be strict.

Since ⊥ and the symbols vj do not occur in the left-hand sides of
(12), π(Hi(Tx1

(li,1), Tx2
(li,2), Tx3

(li,3))) must not contain these symbols ei-
ther. Hence, π(Hi(Tx1

(li,1), Tx2
(li,2), Tx3

(li,3))) has to be a variable from
x1, x2, x3. This shows that π(Gi) and π(Hi) are identical, i.e.,

π(Gi) = π(Hi) = ki with ki ∈ {1, 2, 3}. (14)

Moreover, we must have
π(s) = [1], (15)

since otherwise, none of the constraints (12) would be strictly decreasing.
Similar to (14), in the termination case we obtain the following requirements
from (10):

π(gi) = π(hi) = k′
i with k′

i ∈ {1, 2, 3}. (16)

Now the constraints (12) have the form s(xki
) ≻Emb π(Txki

(li,ki
)). This is

equivalent to the requirement

π(Txki
(li,ki

)) = xki
. (17)

Similarly, in the termination case, the constraints (10) are equivalent to

π(Txk′
i

(li,k′
i
)) = xk′

i
. (18)

Finally, the constraints (9) are equivalent to

π(vj) 6= [ ]. (19)

Thus, termination of Rϕ can be shown by dependency pairs with argument
filterings and the embedding order iff there exists an argument filtering π
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satisfying the requirements (14) – (19). Similarly, innermost termination
can be shown if π satisfies the requirements (14), (15), (17), and (19). To
conclude the proof of the theorem it remains to show that the existence of
such an argument filtering is equivalent to satisfiability of ϕ.

For the “if” direction, let τ be a variable assignment with τ(ϕ) = true.
We define π(vj) = 1 iff τ(vj) = true and π(vj) = 2 iff τ(vj) = false. Thus,
(19) is fulfilled and for any literal li,k, we obtain π(Tx(li,k)) = x iff τ(li,k) =
true and π(Tx(li,k)) = ⊥ iff τ(li,k) = false. For any clause Ci = li,1∨li,2∨li,3,
we have τ(Ci) = true and thus, there exists a ki such that τ(li,ki

) = true.
Hence, by defining π(gi) = π(Gi) = π(hi) = π(Hi) = ki ∈ {1, 2, 3}, the
conditions (14), (16), (17), and (18) are satisfied. Finally, we define π(s) = [1]
to satisfy condition (15) as well.

For the “only if” direction, let π be an argument filtering satisfying at
least the condition (17). For all variables vj in the literals li,ki

, (17) implies
π(vj) ∈ {1, 2}. If one defines a variable assignment τ with τ(vj) = true if
π(vj) = 1 and τ(vj) = false if π(vj) = 2, then by the condition (17) we
obtain τ(li,ki

) = true. Thus, every clause Ci contains a literal li,ki
which is

true under the variable assignment τ and hence, we have τ(ϕ) = true. ⊓⊔

7.2 Complexity of Combined Dependency Pairs and Size-Change Principle

We have shown that the dependency pair approach is NP-complete while the
size-change principle is PSPACE-complete [24]. In Section 6 we presented a
new technique to combine these two approaches and we proved in Theorems
23 and 25 that the combined approach is more powerful than both original
techniques. We now show that the combination does not increase the com-
plexity. In the combination technique for termination of a TRS R (Theorem
23), one may use a non-duplicating TRS S over the tuple symbols and the
constructors of R to compare terms according to its rewrite relation →+

S . In
order to implement Theorem 23 in PSPACE, of course both the procedure
to compute an appropriate TRS S and the decision procedure for the rela-
tion →+

S may only require space that is polynomial in the size of the TRS
R to be proved terminating. For example, S = EmbC∪F♯ obviously satisfies
this requirement.

Theorem 29 (Dep. Pairs & Size-Change Principle is in PSPACE)
Let RP be a class of reduction pairs such that satisfiability of constraints
by some reduction pair from the class is in PSPACE. Moreover, let est

be an (innermost) dependency graph approximation algorithm in PSPACE.
Finally, in the termination case, let con be a PSPACE-algorithm that com-
putes for a given TRS R another TRS S such that the signature of S are
the tuple symbols and the constructors of R, S is non-duplicating and ter-
minating, and →+

S is decidable in PSPACE. If one estimates (innermost)
dependency graphs by est, if one is restricted to reduction pairs resulting
from arbitrary argument filterings and pairs from RP, and if one chooses
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the TRS S = con(R) in the termination case, then Theorems 23 and 25
can be implemented by PSPACE-algorithms.

Proof We first regard the termination case (Theorem 23). To prove the
termination of a TRS R, we first compute S = con(R) in PSPACE. Thus,
the size of the TRS R ∪ S is polynomial in the size of R (where we again
define the size of R as n =

∑
l→r∈R |l| + |r|). As in the proof of Theorem

27, we can compute the estimated dependency graph of R∪S in PSPACE.
In contrast to the proof of Theorem 27 where we regarded SCCs instead of
cycles, now we can just iterate over all cycles of the estimated graph, since
this iteration only requires polynomial space.

So it remains to show that for a single cycle P , the conditions (a′) and
(b′) of Theorem 23 can be checked in PSPACE. Because of the restrictions
on the reduction pairs in RP and on the size of S, checking l % r for all
rules l → r ∈ R∪S can be done in polynomial space. Thus, Condition (b′)
can indeed be computed in PSPACE.

For Condition (a′), we first show that building the extended size-change
graphs can be done in PSPACE. From each rule l → r ∈ R one obtains
at most |r| extended size-change graphs. So the overall number of extended
size-change graphs is bounded by n. In each extended size-change graph
resulting from the rule l → r, one has at most |l| × |r| arrows and a label of
size |l| + |r|. Hence, each extended size-change graph has polynomial size.
Finally, computing the arrows in the extended size-change graphs can be
done in PSPACE due to the requirements on the reduction pairs in RP and
on the relation →+

S .

Finally, we have to show that one can decide in PSPACE whether ev-
ery maximal multigraph labelled with the cycle P contains an edge i ≻→ i.
The naive approach of first computing all possible multigraphs (by build-
ing the transitive closure under concatenation “·”) and then inspecting all
maximal multigraphs labelled with P cannot be done in PSPACE since
there may be exponentially many multigraphs. More precisely, the num-
ber of possible multigraphs is e := |P|2 × 2|P| × 3(ar+1)2 . Here, |P| is the
number of dependency pairs in the cycle P and ar is the maximal arity of
all function symbols in R. The first part |P|2 × 2|P| describes the number
of different labels in multigraphs. As in Section 6, we identify multigraphs
with the labels (D1, . . . , Dk) and (D′

1, . . . , D
′
k′) if D1 = D′

1, Dk = D′
k′ , and

{D1, . . . , Dk} = {D′
1, . . . , D

′
k′}. Then the quadratic term |P|2 describes all

possible choices for the leftmost and the rightmost dependency pair in the
label. The exponential term 2|P| arises from all possible subsets of depen-
dency pairs from P which may occur in the label. Finally, a multigraph can
have up to ar + 1 nodes on each side and so there are (ar + 1)2 possible
combinations of output- and input-nodes. For each of these combinations
we have the possibility to connect them by ≻→, by

%
→, or by no edge. This

leads to the base 3 in the factor 3(ar+1)2 .

To avoid the exponential space complexity of the above naive algorithm,
we now give a non-deterministic PSPACE-algorithm that decides if there is
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a maximal multigraph labelled with P which does not contain an edge of
the form i

≻
→ i.

Input: A cycle P and a set Γ of extended size-change graphs
labelled with dependency pairs from P

Output: “false”, if there is a maximal multigraph labelled with P
in the transitive closure of Γ that has no edge i ≻→ i

“true”, otherwise

1. d := 0
2. Choose a size-change graph G ∈ Γ
3. e := |P|2 × 2|P| × 3(ar+1)2

4. While d < e do
(a) d := d + 1
(b) If G is maximal, labelled with P , and contains no edge i ≻→ i,

then stop and return “false”
(c) Choose a size-change graph G′ ∈ Γ
(d) G := G·G′

5. Return “true”

The algorithm can construct and inspect every multigraph that can be
obtained by concatenating at most e extended size-change graphs, where
these size-change graphs do not have to be distinct. We show by contradic-
tion that any of the e possible different multigraphs can be constructed in
this way. Assume that there is a multigraph G that can only be constructed
by concatenating at least e + k size-change graphs where k > 0. So G =
G1· . . .·Ge+k with all Gi ∈ Γ . We define the graphs G′

n = G1· . . .·Gn for
all 1 ≤ n ≤ e + k. As there can only be at most e different multigraphs,
there must be two graphs G′

i, G
′
j ∈ {G′

n | 1 ≤ n ≤ e + k} with G′
i = G′

j and

i < j. Hence, G = G′
j·Gj+1· . . .·Ge+k = G′

i·Gj+1· . . .·Ge+k. This is a
contradiction to the assumption, since now G can be built by concatenating
only e + k − (j − i) size-change graphs. Hence, the above algorithm can
indeed construct every possible multigraph, which proves its correctness.

For the space complexity of the algorithm, we look at the data that has
to be stored during its execution. It mainly consists of the two numbers d
and e, the input values P and Γ , and the multigraph G. Since e requires
O(log e) space and since log e is polynomial in |P| and ar, it is easy to see
that the algorithm only uses polynomial space.

Thus, we have a non-deterministic PSPACE-algorithm that decides if
every maximal multigraph labelled with P contains an edge i

≻
→ i. As

NPSPACE = PSPACE [27], there also exists such a decision procedure in
PSPACE.

The proof for the innermost termination case (Theorem 25) is analogous.
Here, one needs the observations that usable rules can be computed in
polynomial time (and thus, in polynomial space) and that the iteration
over all subsets D′ of D can be done in polynomial space. ⊓⊔
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The size-change principle for functional programs is PSPACE-complete
[24], even if one uses a simple underlying well-founded order like the embed-
ding order on constructors. This result directly carries over to size-change
termination for TRSs. So the methods of Theorem 9 for innermost termina-
tion proofs with the C-restriction of the reduction pair (→∗

EmbC
, →+

EmbC
) as

well as the method of Theorem 12 for termination proofs with S = EmbC

are PSPACE-complete as well. Furthermore, we now show that any sound
technique that is at least as powerful as the size-change principle with the
embedding order is PSPACE-hard. Here, we call a method “more powerful”
if it can at least verify innermost termination for those TRSs where termi-
nation or innermost termination can be concluded from Theorem 12 using
S = EmbC or from Theorem 9 using the C-restriction of (→∗

EmbC
, →+

EmbC
).

Since the combination with dependency pairs yields a more powerful tech-
nique than the size-change principle by Theorems 23 and 25, this implies
that this combination technique is also PSPACE-hard and thus, PSPACE-
complete by Theorem 29.

Theorem 30 (Improving Size-Change Principle is PSPACE-hard)
Any sound technique for proving (innermost) termination of term rewriting
is PSPACE-hard if it is at least as powerful as the size-change principle
with the embedding order on constructors (i.e., if it can at least prove in-
nermost termination of all TRSs which are size-change terminating w.r.t.
the C-restriction of (→∗

EmbC
, →+

EmbC
)).

Proof We can use the same proof idea as in [24, Theorem 5] by reducing the
PSPACE-complete problem of termination of boolean programs. In [24], a
transformation is given which translates every boolean program B into a
functional program (or TRS) PB such that

• if B terminates, then PB is not (innermost) terminating (20)

• if B does not terminate, then PB is size-change terminating (21)

Here, a reduction pair is used which compares data objects by their size (i.e.,
this reduction pair corresponds to the C-restriction of (→∗

EmbC
, →+

EmbC
)).

If the size-change principle is replaced by a stronger method, a statement
analogous to (21) would obviously still hold. More precisely, if B does not
terminate, then the stronger method can prove (innermost) termination of
PB. On the other hand, if the stronger method is sound then termination of
B must lead to a TRS PB that cannot be proved (innermost) terminating.
Hence, B does not terminate iff the stronger method can prove (innermost)
termination of PB. ⊓⊔

In [23], two polynomial-time algorithms are presented that approximate
size-change termination. So instead of the full size-change principle, these
algorithms could be used in combination with dependency pairs to decrease
the complexity. But of course, this would also decrease the power of the
combined method.
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The main idea of [23] is the identification of anchors : an anchor is a size-
change graph which yields an infinite descent if it occurs infinitely often in a
sequence G1 ◦G2 ◦ . . . of size-change graphs. In other words, G is an anchor
iff for any graph G1 ◦ G2 ◦ . . . with Gi = G for infinitely many i, there is a
path where infinitely many edges are labelled with “≻”.

Since size-change termination is not affected when deleting anchors, the
approach of [23] repeatedly tries to identify and to remove anchors. If finally
all size-change graphs have been deleted, then one can conclude size-change
termination. However, since [23] only uses sufficient criteria to find anchors,
not all size-change terminating systems can be detected by this approach.

The two algorithms in [23] differ in their criterion to identify anchors.
The first algorithm has a runtime of O(n2) (where n is the size of the
program or TRS). However, this approach is not useful in combination with
dependency pairs: it can be shown that if this algorithm succeeds then
dependency pairs on their own can prove termination using a reduction pair
based on linear polynomial interpretations with coefficients from {0, 1}.

This is not the case for the second algorithm which has a runtime of
O(n3). However, our experiments in Section 8.2 show that in practice, the
size-change principle is not the bottleneck of the combined method. There-
fore, in the combination with dependency pairs, we use the full size-change
principle instead of this (weaker) approximation.

8 Implementation and Experiments

We developed a system AProVE (Automated Program Verification Environ-
ment) for mechanized verification of functional programs and TRSs which is
available from http://www-i2.informatik.rwth-aachen.de/AProVE. To
perform automated (innermost) termination proofs, the system offers LPO ,
RPO(S ), KBO , polynomial orders, and dependency pairs. The tool is writ-
ten in Java and termination proofs can be performed via a graphical user
interface. For a description of the system, the reader is referred to [13].

To evaluate the results developed in the paper, we also integrated the
size-change principle and our technique to combine dependency pairs with
the size-change principle into the system. For the (pure) size-change prin-
ciple, we implemented the criterion of Theorem 12 using a reduction pair
based on the embedding order. The implementation of our combination tech-
nique for both termination (Theorem 23 and Corollary 24) and innermost
termination (Theorem 25) is described in Section 8.1. Subsequently, in Sec-
tion 8.2, we give an empirical evaluation in order to compare the size-change
principle, dependency pairs, and the combination of both techniques.

8.1 Implementing the Size-Change- and Dependency Pair-Combination

We first present our algorithm to verify innermost termination of a TRS
R with defined symbols D according to Theorem 25 and give a detailed
explanation afterwards:



40 René Thiemann, Jürgen Giesl

1. Compute the estimated innermost dependency graph of R.
2. For each SCC P in the graph:

2.1. Let CP be the set of the constructors occurring in P ,
let DP be a subset of the defined symbols
occurring in right-hand sides of P ,
let π be an argument filtering
which only filters symbols from CP ∪DP .
If all such DP and argument filterings π have already
been examined without success,
then abort with “No Success”.

2.2. Let s ≻ t iff t ∈ T (CP ∪ DP ,V) and π(s) →+
EmbFπ

π(t).

Let s % t iff t ∈ T (CP ∪ DP ,V) and π(s) →∗
EmbFπ

π(t).

2.3. Try to show that all maximal multigraphs w.r.t. (%,≻)
contain an edge i ≻→ i.

2.4. If Step 2.3 fails, then go to Step 2.1 and examine
the next argument filtering π resp. the next subset DP .

2.5. Otherwise, let D′ consist of the defined symbols of U(DP ).
Try to extend π to an argument filtering on F
and try to find a reduction pair (%′,≻′) with (quasi-)
simplification orders %′,≻′⊆ T (Fπ,V) × T (Fπ,V)
such that π(l) %′ π(r) for all l → r ∈ U(D′).

2.6. If Step 2.5 fails, then go to Step 2.1 and examine
the next argument filtering π resp. the next subset DP .
Otherwise, continue with the next SCC P in Step 2.

3. Finish with “Innermost Termination Proved”.

For reasons of efficiency, in our implementation we did not extend size-
change graphs by nodes labelled with ε, cf. Definition 21. These nodes would
be necessary to simulate dependency pairs with the combined technique.
Thus, if our implementation of the combined technique fails, then it can
still be useful to try an innermost termination proof with dependency pairs.

Moreover, instead of labelling multigraphs by sequences (D1, . . . , Dk) of
dependency pairs, in our implementation we only label them by the first
and the last pair in the sequence. In this way, many former multigraphs
are identified, i.e., we obtain significantly less multigraphs which increases
efficiency.

With this representation of the labels, it suffices only to regard the initial
SCCs instead of cycles of the estimated innermost dependency graph. This
improves efficiency even further, since there are typically far less initial
SCCs than cycles.6 Note that when examining only the initial SCCs P , it is
no longer sufficient just to regard maximal multigraphs labelled with P in

6 When implementing the pure dependency pair approach, instead of inspecting
all cycles, it is preferable to use the technique of [15] to compute new SCCs
repeatedly from weakly decreasing dependency pairs (see the proof of Theorem
27). However, this technique of [15] cannot be adapted to the combination of
dependency pairs with the size-change principle.
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Theorem 25 (c′). Instead, one has to investigate all maximal multigraphs.
In other words, one also has to regard multigraphs whose label only consists
of a subset of P (i.e., of the dependency pairs from an arbitrary subcycle).
For all these maximal multigraphs one has to check whether they contain
an edge of the form i

≻
→ i. However, this is already taken into account in

our implementation, since we represent labels (D1, . . . , Dk) by only storing
their first and their last pair. Thus, we do not check anymore whether
{D1, . . . , Dk} contains all pairs from the SCC P . Instead, now the labels
are only used to determine which multigraphs may be concatenated and for
this purpose, one only has to know D1 and Dk.

As in Theorem 25, we only regard a reduction pair on a subset D′ of the
defined symbols. To this end, we choose a subset DP of the defined symbols
in right-hand sides of P ’s dependency pairs and define D′ to consist of all
defined symbols of the TRS U(DP). The motivation for this is as follows:
if two terms s and t have to be compared when computing the edges of
size-change graphs, then t can only contain defined symbols which occur in
right-hand sides of P ’s dependency pairs.7 Moreover, the set D′ contains
all defined symbols which occur in the right-hand sides of the usable rules,
since they have to be oriented according to Theorem 25 (d′).

Now we have to generate a suitable monotonic reduction pair. As in
the dependency pair approach, we use argument filterings π in combina-
tion with simplification orders on T (Fπ,V) × T (Fπ ,V) for this purpose.
(Different from Theorem 25, we do not compare terms with tuple symbols
from F ♯, since we do not regard nodes labelled with ε.) When computing
size-change graphs, we already fix a part of the argument filtering, viz.,
we determine how π operates on function symbols from CP ∪ DP ∪ Dleft

P .
Here, Dleft

P are the defined symbols occurring on left-hand sides in P . For
CP ∪ DP , the argument filtering is chosen in Step 2.1 and the symbols in
Dleft

P \DP are not filtered. But we do not yet fix π on F \ (CP ∪DP ∪Dleft
P ),

since these symbols are not compared when computing edges of size-change
graphs. Moreover, at this point, we still leave the simplification order open.
Thus, for the size-change graphs we use a reduction pair (%,≻) where s ≻ t
holds iff t ∈ T (CP ∪DP ,V) and π(s) →+

EmbFπ
π(t). Moreover, s % t iff

t ∈ T (CP ∪DP ,V) and π(s) →∗
EmbFπ

π(t). The reason for only using the
embedding order when comparing the arguments in the size-change graphs
is efficiency. More sophisticated orders have several parameters (e.g., status
and precedence in RPOS). When using such orders for ordinary termination
proofs (possibly with dependency pairs), these parameters are determined
incrementally. However, it is not clear how to transfer such an incremental
approach to the size-change principle, since one would have to draw conclu-

7 Defined symbols that only occur on left-hand sides of dependency pairs or
usable rules do not have to be included in D′, since the (C ∪ D′ ∪ F♯)-restriction
is a relation from T (F ∪ F♯,V)×T (C ∪ D′ ∪ F♯,V), i.e., the “greater” term may
be from the full signature F ∪ F♯.
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sions from an unsuccessful size-change analysis to modify the parameters of
the order (e.g., by extending the precedence).

After computing the size-change graphs we have to calculate the max-
imal multigraphs and check whether all of them have an edge of the form
i ≻→ i. In case of success, the current reduction pair is refined. To this end, π
is also determined on the remaining symbols from F \ (CP ∪DP ∪Dleft

P ) and
the reduction pair (%,≻) is refined such that s % t iff π(s) %′ π(t) and s ≻ t
iff π(s) ≻′ π(t) for some quasi-simplification order %′ and simplification or-
der ≻′ on T (Fπ ,V)×T (Fπ,V).8 Note that the relations used for computing
the size-change graphs are indeed contained in these refined relations since
π(s) →EmbFπ

π(t) implies π(s) %′ π(t) and π(s) ≻′ π(t). The reason is that
any (quasi-)simplification order contains the embedding order. As (%′,≻′)
is a reduction pair and as %′ is monotonic, (%,≻) is a monotonic reduc-
tion pair, too. Since the size-change graphs were computed with a subset
of the final refined reduction pair (%,≻), some edges in the graphs may be
missing, but this only affects the power, not the soundness of the approach.
Hence, building the size-change graphs with the embedding order instead
of other efficient orders has the advantage that the size-change graphs are
correct w.r.t. any simplification order. So one may indeed use any (quasi-)
simplification order when orienting the usable rules. For example, in our
experiments in Section 8.2 we used LPO .

We also implemented a hybrid variant of the above combination algo-
rithm. Here, if Step 2.1 returns “No Success”, then we try to solve the
constraints resulting from the original dependency pair approach. If this
succeeds, then we continue with the next SCC in the hybrid algorithm.
Otherwise we return a final “No Success”.

The combination algorithm for termination is like the innermost termi-
nation algorithm except for two differences: In Step 2.1 we always let DP

consist of all defined symbols occurring in P and in Step 2.5 we have to
analyze all rules l → r ∈ R instead of just those of U(D′). This implemen-
tation of Theorem 23 always chooses S = ∅, i.e., we use Corollary 24 for
the automation.

8.2 Empirical Evaluation

Now we describe our experiments to evaluate the performance of the three
approaches discussed in the paper (size-change principle, dependency pairs,
and the combination of the two techniques). To this end, we tested our

8 The relation ≻′ itself is not needed in the implementation. Instead, one only
has to determine a quasi-simplification order %′ which forms a reduction pair with
some simplification order. The reason is that the reduction pair (%′,≻′) is only
needed to ensure that the usable rules are weakly decreasing w.r.t. the (C ∪ D′)-
restriction of % (where % = %′

π). To this end, it suffices to require π(l) %′ π(r)
for all l → r ∈ U(D′) in Step 2.5 since r only contains defined symbols from D′

by the construction of D′.
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implementation on the large collection of examples from [3,7,28] (108 TRSs
for termination, 151 TRSs for innermost termination). More precisely, we
used the following algorithms for (innermost) termination proofs:

– SCP is the size-change principle for TRSs according to Theorem 12.
– DP is the original dependency pair approach.
– DP SCP is the combination of dependency pairs and the size-change

principle as described in Section 8.1. To increase efficiency, we only tried
sets DP with |DP | ≤ 2 in the algorithm for innermost termination and
we only allowed an argument filtering of at most two function symbols in
Step 2.1 (i.e., when building size-change graphs). Later, when orienting
the rules in Step 2.5, we permitted arbitrary filterings on F \ (CP ∪DP ∪
Dleft

P ).
– H DP SCP is the hybrid version of DP SCP.

In the experiments, we used the following base orders (or reduction pairs).

– EMB is the embedding order.
– LPO is the lexicographic path order where arguments are compared lex-

icographically from left to right. The required precedence is determined
automatically and different symbols may be equal in precedence.

Algorithm Order Power Time Avg. Time

Termination (108 examples)

SCP EMB 22 [20.4 %] 0.1s [0.0 s, 0.0 s, 0.0 s]
DP EMB 40 [37.0 %] 19.1 s [0.2 s, 0.0 s, 0.3 s]

DP SCP EMB 46 [42.6 %] 19.3 s [0.2 s, 0.1 s, 0.2 s]
DP LPO 68 [63.0 %] 144.9 s [1.3 s, 0.3 s, 3.1 s]

DP SCP LPO 69 [63.9 %] 21.4 s [0.2 s, 0.1 s, 0.3 s]
H DP SCP LPO 73 [67.6 %] 93.1 s [0.9 s, 0.2 s, 2.3 s]

Innermost Termination (151 examples)

SCP EMB 22 [14.6 %] 0.0 s [0.0 s, 0.0 s, 0.0 s]
DP EMB 77 [51.0 %] 28.3 s [0.2 s, 0.0 s, 0.3 s]

DP SCP EMB 87 [57.6 %] 25.6 s [0.2 s, 0.1 s, 0.3 s]
DP LPO 98 [64.9 %] 204.0 s [1.4 s, 0.2 s, 3.5 s]

DP SCP LPO 101 [66.9 %] 35.3 s [0.2 s, 0.2 s, 0.2 s]
H DP SCP LPO 106 [70.2 %] 113.5 s [0.8 s, 0.3 s, 1.9 s]

Table 1 Performance of the Different Techniques on the Examples of [3,7,28].

In the “power” column, Table 1 shows the number and percentage of
examples where the respective approach was successful. Here, proofs were
interrupted after 30 seconds.9 In the “time” column, it shows the time
required for the proof attempts. Moreover, in square brackets we give the

9 There are five examples where some of the algorithms and orders in Table 1
resulted in timeouts.
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average time needed per example, the average time for examples where the
proof succeeds, and the average time for examples where the proof fails. For
further details (e.g., individual runtimes and results for each example) the
reader is referred to [29]. Our experiments were performed on a Pentium IV
with 2.4 GHz and 1 GB memory.

The first rows for the SCP technique indicate clearly that the size-change
principle on its own has only very limited power. Comparing the dependency
pair approach with the combined technique leads to two observations. If
one uses weak but very efficient orders like EMB , then the main benefit
is power. The combined technique can show (innermost) termination for
at least 13% more examples in about the same time. For more powerful
orders like LPO the main advantage of the combined technique is efficiency,
since here, the combination is approximately 6 times faster while power is
increased slightly. Note that this increase in efficiency is indeed due to our
combination technique (and not just due to the heuristic restrictions on DP

and on the argument filterings in the DP SCP -algorithm): even without
these heuristic restrictions (i.e., even if one regards all possible subsets DP

and all possible argument filterings when building size-change graphs), the
combination of dependency pairs and the size-change principle is still at
least three times faster than the pure dependency pair approach. Finally,
with the hybrid algorithm and LPO , runtimes are decreased by 35 – 45 %
compared to the dependency pair technique and we can show (innermost)
termination of at least 7 % more examples.

The dependency pair technique as described in Section 5 can be im-
proved in several ways (e.g., by transforming dependency pairs by narrow-
ing, rewriting, and instantiation [2,10,12], by reducing the set of constraints
in Theorem 19 (b) and (d) [12,16,31], by removing rules that do not influ-
ence the termination behavior [31], etc.). All these refinements also carry
over to the new technique which combines the size-change principle with
dependency pairs. However, in order to measure the effects of the combina-
tion, in our experiments we used the “pure” dependency pair method and
disabled all these improvements. As shown in [29], the combination with
the size-change principle also yields similar advantages if improvements like
dependency pair transformations are enabled.

We also analyzed the examples where the hybrid algorithm still fails
if one uses dependency pair transformations. It turns out that then the
failure is mainly due to the underlying reduction pairs. If one uses other
reduction pairs based on KBO , polynomial interpretations, and RPOS , we
can apply our technique successfully on almost all examples. These results
show that the techniques presented in the paper are indeed very powerful
for mechanized (innermost) termination proofs.

9 Conclusion

In this paper, we adapted the size-change principle from functional pro-
grams to arbitrary TRSs and developed a technique to use it for possibly
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automated (innermost) termination proofs of TRSs. Then we compared this
principle with classical simplification orders from term rewriting. We showed
that it is also restricted to proving simple termination, it incorporates lexi-
cographic and multiset comparison for root symbols (although not below the
root), but it cannot handle defined symbols or term measures and weights.
Nevertheless, there are even examples where the size-change principle is ad-
vantageous to dependency pairs, since it can simulate argument filtering for
root symbols and it can investigate how the size of arguments changes in
sequences of subsequent function calls. On the other hand, the size-change
principle is not modular and it lacks a concept like the dependency graph
to analyze which function calls can follow each other. For that reason, we
developed a new approach which combines the size-change principle with
dependency pairs. This combined approach is more powerful than both
previous techniques and it has the advantage that it often succeeds with
much simpler base orders than the dependency pair approach. We analyzed
the complexity of the dependency pair approach and of the new technique
combining dependency pairs with the size-change principle. While the size-
change principle is PSPACE-complete, the dependency pair approach is only
NP-complete. The combination with dependency pairs does not increase the
complexity of the size-change principle, i.e., it is still PSPACE-complete.

We have implemented both the original dependency pair approach and
the combined approach in the system AProVE and found that this combi-
nation often increases efficiency dramatically. With this combination (using
the refinement of dependency pair transformations) and with an underly-
ing reduction pair based on the lexicographic path order, 137 of the 151
examples in the collections of [3,7,28] could be proved innermost terminat-
ing fully automatically. Most of these proofs took less than a second and
the longest proof took about 11 seconds. When regarding termination, the
proof succeeded for 87 of the 108 examples and the longest proof took 4.7
seconds.

Acknowledgements. We are grateful to the referees for many helpful sug-
gestions and remarks.
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