
A Formalization of the
Berlekamp–Zassenhaus Factorization Algorithm

Jose Divasón
Universidad de La Rioja, Spain

Sebastiaan Joosten René Thiemann
Akihisa Yamada

University of Innsbruck, Austria

Abstract
We formalize the Berlekamp–Zassenhaus algorithm for fac-
toring square-free integer polynomials in Isabelle/HOL. We
further adapt an existing formalization of Yun’s square-free
factorization algorithm to integer polynomials, and thus pro-
vide an efficient and certified factorization algorithm for ar-
bitrary univariate polynomials.

The algorithm first performs a factorization in the prime
field GF(p) and then performs computations in the ring of
integers modulo pk, where both p and k are determined at
runtime. Since a natural modeling of these structures via de-
pendent types is not possible in Isabelle/HOL, we formalize
the whole algorithm using Isabelle’s recent addition of local
type definitions.

Through experiments we verify that our algorithm factors
polynomials of degree 100 within seconds.

Categories and Subject Descriptors F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Rea-
soning about Programs; I.1.2 [Symbolic and Algebraic Ma-
nipulation]: Algorithms—Algebraic algorithms

Keywords Polynomial Factorization, Prime Fields, Isabelle

1. Introduction
Modern algorithms to factor integer polynomials – follow-
ing Berlekamp and Zassenhaus – work via polynomial fac-
torization over prime fields GF(p) and quotient rings Z/pkZ
[3, 4]. Algorithm 1 illustrates the basic structure of such an
algorithm.1

1 Our algorithm starts with step 4, so that section numbers and step-numbers
coincide.

Algorithm 1: A modern factorization algorithm
Input: Square-free integer polynomial f .
Output: Irreducible factors f1, . . . , fn such that

f = f1 · . . . · fn.
4 Choose a suitable prime p depending on f .
5 Factor f in GF(p): f ≡ g1 · . . . · gm (mod p).
6 Determine a suitable bound d on the degree, depending

on g1, . . . , gm. Choose an exponent k such that every
coefficient of a factor of a given multiple of f in Z
with degree at most d can be uniquely represented by
a number below pk.

7 From step 5 compute the unique factorization
f ≡ h1 · . . . · hm (mod pk) via the Hensel lifting.

8 Construct a factorization f = f1 · . . . · fn over the
integers where each fi corresponds to the product of
one or more hj .

In previous work on algebraic numbers [18], we imple-
mented Algorithm 1 in Isabelle/HOL [17] as a function
which takes an integer polynomial f and returns a list of
polynomials fs . However, the algorithm was available only
as an oracle, and thus a validity check (f =

∏
fs) on the re-

sult factorization had to be performed. Moreover, there was
no guarantee on the irreducibility of the resulting factors fs .

In this work we fully formalize the correctness of our im-
plementation. We choose Berlekamp’s algorithm in step 5;
the Cantor–Zassenhaus algorithm [4] is another candidate
but its formalization would be more intricate (indeed, it is
a probabilistic algorithm).

THEOREM 1 (Berlekamp–Zassenhaus Algorithm).

assumes square free (f :: int poly)

and degree f 6= 0

and berlekamp zassenhaus factorization f = fs

shows f = prod list fs

and ∀fi ∈ set fs. irreducible fi

To obtain Theorem 1 we perform the following tasks.

Copyright is held by the owner/author(s).

CPP’17, January 16–17, 2017, Paris, France
ACM. 978-1-4503-4705-1/17/01
http://dx.doi.org/10.1145/3018610.3018617

17

rodkin
Typewritten Text
This work is licensed under a Creative Commons Attribution-NoDerivs
International 4.0 License.

https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/

• In Section 3 we introduce two formulations of GF(p) and
Z/pkZ. We first define a type to represent these domains,
employing the idea from HOL multivariate analysis that
types can encode natural numbers by means of the car-
dinality. This is essential for reusing many type-based
algorithms from the Isabelle distribution and the AFP
(Archive of Formal Proofs). At some points in our de-
velopement, the type-based setting is still too restrictive.
Hence we also introduce a second formulation which is
locale-based [1].

• The prime p in step 4 must be chosen so that f remains
square-free in GF(p). For the termination of the algo-
rithm, we prove that such a prime always exists in Sec-
tion 4.

• In Section 5, we explain Berlekamp’s algorithm, which
factors polynomials over prime fields, and formalize its
correctness using the type-based representation. Since Is-
abelle’s code generation does not work for the type-based
representation of prime fields, we define an implementa-
tion of Berlekamp’s algorithm which avoids type-based
polynomial algorithms and type-based prime fields. The
soundness of this implementation is proved via the trans-
fer package [7]: we transform the type-based sound-
ness statement of Berlekamp’s algorithm into a statement
which speaks solely about integer polynomials. Here, we
crucially rely upon local type definitions [12] to eliminate
the presence of the type for the prime field GF(p).

• For step 6 we need to find a bound on the coefficients
of the factors of a polynomial. For this purpose, we for-
malize Mignotte’s factor bound in Section 6. During this
formalization task we detected a bug in our previous or-
acle implementation, which computed improper bounds
on the degrees of factors.

• In Section 7 we formalize the Hensel lifting. As for
Berlekamp’s algorithm, we first formalize basic opera-
tions in the type-based setting. Unfortunately, however,
this result cannot be extended to the full Hensel lifting.
Therefore, we model the Hensel lifting in a locale-based
way so that modulo operation is explicitly applied on
polynomials.

• Details on step 8 are provided in Section 8 where we
closely follow the description of Knuth [9, page 452].
Here, we use the same representation of polynomials over
Z/pkZ as for the Hensel lifting.

• In Section 9 we adapt Yun’s square-free factorization
algorithm [19, 21] from Q to Z. In combination with the
previous results this leads to a factorization algorithm for
arbitrary integer and rational polynomials.

• Finally, we compare the efficiency of our factorization
algorithm with the one in Mathematica 11 [20] in Sec-
tion 10 and give a summary in Section 11.

To our knowledge, this is the first formalization of a mod-
ern factorization algorithm. For instance, Barthe et al. report
that there is no formalization of an efficient factorization al-
gorithm over GF(p) available in Coq [2, Section 6, note 3 on
formalization]. Our work is also a non-trivial case study for
the new local type definition mechanism in Isabelle.

Some key theorems leading to the algorithm have al-
ready been formalized in Isabelle or other proof assistants.
In ACL2, for instance, polynomials over a field are shown to
be a unique factorization domain (UFD) [5]. A more general
result, namely that polynomials over a UFD are also a UFD,
was already developed in Isabelle/HOL for implementing al-
gebraic numbers [18] and an independent development by
Eberl is now available in the Isabelle distribution.

An Isabelle formalization of Hensel’s lemma is provided
by Kobayashi et al. [10], who defined the valuations of poly-
nomials via Cauchy sequences, and used this setup to prove
the lemma. Consequently, their result requires a ‘valuation
ring’ as a precondition in their formalization. While this ex-
tra precondition is theoretically met in our setting, we did not
attempt to reuse their results, because the type of polynomi-
als in their formalization (from HOL-Algebra) differs from
the polynomials in our development (from HOL/Library).
Instead, we formalize a direct proof for Hensel’s lemma.
Our formalizations are incomparable: On the one hand,
Kobayashi et al. did not restrict to integer polynomials as
we do. On the other hand, we additionally formalize the
quadratic Hensel lifting [22], extend the lifting from binary
to n-ary factorizations, and prove a uniqueness result, which
is required for proving Theorem 1.

A Coq formalization of Hensel’s lemma is also available.
It is used for certifying integral roots and ‘hardest-to-round
computation’ [14]. If one is interested in certifying a fac-
torization, rather than a certified algorithm that performs it,
it suffices to test that all the found factors are irreducible.
Kirkels [8] formalized a sufficient criterion for this test in
Coq: when a polynomial is irreducible modulo some prime,
it is also irreducible in Z. Both formalizations are in Coq,
and we did not attempt to reuse them.

Our formalization is available in the AFP and details on
the experiments are provided at

http://cl-informatik.uibk.ac.at/software/

ceta/experiments/factorization.

The formalization as described in this paper corresponds to
AFP revision c57b0e9b0d65, which compiles with Isabelle
revision 03057a8fdd1f.

2. Preliminaries
Our formalization is based on Isabelle/HOL, and we state
theorems, as well as certain definitions, following Isabelle’s
syntax. For instance, f :: α ⇒ α poly indicates that f is
a function that maps α to a polynomial over α. Isabelle’s
keywords are written in bold. Other symbols are either clear

18

http://cl-informatik.uibk.ac.at/software/ceta/experiments/factorization
http://cl-informatik.uibk.ac.at/software/ceta/experiments/factorization

from their notation, or defined on their appearance. We only
assume the HOL axioms and local type definitions, and
ensure that Isabelle can build our theories. Consequently, a
sceptical reader that trusts the soundness of Isabelle/HOL
only needs to check the definitions, as the proofs are checked
by Isabelle.

We expect the reader to be familiar with algebra, and use
some of its standard notions without further explanation.
Concerning notation, we write f ′ for the derivative of a
polynomial f , lc(f) for the leading coefficient of f , and
res(f, g) for the resultant of f and another polynomial g.

A factorization of a polynomial f is a decomposition
into irreducible factors f1, . . . , fn such that f = f1 · . . . ·
fn. Whereas the irreducibility of a ring element x is often
defined via divisibility (denoted by the binary relation dvd
following Isabelle):

¬x dvd 1 ∧
(
∀y. y dvd x −→ y dvd 1 ∨ x dvd y

)
(1)

in this paper we define irreducibility of a polynomial f as

degree f 6= 0 ∧(
∀g. g dvd f −→ degree g ∈ {0, degree f}

)
. (2)

Note that (1) and (2) are not equivalent on integer polyno-
mials; e.g., a factorization of f = 10x2 − 10 in terms of (1)
will be f = 2·5·(x−1)·(x+1), where the prime factorization
of the content, i.e., the GCD of the coefficients, has to be per-
formed. In contrast, (2) does not demand a prime factoriza-
tion, and a factorization may be f = (10x−10) ·(x+1). Al-
gorithm 1 will produce the latter factorization, where all fac-
tors except for one are content-free, i.e., whose content is 1.
Note that definitions (1) and (2) are equivalent on content-
free polynomials (and in particular for field polynomials).

In a similar way to irreducibility, we also define that a
polynomial f is square-free if there does not exist a non-
constant polynomial g such that g2 divides f . In particular,
the integer polynomial 22x is square-free.

3. Formalizing Prime Fields
Here we introduce two formalizations of the quotient ring
Z/pkZ and the prime field GF(p): a type-based version and
locale-based version.

3.1 Type-Based Formalization
We first define a polymorphic type to represent Z/pZ for
an arbitrary p > 0, which forms the prime field GF(p)
when p is a prime. The advantage of having GF(p) available
as a type is that we can reuse several algorithms that are
available only in type-based settings, e.g., the Gauss–Jordan
elimination, GCD computation for polynomials, square-free
factorization, etc.

Since Isabelle does not support dependent types, we can-
not directly use the term variable p in a type definition. To

overcome the problem, we reuse the idea of the vector repre-
sentation from HOL multivariate analysis: types can encode
natural numbers. We encode p as CARD(α), i.e., the cardi-
nality of the universe of a (finite) type represented by a type
variable α.

typedef (α :: finite) mod ring = {0 ..< CARD(α)}

Given a finite type α with p elements, α mod ring is a
type with elements 0, . . . , p − 1. With the help of the lift-
ing and transfer package, we naturally define arithmetic in
α mod ring modulo CARD(α); for instance, multiplication
is defined as follows:

lift definition times mod ring ::

α mod ring ⇒ α mod ring ⇒ α mod ring

is λx y. (x ∗ y) mod CARD(α)

It is straightforward to show that α mod ring forms a com-
mutative ring:

instantiation mod ring :: (finite) comm ring

Note that comm ring does not assume the existence of the
multiplicative unit 1 . If CARD(α) = 1, then α mod ring is
not an instance of the type class ring 1 , for which 0 6= 1 is
required. Hence we introduce the following type class:

class nontriv = assumes CARD(α) > 1

and derive the following instantiation:2

instantiation mod ring :: (nontriv) comm ring 1

It is well known that the ring of integers modulo some
prime number forms a field. To enforce that the modulus is
a prime number, we employ the same trick as above.

class prime card = assumes prime (CARD(α))

The key to being a field is the existence of the multiplica-
tive inverse x−1. This follows from Fermat’s little theorem:

x · xp−2 ≡ xp−1 ≡ 1 (mod p)

for any nonzero integer x and prime p; that is, x−1 =
xCARD(α)−2 if CARD(α) is a prime. The theorem is already
available in the Isabelle distribution for the integers, and
we just have to apply the transfer tactic to lift the result to
(α :: prime card) mod ring.

instantiation mod ring :: (prime card) field

In the rest of the paper, we write α GFp instead of (α ::
prime card) mod ring.3

2 A formalization of the ring Z/pZ is already present in ~~/src/HOL/

Library/Numeral_Type as a locale mod ring . In principle we could
reuse results from the library by proving connection between the locale and
our class; however, as the resulting proofs became slightly longer than direct
proofs, we did not use this library.
3 We would like to have introduced this abbreviation also in Isabelle. How-
ever, we are not aware of how to do this, since the type synonym keyword
does not allow specifying type constraints such as α :: prime card.

19

For efficiency, we compute xp−2 using the binary ex-
ponentiation algorithm. Another approach for computing
x−1 would use the extended Euclidean algorithm; however,
through experiments we observed that this approach is ben-
eficial only when p is quite large (such as 20 digits). Since in
our application p is usually small, we compute x−1 as xp−2.

3.2 Locale-Based Version
The type-based setting is preferable whenever possible,
since it allows concise theorem statements and better sup-
port for proof automation, cf. Kunčar and Popescu [12].

At some points of our development, however, the type-
based approach is not expressive enough; cf. Section 7. We
must reason about the ring of integers modulo m, where m
cannot be given via type variables.

Hence, we also introduce a locale poly mod which
fixes the modulus m and defines modular arithmetic oper-
ations on type int poly . In particular, Mpm :: int poly ⇒
int poly is a function that pointwise takes modulo m of
each coefficients. Other operations, such as equivalence≡m,
coprimem, unique factorizationm, are defined with the help
of Mp; e.g., f ≡m g is defined as Mpm f = Mpm g.

4. Square-Free Polynomials in GF(p)
In Algorithm 1, step 4 mentions the selection of a suitable
prime p. To be more precise, there are two conditions that
have to be satisfied. First, p must be coprime to the lead-
ing coefficient of the input polynomial f . The other condi-
tion stems from Berlekamp’s algorithm, namely f must be
square-free in GF(p).

Whereas selecting a prime that satisfies the first condition
is in principle easy – any prime larger than the leading
coefficient will do – it is actually not so easy to formally
prove that the second condition is satisfiable. We split the
problem of computing a suitable prime into the following
steps.

• Prove that if f is square-free, then f and its derivative f ′

are coprime in GF(p), and f is square-free in GF(p) for
every sufficiently large prime p.

• Develop a prime number generator which returns the first
prime such that f and f ′ are coprime in GF(p).

The prime number generator lazily generates all primes
and aborts as soon as the first suitable prime is detected.
This is easy to model in Isabelle by defining the generator
(suitable prime bz) via partial function [11].

Our formalized proof of the existence of a suitable prime
proceeds along the following line. Let f be square-free over
Z. Then f is also square-free over Q using Gauss Lemma.
For fields of characteristic 0, f is square-free if and only if
f and f ′ are coprime. Coprimality is the same as demanding
that the resultant is non-zero, so we get res(f, f ′) 6= 0.
The advantage of using resultants is that they admit the
following property: if p is larger than res(f, f ′) and the

leading coefficients of f and f ′, then resp(f, f
′) 6= 0, where

resp(f, g) denotes the resultant of f and g computed in
GF(p). Now we go back from resultants to coprimality, and
obtain that f and f ′ are coprime in GF(p). Finally we prove
that the coprimality of f and f ′ ensures square-freeness in
arbitrary fields.

Whereas the reasoning above shows that any prime larger
than res(f, f ′), lc(f) and lc(f ′) is admitted, we still prefer
to search for a small prime p since Berlekamp’s algorithm
has a worst case lower bound of degree(f) · p operations.

EXAMPLE 1. Consider the polynomial f which will be used
as a running example throughout this paper.

f = 4 + 47x− 2x2 − 23x3 + 18x4 + 10x5

Selecting p = 2 or p = 5 is not admissible since these
numbers are not coprime to 10, the leading coefficient of f .
Also p = 3 is not admissible since the GCD of f and f ′ is
2 + x in GF(3). Finally, p = 7 is a valid choice since the
GCD of f and f ′ is 1 in GF(7), and 7 and 10 are coprime.

5. Berlekamp’s Algorithm
5.1 Informal Description
Algorithm 2 briefly describes Berlekamp’s algorithm [3]. It
focuses on the core computations that have to be performed.
For a discussion on why these steps are performed we refer
to Knuth [9, Section 4.6.2].

Algorithm 2: Berlekamp’s factorization algorithm
Input: Square-free polynomial f over GF(p) of degree

d 6= 0.
Output: Constant c and set F of monic and irreducible

factors f1, . . . , fn such that f = c · f1 · . . . · fn
1 Let c be the leading coefficient of f . Update f := f/c.
2 Compute the Berlekamp matrix Bf ∈ GF(p)d×d for f ,

where the i-th row is the vector of the coefficients of
polynomial xp·i mod f .

3 Compute the dimension r and a basis b1, . . . , br of the
left null space of Bf − I , where I is the identity
matrix of size d× d.

4 For each basis vector bi construct the corresponding
polynomial hi where the entries in bi are the
coefficients of hi.

5 Set F := {f}, H := {h1, . . . , hr} \ {1}, FI := ∅.
6 If |F | = r ∨H = ∅, return c and F ∪ FI .
7 Pick h ∈ H and update H := H \ {h}.

Update F := {gij | fi ∈ F, 0 ≤ j < p, gij =
gcd(fi, h− j), gij 6= 1}.

8 If one can find k irreducible polynomials in F , move
them to FI and update r := r − k.

9 Goto step 6.

We illustrate the algorithm by continuing Example 1.

20

EXAMPLE 2. In Algorithm 1, step 5, we have to factor f in
GF(p) for p = 7. To this end, we first simplify f

f ≡ 4 + 5x+ 5x2 + 5x3 + 4x4 + 3x5 (mod 7)

before passing it to Berlekamp’s algorithm.
Step 1 now divides this polynomial by its leading coeffi-

cient c = 3 in GF(p) and obtains the new f := 6 + 4x +
4x2 + 4x3 + 6x4 + x5.

Step 2 computes the Berlekamp matrix as

Bf =


1 0 0 0 0
4 6 2 4 3
2 3 6 1 4
6 3 5 3 1
1 5 5 6 6


since

x0 mod f ≡ 1 (mod 7)
x7 mod f ≡ 4 + 6x+ 2x2 + 4x3 + 3x4 (mod 7)
x14 mod f ≡ 2 + 3x+ 6x2 + x3 + 4x4 (mod 7)
x21 mod f ≡ 6 + 3x+ 5x2 + 3x3 + x4 (mod 7)
x28 mod f ≡ 1 + 5x+ 5x2 + 6x3 + 6x4 (mod 7).

Step 3 computes a basis of the left null space of Bf −
I , e.g., by applying the Gauss–Jordan elimination to its
transpose (Bf − I)T:

0 4 2 6 1
0 5 3 3 5
0 2 5 5 5
0 4 1 2 5
0 3 4 1 5

 ↪→


0 1 0 0 2
0 0 1 0 1
0 0 0 1 2
0 0 0 0 0
0 0 0 0 0


We determine r = 2, and extract the basis vectors b1 =
(1 0 0 0 0) and b2 = (0 5 6 5 1). Step 4 converts them into
the polynomials h1 = 1 and h2 = 5x+6x2+5x3+x4, and
step 5 initializes H = {h2}, F = {f}, and FI = ∅.

The termination condition in step 6 does not hold. So in
step 7 we pick h = h2 and compute the required GCDs.

gcd(f, h2 − 1) = 6 + 5x+ 6x2 + 5x3 + x4 =: f1

gcd(f, h2 − 4) = 1 + x =: f2

gcd(f, h2 − i) = 1 for all i ∈ {0, 2, 3, 5, 6}

Afterwards, we update F to {f1, f2} and H to ∅.
Step 8 is just an optimization. For instance, in our im-

plementation we move all linear polynomials from F into
FI , so that in consecutive iterations they do not have to be
tested for further splitting in step 7. Hence, step 8 updates
FI := {f2}, F := {f1}, and r := 1.

Now we go back to step 6, where both termination criteria
fire at the same time (|F | = 1 = r ∧ H = ∅). We return
c · f1 · f2 as final factorization, i.e.,

f ≡ 3 · (1 + x) · (6 + 5x+ 6x2 + 5x3 + x4) (mod 7)

All of the arithmetic operations in Algorithm 2 have to
be performed in the prime field GF(p). Hence, in order to
implement Berlekamp’s algorithm, we basically need the
following operations: arithmetic in GF(p), polynomials over
GF(p), the Gauss–Jordan elimination over GF(p), and GCD-
computation for polynomials over GF(p).

All auxiliary algorithms are already available in the Is-
abelle distribution or in the AFP, provided that GF(p) is
available as a type of class field : for polynomials we use
α poly from ~~/src/HOL/Library/Polynomial, we take
~~/src/HOL/Number_Theory/Euclidean_Algorithm

for GCDs, and we load $(AFP)/thys/Jordan_Normal_

Form/Gauss_Jordan_Elimination for the Gauss–Jordan
elimination.

5.2 Soundness of Berlekamp’s Algorithm
Our soundness proof for Berlekamp’s algorithm is based on
the description in Knuth’s book.

We first formalize the equations (7,8,9,10,13,14) in the
textbook [9, pages 441 and 442]. To this end, we also adapt
existing proofs from the Isabelle distribution and the AFP.
For instance, we require the Chinese remainder theorem for
polynomials over a prime field GF(p) to derive (7) in the
textbook, but we could find this theorem only for integers
and naturals. Since the proofs of the theorem over such
domains are quite similar, the adaptation to polynomials
was not that difficult. Indeed, we formalized the theorem for
polynomials over an arbitrary field.

None of the cited equations was straightforward to prove.
More concretely, equation (13) was a little bit cumbersome,
since it is proven by rewriting summations which are con-
gruent modulo f . It also requires to write the coefficients of
a polynomial as a vector of length equal to degree f . To this
end, it was necessary to take the list of coefficients of the
polynomial, complete such a list with zeros up to the posi-
tion degree(f) − 1 and then transform the list into a vector.
In addition, proving that (f + g)p = fp+ gp, where f and g
are polynomials over GF(p), also required some properties
about binomial coefficients that were missing in the library.

Having proved these equations, we eventually show that
after step 3 of Algorithm 2, we have a basis b1, . . . , br of
the left null space of Bf − I . Now, step 4 transforms such
vectors into polynomials. A proof of this step is missing in
Knuth’s book. We define an isomorphism between the left
null space of Bf − I and the Berlekamp subspace

Wf := {h | hp ≡ h (mod f), degree(h) < degree(f)}

and then we show that such an isomorphism transforms the
basis b1, . . . , br into a basisHb := {h1, . . . , hr} ofWf . This
means that Hb is a Berlekamp basis for f and then every
factorization of f has at most |Hb| factors. This proof also
requires some extra effort since it was necessary to define
another isomorphism between the vector spaces Wf and
GF(p)r as well as the use of the Chinese remainder theorem

21

over polynomials and the uniqueness of the solution. In
order to carry out these proofs, we also extend an existing
AFP entry by Lee [13] about vector spaces to include some
necessary results which relate linear maps, isomorphisms
between vector spaces, dimensions, and bases.

Once having proved that Hb is a Berlekamp basis for f ,
we can prove equality (14); for every divisor fi of f and
every h ∈ Hb, we have

fi =
∏

0≤j<p

gcd(fi, h− j). (14)

Finally, it follows that every non-constant reducible divi-
sor fi of f can be properly factored via gcd(fi, h − j) for
suitable h ∈ Hb and 0 ≤ j < p.

In order to prove the soundness of steps 5–9 in Algo-
rithm 2, we use the following invariants – these are not so
explicitly stated by Knuth as the equations. Here, Hold rep-
resents the set of already processed polynomials of Hb.

1. f =
∏
(F ∪ FI).

2. All fi ∈ F ∪ FI are monic and non-constant.

3. All fi ∈ FI are irreducible.

4. Hb = H ∪Hold.

5. gcd(fi, h− j) ∈ {1, fi} for all h ∈ Hold, 0 ≤ j < p and
fi ∈ F ∪ FI .

6. |FI |+ r = |Hb|.
It is easy to see that all invariants are initially established

in step 5 by picking Hold = {1} ∩Hb. In particular, invari-
ant 5 is satisfied since the GCD of the monic polynomial f
and a constant polynomial c is always 1 (if c 6= 0) or f (if
c = 0).

It is also not hard to see that step 7 preserves the invari-
ants. In particular, invariant 5 is satisfied for elements in FI
since these are irreducible. Invariant 1 follows from (14).

The irreducibility of the final factors that are returned
in step 6 can be argued as follows. If |F | = r, then by
invariant 6 we know that |Hb| = |F ∪ FI |, i.e., F ∪ FI
is a factorization of f with the maximum number of factors,
and thus every factor is irreducible. In the other case, H = ∅
and hence Hold = Hb by invariant 4. Combining this with
invariant 5 shows that every element fi in F ∪ FI cannot be
factored by gcd(fi, h − j) for any h ∈ Hb and 0 ≤ j < p.
Since Hb is a Berlekamp basis, this means that fi must be
irreducible.

Eventually, putting everything together we arrive at the
formalized main soundness statement of Berlekamp’s al-
gorithm. Here, mset converts a list into a multiset, and
unique factorization f demands that the given factorization
is the unique factorization of f .

THEOREM 2 (Berlekamp’s Algorithm).

assumes square free (f :: α GFp poly)

and berlekamp factorization f = (c, fs)

shows unique factorization f (c,mset fs)

In order to prove the validity of the output factorization,
we basically use the invariants mentioned before. However,
it still requires some tedious reasoning.

Uniqueness follows from the general theorem that the
polynomials over fields form a unique factorization domain.

In the proofs, most of the time we model products of
polynomials (

∏
fs) via prod list (the product of the elements

of a list) instead of using prod (the product of the elements
of a set). The reason is that prod list has nicer properties.
For instance prod list (f#fs) = f · prod list fs always
holds (here # is the Isabelle’s syntax for the list constructor),
whereas prod (insert f F) = f · prod F is ensured only if
f /∈ F and F is a finite set. An alternative to prod list might
be products over multisets. However this will require many
conversions from lists to multisets since our algorithms work
on lists.

5.3 Implementing Berlekamp’s Algorithm
The soundness of Theorem 2 is formulated in a type-based
setting. In particular, the function berlekamp factorization
has type

α GFp poly⇒ αGFp× αGFp poly list.

In our use case, recall that Algorithm 1 first computes a
prime number p, and then invokes Berlekamp’s algorithm on
GF(p). This requires Algorithm 1 to construct a new type P
with CARD(P) = p depending on the value of p, and then
invoke berlekamp factorization for type P GFp.

Unfortunately, this is not possible in Isabelle/HOL. Hence,
Algorithm 1 requires Berlekamp’s algorithm to have a type
like

int⇒ int poly⇒ int× int poly list

where the first argument is the dynamically chosen prime p.
As a first step to solve this problem we define conver-

sions to int :: αGFp ⇒ int and of int :: int ⇒ αGFp
between αGFp and int where the former is injective, and
the other one applies one “modulo CARD(α)” operation.
These conversions are then lifted homomorphically to poly-
nomials, resulting in functions to int poly and of int poly.
With the help of these conversions and some homomorphism
lemmas we formulate and prove the following statement
of Berlekamp’s algorithm, which speaks about properties
of integer polynomials f and integer factors fs . Now only
the invocation of Berlekamp’s algorithm requires αGFp. In
the lemma, unique factorizationp and square freep denote a
unique factorization and a square-free polynomial modulo p
respectively.

LEMMA 1.

assumes (g :: α GFp) = of int poly f

and square freep f

and berlekamp factorization g = (d, gs)

22

and c = to int d

and fs = map to int poly gs

and p = CARD(α)

shows unique factorizationp f (c,mset fs)

The next step consists of implementing Berlekamp’s al-
gorithm on integer polynomials (mod p) directly. This imple-
mentation cannot use the polynomial and matrix algorithms
directly as these are type-based, cf. Section 3.

Instead, we made copies of the algorithms, but instead of
using the type-based arithmetic operations, we use a record
ops as parameter that stores all the required arithmetic oper-
ations plus , mult, etc. To be more precise, whenever some
auxiliary algorithm A invokes x + y in the type-based ver-
sion, we replace it by x+′ops y, denoting plus ops x y (plus is
the record selector), and pass ops as an additional argument
to A′, the record-based version of A.

The soundness of the record-based algorithms is then
mainly proved with the help of the transfer package. We de-
fine relations which express that certain elements are rep-
resentatives of each other. For instance, for integers and
GF(p) we define GFprel :: int ⇒ αGFp ⇒ bool as
GFprel x y = (x = to int y). Similar relations are then con-
structed for polynomials and matrices, e.g., polyrel R xs f =
(list all2 R xs (coeffs f)) relates lists with polynomials,
where list all2 R xs ys demands that xs and ys are of equal
lengths and their elements are point-wise in relation R.

Then we define a locale demanding that ops faithfully
implements the arithmetic operations in GF(p), expressed
as a set of transfer rules (cf. [7]) of the following form.

(GFprel ===> GFprel ===> GFprel) (op +′ops) (op +)

(GFprel ===> GFprel) inverse′ops inverse

(GFprel ===> GFprel ===> op =) (op =) (op =)

For instance, the first rule states that if the arguments x and y
are related to arguments x and y, resp., then x+y is related to
x+′ops y. Note that equality is not part of the record ops. This
becomes visible in the last transfer rule which expresses that
equality on GF(p) can be implemented as equality on the
representing integers.

Within the locale, we finally prove the soundness of the
implementation for Berlekamp’s algorithm.

THEOREM 3 (Implementation of Berlekamp).

(polyrel GFprel ===> GFprel ×rel list all2 (polyrel GFprel))

(berlekamp factorization′ops) berlekamp factorization

The theorem states that if the input f represents some GF(p)
polynomial g, and berlekamp factorization′ ops f = (c, fs)
and berlekamp factorization g = (d, gs), then c represents
d and fs represents gs .

To obtain Theorem 3 we developed transfer rules for all
auxiliary algorithms that are invoked in Berlekamp’s algo-
rithm. Here, the diagnostic commands transfer prover start

and transfer step were helpful to see why certain transfer
rules could initially not be proved automatically; these com-
mands nicely pointed to missing transfer rules.

Most of the transfer rules for non-recursive algorithms
were proved mainly by unfolding the definitions and finish-
ing the proof by transfer prover. For recursive algorithms,
we often perform induction via the algorithm. To handle an
inductive case, we locally declare transfer rules (obtained
from the induction hypothesis), unfold one function applica-
tion iteration, and then finish the proof by transfer prover.

Still, problems arose in case of underspecification. For
instance it is impossible to prove an unconditional transfer
rule for the function hd that returns the head of a list using
the standard relator for lists, (list all2 R ===> R) hd hd;
when the lists are empty, we have to relate undefined :: α
with undefined :: β. To circumvent this problem, we had
to reprove invariants that hd is invoked only on non-empty
lists.

Similar problems arose when using matrix indices where
transfer rules between matrix entries Aij and Bij are avail-
able only if i and j are within the matrix dimensions. So,
again we had to reprove the invariants on valid indices – just
unfolding the definition and invoking transfer prover was
not sufficient.

In summary, the development of the separate implemen-
tation is some annoying overhead, but still a workable so-
lution. In numbers: Theorem 2 requires around 3000 lines
of difficult proofs whereas Theorem 3 demands around 600
lines of easy proofs.

Using Theorem 3 we can now reformulate the sound-
ness of Berlekamp’s algorithm (Lemma 1) as follows. Here,
ff ops p is the record that implements arithmetic in GF(p) as
required by the locale, and poly of list converts a coefficient
list into a polynomial.

LEMMA 2.

assumes g = coeffs (Mpp f)

and square freep f

and berlekamp factorization′ (ff ops p) g = (c, gs)

and fs = map poly of list gs

and p = CARD(α :: prime card)

shows unique factorizationp f (c,mset fs)

Note that in Lemma 2 the occurrence of the type αGFp
vanished. All constants and types involved speak about in-
tegers, integer polynomials, and integer lists, except for the
single occurrence of CARD(α :: prime card).

Finally, we delete this last occurrence of α with the help
of local type definitions, a recent addition to the Isabelle
distribution. It replaces the condition p = CARD(α ::
prime card) by prime p. Thus we can define a function
berlekamp factorization int :: int ⇒ int poly ⇒ int ×
int poly list and prove its soundness without having to create
a type αGFp.

23

THEOREM 4 (Berlekamp Factorization on Integers).

assumes berlekamp factorization int p f = (c, fs)

and square freep f

and prime p

shows unique factorizationp f (c,mset fs)

6. Mignotte’s Factor Bound
Reconstructing the polynomials proceeds by obtaining fac-
tors modulo pk. The value of k should be large enough, so
that any coefficient of any factor of the original polynomial
can be determined from the corresponding coefficients in
Z/pkZ. We can find such k by finding a bound on the co-
efficients of the factors of f , i.e., a function factor bound
such that the following statement holds:

assumes f 6= 0

and g · h = f

and degree(g) ≤ d
shows |coeff g j| ≤ factor bound f d

Clearly, if b is a bound on the absolute value of the
coefficients, and pk > 2 · b then we can encode all re-
quired coefficients: In Z/pkZ we can represent the numbers
{−bp

k−1
2 c, . . . , d

pk−1
2 e} ⊇ {−b, . . . , b}.

The Mignotte bound [15] provides a bound on the abso-
lute values of the coefficients. The Mignotte bound is ob-
tained by relating the Mahler measure of a polynomial to its
coefficients. The Mahler measure is defined as follows:

measure f = |lc(f)| ·
n∏
i=1

max{1, |ri|}

where n = degree(f) and r1, . . . , rn are the complex roots
of f taking multiplicity into account. For nonzero f , lc(f) is
a nonzero integer. It follows that measure f ≥ 1. The defi-
nition of measure shows that measure (g · h) = measure g ·
measure h. We conclude that measure g ≤ measure f if g is
a factor of f .

The Mahler measure is bounded by the coefficients from
above through Landau’s inequality:

measure f ≤
√∑n

i=1 (coeff f i)2

Mignotte showed that the coefficients also bound the
measure from below: |coeff g i| ≤

(
d
i

)
·measure g whenever

degree(g) ≤ d. Putting this together we get:

|coeff g j| ≤
(
d

j

)
·measure g

≤
(

d

bd/2c

)
·measure f

≤
(

d

bd/2c

)
·
√∑

i (coeff f i)2

=

√(
d

bd/2c

)2

·
∑
i (coeff f i)2

Consequently, we define factor bound as follows:

factor bound f d = b
√(

d
bd/2c

)2 ·∑i (coeff f i)2c

It remains to choose a bound on the degrees of factors
of f that we require for reconstruction. A simple choice is
d = degree(f), but we can do slightly better. After having
computed the Berlekamp factorization, we know the degrees
of the factors of f in GF(p). Since the degrees will not be
changed by the Hensel lifting, we also know the degrees of
the polynomials hi in step 7 of Algorithm 1.

Since in step 8 of Algorithm 1 we will combine at most
half of the factors, it suffices to take d =

∑m
i=bm2 c

degree(hi),
where we assume that the sequence h1, . . . , hm is sorted by
degree, starting with the smallest. In the formalization this
gives rise to the following definition:

degree bound hs = (let ds = sort (map degree hs)

in sum list (drop (length ds div 2) ds))

Note also that in the reconstruction step we actually com-
pute factors of lc(f) ·f . Thus, we have to multiply the factor
bound for f by |lc(f)|.

EXAMPLE 3. At the end of Example 2 we have the factor-
ization f = 4 + 47x − 2x2 − 23x3 + 18x4 + 10x5 ≡
3 · (1 + x) · (6 + 5x+ 6x2 + 5x3 + x4) (mod 7).

We compute d = degree(6 + 5x+ 6x2 + 5x3 + x4) = 4.
Hence, we have to be able to represent coefficients of at most

10 ·b
√(

4
2

)2 · (42 + 472 + 22 + 232 + 182 + 102)c = 3380,
i.e., the numbers {−3380, . . . , 3380}. Thus the modulus has
to be larger than 2 · 3380 = 6760. Hence, in step 6 of
Algorithm 1 we choose k = 5, since this is the least number
k such that pk = 7k > 6760.

Finally, we report that our previous oracle implementa-
tion had a flaw in the computation of a suitable degree bound
d, since it just defined d to be the half of the degree of f . This
choice might be insufficient:4 Consider the list of degree of
the hi to be [1, 1, 1, 1, 1, 5]. Then the product h1 · h6 of de-
gree 6 might be a factor of f , but the degree bound in the
old implementation was computed as 1+1+1+1+1+5

2 = 5,
excluding this product. This wrong choice of d was detected
only after starting to formalize the required degree bound.

7. Hensel Lifting
Given a factorization in GF(p):

f ≡ lc(f) · g1 · . . . · gm (mod p)

4 Indeed, one can reduce the degree bound to half of the degree of f if one
uses a slightly more complex reconstruction algorithm which sometimes
considers the complement of the selected factors. We did not investigate the
trade-off between the two alternatives.

24

which Berlekamp’s algorithm provides, the task of the
Hensel lifting is to compute a factorization

f ≡ lc(f) · h1 · . . . · hm (mod pk).

Hensel’s lemma, following Miola and Yun [16], is stated as
follows.

LEMMA 3 (Hensel). Consider polynomials f over Z, g1
and h1 over GF(p) for a prime p, such that g1 is monic and
f ≡ g1 ·h1 (mod p). For any k ≥ 1, there exist polynomials
gk and hk over Z/pkZ such that gk is monic, f ≡ gk · hk
(mod pk), gk ≡ g1 (mod p), hk ≡ h1 (mod p). Moreover,
if f is monic, then gk and hk are unique (mod pk).

The lemma is proved inductively on k where there is a one
step lifting from Z/pkZ to Z/pk+1Z. To be more precise, the
one step lifting assumes polynomials gk and hk over Z/pkZ
satisfying the conditions, and computes the desired gk+1 and
hk+1 over Z/pk+1Z.

As explained in Section 3, it is preferable to carry on
the proof in the type-based setting whenever possible, and
indeed we proved the one step lifting in this way.

LEMMA 4 (Hensel lifting – one step).

assumes CARD(α) = CARD(β :: prime card) ∗ CARD(γ)

and CARD(β) dvd CARD(γ)

and #f = g ∗ h
and monic g

and degree f = degree g + degree h

and hensel 1 TYPE(β) f g h = (g, h)

shows f = g ∗ h ∧ monic g ∧ g = #g ∧ h = #h ∧
degree g = degree g ∧ degree h = degree h

and . . . (* uniqueness statement *)

Here, CARD(α) represents pk+1, CARD(β) represents p,
and CARD(γ) represents pk. The prefix “#” denotes the
function that converts polynomials over integer modulo m
into those over integer modulo n, where the type inference
determines n.

Unfortunately, we could not see how to use Lemma 4 in
the inductive proof of Lemma 3 in a type-based setting. A
type-based statement of Lemma 3 would have an assumption
like CARD(α) = pk. Then the induction hypothesis would
look like

CARD(α) = pk =⇒ . . . (3)

and the goal statement would be CARD(α) = pk+1 =⇒
There is no hope to be able to apply the induction hypothesis
(3) for this goal, since the assumptions are clearly incompat-
ible. A solution to this problem seems to require extending
the induction scheme to admit changing the type variables,
and produce an induction hypothesis like CARD(?α) =
pk =⇒ . . . where ?α can be instantiated. Unfortunately this
is not possible in Isabelle/HOL.

In our development, we therefore formalized most of the
reasoning for Hensel’s lemma on integer polynomials in the
locale-based setting (cf. Section 3.2), so that the modulus
(the k in the pk) can be easily altered within algorithms
and inductive proofs. Working on integer polynomials also
has the advantage when formalizing both the Hensel lift-
ing, which is presented below, and the reconstruction phase,
which is presented in the next section, since one has to per-
form operations of integer polynomials both in Z and in
Z/pkZ, so there is no conversion required.

In the locale poly mod , the binary version of Hensel’s
lemma is proved as follows, and internally one step of the
Hensel lifting is applied over and over again, i.e., the expo-
nents are p, p2, p3, p4, . . . [16, Sect. 2.2]. In the statement,
Isabelle’s syntax ∃! represents the unique existential quan-
tification.

LEMMA 5 (Hensel lifting – multiple steps, binary).

assumes prime p and coprimep g h and f ≡p g · h
and Mpp g = g and Mpp h = h

and monic g and k 6= 0

shows ∃! (g, h). f ≡pk g · h ∧
monic g ∧ g ≡p g ∧ h ≡p h ∧
Mppk g = g ∧Mppk h = h

We also formalize the quadratic Hensel lifting, where the
modulus during the lifting will be p, p2, p4, p8, . . . , p2

`

where, ` is a suitable exponent such that 2` ≥ k, cf. [16,
Sect. 2.3]. Since 2` might be larger than k, we finally per-
form a Mppk -operation in order to convert the Z/p2`Z fac-
torization into a Z/pkZ factorization. The quadratic version
is supported in addition to the linear version, since in our ex-
periments the quadratic algorithm is more efficient than the
linear one in contrast to the result of Miola and Yun [16, Sect.
1].56 Hence, the soundness lemma for the quadratic Hensel
lifting does not only mention the existence of f and g, but it
proves that the algorithm computes these polynomials.

We further extend the binary (quadratic) lifting algorithm
to an executable n-ary lifting algorithm: hensel lifting.

LEMMA 6 (Hensel Lifting – general case).

assumes hensel lifting p k f fs = gs

and k 6= 0 and prime p and coprime (lc(f)) p

and square freep f and factorizationp f (c,mset fs)

and c ∈ {0.. < p}
and ∀fi ∈ set fs. set (coeffs fi) ⊆ {0.. < p}

shows unique factorizationpk f (lc(f),mset gs)

and ∀gi ∈ set gs. monic gi ∧ irreduciblep gi

5 Perhaps our quadratic version of Hensel lifting is faster than the linear
version since we did not integrate (and prove) optimization (iv) of Miola
and Yun [16, Sect. 2.4].
6 The linear version of the Hensel lifting is still present, as it admits an easier
proof of the uniqueness result.

25

Note that uniqueness follows from the fact that the pre-
conditions already imply that f is uniquely factored in Z/pZ
– just apply Theorem 4.

We do not go into details of the proofs, but briefly men-
tion that also here local type definitions have been essential.
The reason is that the computation relies upon the extended
Euclidean algorithm applied on polynomials over GF(p).
Since the soundness of this algorithm is available only in a
type-based version in the Isabelle distribution, we first con-
vert it to the integer representation of GF(p) via local type
definitions in a similar way as was explained in Section 5.3.

We end this section by proceeding with the running ex-
ample, without providing details of the computation.

EXAMPLE 4. Applying the Hensel lifting on the factoriza-
tion of Example 2 with k = 5 from Example 3 yields

f ≡pk 3 · (2885 + x)

· (14027 + 7999x+ 13691x2 + 7201x3 + x4)

8. Reconstructing True Factors
For formalizing step 8 of Algorithm 1, we basically follow
Knuth, who described the reconstruction algorithm briefly
and presented the soundness proof in prose [9, steps F2 and
F3, pages 451 and 452]. At this point of the formalization
the De Bruijn factor is quite large, i.e., the formalization is
by far more detailed than the intuitive description given by
Knuth.

The following definition presents (a simplified version
of) the main worklist algorithm, which is formalized in Is-
abelle/HOL via the partial function command.7

reconstruction f d rf hs res [] =

let d = d+ 1

in if rf < 2d then f # res

else reconstruction f d rf hs res (sublists hs d)

reconstruction f d rf hs res (gs # todo) =

let g = invpk (Mppk (lc(f) · prod list gs)) in

if ¬ g dvd lc(f) · f
then reconstruction f d rf hs res todo

else let

fi = primitive part g;

f = f div fi;

rf = rf − length gs;

res = fi # res

in if rf < 2d then f # res else let

hs = fold remove1 gs hs;

todo = sublists hs d

in reconstruction f d rf hs res todo

7 Although partial function does not support pattern matching, we prefer
to use pattern matching in the presentation.

Here, rf is supposed to be the number of remaining fac-
tors, i.e., the length of hs; sublists hs d denotes the list
of length-d sublists of hs; and invm is the inverse mod-
ulo function, which converts a polynomial with coeffi-
cients in {0, . . . ,m} into a polynomial with coefficients in
{−bm−12 c, . . . , d

m−1
2 e}, where the latter set is a superset of

the range of coefficients of any potential factor of lc(f) · f ,
cf. Section 6.

Basically, for every sublist gs of hs we try to divide
lc(f) · f by the reconstructed potential factor g. If this is
possible then we store fi, the content-free version of g, in the
list res of resulting integer polynomial factors and update the
polynomial f and its factorization hs in Z/pkZ accordingly.
When the worklist becomes empty or a factor is found, we
update the number rf of remaining factors hs and the length
d of the sublists we are interested in. Finally, when we have
tested enough sublists (rf < 2d) we finish.

For efficiency, the actual formalization employs three im-
provements over the simplified version presented here.

• Values which are not frequently changed are passed as
additional arguments. For instance lc(f) · f is provided
via an additional argument and not recomputed in every
invocation of reconstruction.

• For the divisibility test we first test whether the constant
term coeff g 0 of the candidate factor g divides that of
lc(f) · f . In our experiments, in over 99 % of the cases
this simple integer divisibility test can prove that g is
not a factor of lc(f) · f . Moreover, this test is done
before computing the polynomial g, which is a product
of polynomials in gs, since the constant term of g is the
product of those in gs.

• In the formalization, the enumeration of sublists is made
parametric, and we developed an efficient generator of
sublists which reuses results from previous iterations.
Moreover, the sublist generator also shares computations
to generate the constant term of g.

EXAMPLE 5. Continuing Example 4, we have only two fac-
tors, so it suffices to consider d = 1. We obtain the sin-
gleton sublists [g1] = [2885 + x] and [g2] = [14027 +
7999x + 13691x2 + 7201x3 + x4]. The constant term of
invpk(lc(f) · g1) is the inverse modulo of (10 ·2885)modpk,
i.e., −4764, and similarly, for g2 we obtain 5814. Since nei-
ther of them divides 40, the constant term of lc(f) · f , the
algorithm returns [f], i.e., f is irreducible.

The formalized soundness proof of reconstruction is
much more involved than the paper proof; it is proved in-
ductively with several invariants that have to be maintained
throughout the proof, for instance

• correct input: rf = length hs

• corner cases: 2d ≤ rf , todo 6= [] −→ d < rf , d = 0 −→
todo = []

26

• irreducible result: ∀fi ∈ set res. irreducible fi

• properties of prime: square freep f , coprime (lc(f)) p

• factorization mod pk: unique factorizationpk f (lc(f), hs)

• normalized input: hi mod pk = hi for all hi ∈ set hs

• factorization over integers: the polynomial f ·
∏
res stays

constant throughout the algorithm
• all factors of lc(f)·f with degree at most degree bound hs

have coefficients in the range {−bp
k−1
2 c, . . . , d

pk−1
2 e}

• all non-empty sublists gs of hs of length at most d which
are not present in todo have already been tested, i.e.,
these gs do not give rise to a factor of f

The hardest parts in the proofs were to ensure the validity
of all invariants after a factor g has been detected – since
then nearly all parameters are changed – and to ensure that
the final polynomial f is irreducible when the algorithm
terminates.

In total, we achieve the following soundness result, which
already integrates many of the results from the previous
sections. Here, berlekamp hensel is a simple composition
of the Berlekamp factorization and the Hensel lifting, and
zassenhaus reconstruction invokes reconstruction with the
right set of starting parameters.

THEOREM 5 (Zassenhaus Reconstruction of Factors).

assumes prime p

and coprime (lc(f)) p

and square freep f

and berlekamp hensel p k f = hs

and d = degree bound hs

and 2 · |lc(f)| · factor bound f d < pk

and zassenhaus reconstruction hs p k f = fs

shows f = prod list fs

and ∀fi ∈ set fs. irreducible fi

9. Assembled Factorization Algorithm
At this point, it is straightforward to combine all the previous
algorithms to get a factorization algorithm for square-free
polynomials which satisfies Theorem 1.

berlekamp zassenhaus factorization f = let

p = suitable prime bz f ;

(, gs) = berlekamp factorization int p f ;

d = degree bound gs;

bnd = 2 · |lc(f)| · factor bound f d;

k = find exponent p bnd ;

hs = hensel lifting p k f fs

in zassenhaus reconstruction hs p k f

Here, find exponent p bnd just computes an exponent k
such that pk > bnd .

Since Theorem 1 has the prerequisite that the input poly-
nomial is square-free, we need to combine this algorithm
with a square-free factorization to obtain a full factoriza-
tion algorithm which takes arbitrary polynomials as input.
Here, we base our work on the formalization [19, Sect. 8] of
Yun’s square-free factorization algorithm [21] for polynomi-
als over fields of characteristic 0. We prove that the Yun fac-
torization also works for integer polynomials. One just has
to adapt certain normalization operations in the algorithm
from field polynomials to integer polynomials. For instance,
instead of dividing the input field polynomial by its leading
coefficient to obtain a monic field polynomial, we now di-
vide the input integer polynomial by its content to obtain a
content-free integer polynomial.

To obtain the soundness of the modified Yun factorization
for Z, we did not modify the existing formalization. Instead
we show that all polynomials fZ and fQ that are constructed
during the execution of Yun’s algorithm on Z and on Q on
the same input are related, i.e., there exists a constant c such
that c · fZ = fQ. We then connect this relationship with
the existing soundness statement for rational polynomials to
obtain the soundness theorem of Yun’s algorithm on integer
polynomials.

THEOREM 6 (Yun Factorization for Integer Polynomials).

assumes yun factorization int f = (c, gis)

shows square free factorization f (c, gis)

and ∀(g, i) ∈ set gis. content g = 1 ∧ lc(g) > 0

Here, square free factorization f (c, gis) demands that
f = c ·

∏
(gi,i)∈set gis g

i+1
i , that gis contains no duplicates,

that each gi is square-free, and that gi and gj are coprime
whenever i 6= j.

We finally assemble a factorization algorithm for integer
polynomials

factorize int poly f = let

(c, gis) = yun factorization int f ;

bz = berlekamp zassenhaus factorization;

in (c, [(h, i). (g, i)← gis, h← bz g])

and prove its soundness: a factorization into irreducible and
square-free factors.8

THEOREM 7 (Factorization of Integer Polynomials).

assumes factorize int poly f = (c, his)

shows square free factorization f (c, his)

and ∀(h, i) ∈ set his. irreducible h

By using the Gauss lemma we also assembled a factoriza-
tion algorithm for rational polynomials which just converts
the input polynomial into an integer polynomial by a scalar

8 A factorization into irreducible factors is not necessarily a square-free
factorization. For instance (x + 1) · (−x − 1) is a factorization into
irreducible factors, but it is not square-free. Our factorization algorithm
produces the correct result: −1 · (x+ 1)2.

27

multiplication and then invokes factorize int poly. The al-
gorithm has exactly the same soundness statement as Theo-
rem 7 except that the type changes from integer polynomials
to rational polynomials.

10. Experimental Evaluation
We evaluate the performance of our algorithm in comparison
to a modern factorization algorithm – here we choose the
factorization algorithm of Mathematica 11. To evaluate the
runtime of our algorithm, we use Isabelle’s code extraction
mechanism to extract Haskell code for factorize int poly.
This code was compiled with GHC using the O2 switch
to turn on most optimizations. All experiments have been
conducted under macOS Sierra 10.12 on a 6-core Intel Xeon
E5 running at 3.5 Ghz.

Figure 1 shows the runtimes of our implementation com-
pared to that of Mathematica on a logarithmic scale. The run-
times are given in seconds (including the 0.4 seconds startup
time of Mathematica), and the horizontal axis shows the
number of coefficients of the polynomial. The coefficients
are chosen at random between −100 and 100.

���������_���_����

�����������

��� ��� ��� ��� ��� ��� ���
������ �� ������������

���

�

�

��

��

������� �� �������
������� ����������

Figure 1. Runtimes compared with Mathematica

As these polynomials have been randomly generated,
they are typically irreducible. In this case using a fast ex-
ternal factorization algorithm as a pre-processing step will
currently not improve the performance, as then the pre-
processing does not modify the polynomial. We conjecture
that the situation could be alleviated by further incorporating
an efficient irreducibility test.

Profiling revealed that for the (random) example polyno-
mials, most of the time is spent in the Berlekamp factoriza-
tion, i.e., in step 5 of Algorithm 1. Interestingly, the expo-
nential reconstruction algorithm in step 8 does not have any
significance on these random polynomials, cf. Table 1.

Nevertheless we remark that this situation can dramat-
ically change on non-random polynomials, e.g., on poly-
nomials from experiments with algebraic numbers. For in-

Table 1. Profiling Results

step amount of total runtime

Berlekamp factorization 67.4 %
Hensel lifting 22.8 %
Yun factorization 9.3 %
Remaining parts 0.5 %

stance, more than 98 % of the factorization time is spent in
the reconstruction algorithm when computing the minimal
integer polynomial that has

∑6
i=1

3
√
i as root, and there is a

timeout because of the reconstruction algorithm, if
∑7
i=1

3
√
i

is considered. As a possible optimisation, the exponential
reconstruction phase can be replaced by a polynomial-time
lattice-reduction algorithm [6]. Then, of course, a soundness
proof would become much more involved.

11. Summary
We formalized the Berlekamp–Zassenhaus algorithm for
factoring univariate integer polynomials. To this end we
switched between different representations of finite fields
and quotient rings with the help of the transfer package and
local type definitions. The generated code can factor large
polynomials within seconds. The whole formalization con-
sists of about 14,000 lines of Isabelle and took about 11
person months of Isabelle experts. As far as we know, this is
the first formalization of an efficient polynomial factoriza-
tion algorithm in a theorem prover.

There remain numerous possibilities to extend the cur-
rent formalization for optimizing the factorization algorithm
even further: for instance, one can consider implement-
ing the finite field operations on native machine integers
when the prime is sufficiently small, deriving a tighter factor
bound, improving Isabelle’s polynomial multiplication algo-
rithm (which is O(n2)), improving the GCD algorithm for
integer polynomials, incorporating distinct degree factoriza-
tion, the Cantor–Zassenhaus algorithm, reversed polynomi-
als, lattice-reductions algorithms, ...

Acknowledgments
This research was supported by the Austrian Science Fund
(FWF) project Y757. The authors are listed in alphabetical
order regardless of individual contributions or seniority. We
thank Florian Haftmann for integrating our changes in the
polynomial library into the Isabelle distribution; we thank
Manuel Eberl for discussions on factorial rings in Isabelle;
and we thank the anonymous reviewers for their helpful
remarks and suggestions for future work.

28

References
[1] C. Ballarin. Locales: A module system for mathematical

theories. J. Autom. Reasoning, 52(2):123–153, 2014.

[2] G. Barthe, B. Grégoire, S. Heraud, F. Olmedo, and S. Z.
Béguelin. Verified indifferentiable hashing into elliptic
curves. In POST 2012, volume 7215 of LNCS, pages 209–
228, 2012.

[3] E. R. Berlekamp. Factoring polynomials over finite fields.
Bell System Technical Journal, 46:1853–1859, 1967.

[4] D. G. Cantor and H. Zassenhaus. A new algorithm for factor-
ing polynomials over finite fields. Math. Comput., 36(154):
587–592, 1981.

[5] J. R. Cowles and R. Gamboa. Unique factorization in ACL2:
Euclidean domains. In ACL2 2006, pages 21–27. ACM, 2006.

[6] M. van Hoeij. Factoring polynomials and the knapsack prob-
lem. J. Number Theory, 95(2):167–189, 2002.

[7] B. Huffman and O. Kunčar. Lifting and transfer: A modular
design for quotients in Isabelle/HOL. In CPP 2013, volume
8307 of LNCS, pages 131–146, 2013.

[8] B. Kirkels. Irreducibility certificates for polynomials with
integer coefficients. Master’s thesis, Radboud Universiteit
Nijmegen, 2004.

[9] D. E. Knuth. The Art of Computer Programming, Volume
II: Seminumerical Algorithms, 2nd Edition. Addison-Wesley,
1981. ISBN 0-201-03822-6.

[10] H. Kobayashi, H. Suzuki, and Y. Ono. Formalization of
Hensel’s lemma. In Theorem Proving in Higher Order Log-
ics: Emerging Trends Proceedings, volume 1, pages 114–118,
2005.

[11] A. Krauss. Recursive definitions of monadic functions. In
PAR 2010, volume 43 of EPTCS, pages 1–13, 2010.

[12] O. Kunčar and A. Popescu. From types to sets by local type
definitions in higher-order logic. In ITP 2016, volume 9807
of LNCS, pages 200–218, 2016.

[13] H. Lee. Vector spaces. Archive of Formal Proofs, 2014. URL
http://www.isa-afp.org/entries/VectorSpace.

shtml.

[14] É. Martin-Dorel, G. Hanrot, M. Mayero, and L. Théry. For-
mally verified certificate checkers for hardest-to-round com-
putation. J. Autom. Reasoning, 54(1):1–29, 2015.

[15] M. Mignotte. An inequality about factors of polynomials.
Mathematics of Computation, 28(128):1153–1157, 1974.

[16] A. Miola and D. Y. Yun. Computational aspects of Hensel-
type univariate polynomial greatest common divisor algo-
rithms. ACM SIGSAM Bulletin, 8(3):46–54, 1974.

[17] T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL –
A Proof Assistant for Higher-Order Logic, volume 2283 of
LNCS. Springer, 2002.

[18] R. Thiemann and A. Yamada. Algebraic numbers in Is-
abelle/HOL. In ITP 2016, volume 9807 of LNCS, pages 391–
408, 2016.

[19] R. Thiemann and A. Yamada. Formalizing Jordan normal
forms in Isabelle/HOL. In CPP 2016, pages 88–99. ACM,
2016.

[20] Wolfram Research, Inc. Mathematica. Champaign, Illinois,
version 11.0 edition, 2016.

[21] D. Y. Yun. On square-free decomposition algorithms. In
SYMSAC 1976, pages 26–35, 1976.

[22] H. Zassenhaus. On Hensel factorization, I. J. Number Theory,
1(3):291–311, 1969.

29

http://www.isa-afp.org/entries/VectorSpace.shtml
http://www.isa-afp.org/entries/VectorSpace.shtml

	Introduction
	Preliminaries
	Formalizing Prime Fields
	Type-Based Formalization
	Locale-Based Version

	Square-Free Polynomials in GF(p)
	Berlekamp's Algorithm
	Informal Description
	Soundness of Berlekamp's Algorithm
	Implementing Berlekamp's Algorithm

	Mignotte's Factor Bound
	Hensel Lifting
	Reconstructing True Factors
	Assembled Factorization Algorithm
	Experimental Evaluation
	Summary

