
Mechanizing and Improving Dependency Pairs ∗

Jürgen Giesl (giesl@informatik.rwth-aachen.de),
René Thiemann (thiemann@informatik.rwth-aachen.de) and
Peter Schneider-Kamp (psk@informatik.rwth-aachen.de)
LuFG Informatik 2, RWTH Aachen, Ahornstr. 55, 52074 Aachen, Germany

Stephan Falke (spf@cs.unm.edu)
Computer Science Dept., University of New Mexico, Albuquerque, NM 87131, USA

Abstract. The dependency pair technique [1, 11, 12] is a powerful method for
automated termination and innermost termination proofs of term rewrite systems
(TRSs). For any TRS, it generates inequality constraints that have to be satisfied
by well-founded orders. We improve the dependency pair technique by considerably
reducing the number of constraints produced for (innermost) termination proofs.

Moreover, we extend transformation techniques to manipulate dependency pairs
which simplify (innermost) termination proofs significantly. In order to fully mech-
anize the approach, we show how transformations and the search for suitable or-
ders can be mechanized efficiently. We implemented our results in the automated
termination prover AProVE and evaluated them on large collections of examples.

Keywords: termination, term rewriting, dependency pairs

1. Introduction

Termination is an essential property of term rewrite systems. Before
the development of dependency pairs in the mid-90’s, most methods to
prove termination of TRSs automatically used simplification orders [7],
where a term is greater than its proper subterms (subterm property).
Examples for simplification orders include lexicographic or recursive
path orders possibly with status (RPOS [7]), the Knuth-Bendix or-
der (KBO [28]), and many polynomial orders [31]. However, there
are numerous important TRSs which are not simply terminating, i.e.,
their termination cannot be shown by simplification orders. Therefore,
the dependency pair approach [1, 11, 12] was developed which al-
lows the application of simplification orders to non-simply terminating
TRSs. In this way, the class of systems where termination is provable
mechanically increased significantly.

EXAMPLE 1. The following TRS from [1] is not simply terminating,
since the left-hand side of div’s last rule is embedded in the right-hand

∗ Supported by the Deutsche Forschungsgemeinschaft DFG, grant GI 274/5-1.

c© 2006 Kluwer Academic Publishers. Printed in the Netherlands.

JAR06final.tex; 14/09/2006; 10:23; p.1

2 Giesl, Thiemann, Schneider-Kamp, Falke

side if y is instantiated with s(x). So approaches for termination proofs
based on simplification orders fail, while the example is easy to handle
with dependency pairs.

minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)

div(0, s(y)) → 0

div(s(x), s(y)) → s(div(minus(x, y), s(y)))

In Sect. 2, we recapitulate the dependency pair technique for termi-
nation and innermost termination proofs. Then we present new results
which improve the technique significantly: Sect. 3 shows that for termi-
nation, it suffices to require only the same constraints as for innermost
termination. Sect. 4 introduces a refinement to reduce the constraints
(for both termination and innermost termination) even more by com-
bining the concepts of “usable rules” and “argument filtering”. Sect. 5
presents techniques for transforming dependency pairs in order to sim-
plify (innermost) termination proofs further. Compared to previous
such transformations, Sect. 5 weakens their applicability conditions, in-
troduces an additional new transformation, and shows how to combine
the transformations with the improvements of Sect. 3 and 4.

The remainder of the paper is concerned with mechanizing depen-
dency pairs. To this end, we show how to solve the indeterminisms
and search problems of the dependency pair technique efficiently. One
problem is the question when and how often to apply the dependency
pair transformations discussed above. Therefore, in Sect. 5 we also show
how to use these transformations in practice in order to guarantee the
termination of their application without compromising their power.

For automated (innermost) termination proofs, one tries to solve the
constraints generated by the dependency pair technique with standard
orders like RPOS, KBO, or polynomial orders. However, if one uses
classical simplification orders, then the constraints should first be pre-
processed by an argument filtering in order to benefit from the full
power of dependency pairs. Since the number of possible argument
filterings is exponential, the search for a suitable filtering is one of
the main problems when automating dependency pairs. We present an
algorithm to generate argument filterings efficiently for our improved
dependency pair technique in Sect. 6. Instead of using orders like RPOS
or KBO in combination with argument filterings, one can also apply
polynomial orders, which already simulate the concept of argument fil-
tering themselves. In Sect. 7 we show how to mechanize the dependency
pair approach using polynomial orders efficiently.

Our improvements and algorithms are implemented in our termi-
nation prover AProVE [17]. In Sect. 8 we give empirical results which

JAR06final.tex; 14/09/2006; 10:23; p.2

Mechanizing and Improving Dependency Pairs 3

show that they are extremely successful in practice. Thus, the con-
tributions of this paper are also very helpful for other current tools
which use dependency pairs (e.g., CiME [6], TORPA [45], TPA [29],
TTT [24]). Dependency pairs can also be combined with other ter-
mination techniques (e.g., [40] integrates dependency pairs and the
size-change principle from termination analysis of functional [32] and
logic programs [8]). Moreover, the systems TALP [36] and AProVE also
use dependency pairs for termination proofs of logic programs. So tech-
niques to mechanize and to improve dependency pairs are useful for
termination analysis of other kinds of programming languages as well.
Of course, dependency pairs are not the only successful method for
automated termination proofs of non-simply terminating TRSs. Other
powerful methods include semantic labelling [44], match-bounds [9], and
the monotonic semantic path order [5]. For that reason, several tools
(including AProVE) also offer other termination techniques, possibly in
combination with dependency pairs.

2. Dependency Pairs

We briefly present the dependency pair method and refer to [1, 11, 12,
15, 16, 22, 25, 34, 35] for refinements and motivations. Here, we use
the new formulation of [15], where the method is presented as a gen-
eral framework for termination proofs which combines several separate
sub-techniques. This formulation was inspired by the cycle analysis
algorithm of [25] and it is related to the constraint-based approach
of [4, Chapter 7]. A main advantage of this formulation is that one
can incorporate other termination techniques into the cycle analysis
algorithm of [25] which leads to a substantial increase in modularity and
power. After presenting the structure of the dependency pair framework
in Sect. 2.1, we introduce two of the main components of the framework
in Sect. 2.2 and 2.3: the dependency graph processor and the reduction
pair processor.

2.1. The Dependency Pair Framework

We assume familiarity with term rewriting (see, e.g., [3]). For a signa-
ture F and a set of variables V, let T (F ,V) denote the set of terms over
F and V. For a TRS R over a signature F , the defined symbols DR are
the root symbols of the left-hand sides of rules. We restrict ourselves
to finite signatures and TRSs. For every defined symbol f ∈ DR, we
extend the signature F by a fresh tuple symbol f ♯, where f ♯ has the
same arity as f . To ease readability, in the examples we usually adopt

JAR06final.tex; 14/09/2006; 10:23; p.3

4 Giesl, Thiemann, Schneider-Kamp, Falke

the original notation of [1] where tuple symbols were written with
capital letters, i.e., we often write F for f ♯, etc. If t = g(t1, . . . , tm)
with g ∈ DR, we write t♯ for g♯(t1, . . . , tm).

DEFINITION 2 (Dependency Pair). If l → r ∈ R and t is a subterm
of r with defined root symbol, then the rule l♯ → t♯ is a dependency
pair of R. The set of all dependency pairs of R is denoted by DP (R).

So the dependency pairs of the TRS in Ex. 1 are

MINUS(s(x), s(y)) → MINUS(x, y) (1)

DIV(s(x), s(y)) → MINUS(x, y) (2)

DIV(s(x), s(y)) → DIV(minus(x, y), s(y)) (3)

To use dependency pairs for (innermost) termination proofs, we need
the notion of (innermost) chains. Intuitively, a dependency pair corre-
sponds to a (possibly recursive) function call and a chain of dependency
pairs represents a sequence of calls that can occur during a reduc-
tion. We always assume that different occurrences of dependency pairs
are variable disjoint and consider substitutions whose domains may
be infinite. In the following, P is usually a set of dependency pairs.

DEFINITION 3 (Chain). Let P,R be TRSs. A (possibly infinite) se-
quence of pairs s1 → t1, s2 → t2, . . . from P is a (P,R)-chain iff there
is a substitution σ with tiσ →∗

R si+1σ for all i. The chain is minimal
if all tiσ are terminating w.r.t. R. The chain is an innermost (P,R)-
chain iff tiσ

i→∗
R si+1σ and siσ is in normal form w.r.t. R for all i.

Here, “ i→R” denotes innermost reductions. An innermost (P,R)-chain
as above is minimal if all tiσ are innermost terminating w.r.t. R.

In Ex. 1, the following sequence is a minimal (innermost) chain

DIV(s(x1), s(y1)) → DIV(minus(x1, y1), s(y1)), (4)

DIV(s(x2), s(y2)) → DIV(minus(x2, y2), s(y2)) (5)

since DIV(minus(x1, y1), s(y1))σ →∗
R DIV(s(x2), s(y2))σ holds for a suit-

able substitution σ. For example, σ could instantiate x1 with s(0) and
y1, x2, y2 with 0. While there are chains of arbitrary finite length in
Ex. 1, we have no infinite chains. We obtain the following sufficient
and necessary criterion for termination and innermost termination.

THEOREM 4 (Termination Criterion [1]). A TRS R is terminating
iff there is no infinite minimal (DP (R),R)-chain. R is innermost ter-
minating iff there is no infinite minimal innermost (DP (R),R)-chain.

JAR06final.tex; 14/09/2006; 10:23; p.4

Mechanizing and Improving Dependency Pairs 5

To prove absence of infinite minimal (innermost) chains automatical-
ly, we consider so-called dependency pair problems (“DP problems”)1.
A DP problem consists of two TRSs P and R (where initially, P =
DP (R)) and a flag e ∈ {t, i} for “termination” or “innermost termi-
nation”. Instead of “(P,R)-chains” we also speak of “(P,R, t)-chains”
and instead of “innermost (P,R)-chains” we speak of “(P,R, i)-chains”.
Our goal is to show that there is no infinite minimal (P,R, e)-chain. In
this case, we call the problem finite. So Thm. 4 can be reformulated as
follows: A TRS R is terminating iff the DP problem (DP (R),R, t) is
finite and it is innermost terminating iff (DP (R),R, i) is finite.

A DP problem (P,R, e) that is not finite is called infinite. But in
addition, (P,R, t) is already infinite whenever R is not terminating
and (P,R, i) is already infinite if R is not innermost terminating. The
reason for this non-symmetric definition of “finite” and “infinite” is
that in this way there are more finite resp. infinite DP problems and
therefore, it becomes easier to detect (in)finiteness of a problem.2 While
the initial DP problem (DP (R),R, e) is either finite or infinite, other
DP problems (P,R, e) which can occur in termination proofs can be
both finite and infinite. For example, the DP problem (P,R, e) with
P = {F(s(x)) → F(x)} and R = {f(s(x)) → f(x), a → a} is finite since
there is no infinite minimal (P,R, e)-chain, but also infinite since R is
not (innermost) terminating.

Such DP problems do not cause difficulties. If one detects an infinite
problem during a termination proof, one can always abort the proof,
since termination has been disproved (if all proof steps were “com-
plete”, i.e., if they preserved the termination behavior). If the problem
is both finite and infinite, then even if one only considers it as being
finite, the proof is still correct, since then there exists another resulting
DP problem which is infinite and not finite. The reason is that by
Thm. 4, non-termination implies that there is an infinite minimal chain.
Indeed, when proving termination of the TRS R above one also obtains
a DP problem with the infinite minimal chain A → A, A → A, . . .

Termination techniques should now operate on DP problems instead
of TRSs. We refer to such techniques as dependency pair processors
(“DP processors”). Formally, a DP processor is a function Proc which
takes a DP problem as input and returns a new set of DP problems
which then have to be solved instead. Alternatively, it can also return
“no”. A DP processor Proc is sound if for all DP problems d, d is finite

1 To ease readability we use a simpler definition of DP problems than [15], since
this simple definition suffices for the presentation of the new results of this paper.

2 That a DP problem is already “infinite” if R is not terminating is required for
the completeness of the dependency pair transformations in Sect. 5 (cf. Ex. 32 in
Sect. 5.1).

JAR06final.tex; 14/09/2006; 10:23; p.5

6 Giesl, Thiemann, Schneider-Kamp, Falke

whenever Proc(d) is not “no” and all DP problems in Proc(d) are finite.
Proc is complete if for all DP problems d, d is infinite whenever Proc(d)
is “no” or when Proc(d) contains an infinite DP problem.

Soundness of Proc is required to prove termination (in particular,
to conclude that d is finite if Proc(d) = ∅). Completeness is needed to
prove non-termination (in particular, to conclude that d is infinite if
Proc(d) = no). Completeness also ensures that one does not transform
non-infinite DP problems into infinite ones (i.e., applying the processor
does not “harm” – but of course it could still have a negative impact
on the success or efficiency of the termination proof attempt).

Cor. 5 introduces the DP framework. The idea is to start with the
initial DP problem (DP (R),R, e), where e depends on whether one
wants to prove termination or innermost termination. Then this prob-
lem is transformed repeatedly by sound DP processors. If the final pro-
cessors return empty sets of DP problems, then termination is proved.
If one of the processors returns “no” and all processors used before were
complete, then one has disproved termination of the TRS R.

COROLLARY 5 (Dependency Pair Framework). Let R be a TRS. We
construct a tree whose nodes are labelled with DP problems or “yes” or
“no” and whose root is labelled with (DP (R),R, e) where e ∈ {t, i}.
For every inner node labelled with d, there is a sound DP processor
Proc satisfying one of the following conditions:

• Proc(d) = no and the node has just one child, labelled with “no”

• Proc(d) = ∅ and the node has just one child, labelled with “yes”

• Proc(d) 6= no, Proc(d) 6= ∅, and the children of the node are
labelled with the DP problems in Proc(d)

If all leaves of the tree are labelled with “yes”, then R is terminating
(if e = t) resp. innermost terminating (if e = i). Otherwise, if there
is a leaf labelled with “no” and if all processors used on the path from
the root to this leaf are complete, then R is not terminating (if e = t)
resp. not innermost terminating (if e = i).

EXAMPLE 6. If d0 is the initial problem (DP (R),R, e), if Proc0,
Proc1, Proc2 are sound DP processors, and if Proc0(d0) = {d1, d2},
Proc1(d1) = ∅, and Proc2(d2) = ∅, then one could obtain the first tree
below and conclude (innermost) termination.

d0

{{
{ CC

C

d1 d2

yes yes

d0

}}
} AA

A

d1

}}
} AA

A
d2

d3 d4 d5 no

JAR06final.tex; 14/09/2006; 10:23; p.6

Mechanizing and Improving Dependency Pairs 7

But if Proc1(d1) = {d3, d4, d5} and Proc2(d2) = no, one could obtain
the second tree. If both Proc0 and Proc2 are complete, then now one
could conclude non-termination.

2.2. The Dependency Graph Processor

We first introduce a processor to decompose a DP problem into several
sub-problems. To this end, one tries to determine which pairs can follow
each other in chains by constructing a so-called dependency graph.

DEFINITION 7 (Dependency Graph). For a problem (P,R, e), the
nodes of the (P,R, e)-dependency graph are the pairs of P and there
is an arc from s → t to v → w iff s → t, v → w is an (P,R, e)-chain.

In Ex. 1, we have the following dependency graph for both e ∈ {t, i}.

DIV(s(x), s(y)) → MINUS(x, y) (2)

DIV(s(x), s(y))→DIV(minus(x, y), s(y)) (3) MINUS(s(x), s(y))→MINUS(x, y) (1)

A set P ′ 6= ∅ of dependency pairs is a cycle if for any s → t and
v → w in P ′ there is a non-empty path from s → t to v → w in the
graph which only traverses pairs of P ′. A cycle P ′ is a strongly connected
component (“SCC”) if P ′ is not a proper subset of another cycle.

Note that in standard graph terminology, a path n0 ⇒ n1 ⇒ . . .⇒ nk

in a directed graph forms a cycle if n0 = nk and k ≥ 1. In our context
we identify cycles with the set of elements that occur in it, i.e., we call
{n0, n1, . . . , nk−1} a cycle, cf. [12]. Since a set never contains multiple
occurrences of an element, this results in several cycling paths being
identified with the same set. Similarly, an “SCC” is a graph in standard
graph terminology, whereas we identify an SCC with the set of elements
occurring in it. Then indeed, SCCs are the same as maximal cycles.

In Ex. 1, we have the SCCs P1 = {(1)} and P2 = {(3)}. Since we only
regard finite TRSs, any infinite chain of dependency pairs corresponds
to a cycle of the dependency graph. Therefore, one can prove absence
of infinite chains separately for every cycle of the dependency graph.
As observed in [25], to avoid an exponential blowup, one should not
compute all cycles of the dependency graph, but consider the SCCs in-
stead. Therefore, the following DP processor decomposes a DP problem
into the sub-problems corresponding to the different SCCs.

JAR06final.tex; 14/09/2006; 10:23; p.7

8 Giesl, Thiemann, Schneider-Kamp, Falke

THEOREM 8 (Dependency Graph Processor [1, 15, 25]). LetProc((P,
R, e)) = {(P1,R, e), . . . , (Pn,R, e)}, where P1, . . . ,Pn are the SCCs
of the (P,R, e)-dependency graph. Then Proc is sound and complete.

The initial problem in Ex. 1 is (P,R, e) with P = {(1), (2), (3)}.
The above processor transforms it into ({(1)},R, e) and ({(3)},R, e).

Unfortunately, the dependency graph is not computable. Therefore,
for automation one constructs an estimated graph containing at least
all arcs from the real graph. Obviously, the dependency graph processor
of Thm. 8 remains sound and complete if one uses any such estimation.

Let capR(t) result from replacing all subterms of t with defined
root symbol (i.e., with a root symbol from DR) by different fresh vari-
ables. Here, multiple occurrences of the same subterm are also replaced
by pairwise different variables. Let ren(t) result from replacing all
occurrences of variables in t by different fresh variables (i.e., ren(t)
is a linear term). So capR(DIV(minus(x, y), s(y))) = DIV(z, s(y)) and
ren(DIV(x, x)) = DIV(x1, x2).

DEFINITION 9 (Estimated Dependency Graph). For a DP problem
(P,R, e), the nodes of the estimated dependency graph EDG(P,R) are
the pairs of P and there is an arc from s → t to v → w iff ren(capR(t))
and v are unifiable. In the estimated innermost dependency graph
EIDG(P,R) there is an arc from s → t to v → w iff capR(t) and v
are unifiable by an mgu µ such that sµ and vµ are in normal form.

The above estimations are sound, i.e., the EDG contains the (P,R,
t)-dependency graph and the EIDG contains the (P,R, i)-dependency
graph. Of course, to check whether there is an arc from s → t to v → w
in E(I)DG, one has to rename the variables of s → t and v → w to
make them variable disjoint. In Ex. 1, the E(I)DG is identical to the
real dependency graph. Alternative improved techniques to estimate
(innermost) dependency graphs can be found in [1, 14, 16, 25, 34, 35].
In particular, the EIDG in Def. 9 is a slightly weaker simplified variant
of the “estimated innermost dependency graph” from [1].

2.3. The Reduction Pair Processor

To prove that a DP problem is finite, we now generate constraints
which should be satisfied by some reduction pair (%,≻) [30] consisting
of a quasi-rewrite order % (i.e., % is reflexive, transitive, monotonic
(closed under contexts), and stable (closed under substitutions)) and
a stable well-founded order ≻ which is compatible with % (i.e., % ◦≻
⊆ ≻ or ≻ ◦ % ⊆ ≻). However, ≻ need not be monotonic. For a DP
problem (P,R, e), the generated constraints ensure that at least one

JAR06final.tex; 14/09/2006; 10:23; p.8

Mechanizing and Improving Dependency Pairs 9

rule in P is strictly decreasing (w.r.t. ≻) and all remaining rules in
P and R are weakly decreasing (w.r.t. %). Requiring l % r for all
l→r ∈ R ensures that in a chain s1→ t1, s2→ t2, ... with tiσ →∗

R si+1σ,
we have tiσ % si+1σ for all i. Hence, if a reduction pair satisfies
these constraints, then the strictly decreasing pairs of P cannot occur
infinitely often in chains. Thus, one can delete all these pairs from P.

For innermost termination, a weak decrease is not required for all
rules but only for the usable rules. These rules are a superset3 of those
rules that may be used to reduce right-hand sides of dependency pairs
if their variables are instantiated with normal forms. In Ex. 1, the
usable rules of dependency pair (3) are the minus-rules whereas the
other dependency pairs have no usable rules.

DEFINITION 10 (Usable Rules). For f ∈ F , let RlsR(f) = {l→ r∈
R | root(l) = f} and let R′ = R \ RlsR(f). For any term, we define

• UR(x) = ∅ for x ∈ V and
• UR(f(t1, ..., tn)) = RlsR(f) ∪

⋃

l→r∈RlsR(f) UR′(r) ∪
⋃n

i=1 UR′(ti).

For any TRS P, we define UR(P) =
⋃

s→t∈P UR(t).

We want to use standard techniques to synthesize reduction pairs
satisfying the constraints generated by the dependency pair technique.
Most existing techniques generate monotonic orders ≻ like RPOS or
KBO. But for the dependency pair approach we only need a monotonic
quasi-order %, whereas ≻ does not have to be monotonic. (This is often
called “weak monotonicity”.) For that reason, before synthesizing a
suitable order, some arguments of function symbols can be eliminated.
To perform this elimination, the concept of argument filtering was
introduced in [1] (we use the notation of [30]).

DEFINITION 11 (Argument Filtering). An argument filtering π for a
signature F maps every n-ary function symbol to an argument position
i ∈ {1, . . . , n} or to a (possibly empty) list [i1, . . . , im] with 1 ≤ i1 <
. . . < im ≤ n. The signature Fπ consists of all function symbols f
such that π(f) = [i1, . . . , im], where in Fπ the arity of f is m. Every
argument filtering π induces a mapping from T (F ,V) to T (Fπ,V):

π(t) =







t if t is a variable
π(ti) if t = f(t1, ..., tn) and π(f) = i
f(π(ti1), ..., π(tim)) if t = f(t1, ..., tn) and π(f) = [i1, ..., im]

An argument filtering with π(f) = i for some f ∈ F is called collapsing.
For any TRS R, let π(R) = {π(l) → π(r) | l → r ∈ R}.

3 Improved definitions of the “usable rules” which lead to a better approximation
of these rules can be found in [13, 14, 16].

JAR06final.tex; 14/09/2006; 10:23; p.9

10 Giesl, Thiemann, Schneider-Kamp, Falke

For any relation ≻, let ≻π be the relation where t ≻π u holds iff
π(t) ≻ π(u). In [1] it was shown that if (%,≻) is a reduction pair, then
(%π,≻π) is a reduction pair as well. For any TRS P and any relation ≻,
let P≻ = {s → t ∈ P | s ≻ t}, i.e., P≻ contains those rules of P which
decrease w.r.t. ≻. Now we can define a DP processor which deletes all
pairs from P which are strictly decreasing w.r.t. a reduction pair and
an argument filtering (i.e., all pairs of P≻π).

THEOREM 12 (Reduction Pair Processor [1, 12, 25]). Let (%,≻) be a
reduction pair and let π be an argument filtering. Then the following
DP processor Proc is sound and complete. Here, Proc((P,R, e)) =

• {(P \ P≻π ,R, e)}, if the following conditions (a) and (b) hold:

(a) P≻π ∪ P%π
= P and P≻π 6= ∅

(b) either e = t and R%π
= R

or e = i and R%π
⊇ UR(P)

• {(P,R, e)}, otherwise

So in Ex. 1, we obtain the following ten constraints for termination.
Here, (%i,≻i) is the reduction pair and πi is the argument filtering for
the DP problem (Pi,R, t), where i ∈ {1, 2}.

π1(MINUS(s(x), s(y))) ≻1 π1(MINUS(x, y)) (6)

π2(DIV(s(x), s(y))) ≻2 π2(DIV(minus(x, y), s(y))) (7)

πi(minus(x, 0)) %i πi(x) (8)

πi(minus(s(x), s(y))) %i πi(minus(x, y)) (9)

πi(div(0, s(y))) %i πi(0) (10)

πi(div(s(x), s(y))) %i πi(s(div(minus(x, y), s(y)))) (11)

We use the filtering πi(minus)=[1] which replaces all terms minus(t1,
t2) by minus(t1) and does not modify other function symbols. With this
filtering, (6) – (11) are satisfied by the lexicographic path order (LPO)
with the precedence div > s > minus. So one can remove the only depen-
dency pair from the DP problems (P1,R, t) and (P2,R, t), respectively.
The remaining DP problems (∅,R, t) are transformed into the empty
set by the dependency graph processor of Def. 8, i.e., termination of the
TRS is proved. Similarly, one can also use a collapsing filtering πi(minus)
= πi(div) = 1 which replaces all terms minus(t1, t2) or div(t1, t2) by t1.
Then even the embedding order orients the resulting constraints.

For innermost termination, (P1,R, i) only gives rise to the constraint
(6), since P1 has no usable rules. For (P2,R, i), the constraints (10)

JAR06final.tex; 14/09/2006; 10:23; p.10

Mechanizing and Improving Dependency Pairs 11

and (11) are not necessary, since the div-rules are not usable. Indeed,
the constraints for innermost termination are always a subset of the
constraints for termination. So for TRSs where innermost termination
already implies termination (e.g., locally confluent overlay systems and
in particular, non-overlapping TRSs [20]), one should always use tech-
niques for innermost termination when attempting termination proofs.

Whenever a processor modifies a DP problem, one should apply the
dependency graph processor afterwards. This generalizes the strategy of
the recursive SCC algorithm of [25] which was suggested for the classical
dependency pair approach. Here, SCCs of the dependency graph were
re-computed whenever some dependency pairs were strictly oriented
and therefore removed. In the DP framework, this would correspond to
a repeated alternating application of the processors in Thm. 8 and 12.
However, by formulating other termination techniques as DP processors
as well, they can now be incorporated into this strategy, too.

3. Improving Termination Proofs by Usable Rules

Now we improve Thm. 12 such that its constraints for termination
become as simple as the ones for innermost termination.4 As observed
in [43], the following definition is useful to weaken the constraints.

DEFINITION 13 (Cε [19]). Cε is the TRS {c(x, y) → x, c(x, y) → y}
where c is a new function symbol. A TRS R is Cε-terminating iff R∪Cε

is terminating. A relation % is Cε-compatible5 iff c(x, y)%x and c(x, y)
% y. A reduction pair (%,≻) is Cε-compatible iff % is Cε-compatible.

Toyama’s TRS R = {f(0, 1, x) → f(x, x, x)} [41] is terminating, but
not Cε-terminating, since R∪Cε has the infinite reduction f(0, 1, c(0, 1))
→ f(c(0, 1), c(0, 1), c(0, 1))→2 f(0, 1, c(0, 1))→ . . . Thus, requiring l %π r
only for the usable rules is not sufficient for termination: R∪Cε’s only
SCC {F(0, 1, x) → F(x, x, x)} has no usable rules and there is a reduc-
tion pair (%,≻) such that the dependency pair is strictly decreasing.6

Hence, R∪ Cε is innermost terminating, but not terminating, since we
cannot satisfy both F(0, 1, x) ≻π F(x, x, x) and l %π r for the Cε-rules.

So a reduction of the constraints in Thm. 12 is impossible in gen-
eral, but it is possible if we restrict ourselves to Cε-compatible quasi-
orders %. For automation, this is not a restriction if one uses a quasi-
simplification order % (i.e., a monotonic and stable quasi-order with

4 Independently, Hirokawa & Middeldorp obtained a corresponding result in [22].
5 Instead of “Cε-compatibility”, [43] uses the notion “π expandability”.
6 For example, one can use the reduction pair (→∗

DP (R)∪R,→+
DP (R)∪R

).

JAR06final.tex; 14/09/2006; 10:23; p.11

12 Giesl, Thiemann, Schneider-Kamp, Falke

the subterm property f(. . . t . . .) % t for any term t and symbol f).
Thus, any quasi-simplification order orients Cε. A similar observation
holds for polynomial orders, although polynomial orders are no quasi-
simplification orders if one permits the coefficient 0 in polynomials.
However, they can always be extended to orient Cε. For example, one
could associate c with the polynomial that adds its two arguments, i.e.,
one could define Pol(c(x, y)) = x + y.

The first step in this direction was taken by Urbain [43]. He showed
that in a hierarchy of Cε-terminating TRSs, one can disregard all rules
occurring “later” in the hierarchy when proving termination. Hence in
Ex. 1, to show the termination of minus, [43] would only require that
the MINUS-dependency pair (1) is strictly decreasing and the minus-
rules are weakly decreasing. Compared to the reduction pair processor
of Thm. 12, the advantage is that no weak decrease of the div-rules is
required anymore, since minus does not depend on div. But the con-
straints are still harder than the ones for innermost termination, since
one requires a weak decrease for the minus-rules although they are not
usable for the MINUS-dependency pair. We will improve this approach
further and show in Thm. 17 that even for termination, it suffices only
to require a weak decrease for the usable rules. So compared to [43],
our result leads to significantly less constraints for termination proofs.

Moreover, due to the restriction to Cε-termination, [43] could not
use the full power of dependency graphs. For example, recent improved
dependency graph estimations [25, 35] can detect that the dependency
graph for Toyama’s TRS R has no SCC and thus, it is terminating.
But since it is not Cε-terminating, it cannot be handled by [43]. In
contrast, our result can be combined with arbitrary estimations of
dependency graphs. More precisely, before applying the new reduction
pair processor of Thm. 17, one can use any other DP processor (e.g.,
the dependency graph processor with any sound graph estimation). In
this way, one can also prove termination of non-Cε-terminating TRSs.

To prove that it suffices to regard the usable rules in termination
proofs, we show that for every minimal (P,R)-chain s1 → t1, s2 →
t2, . . . , there exists a substitution σ such that tiσ reduces to si+1σ
using only the rules of UR(P) ∪ Cε. In other words, every minimal
(P,R)-chain is also a (P, UR(P) ∪ Cε)-chain. However, the resulting
(P, UR(P) ∪ Cε)-chain is not necessarily minimal.

For example, let P consist of the DIV-dependency pair (3). Then
UR(P) only contains the minus-rules. Two (variable-renamed) occur-
rences of (3) (like (4) and (5)) form a minimal chain, as DIV(minus(x1,
y1), s(y1))σ →∗

R DIV(s(x2), s(y2))σ holds for some σ (e.g., σ(x1) = s(0),
σ(y1) = div(0, s(0)), σ(x2) = σ(y2) = 0). If one uses this particular
substitution σ, then one indeed needs the non-usable rule div(0, s(y)) →

JAR06final.tex; 14/09/2006; 10:23; p.12

Mechanizing and Improving Dependency Pairs 13

chain over R

chain over
RlsR(∆) ∪ Cε

s1σ

s1σ

I1(s1σ)

s1 I1(σ)

I1

||

*

Cε

t1σ

t1σ

I1(t1σ)

t1 I1(σ)

||

||

I1 I1

s2σ

s2σ

I1(s2σ)

s2 I1(σ)

I1

||

*

Cε

*
R

*
RlsR(∆) ∪ Cε

t2σ

t2σ

I1(t2σ)

t2 I1(σ)

||

||

I1 I1

s3σ

s3σ

I1(s3σ)

s3 I1(σ)

I1

||

*

Cε

*
R

*
RlsR(∆) ∪ Cε

. . .

. . .

. . .

. . .

Figure 1. Transformation of chains

0 to reduce σ(y1) to 0, i.e., to reduce DIV(minus(x1, y1), s(y1))σ to
DIV(s(x2), s(y2))σ. However, we will show that for any σ, there is also
a substitution I1(σ) such that DIV(minus(x1, y1), s(y1))I1(σ) reduces
to DIV(s(x2), s(y2))I1(σ) by applying only usable rules and Cε-rules.

We proceed in a similar way as in the proof of [43] and in the original
proofs of Gramlich [19]. More precisely, we map any R-reduction to a
reduction w.r.t. UR(P)∪Cε. Let ∆ contain all function symbols occur-
ring in right-hand sides of P ∪ UR(P) (i.e., all usable symbols of P).
Thus, UR(P) = RlsR(∆) (where RlsR(∆) =

⋃

f∈∆ RlsR(f)). So for
P = {(3)}, we have ∆ = {DIV,minus, s}. Our mapping I1 modifies the
earlier mappings of [19, 43] by treating terms g(t1, . . . , tn) with g /∈ ∆
differently. Fig. 1 illustrates that by this mapping, every minimal chain
over R corresponds to a chain over RlsR(∆) ∪ Cε, but instead of the
substitution σ one uses a different substitution I1(σ).

Intuitively, I1(t) “collects” all terms that t can be reduced to in
zero or more steps. However, we only regard reductions on or below
non-usable symbols, i.e., symbols that are not from ∆. To represent a
collection t1, . . . , tn of terms by just one single term, one uses the term
c(t1, c(t2, . . . c(tn, d) . . .)) with a fresh constant d.

DEFINITION 14 (I1). Let ∆ ⊆ F and let t ∈ T (F ,V) be a terminat-
ing term (i.e., t starts no infinite R-reductions). We define I1(t):

I1(x)=x for x∈V
I1(f(t1, ..., tn))=f(I1(t1), ..., I1(tn)) for f ∈∆
I1(g(t1, ..., tn))=Comp({g(I1(t1), ..., I1(tn))} ∪ Red1(g(t1, ..., tn))) for g /∈∆

where Red1(t) = {I1(t
′) | t →R t′}. Moreover, Comp({t} ⊎ M) =

c(t, Comp(M)) and Comp(∅) = d, where d is a fresh constant. To make
Comp well defined, in “{t} ⊎ M” we assume that t is smaller than all
terms in M w.r.t. some total well-founded order >T on terms.

JAR06final.tex; 14/09/2006; 10:23; p.13

14 Giesl, Thiemann, Schneider-Kamp, Falke

For a terminating substitution σ (i.e., σ(x) terminates for all x∈V),
we define the substitution I1(σ) as I1(σ) (x) = I1(σ(x)) for all x ∈ V.

So for P = {(3)} and ∆ = {DIV,minus, s}, we obtain

I1(div(0, s(0))) = Comp({ div(I1(0),I1(s(0))), I1(0) })

= c(div(I1(0), s(I1(0))), c(I1(0), d))

= c(div(c(0, d), s(c(0, d))), c(c(0, d), d)).

So in contrast to the above substitution σ, the substitution I1(σ) in-
stantiates y1 by I1(div(0, s(0))) instead of div(0, s(0)) and it instantiates
y2 by I1(0) instead of 0. Now one can reduce I1(σ)(y1) to I1(σ)(y2) by
applying Cε-rules instead of applying a non-usable div-rule. Thus, the
rules of RlsR(∆) ∪ Cε suffice to reduce DIV(minus(x1, y1), s(y1))I1(σ)
to DIV(s(x2), s(y2))I1(σ).

Note that Def. 14 is only possible for terminating terms t, since
otherwise, I1(t) could be infinite. Before we prove the desired theorem,
we need some additional properties of Comp and I1. We want to show
that for any minimal (P,R)-chain s1 → t1, s2 → t2, . . . with tiσ →∗

R
si+1σ, we also have ti I1(σ) →∗

RlsR(∆)∪Cε
si+1 I1(σ). In contrast to the

corresponding lemmas in [37, 43], Lemma 16 shows that even if the
left-hand sides of dependency pairs and rules are not from T (∆,V), the
rules of R \ RlsR(∆) are not needed to reduce ti I1(σ) to si+1 I1(σ).
Therefore, Lemma 16 (ii) and (iii) replace equalities from the lemmas of
[37, 43] by “→∗

Cε
”. This is possible by including “g(I1(t1), . . . ,I1(tn))”

in the definition of I1(g(t1, . . . , tn)) for g /∈ ∆.

LEMMA 15 (Properties of Comp). If t ∈ M then Comp(M) →+
Cε

t.

Proof. For t1 <T . . . <T tn and 1 ≤ i ≤ n we have Comp({t1, . . . , tn})
= c(t1, . . . c(ti, . . . c(tn, d) . . .) . . .) →∗

Cε
c(ti, . . . c(tn, d) . . .) →Cε ti. 2

LEMMA 16 (Properties of I1). Let ∆⊆F such that f ∈∆ implies g∈∆
whenever g occurs in the right-hand side of a rule from RlsR(f). Let t,
s, tσ ∈ T (F ,V) be terminating and let σ be a terminating substitution.

(i) If t ∈ T (∆,V) then I1(tσ) = t I1(σ).
(ii) I1(tσ) →∗

Cε
t I1(σ).

(iii) If t →{l→r} s by a root reduction step where l → r ∈ R and
root(l) ∈ ∆, then I1(t) →

+
{l→r}∪Cε

I1(s).

(iv) If t →R s with root(t) 6∈ ∆, then I1(t) →
+
Cε

I1(s).
(v) If t →{l→r} s where l → r ∈ R, then

I1(t)→
+
{l→r}∪Cε

I1(s) if root(l)∈∆ and I1(t)→
+
Cε
I1(s) otherwise.

JAR06final.tex; 14/09/2006; 10:23; p.14

Mechanizing and Improving Dependency Pairs 15

Proof.

(i) The proof is a straightforward structural induction on t.

(ii) The proof is by structural induction on t. The only interesting case
is t = g(t1, . . . , tn) where g /∈ ∆. Then we obtain

I1(g(t1, ..., tn)σ) = Comp({g(I1(t1σ), ..., I1(tnσ))} ∪ Red1(g(t1σ, ..., tnσ)))

→+
Cε

g(I1(t1σ), ..., I1(tnσ)) by Lemma 15
→∗

Cε

g(t1 I1(σ), . . . , tn I1(σ)) by induction hypothesis
= g(t1, . . . , tn) I1(σ)

(iii) We have t= lσ→R rσ = s and r∈T (∆,V) by the condition on ∆.
By (ii) and (i) we get I1(lσ) →∗

Cε
l I1(σ) →{l→r} r I1(σ) = I1(rσ).

(iv) The claim follows by I1(t) = Comp({. . .} ∪ Red1(t)), I1(s) ∈
Red1(t), and Lemma 15.

(v) We perform induction on the position p of the redex. If root(t) /∈ ∆,
we use (iv). If root(t) ∈ ∆ and p is the root position, we ap-
ply (iii). Otherwise, p is below the root, t = f(t1, . . . , ti, . . . , tn),
s = f(t1, . . . , si, . . . , tn), f ∈ ∆, and ti →{l→r} si. Then the claim
follows from the induction hypothesis. 2

Now we show the desired theorem which improves upon Thm. 12
since the constraints are reduced significantly. Thus, it becomes easier
to find a reduction pair satisfying the resulting constraints.

THEOREM 17 (Reduction Pair Processor Based on Usable Rules).
Let (%,≻) be a reduction pair and π be an argument filtering. Then
the DP processor Proc is sound and complete. Here, Proc((P,R, e)) =

• {(P \ P≻π ,R, e)}, if the following conditions (a) and (b) hold:

(a) P≻π ∪ P%π
= P and P≻π 6= ∅

(b) either e = t and R%π
⊇ UR(P) and % is Cε-compatible

or e = i and R%π
⊇ UR(P)

• {(P,R, e)}, otherwise

Proof. P \P≻π ⊆ P implies completeness. For soundness, we only
regard the new case e = t. If (P,R, t) is not finite, then there is a
minimal infinite (P,R)-chain s1 → t1, s2 → t2, . . . with tiσ →∗

R si+1σ
for all i.

JAR06final.tex; 14/09/2006; 10:23; p.15

16 Giesl, Thiemann, Schneider-Kamp, Falke

Since all terms tiσ and si+1σ are terminating, we can apply I1 to
both tiσ and si+1σ (where ∆ are the usable symbols of P again). Using
Lemma 16 (v) we obtain I1(tiσ) →∗

RlsR(∆)∪Cε
I1(si+1σ).

Moreover, by the definition of UR, all ti are terms over the signature
∆. So by Lemma 16 (i) and (ii) we get ti I1(σ) = I1(tiσ) →∗

RlsR(∆)∪Cε

I1(si+1σ) →∗
Cε

si+1 I1(σ) stating that s1 → t1, s2 → t2, . . . is also a
(P, RlsR(∆) ∪ Cε)-chain, i.e., a (P, UR(P) ∪ Cε)-chain.

Thus, we have

• si I1(σ) ≻π ti I1(σ) for all i where si → ti ∈ P≻π

• si I1(σ) %π ti I1(σ) for all other i

• ti I1(σ) %π si+1 I1(σ) for all i

Since ≻π is well founded and compatible with %π, dependency pairs
from P≻π cannot occur infinitely often in this chain. Thus, there is
an n ≥ 0 such that all pairs si → ti with i ≥ n are from P \ P≻π .
Therefore, if we omit the first n − 1 pairs from the original chain, we
obtain a minimal infinite (P \P≻π , R)-chain sn → tn, sn+1 → tn+1, . . .
Hence, (P \ P≻π ,R, t) is not finite either. 2

Note that in Thm. 17, one only has to orient the usable rules UR(P),
but one keeps all rules R in the resulting DP problem (P \P≻π ,R, e).
As an alternative, one might be tempted to replace Thm. 17 by a
“usable rule processor” followed by an application of the reduction pair
processor of Thm. 12. The usable rule processor ProcU would remove
all non-usable rules and add the Cε-rules in the termination case, cf.
[15, Thm. 28 and Thm. 37]:

ProcU ((P,R, t)) = {(P,UR(P) ∪ Cε, t)}
ProcU ((P,R, i)) = {(P,UR(P), i)}

However, the following example shows that ProcU is not sound in the
termination case. In the example, there is an infinite minimal (P,R)-
chain and thus, there is also an infinite (P,UR(P) ∪ Cε)-chain. How-
ever, there exists no infinite minimal (P,UR(P)∪Cε)-chain. Therefore,
(P,UR(P) ∪ Cε, t) is finite whereas (P,R, t) is not finite.

EXAMPLE 18. The following DP problem (P,R, t) is a variant of
Toyama’s TRS. Let P consist of

F(0, 1, x1, 0, 1, x2, 0, 1, x3, y) → F(x1, x1, x1, x2, x2, x2, x3, x3, x3, g(x1, x2, x3))

JAR06final.tex; 14/09/2006; 10:23; p.16

Mechanizing and Improving Dependency Pairs 17

and let R consist of the following ten rules:

a → 0 g(x, x, y) → h(x, x)
a → 1 g(x, y, x) → h(x, x)
b → 0 g(y, x, x) → h(x, x)
b → 1 h(0, 1) → h(0, 1)
e → 0

e → 1

There is an infinite minimal (P,R)-chain, as can be shown using
the substitution σ with σ(x1) = a, σ(x2) = b, σ(x3) = e, and σ(y) =
g(a, b, e). The reason is that the instantiated right-hand side of P’s only
rule now reduces to its instantiated left-hand side:

F(x1, x1, x1, x2, x2, x2, x3, x3, x3, g(x1, x2, x3))σ
= F(a, a, a, b, b, b, e, e, e, g(a, b, e))
→6

R F(0, 1, a, 0, 1, b, 0, 1, e, g(a, b, e))
= F(0, 1, x1, 0, 1, x2, 0, 1, x3, y)σ

The resulting infinite chain is minimal, since the instantiated right-
hand side F(a, a, a, b, b, b, e, e, e, g(a, b, e)) is terminating. The reason is
that g(a, b, e) can be reduced to h(0, 0) or to h(1, 1) but not to h(0, 1).
Thus, the DP problem (P,R, t) is not finite.

However, the DP problem (P,UR(P) ∪ Cε, t) is finite and there-
fore, any processor which transforms (P,R, t) into (P,UR(P) ∪ Cε, t)
is unsound. Here, UR(P) consists of all g-rules and the h-rule, i.e.,
UR(P) = RlsR({g, h}). To prove that (P,UR(P) ∪ Cε, t) is finite we
have to show that there is no infinite minimal (P,UR(P) ∪ Cε)-chain.

In any chain of length greater than 1, the right-hand side of P’s
rule has to be instantiated by a substitution σ such that all xiσ can be
reduced to both 0 and 1 with UR(P)∪Cε. It is easy to see that then each
xiσ can also be reduced to c(0, 1) or to c(1, 0). So there are at least two
xiσ and xjσ with i 6= j which can be reduced to the same term c(0, 1)
or c(1, 0). Hence, the subterm g(x1, x2, x3)σ of P’s instantiated right-
hand side can be reduced to h(c(0, 1), c(0, 1)) or to h(c(1, 0), c(1, 0)) and
further to the non-terminating term h(0, 1). So the instantiated right-
hand side of P’s rule is not terminating and thus, there is no minimal
chain of length greater than 1.

The following variant of an example from [1] shows that Thm. 17 not
only increases efficiency, but it also leads to a more powerful method
than Thm. 12 (if one is restricted to Cε-compatible quasi-orders %).

EXAMPLE 19. In the following TRS, div(x, y) computes ⌊x
y
⌋ for x, y ∈

IN if y 6= 0 and quot(x, y, z) computes 1 + ⌊x−y
z

⌋ if x ≥ y and z 6= 0
and it computes 0 if x < y.

JAR06final.tex; 14/09/2006; 10:23; p.17

18 Giesl, Thiemann, Schneider-Kamp, Falke

div(0, y) → 0 (12)

div(x, y) → quot(x, y, y) (13)

quot(0, s(y), z) → 0 (14)

quot(s(x), s(y), z) → quot(x, y, z) (15)

quot(x, 0, s(z)) → s(div(x, s(z))) (16)

In contrast to our new processor, Urbain’s result [43] is not applicable
in this example. The reason is that this TRS is not a hierarchical com-
bination (since div and quot are mutually recursive).

Note also that this TRS does not belong to known classes of TRSs
where innermost termination implies termination, since it is not locally
confluent: div(0, 0) reduces to the normal forms 0 and quot(0, 0, 0).

A termination proof is impossible with the previous processors from
Thm. 8 and Thm. 12 if one uses standard reduction pairs (%,≻) where
% is a quasi-simplification order. In contrast, innermost termination
can easily be proved. We obtain the following dependency pairs which
form an SCC of the dependency graph.

DIV(x, y) → QUOT(x, y, y) (17)

QUOT(s(x), s(y), z) → QUOT(x, y, z) (18)

QUOT(x, 0, s(z)) → DIV(x, s(z)) (19)

There are no usable rules because the dependency pairs have no defined
symbols in their right-hand sides. Thus, the reduction pair processor
only requires a decrease for the dependency pairs. Hence, with a fil-
tering π(QUOT) = π(DIV) = 1 and the embedding order, (17) and
(19) are weakly decreasing, while (18) is strictly decreasing and can
be removed. So the reduction pair processor transforms the initial DP
problem ({(17), (18), (19)},R, i) into ({(17), (19)},R, i). With the new
improved processor of Thm. 17 this step can now also be done when
proving full termination. Afterwards, the remaining DP problem can
easily be solved by the existing DP processors: We apply the reduc-
tion pair processor once more with a filtering π(s) = [], π(QUOT) =
π(DIV) = 2 and the LPO with a precedence 0 > s. Now (17) is weakly
decreasing and (19) is strictly decreasing and can be removed. The
resulting DP problem ({(17)},R, e) is solved by the dependency graph
processor, since the estimated dependency graph has no cycle anymore.

Now our technique for termination is nearly as powerful as the one
for innermost termination. The remaining difference between termina-
tion and innermost termination proofs is that the innermost depen-
dency graph is a subgraph of the dependency graph and may have
fewer cycles. Moreover, in Sect. 5 we will see that the conditions for
applying dependency pair transformations are less restrictive for in-
nermost termination than for termination. Finally for termination, we

JAR06final.tex; 14/09/2006; 10:23; p.18

Mechanizing and Improving Dependency Pairs 19

use Cε-compatible quasi-orders, which is not necessary for innermost
termination. So in general, innermost termination is still easier to prove
than termination, but the difference has become much smaller.

4. Improving Termination Proofs by Argument Filtering

Now we introduce a further improvement for both termination and
innermost termination proofs in order to reduce the usable rules (and
hence, the resulting constraints) further. The idea is to apply the argu-
ment filtering first and to determine the usable rules afterwards. The
advantage is that after the argument filtering, some symbols g may
have been eliminated from the right-hand sides of dependency pairs
and thus, the g-rules do not have to be included in the usable rules
anymore. Moreover, if f ’s rules are usable and f calls a function g,
then up to now g’s rules are also considered usable. However, if all calls
of g are only on positions that are eliminated by the argument filtering,
now also g’s rules are not considered usable anymore.

However, for collapsing argument filterings this refinement is not
sound. Consider the non-innermost terminating TRS

f(s(x))→ f(double(x)) double(0)→0 double(s(x))→s(s(double(x)))

In the SCC {F(s(x))→F(double(x))}, we can use the filtering π(double)
= 1 which results in {F(s(x)) → F(x)}. Since the filtered dependency
pair contains no defined symbols, we would conclude that the SCC has
no usable rules. Then we could easily orient the only resulting constraint
F(s(x)) ≻ F(x) for this SCC and falsely prove (innermost) termination.
Note that the elimination of double in F(double(x)) is not due to the
outer symbol F, but due to a collapsing argument filtering for double

itself. For that reason, a defined symbol like double may only be ignored
when constructing the usable rules, if all its occurrences are in positions
which are filtered away by the function symbols above them. To cap-
ture this formally, we define the regarded positions w.r.t. an argument
filtering. In this definition, collapsing argument filterings with π(f) = i
are treated in the same way as filterings of the form π(f) = [i].

DEFINITION 20 (Regarded Positions). Let π be an argument filter-
ing. For an n-ary function symbol f , the set rpπ(f) of regarded posi-
tions is {i} if π(f) = i, and it is {i1, . . . , im} if π(f) = [i1, . . . , im].

So if π(F) = [1] or π(F) = 1, then rpπ(F) = {1}. Now we can
define the usable rules w.r.t. an argument filtering. For a term like
F(double(x)), the rules for all symbols on regarded positions are con-
sidered usable. So if rpπ(F) = {1}, then the double-rules are usable.

JAR06final.tex; 14/09/2006; 10:23; p.19

20 Giesl, Thiemann, Schneider-Kamp, Falke

DEFINITION 21 (Usable Rules w.r.t. Argument Filtering). For f ∈
F , let R′ denote R\RlsR(f). For any argument filtering π, we define

• UR(x, π) = ∅ for x ∈ V and
• UR(f(t1, . . . , tn), π) = RlsR(f) ∪

⋃

l→r∈RlsR(f) UR′(r, π)

∪
⋃

i∈rpπ(f) UR′(ti, π),

For any TRS P, we define UR(P, π) =
⋃

s→t∈P UR(t, π).

Obviously, this new definition of usable rules improves upon the
previous one of Def. 10, i.e., UR(t, π) ⊆ UR(t) for any term t.

EXAMPLE 22. We illustrate the new definition of usable rules with
the following TRS of [27] for list reversal.

rev(nil) → nil

rev(cons(x, l)) → cons(rev1(x, l), rev2(x, l))

rev1(x, nil) → x

rev1(x, cons(y, l)) → rev1(y, l)

rev2(x, nil) → nil

rev2(x, cons(y, l)) → rev(cons(x, rev(rev2(y, l))))

For the SCC P containing the dependency pair REV2(x, cons(y, l)) →
REV(cons(x, rev(rev2(y, l)))), up to now all rules were usable, since rev

and rev2 occur in the right-hand side and the function rev calls rev1. In
contrast, if one uses an argument filtering with π(cons) = [2], then with
our new definition of usable rules from Def. 21, the rev1-rules are no
longer usable, since rev1 is not in right-hand sides of filtered rev-rules.
This reduction of the set of usable rules is crucial for the success of the
(innermost) termination proof with dependency pairs, cf. Ex. 27.

The following lemma is needed to show that one may replace UR(P)
by UR(P, π) in innermost termination proofs.

LEMMA 23 (Properties of Usable Rules). Let R be a TRS, let π be an
argument filtering, and let σ be a normal substitution (i.e., σ(x) is in
normal form for all x ∈ V). For all terms t, v we have:

(i) If tσ i→R v, then π(tσ) = π(v) or π(tσ) →π(UR(t,π)) π(v). More-
over, there is a term u and a normal substitution σ′ such that
v = uσ′ and UR(u, π) ⊆ UR(t, π).

(ii) If tσ i→∗
R v, then π(tσ) →∗

π(UR(t,π)) π(v).

Proof.

JAR06final.tex; 14/09/2006; 10:23; p.20

Mechanizing and Improving Dependency Pairs 21

(i) We perform induction on the position of the reduction. This posi-
tion must be in t because σ is normal. So t has the form f(t1, ..., tn).

If the reduction is on the root position, then we have tσ = lσ′ i→R

rσ′ = v where l → r ∈ RlsR(f) ⊆ UR(t, π) and thus π(l) → π(r) ∈
π(UR(t, π)). Let σ′

π be the substitution with σ′
π(x) = π(σ′(x))

for all x ∈ V. Then, π(tσ) = π(l)σ′
π →π(UR(t,π)) π(r)σ′

π = π(v).
Moreover, σ′ is a normal substitution due to the innermost strategy
and by defining u = r, we obtain v = uσ′. We have UR(u, π) =
UR(r, π) ⊆ RlsR(f) ∪

⋃

l′→r′∈RlsR(f) UR′(r′, π) ⊆ UR(t, π).

Otherwise, tσ = f(t1σ . . . tiσ . . . tnσ) →R f(t1σ . . . vi . . . tnσ) = v
where tiσ →R vi. If π(tσ) 6= π(v), then i ∈ rpπ(f) and the in-
duction hypothesis implies π(tiσ)→π(UR(ti,π)) π(vi) and thus, π(tσ)
→π(UR(ti,π)) π(v). As UR(ti, π)⊆RlsR(f)∪

⋃

l′→r′∈RlsR(f) UR′(r′, π)
∪ UR′(ti, π) ⊆ UR(t, π), we also have π(tσ) →π(UR(t,π)) π(v).

By the induction hypothesis there is some term ui and some normal
substitution σi with vi = uiσi. Let u′

i result from ui by replac-
ing its variables x by corresponding fresh variables x′. We define
σ′(x′) = σi(x) for all these fresh variables and σ′(x) = σ(x) for all
x ∈ V(t). Then for u = f(t1 . . . u′

i . . . tn) we obtain v = uσ′. Obvi-
ously, we have UR(u′

i, π) = UR(ui, π) and the induction hypothesis
implies UR(ui, π) ⊆ UR(ti, π). As UR(ti, π) ⊆ UR(t, π) (see above),
we also have UR(u′

i, π) ⊆ UR(t, π). Since UR(u, π) differs from
UR(t, π) only by containing UR′(u′

i, π) instead of UR′(ti, π) and
since UR′(u′

i, π) ⊆ UR(u′
i, π) ⊆ UR(t, π), we also obtain UR(u, π) ⊆

UR(t, π).

(ii) The claim immediately follows from (i) by induction on the length
of the reduction tσ i→∗

R v. 2

The refinement of coupling the usable rules with argument filterings
can be used for both innermost and full termination proofs. In the
previous section we showed that it suffices for termination proofs if
just the usable rules UR(P) are weakly decreasing. To show that one
may replace UR(P) by UR(P, π) here, we define a new mapping I2

which already incorporates the argument filtering π.
For instance, let ∆ = F \{rev1} and let π(cons) = [2], π(rev2) = [2].

I2(cons(rev1(x, l), rev2(x, l))) differs from I1(cons(rev1(x, l), rev2(x, l)))
by removing the first arguments of all cons- and rev2-terms. So I1

results in cons(c(rev1(x, l), d), rev2(x, l)) and I2 yields cons(rev2(l)).

JAR06final.tex; 14/09/2006; 10:23; p.21

22 Giesl, Thiemann, Schneider-Kamp, Falke

DEFINITION 24 (I2). Let π be a non-collapsing argument filtering,
let ∆ ⊆ F , and let t ∈ T (F ,V) be terminating. We define I2(t):

I2(x) = x for x∈V
I2(f(t1, . . . , tn)) = f(I2(ti1), . . . , I2(tim

)) for f ∈∆, π(f)=[i1, ..., im]
I2(g(t1, . . . , tn)) = Comp({g(I2(ti1), . . . , I2(tim

))}
∪ Red2(g(t1, . . . , tn))) for g /∈∆, π(g)=[i1, ..., im]

where Red2(t) = {I2(t
′) | t →R t′}. For every terminating substitution

σ, we define I2(σ) as I2(σ) (x) = I2(σ(x)) for all x ∈ V.

Lemma 25 differs from Lemma 16, since I2 already applies the filter-
ing π and in (v), we have “∗” instead of “+”, as a reduction on a position
that is filtered away yields the same transformed terms w.r.t. I2.

LEMMA 25 (Properties of I2). Let π be a non-collapsing filtering and
let ∆ ⊆ F such that f ∈ ∆ implies g ∈ ∆ whenever there is a rule l → r
∈ RlsR(f) such that g occurs in π(r). Let t, s, tσ ∈ T (F ,V) be termi-
nating and let σ be a terminating substitution.

(i) If π(t) ∈ T (∆π,V) then I2(tσ) = π(t)I2(σ).
(ii) I2(tσ) →∗

Cε
π(t)I2(σ).

(iii) If t →{l→r} s by a root reduction step where l → r ∈ R and
root(l) ∈ ∆, then I2(t) →

+
{π(l)→π(r)}∪Cε

I2(s).

(iv) If t →R s with root(t) 6∈ ∆, then I2(t) →
+
Cε

I2(s).
(v) If t →{l→r} s where l → r ∈ R, then I2(t) →

∗
{π(l)→π(r)}∪Cε

I2(s)

if root(l) ∈ ∆ and I2(t) →
∗
Cε

I2(s) otherwise.

Proof. The proof is analogous to the proof of Lemma 16. As in
Lemma 16, the condition on ∆ in the prerequisites of Lemma 25 is
needed for (iii). 2

Now we can refine the processor of Thm. 17 to the following one
where the set of usable rules is reduced significantly.

THEOREM 26 (Reduction Pair Processor Based on Filtering).Let (%,
≻) be a reduction pair and let π be an argument filtering. Then the fol-
lowing processor Proc is sound and complete. Here, Proc((P,R, e)) =

• {(P \ P≻π ,R, e)}, if the following conditions (a) and (b) hold:

(a) P≻π ∪ P%π
= P and P≻π 6= ∅

(b) either e = t and R%π
⊇ UR(P, π) and % is Cε-compatible

or e = i and R%π
⊇ UR(P, π)

JAR06final.tex; 14/09/2006; 10:23; p.22

Mechanizing and Improving Dependency Pairs 23

• {(P,R, e)}, otherwise

Proof. Again, P \P≻π ⊆ P implies completeness. For soundness, we
first regard the case e = i. If (P,R, i) is not finite, then there is an
infinite innermost (P,R)-chain s1→ t1, s2→ t2, . . . So we have tiσ

i→∗
R

si+1σ where all siσ are in normal form. By Lemma 23 (ii), we obtain
π(tiσ) →∗

π(UR(P,π)) π(si+1σ). All rules of UR(P, π) are decreasing w.r.t.

%π and thus, all rules of π(UR(P, π)) are decreasing w.r.t. %. This
implies π(tiσ) % π(si+1σ), i.e., tiσ %π si+1σ. Since P≻π ∪ P%π

= P,
pairs of P≻π cannot occur infinitely often in the chain.

Now we prove soundness for e = t. If (P,R, t) is not finite, then there
is a minimal infinite (P,R)-chain s1→ t1, s2→ t2, . . . with tiσ→∗

R si+1σ.
Let π′ be the non-collapsing variant of π where π′(f) = π(f) if

π(f) = [i1, . . . , ik] and π′(f) = [i] if π(f) = i. Let ∆ be the usable sym-
bols w.r.t. π′ of P. So ∆ is the smallest set of function symbols such that
∆ contains all function symbols occurring in right-hand sides of π′(P)
and f ∈ ∆ implies g ∈ ∆ whenever there is a rule l → r ∈ RlsR(f) such
that g occurs in π′(r). Thus, π′(UR(P, π′)) = π′(RlsR(∆)). Note that
by definition we have UR(P, π′) = UR(P, π). Then similar to the proof
of Thm. 17, tiσ →∗

R si+1σ implies π′(ti)I2(σ) = I2(tiσ) →∗
π′(UR(P,π))∪Cε

I2(si+1σ) →∗
Cε

π′(si+1)I2(σ) by Lemma 25 (i), (v), (ii). So π′(s1) →
π′(t1), π

′(s2) → π′(t2), . . . is an infinite (π′(P), π′(UR(P, π))∪Cε)-chain.
Now we show that in this chain, pairs from π′(P≻π) cannot occur

infinitely often. Thus, there is an n ≥ 0 such that all si → ti with i ≥ n
are from P \ P≻π . Then sn → tn, sn+1 → tn+1, . . . is a minimal infinite
(P \ P≻π , R)-chain and thus, (P \ P≻π ,R, t) is not finite either.

To show that pairs from π′(P≻π) cannot occur infinitely often in the
(π′(P), π′(UR(P, π))∪Cε)-chain π′(s1) → π′(t1), π

′(s2) → π′(t2), . . . , let
π′′ be the argument filtering for the signature Fπ′ which only performs
the collapsing steps of π (i.e., if π(f) = i and thus π′(f) = [i], we have
π′′(f) = 1). All other symbols of Fπ′ are not filtered by π′′. Hence,
π = π′′◦π′. We extend π′′ to the new symbol c by defining π′′(c) = [1, 2].
Hence, Cε-compatibility of % implies Cε-compatibility of %π′′ .

Now regard the reduction pair (%π′′ , ≻π′′). For all terms s and t, the
constraint “s≻π t” implies that the rule π′(s)→π′(t) is strictly decreas-
ing (i.e., π′(s) ≻π′′ π′(t)) and the constraint “s %π t” implies that the
rule π′(s) → π′(t) is weakly decreasing (i.e., π′(s) %π′′ π′(t)). Thus by
(a), the pairs of π′(P≻π) are strictly decreasing and by (b), all remaining
pairs of π′(P) and all rules of π′(UR(P, π)) ∪ Cε are weakly decreasing
w.r.t. the reduction pair (≻π′′ , %π′′). So the chain π′(s1) → π′(t1),
π′(s2) → π′(t2), . . . only contains finitely many pairs from π′(P≻π). 2

JAR06final.tex; 14/09/2006; 10:23; p.23

24 Giesl, Thiemann, Schneider-Kamp, Falke

EXAMPLE 27. The TRS R for list reversal from Ex. 22 shows the
advantages of Thm. 26. The dependency graph processor decomposes the
initial DP problem (DP (R),R, e) into ({(20)},R, e) and ({(21), (22),
(23), (24)},R, e) where (20) – (24) are the following dependency pairs:

REV1(x, cons(y, l)) → REV1(y, l) (20)

REV(cons(x, l)) → REV2(x, l) (21)

REV2(x, cons(y, l)) → REV(cons(x, rev(rev2(y, l)))) (22)

REV2(x, cons(y, l)) → REV(rev2(y, l)) (23)

REV2(x, cons(y, l)) → REV2(y, l) (24)

Since {(20)} has no usable rules, already the reduction pair processor
of Thm. 17 only requires to make the dependency pair (20) strictly
decreasing. For example, this is possible using an argument filtering
with π(REV1) = 2 and the embedding order. The resulting DP problem
(∅,R, e) is then removed by the dependency graph processor.

However, when proving (innermost) termination with Thm.17, for
the problem ({(21), (22), (23), (24)},R, e) we obtain inequalities from
the dependency pairs and π(l) % π(r) for all rules l → r, since all
rules are usable. But with standard reduction pairs based on RPOS,
KBO, or polynomial orders, these constraints are not satisfiable for
any argument filtering [14]. In contrast, with Thm. 26 we can use
the filtering π(cons) = [2], π(REV) = π(rev) = 1, and π(REV1) =
π(REV2) = π(rev2) = 2 together with the embedding order. Now we
obtain no constraints from the rev1-rules, cf. Ex. 22. Then the filtered
dependency pairs (21), (23), and (24) are strictly decreasing and the
filtered pair (22) and all filtered usable rules are at least weakly decreas-
ing. Thus, the reduction pair processor of Thm. 26 results in the DP
problem ({(22)},R, e) which is again removed by the dependency graph
processor.

5. Transforming Dependency Pairs

To increase the power of the dependency pair technique, a dependency
pair may be transformed into new pairs. Sect. 5.1 introduces improved
versions of these transformations which permit a combination with our
new results from the previous sections. Then in Sect. 5.2, we discuss a
heuristic in order to mechanize these transformations in practice.

JAR06final.tex; 14/09/2006; 10:23; p.24

Mechanizing and Improving Dependency Pairs 25

5.1. Improving Dependency Pair Transformations

In [1, 11], techniques were presented to modify dependency pairs by
narrowing, rewriting, and instantiation. This is often crucial for the
success of a termination proof. The basic idea of narrowing and rewrit-
ing is the following: if there is a chain s → t, v → w where tσ →∗

R vσ
implies that tσ must be rewritten at least one step before it reaches
vσ, then these transformations perform this reduction step directly on
the pair s → t. The rewriting technique can only be used for innermost
termination. Here, the right-hand side t must contain a redex. Then
one may rewrite this redex, even if t contains other redexes as well.
In contrast, for the narrowing transformation, one has to build all
narrowings of t instead of just doing one rewrite step. A term t′ is
an R-narrowing of t with mgu µ if a subterm t|p /∈ V of t unifies with
the left-hand side of a (variable-renamed) rule l → r ∈ R with mgu µ,
and t′ = t[r]p µ. Now s → t can be replaced by all narrowings sµ → t′.

The idea of the instantiation technique is to examine all pairs v → w
which precede s → t in chains. Here, we analyze what “skeleton” w′ of
w remains unchanged when we reduce wσ to sσ. Then sσ must also be
of this form, i.e., w′ and s unify. This idea was already used in E(I)DG
(Def. 9), where w′ is computed by the functions capR and ren and
where one only draws an arc from v → w to s → t if w′ and s unify
with some mgu µ. Then wσ →∗

R sσ implies that σ is an instance of µ.
Hence, the instantiation transformation replaces s → t by sµ → tµ.

The following definition improves the transformations of [1, 11].
Moreover, we introduce a new forward instantiation technique. Here,
we consider all pairs v → w which follow s → t in chains. For each
such v → w we have tσ →∗

R vσ, i.e., vσ →∗
R−1 tσ. Now we compute

the mgu between t and a skeleton of v. However, since the R-reduction
goes from an instantiation of t to an instantiation of v and not the
other way around, the skeleton of v is not constructed with capR, but
with the function cap

−1
R . For any set of non-collapsing rules R′ ⊆ R,

let cap
−1
R′ (v) result from replacing all subterms of v whose root is from

{root(r) | l → r ∈ R′} by different fresh variables. If R′ is collapsing,
then cap

−1
R′ (v) is a fresh variable. As usual, a rule l → r is collaps-

ing if r ∈ V. The modifications cap
−1
R and cap

−1
UR(t) were originally

introduced in [25, 35, E(I)DG∗] in order to improve the estimation
of (innermost) dependency graphs. So while the instantiation trans-
formation is influenced by the E(I)DG-estimation, the new forward
instantiation is influenced by the E(I)DG∗-estimation.

DEFINITION 28 (Transformation Processors). Let P ′ = P ⊎{s → t}.

(a) For (P ′,R, e), the narrowing processor Procn returns

JAR06final.tex; 14/09/2006; 10:23; p.25

26 Giesl, Thiemann, Schneider-Kamp, Falke

• {(P ∪ {sµ1 → t1, . . . , sµn → tn},R, e)}, if either

– e = t and t1, . . . , tn are all R-narrowings of t with mgu’s
µ1, . . . , µn and t does not unify with (variable-renamed)
left-hand sides of pairs in P ′. Moreover, t must be linear.

– e = i and t1, . . . , tn are all R-narrowings of t with
the mgu’s µ1, . . . , µn such that sµi is in normal form.
Moreover, for all v → w ∈ P ′ where t unifies with the
(variable-renamed) left-hand side v by a mgu µ, one of
the terms sµ or vµ must not be in normal form.

• {(P ′,R, e)}, otherwise.

(b) For (P ′,R, e), the rewriting processor Procr returns

• {(P ∪ {s → t′},R, e)}, if e = i, UR(t|p) is non-overlapping,
and t →R t′, where p is the position of the redex.

• {(P ′,R, e)}, otherwise.

(c) For (P ′,R, e), the instantiation processor Proci returns

• {(P ∪ {sµ→ tµ |µ=mgu(ren(capR(w)), s), v→w ∈ P ′},R, e)},
if e = t

• {(P ∪ {sµ→ tµ |µ=mgu(capR(w), s), v→w∈P ′, sµ, vµ normal},R, e)},
if e = i

(d) For (P ′,R, e), the forward instantiation processor Procf returns

• {(P ∪ {sµ → tµ |µ = mgu(ren(cap
−1
R

(v)), t), v → w ∈ P ′},R, e)},
if e = t

• {(P ∪ {sµ → tµ |µ = mgu(ren(cap
−1
UR(t)

(v)), t), v → w ∈ P ′},R, e)},
if e = i

Ex. 29 shows the advantage of the new forward instantiation technique.

EXAMPLE 29. Without forward instantiation, termination of the TRS
{f(x, y, z) → g(x, y, z), g(0, 1, x) → f(x, x, x)} cannot be shown by any
Cε-compatible reduction pair. The instantiation processor is useless
here, since in chains v → w, s → t, the mgu of ren(capR(w)) and s
does not modify s. But the forward instantiation processor instantiates
F(x, y, z) → G(x, y, z) to F(0, 1, z) → G(0, 1, z). The reason is that in
the chain F(x, y, z) → G(x, y, z), G(0, 1, x′) → F(x′, x′, x′), the mgu of
ren(cap

−1
R (G(0, 1, x′))) = G(0, 1, x′′) and G(x, y, z) is [x/0, y/1, x′′/z].

Now the termination proof succeeds since the dependency graph has no
cycle (as detected by the EDG∗-estimation of [25, 35]).

JAR06final.tex; 14/09/2006; 10:23; p.26

Mechanizing and Improving Dependency Pairs 27

In addition to forward instantiation, Def. 28 also extends the existing
narrowing, rewriting, and instantiation transformations [1, 11] by per-
mitting their application for slightly more TRSs if e = i. In [11], nar-
rowing s → t was not permitted if t unifies with the left-hand side of a
dependency pair, whereas now this is possible under certain conditions.
Rewriting dependency pairs was only allowed if all usable rules for the
current cycle were non-overlapping, whereas now this is only required
for the usable rules of the redex to be rewritten. Finally, for both in-
stantiation and narrowing, now one only has to consider instantiations
which turn left-hand sides of dependency pairs into normal forms.

However, while these liberalized applicability conditions only have a
minor impact, the most important improvement of Def. 28 over [1, 11]
is that now the transformations are formulated within the DP frame-
work and that they now work for minimal instead of ordinary chains of
dependency pairs. This is needed to combine the transformations with
the improvements of Sect. 3 and 4 which require the consideration of
minimal chains. Moreover, due to the formulation as processors, trans-
formations can now be applied at any time during a termination proof.

Before proving soundness and completeness, Ex. 30 illustrates that
transformations are often crucial for the success of the proof.

EXAMPLE 30. The following alternative TRS for division is from [2].

le(0, y) → true div(x, s(y)) → if(le(s(y), x), x, s(y))
le(s(x), 0) → false if(true, x, y) → s(div(minus(x, y), y))

le(s(x), s(y)) → le(x, y) if(false, x, y) → 0

minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)

Without transformations, no simplification order satisfies Thm. 26’s
constraints for innermost termination of the following SCC [14].

DIV(x, s(y)) → IF(le(s(y), x), x, s(y)) (25)

IF(true, x, y) → DIV(minus(x, y), y) (26)

But when transforming the dependency pairs, the resulting constraints
can easily be satisfied. Intuitively, x ≻ minus(x, y) only has to be re-
quired if le(s(y), x) reduces to true. This argumentation can be simulated
using the transformations of Def. 28. By narrowing, we perform a case
analysis on how the le-term in (25) can be evaluated. In the first nar-
rowing, x is instantiated by 0. This results in a pair DIV(0, s(y)) →
IF(false, 0, s(y)) which is not in a cycle. The other narrowing is

DIV(s(x), s(y)) → IF(le(y, x), s(x), s(y)) (27)

JAR06final.tex; 14/09/2006; 10:23; p.27

28 Giesl, Thiemann, Schneider-Kamp, Falke

which forms an SCC with (26). Now we perform instantiation of (26)
and see that x and y must be of the form s(. . .). So (26) is replaced by

IF(true, s(x), s(y)) → DIV(minus(s(x), s(y)), s(y)) (28)

that forms an SCC with (27). Finally, by rewriting (28) we obtain

IF(true, s(x), s(y)) → DIV(minus(x, y), s(y)) (29)

The constraints of the resulting SCC {(27), (29)} (and all other SCCs)
are solved by π(minus)=π(DIV)=1, π(IF)=2, and the embedding order.

Thm. 31 states that the transformations in Def. 28 are sound and it
gives conditions under which they are also complete. A counterexample
which shows that Procn is not complete in general is [1, Ex. 43].

THEOREM 31 (Sound- and Completeness). Procn, Procr, Proc i, and
Procf are sound. Moreover, Procr, Proci, and Procf are also complete.7

Procn is not complete in general, but it is complete for DP problems
(P,R, e) where e = t or where UR(P) is non-overlapping.

Proof.

Soundness of Procn

First let e = t. We show that for every minimal (P ′,R)-chain “. . . , v1 →
w1, s → t, v2 → w2, . . .”, there is a narrowing t′ of t with the mgu µ
such that “. . . , v1 → w1, sµ → t′, v2 → w2, . . .” is also a minimal chain.
Here, s → t may also be the first pair (i.e., v1 → w1 may be missing).
Then all occurrences of s → t in a chain may be replaced by pairs from
{sµ1 → t1, . . . , sµn → tn}. Hence, every infinite minimal (P ′,R)-chain
results in an infinite minimal (P ∪{sµ1 → t1, . . . , sµn → tn},R)-chain.
Thus, if (P ∪ {sµ1 → t1, . . . , sµn → tn},R) is finite, then so is (P ′,R).

If “. . . , v1 → w1, s → t, v2 → w2, . . .” is a minimal chain, then there
must be a substitution such that

(t1) every instantiated right-hand side reduces to the instantiated left-
hand side of the next pair in the chain and

(t2) all instantiated right-hand sides are terminating w.r.t. R.

7Related proofs for previous versions of the transformations can be found in [1, 11].
But in contrast to [1, 11], now we regard these techniques within the DP framework,
we use them to prove absence of minimal chains, and we have more liberal applica-
bility conditions. Finally, the forward instantiation technique is completely new (its
soundness proof builds upon proof ideas for the E(I)DG∗-approximation of [25, 35]).

JAR06final.tex; 14/09/2006; 10:23; p.28

Mechanizing and Improving Dependency Pairs 29

Let σ be a substitution satisfying (t1) and (t2) where the reduction
tσ →∗

R v2σ has minimal length. Note that tσ 6= v2σ as t and v2 do not
unify. Hence, we have tσ →R q →∗

R v2σ for some term q.
First, we assume that the reduction tσ →R q takes place “in σ”.

Hence, t|p = x for some position p such that σ(x) →R r and q = t[r]p.
The variable x only occurs once in t (as t is linear) and therefore,
q = tσ′ for the substitution σ′ with σ′(x) = r and σ′(y) = σ(y) for all
variables y 6= x. As all (occurrences of) pairs in the chain are variable
disjoint, σ′ behaves like σ for all pairs except s → t. Here, we have

w1σ
′ = w1σ →∗

R sσ →∗
R sσ′ and tσ′ = q →∗

R v2σ = v2σ
′.

Hence, σ′ satisfies (t1) and it satisfies (t2) as well, since tσ′ = q is
terminating. But as the reduction tσ′ →∗

R v2σ
′ is shorter than the

reduction tσ →∗
R v2σ, this is a contradiction to the definition of σ.

So the reduction tσ →R q cannot take place “in σ”. Hence, there is
a subterm t|p /∈ V such that a rule l → r has been applied to t|pσ (i.e.
lρ = t|pσ for some matcher ρ). Hence, the reduction has the form

tσ = tσ[t|pσ]p = tσ[lρ]p →R tσ[rρ]p = q.

We assume that V(l) are fresh variables. Then we extend σ to “behave”
like ρ on V(l) (but it remains the same on all other variables). Now σ
unifies l and t|p. Hence, there is also an mgu µ with σ=µτ for some τ .

Let t′ be tµ[rµ]p. Then t narrows to t′ with the mgu µ. As we may
assume sµ → t′ to be variable disjoint from all other pairs, we can
extend σ to behave like τ on the variables of sµ and t′. Then we have

w1σ →∗
R sσ = sµτ = sµσ and

t′σ = t′τ = tµτ [rµτ]p = tσ[rσ]p = tσ[rρ]p = q →∗
R v2σ.

Hence, “. . . , v1 → w1, sµ → t′, v2 → w2, . . .” is also a chain which is
minimal, since t′σ = q is terminating.

Now we regard the case e = i. Here, we prove that for every minimal
innermost (P ′,R)-chain “. . . , v1 → w1, s → t, v2 → w2, . . .”, there
exists a narrowing t′ of t with the mgu µ such that sµ is in normal
form and such that “. . . , v1 → w1, sµ → t′, v2 → w2, . . .” is a minimal
innermost chain as well. There must be a substitution σ such that

(i1) every instantiated right-hand side reduces innermost to the instan-
tiated left-hand side of the next pair in the chain,

(i2) all instantiated left-hand sides are normal forms, and

(i3) all instantiated right-hand sides terminate innermost w.r.t. R.

JAR06final.tex; 14/09/2006; 10:23; p.29

30 Giesl, Thiemann, Schneider-Kamp, Falke

Note that tσ 6= v2σ. Otherwise σ would unify t and v2, where both sσ
and v2σ are normal forms. Hence, tσ i→R q i→∗

R v2σ for some term q.

The reduction tσ
i
→R q cannot take place “in σ”, because V(t) ⊆

V(s). Hence, then sσ would not be a normal form, which violates (i2).
The remainder of the proof is completely analogous to the case e = t.

Completeness of Procn

We first regard e = t. Let (P ∪ {sµ1 → t1, . . . , sµn → tn},R, t) be
infinite. If R is not terminating, then trivially (P ′,R, t) is infinite as
well. Otherwise, we show that any infinite (P ∪ {sµ1 → t1, . . . , sµn →
tn},R)-chain can be transformed into an infinite (P ′,R)-chain. (Now
all chains are minimal, since R is terminating.)

To this end, we prove that if “. . . , v1 → w1, sµ → t′, v2 → w2, . . .” is
a chain where t narrows to t′ with the mgu µ, then “. . . , v1 → w1, s →
t, v2 → w2, . . .” is a chain as well. There is a substitution σ satisfying
(t1). So in particular we have

w1σ →∗
R sµσ and t′σ →∗

R v2σ.

As the variables in s → t are disjoint from all other variables, we
may extend σ to behave like µσ on V(s). Then sσ = sµσ and hence,

w1σ →∗
R sσ. (30)

Moreover, by the definition of narrowing, we have tµ →R t′. This
implies tµσ →R t′σ and as tσ = tµσ, we obtain

tσ →R t′σ →∗
R v2σ. (31)

Hence, “. . . , v1 → w1, s → t, v2 → w2, . . .” is also a chain.
Now we show completeness for e = i if UR(P) is non-overlapping.

Again, the non-trivial case is if R is innermost terminating. We show
that if “. . . , v1 → w1, sµ → t′, v2 → w2, . . .” is an innermost chain
where t narrows to t′ with mgu µ, then “. . . , v1 → w1, s → t, v2 →
w2, . . .” is an innermost chain as well. There is a substitution σ sat-
isfying (i1) and (i2). Analogous to (30) and (31) in the termination
case, one obtains w1σ

i→∗
R sσ and tσ →R t′σ i→∗

R v2σ where v2σ is
a normal form by (i2). Since R is innermost terminating, repeated
application of innermost reduction steps to tσ also yields some normal
form q, i.e., tσ i→∗

R q. Note that all rules used in any reduction of tσ
are from UR(P). So tσ is weakly innermost terminating w.r.t. UR(P).
Since UR(P) is non-overlapping, tσ is terminating and confluent w.r.t.
UR(P) by [21, Thm. 3.2.11] and thus, w.r.t. R as well. This implies

JAR06final.tex; 14/09/2006; 10:23; p.30

Mechanizing and Improving Dependency Pairs 31

that tσ only has a unique normal form q = v2σ, i.e., tσ i→∗
R v2σ. Thus,

“. . . , v1 → w1, s → t, v2 → w2, . . .” is also an innermost chain.

Soundness of Procr

We show that if “. . . , s → t, v → w, . . .” is a minimal innermost (P ′,R)-
chain, then “. . . , s → t′, v → w, . . .” is a minimal innermost chain as
well. There must be a σ with tσ = tσ[t|pσ]p

i→∗
R tσ[q]p

i→∗
R vσ where

t|pσ
i→∗
R q, the terms q and vσ are normal forms, and all instantiated

right-hand sides (like tσ) are innermost terminating.
We proceed as in the completeness proof of Procn in the case e = i.

All rules applicable in a reduction of t|pσ are contained in UR(t|p). Since
t|pσ is weakly innermost terminating and UR(t|p) is non-overlapping,
by [21, Thm. 3.2.11] t|pσ is confluent and terminating. Note that t′ =
t[r]p where t|p →R r for some term r. Hence, t|pσ →R rσ and thus,
rσ is terminating as well. Thus, it also reduces innermost to some
normal form q′. Now confluence of t|pσ implies q = q′. Hence, t′σ =
tσ[rσ]p

i→∗
R tσ[q]p

i→∗
R vσ. Therefore, “. . . , s → t′, v → w, . . .” is an

innermost chain, too. Moreover, the innermost chain is minimal, since
t′σ is innermost terminating. The reason is that w.l.o.g., every infinite
reduction of t′σ starts with reducing the subterm at position p, i.e., with
t′σ = tσ[rσ]p

i→∗
R tσ[q]p. However, tσ[q]p is innermost terminating,

since tσ is innermost terminating and since tσ i→∗
R tσ[q]p.

Completeness of Procr

If R is not innermost terminating, then completeness is again trivial.
Otherwise, we show that if “. . . , s → t′, v → w, . . .” is an innermost
chain, then so is “. . . , s → t, v → w, . . .”. Note that t′ = t[r]p where
t|p →R r for some r. There must be a σ with t′σ = tσ[rσ]p

i→∗
R tσ[q]p

i→∗
R vσ where rσ i→∗

R q and the terms q and vσ are normal forms.
Again, all rules applicable in a reduction of t|pσ are contained in

UR(t|p). Since t|pσ is weakly innermost terminating and UR(t|p) is non-
overlapping, t|pσ is terminating and confluent [21, Thm. 3.2.11]. Thus,
the only normal form of t|pσ is q. Hence, this normal form can also
be reached by innermost reductions. This implies tσ = tσ[t|pσ]p

i→∗
R

tσ[q]p
i→∗
R vσ. So “. . . , s → t, v → w, . . .” is an innermost chain, too.

Soundness of Proc i

We first regard e = t and show that if “. . . , v1 → w1, s → t, v2 →
w2, . . .” is a minimal chain, then “. . . , v1 → w1, sµ → tµ, v2 → w2, . . .”
is also a minimal chain, where µ = mgu(ren(capR(w1)), s).

Let w1 have the form C[p1, . . . , pn], where the context C contains no
defined symbols or variables and all pi have a defined root symbol or

JAR06final.tex; 14/09/2006; 10:23; p.31

32 Giesl, Thiemann, Schneider-Kamp, Falke

they are variables. There is a substitution σ satisfying (t1) and (t2).
Then sσ = C[q1, . . . , qn] for some terms qi with piσ →∗

R qi.
We have ren(capR(w1)) = C[y1, . . . , yn] where the yi are fresh

variables. Let σ′ be the modification of σ such that σ′(yi) = qi. Then
ren(capR(w1))σ

′ = sσ = sσ′, i.e., ren(capR(w1)) and s unify. Let
µ = mgu(ren(capR(w1)), s). Thus, σ′ = µτ for some substitution
τ . As the variables of all (occurrences of all) pairs may be assumed
disjoint, we may modify σ to behave like τ on the variables of sµ → tµ.
Then w1σ →∗

R sσ = sσ′ = sµτ = sµσ and tµσ = tµτ = tσ →∗
R v2σ.

Thus, “. . . , v1 → w1, sµ → tµ, v2 → w2, . . .” is a chain, too. Moreover,
since tσ is terminating and tµσ = tσ, the chain is minimal as well.

In this way, one can replace all occurrences of s → t in chains
by instantiated pairs sµ → tµ, except for the very first pair in the
chain. However, if s → t, v1 → w1, v2 → w2, . . . is an infinite minimal
chain, then so is v1 → w1, v2 → w2, . . . Thus, by deleting the possibly
remaining first occurrence of s → t in the end, every infinite minimal
(P ′,R)-chain can indeed be transformed into an infinite minimal chain
which only contains instantiations of s → t.

Now we regard e = i. Let “. . . , v1 → w1, s → t, v2 → w2, . . .” be
a minimal innermost chain. We show that then “. . . , v1 → w1, sµ →
tµ, v2 → w2, . . .” is a minimal innermost chain as well. Here, we have
µ = mgu(capR(w1), s) and sµ and v1µ are in normal form.

Let w1 have the form C[p1, . . . , pn], where C contains no defined
symbols (but C may contain variables) and all root(pi) are defined.
There is a σ satisfying (i1) – (i3). Then sσ = C[q1, . . . , qn] for some qi

with piσ
i→∗
R qi, since σ instantiates all variables by normal forms.

We have capR(w1) = C[y1, . . . , yn] where the yi are fresh variables.
Let σ′ be the modification of σ with σ′(yi) = qi. Then capR(w1)σ

′ =
sσ = sσ′, i.e., capR(w1) and s unify. Let µ = mgu(capR(w1), s). Since
sσ and v1σ are normal forms by (i2) and since µ is more general than σ,
sµ and v1µ are normal forms as well. The remainder is as for e = t.

Completeness of Proci

Again, if R is not (innermost) terminating, completeness is trivial.
Otherwise, let “. . . , sµ → tµ, . . .” be an (innermost) chain. As different
occurrences of pairs may be assumed variable disjoint, we can extend
every substitution σ to behave like µσ on the variables of s. Then one
immediately obtains that “. . . , s → t, . . .” is also an (innermost) chain.

Soundness of Procf

We first regard e = t and show that if “. . . , v1 → w1, s → t, v2 →
w2, . . .” is a minimal chain, then so is “. . . , v1 → w1, sµ → tµ, v2 →

JAR06final.tex; 14/09/2006; 10:23; p.32

Mechanizing and Improving Dependency Pairs 33

w2, . . .”, where µ = mgu(ren(cap
−1
R (v2)), t). The non-trivial case is if

R is not collapsing, since otherwise µ does not modify s or t.
Let v2 have the form C[p1, . . . , pn], where C contains no root symbols

of R’s right-hand sides or variables and the pi are variables or terms
where root(pi) occurs on root positions of R’s right-hand sides. There
is a substitution σ satisfying (t1) and (t2). Then tσ = C[q1, . . . , qn] for
some terms qi with qi →

∗
R piσ, i.e., piσ →∗

R−1 qi.

We have ren(cap
−1
R (v2)) = C[y1, . . . , yn] where the yi are fresh

variables. Let σ′ be the modification of σ where σ′(yi) = qi. Then
ren(cap

−1
R (v2))σ

′ = tσ = tσ′, i.e., ren(cap
−1
R (v2)) and t unify. Let

µ = mgu(ren(cap
−1
R (v2)), t). The rest is as in Proci’s soundness proof.

Now we regard e = i. We show that if “. . . , v1 → w1, s → t, v2 →
w2, . . .” is a minimal innermost chain, then so is “. . . , v1 → w1, sµ →
tµ, v2 → w2, . . .”, where µ = mgu(ren(cap

−1
UR(t)(v2)), t). Again, we

only regard the non-trivial case where UR(t) is not collapsing.
Let v2 have the form C[p1, . . . , pn], where C and pi are as in the

termination case. There is a substitution σ satisfying (i1) – (i3). The
only rules applicable in a reduction of tσ are from UR(t). Thus, tσ =
C[q1, . . . , qn] for some qi with qi

i→∗
UR(t) piσ and hence, piσ →∗

UR(t)−1 qi.

We have ren(cap
−1
UR(t)(v2)) = C[y1, . . . , yn] where the yi are fresh

variables. Let σ′ be the modification of σ such that σ′(yi) = qi. Then
ren(cap

−1
UR(t)(v2))σ

′ = tσ = tσ′, i.e., ren(cap
−1
UR(t)(v2)) and t unify.

Let µ = mgu(ren(cap
−1
UR(t)(v2)), t). The remainder of the proof is

analogous to the soundness proof of Proci.

Completeness of Procf

The proof is analogous to the completeness proof of Proc i. 2

The following example shows that the processors Procn and Procr

are not complete if one only considers those DP problems as “infinite”
that are not finite. Instead, a DP problem (P,R, e) should also be
considered “infinite” whenever R is not (innermost) terminating.

EXAMPLE 32. For the TRS R = {f(b) → f(g(a)), g(x) → b, a → a},
the dependency graph processor of Thm. 8 results in the DP problems
({A → A},R, e) and ({F(b) → F(g(a))},R, e). The latter DP problem is
finite as F(g(a)) is not terminating and thus, the pair F(b) → F(g(a))
cannot occur in infinite minimal chains. On the other hand, apply-
ing Procn or Procr on this DP problem leads to a new DP problem
(P ′,R, e) where P ′ contains F(b) → F(b). But since F(b) → F(b) leads
to an infinite minimal chain, the problem (P ′,R, e) is not finite.

JAR06final.tex; 14/09/2006; 10:23; p.33

34 Giesl, Thiemann, Schneider-Kamp, Falke

5.2. Mechanizing Dependency Pair Transformations

By Thm. 31, the transformations are sound and (under certain condi-
tions) complete. Then they cannot transform a non-infinite DP problem
into an infinite one, but they may still be disadvantageous. The reason is
that transformations may increase the size of DP problems (and thus,
runtimes may increase, too). On the other hand, transformations are
often needed to prove (innermost) termination, as shown by Ex. 30.

In practice, the main problem is that these transformations may be
applied infinitely many times. For instance, already in our initial Ex. 1
with the dependency pair

DIV(s(x), s(y)) → DIV(minus(x, y), s(y)) (3)

we can obtain an infinite sequence of narrowing steps. The DP problem
({(3)},R, i) can be narrowed to ({(32), (33)},R, i) with

DIV(s(x), s(0)) → DIV(x, s(0)) (32)

DIV(s(s(x)), s(s(y))) → DIV(minus(x, y), s(s(y))) (33)

Another narrowing step yields ({(32), (34), (35)},R, i) with

DIV(s(s(x)), s(s(0))) → DIV(x, s(s(0))) (34)

DIV(s(s(s(x))), s(s(s(y)))) → DIV(minus(x, y), s(s(s(y)))) (35)

Obviously, narrowing can be repeated infinitely many times here, al-
though the DP problems are finite and the TRS is terminating.

Therefore, we have developed restricted safe transformations which
are guaranteed to terminate. Our experiments in Sect. 8 show that
applying transformations only in these safe cases is indeed successful
in practice. The experiments also demonstrate that this is clearly ad-
vantageous to the alternative straightforward heuristic which simply
applies transformations a fixed number of times.

A narrowing, instantiation, or forward instantiation step is safe if it
reduces the number of pairs in SCCs of the estimated (innermost)
dependency graph. Let SCC(P) be the set of SCCs built from the pairs
in P. Then the transformation is safe if |

⋃

S∈SCC(P) S| decreases. So the
forward instantiation in Ex. 29 was safe, since the estimated dependen-
cy graph had an SCC before, but not afterwards. Moreover, a transfor-
mation step is also considered safe if by this step, all descendants of an
original dependency pair disappear from SCCs. For every pair s → t,
o(s→ t) denotes an original dependency pair whose repeated transfor-
mation led to s→ t. Now a transformation is also safe if {o(s→ t) | s→ t
∈

⋃

S∈SCC(P) S} decreases. Finally, for each pair that was not narrowed

JAR06final.tex; 14/09/2006; 10:23; p.34

Mechanizing and Improving Dependency Pairs 35

yet, one single narrowing step which does not satisfy the above require-
ments is also considered safe. The benefits of this are demonstrated by
our experiments in Sect. 8. We use a similar condition for instantiation
and forward instantiation, where for forward instantiation, we require
that the transformation may only yield one new pair. So the narrowing
and instantiation steps in Ex. 30 were safe as well.

The rewriting transformation may be applied without any restriction
provided that the rules used for (innermost) rewriting are (innermost)
terminating. Therefore, one should consider the recursion hierarchy in
termination proofs. A symbol f depends on the symbol h (f ≥d h) if
f = h or if some symbol g occurs in the right-hand side of an f -
rule where g depends on h. Note that ≥d also corresponds to the
definition of usable rules in Def. 10, since UR(f(x1, . . . , xn)) consists
of RlsR(g) for all f ≥d g. We define >d =≥d \ ≤d. For example, the
div- and if-rules depend on the minus-and le-rules in Ex. 30. If one has to

solve two DP problems (P1,R, e) and (P2,R, e) where there exist l♯1 →

r♯
1 ∈ P1 and l♯2 → r♯

2 ∈ P2 with root(l1) >d root(l2), then it is advanta-
geous to treat (P2,R, e) before (P1,R, e). In other words, in Ex. 30 one
should solve the DP problems for minus and le before handling the DP
problem of div and if. Then innermost termination of minus is al-
ready verified when proving innermost termination of div and therefore,
innermost rewriting the DIV-dependency pair with the minus-rules is
guaranteed to terminate. Thus, the rewrite step from (28) to (29) was
safe.

DEFINITION 33 (Safe Transformations). Let Q result from the set P
by transforming s→ t ∈ P as in Def. 28. The transformation is safe if

(1) s → t was transformed by Procn, Proci, or Procf and

• |
⋃

S∈SCC(P) S| > |
⋃

S∈SCC(Q) S|, or

• {o(s→t) | s→t ∈
⋃

S∈SCC(P) S}) {o(s→t) | s→t ∈
⋃

S∈SCC(Q) S}

(2) s → t was transformed by innermost rewriting and UR(P) is
innermost terminating

(3) s → t was transformed by narrowing and all previous steps which
transformed o(s → t) to s → t were not narrowing steps

(4) s → t was transformed by instantiation and all previous steps
which transformed o(s → t) to s → t were not instantiation steps

(5) s → t was transformed by forward instantiation, there is only one
pair v → w where ren(cap

−1
R (v)) and t (resp. ren(cap

−1
UR(t)(v))

and t) are unifiable, and all previous steps which transformed
o(s→ t) to s→ t were not forward instantiation steps

JAR06final.tex; 14/09/2006; 10:23; p.35

36 Giesl, Thiemann, Schneider-Kamp, Falke

Thm. 34 proves that the application of safe transformations terminates.

THEOREM 34 (Termination). Let (P,R, e) be a DP problem. Then
any repeated application of safe transformations on P terminates.

Proof. We define a measure on sets P consisting of four components:

(a) |{o(s → t) | s → t ∈
⋃

S∈SCC(P) S}| (c) |P|

(b) |
⋃

S∈SCC(P) S| (d) {t | s → t ∈ P}

These 4-tuples are compared lexicographically by the usual order on
naturals for components (a) – (c). For (d), we use the multiset ex-
tension of the innermost rewrite relation of UR(P) if it is innermost
terminating. Thus, we obtain a well-founded relation ≻ where P1 ≻ P2

iff P1’s measure is greater than P2’s measure. Due to (a), (b), and (d),
any safe transformation of P with (1) or (2) decreases P’s measure.

Let w(P) = 〈P¬n,¬i,¬f ,Pn,¬i,¬f ,P¬n,i,¬f ,P¬n,¬i,f ,P¬n,i,f ,Pn,¬i,f ,
Pn,i,¬f ,Pn,i,f 〉. P¬n,¬i,¬f consists of those s→ t∈P where no narrowing,
instantiation, or forward instantiation was used to transform o(s→ t)
to s→ t. Pn,¬i,¬f are the pairs where narrowing, but no instantiation
or forward instantiation was used, etc. Every safe transformation step
decreases w(P) lexicographically w.r.t. ≻: The leftmost component of
w(P) that is changed decreases w.r.t. ≻, whereas components on its
right-hand side may increase. In particular, transformations with (3) –
(5) decrease one component of w(P) w.r.t. ≻ by (c). 2

A good strategy is to apply the processors of this paper according to
the following precedence. This strategy is also used in our experiments
in Sect. 8. Here, one always uses the first processor in the list which
modifies the current DP problem. More elaborate strategies which also
take other processors into account can be found in [15].

1. Dependency Graph Processor (Thm. 8)

2. Transformation Processor (Def. 28) restricted to Def. 33 (1), (2)

3. Reduction Pair Processor (Thm. 12, Thm. 17, or Thm. 26)

4. Transformation Processor (Def. 28) restricted to Def. 33 (3) – (5)

So after each transformation, one should re-compute the dependency
graph. Here, one only has to regard the former neighbors of the trans-
formed pair in the old graph. The reason is that only former neighbors
may have arcs to or from the new pairs resulting from the transforma-
tion. Regarding neighbors in the graph also suffices for the unifications

JAR06final.tex; 14/09/2006; 10:23; p.36

Mechanizing and Improving Dependency Pairs 37

required for narrowing, instantiation, and forward instantiation. In this
way, the transformations can be performed efficiently.

6. Computing Argument Filterings

One of the most important processors of the DP framework is the
reduction pair processor (Thm. 12) which we improved considerably in
Thm. 17 and 26. Here, we may apply an argument filtering π to the
constraints before orienting them with a reduction pair. When using
reduction pairs based on monotonic orders ≻ like RPOS or KBO, this
is necessary to benefit from the fact that in a reduction pair (%,≻), ≻
need not be monotonic. However, the number of argument filterings is
exponential in the number and the arities of the function symbols. We
now show how to search for suitable filterings efficiently. More precisely,
for each DP problem (P,R, e), we show how to compute a small set
Π(P,R). This set includes all argument filterings that may satisfy the
constraints of the reduction pair processor. A corresponding algorithm
was presented in [25] for termination proofs with Thm. 12. However,
in Sect. 6.1 and Sect. 6.2 we now develop algorithms which can also
be used for the improved versions of the reduction pair processor from
Thm. 17 and 26. In particular for Thm. 26, the algorithm is consider-
ably more involved since the set of constraints depends on the argument
filtering used.

6.1. Argument Filterings for the Processor of Thm. 17

We use the approach of [25] to consider partial argument filterings,
which are only defined on a subset of the signature. For example, in a
term f(g(x), y), if π(f) = [2], then we do not have to determine π(g),
since all occurrences of g are filtered away. Thus, we leave argument
filterings as undefined as possible and permit the application of π to
a term t whenever π is sufficiently defined for t. More precisely, any
partial argument filtering π is sufficiently defined for a variable x. So
the domain of π may even be empty, i.e., DOM (π) = ∅. An argument
filtering π is sufficiently defined for f(t1, . . . , tn) iff f ∈ DOM (π) and π
is sufficiently defined for all ti with i ∈ rpπ(f). An argument filtering
is sufficiently defined for a set of terms T iff it is sufficiently defined
for all terms in T . To compare argument filterings which only differ in
their domain DOM , [25] introduced the following relation “⊆”: π ⊆ π′

iff DOM (π) ⊆ DOM (π′) and π(f) = π′(f) for all f ∈ DOM (π).
In [25], one regards all ⊆-minimal filterings which permit a term

to be evaluated. We now use the same concept to define the set Π(P)

JAR06final.tex; 14/09/2006; 10:23; p.37

38 Giesl, Thiemann, Schneider-Kamp, Falke

of those argument filterings where at least one pair in P is strictly
decreasing and the remaining ones are weakly decreasing. Here, Π(P)
should only contain ⊆-minimal elements, i.e., if π′ ∈ Π(P), then Π(P)
does not contain any π ⊂ π′. Of course, all filterings in Π(P) must be
sufficiently defined for the terms in the pairs of P. Let RP be a class of
reduction pairs describing the particular base order used (e.g., RP may
contain all reduction pairs based on LPO). In the termination case, we
restrict ourselves to Cε-compatible reduction pairs.

DEFINITION 35 (Π(P)). For a set P of pairs of terms, let Π(P) con-
sist of all ⊆-minimal elements of {π | there is a (%,≻) ∈ RP such that
π(s)≻π(t) for some s→ t ∈ P and π(s)%π(t) for all other s→ t ∈ P}.

In Ex. 1, if P = {DIV(s(x), s(y)) → DIV(minus(x, y), s(y))} and RP
are all reduction pairs based on LPO, then Π(P) consists of the 12 filter-
ings π where DOM (π) = {DIV, s,minus}, π(DIV) ∈ {1, [1], [1, 2]}, and
either π(minus)∈{[], 1, [1]} and π(s) = [1] or both π(minus) = π(s) = [].

For any DP problem (P,R, e), we now define a superset Π(P,R) of
all argument filterings where the constraints of the reduction pair pro-
cessor from Thm. 17 are satisfied by some reduction pair of RP . So only
these filterings have to be regarded when automating Thm. 17, cf. Thm.
43. As in [25], one therefore has to extend partial filterings in order to
obtain all filterings which can possibly satisfy certain inequalities.

DEFINITION 36 (Ex f , Π(P,R)). For a partial filtering π and f ∈
DR, Ex f (π) consists of all ⊆-minimal filterings π′ with π ⊆ π′ such that
there is a (%,≻) ∈ RP with π′(l) % π′(r) for all l → r ∈ RlsR(f). For
a set Π of filterings, let Ex f (Π) =

⋃

π∈Π Exf (π). We define Π(P,R) =
Exfk

(. . . Ex f1(Π(P)) . . .), where f1, . . . , fk are UR(P)’s defined sym-
bols. Note that the order of f1, . . . , fk is irrelevant for the definition
of Π(P,R).

So for the DIV-SCC P in Ex. 1, we have Π(P,R) = Exminus(Π(P)).
Note that all π ∈ Π(P) remove the second argument of minus. Therefore
in Exminus(Π(P)), their domain does not have to be extended to the
symbol 0, since 0 only occurs in minus’ second argument. However,
in Exminus(Π(P)), all filterings π with π(minus) = [] are eliminated,
since they contradict the weak decrease of the first minus-rule. Thus,
while there exist 6 · 3 · 6 · 1 = 144 possible argument filterings for the
symbols DIV, s, minus, and 0, our algorithm reduces this set to only
|Π(P,R)| = 6 candidates. For TRSs with more function symbols, the
reduction of the search space is of course even more dramatic.

Moreover, in successful proofs we only compute a small subset of
Π(P,R), since its elements are determined step by step in a depth-first

JAR06final.tex; 14/09/2006; 10:23; p.38

Mechanizing and Improving Dependency Pairs 39

search until a proof is found. To this end, we start with a π ∈ Π(P) and
extend it to a minimal π′ such that f1’s rules are weakly decreasing.
Then π′ is extended such that f2’s rules are weakly decreasing, etc.
Here, f1 is considered before f2 if f1 >d f2, where >d is again the
“dependence” relation from Sect. 5.2. When we have Π(P,R)’s first
element π1, we check whether the constraints of Thm. 17 are satisfiable
with π1. In case of success, we do not compute further elements of
Π(P,R). Only if the constraints are not satisfiable with π1, we deter-
mine Π(P,R)’s next element, etc. The advantage of this approach is
that Π(P) is usually small, since it only contains filterings that satisfy a
strict inequality. Thus, by taking Π(P)’s restrictions into account, only
a fraction of the search space is examined. This depth-first strategy
differs from the corresponding algorithm in [25] where the constraints
are treated separately in order to share and re-use results.

EXAMPLE 37. The following TRS illustrates the depth-first algorithm.

f(s(s(x))) → f(g(x)) g(x) → h(x)
f(s(x)) → f(x) h(x) → s(x)

The only SCC of the dependency graph is P = {F(s(s(x))) → F(g(x)),
F(s(x)) → F(x)}. Let RP contains all reduction pairs based on LPO.
Then Π(P) consists of the six partial argument filterings where π(F) is
1 or [1], π(s) = [1], and π(g) ∈ {1, [1], []}.

To demonstrate the depth-first algorithm, we inspect filterings in
the order where collapsing filterings are checked first and otherwise,
filterings which do not filter anything are preferred (so the order of
preference is 1, [1], []). Then we start with π1 ∈ Π(P) where π1(F) = 1,
π1(s) = [1], and π1(g) = 1. When computing Exg(π1), the argument
filtering has to be extended in order to filter h as well. Moreover, we
must ensure that the g-rule can be made weakly decreasing by some
LPO. Thus, we have to use the extension π′

1 of π1 where π′
1(h) = 1.

But then, when trying to compute Exh(π
′
1), it turns out that this set is

empty since the h-rule cannot be weakly decreasing with this filtering.
So one backtracks and regards π2 ∈ Π(P) with π2(F) = 1, π2(s) = [1],

and π2(g) = [1]. Now we compute the first element π′
2 of Exg(π2).

We have π′
2(h) = 1 and again, Exh(π

′
2) is empty. Hence, we back-

track and compute the next element π′′
2 of Exg(π2). Now π′′

2(h) = [1]
and Exh(π

′′
2) consists of π′′

2 . Thus, we have found the first element
of Π(P,R) = Exh(Exg(Π(P))). Hence, we stop the computation of
Π(P,R) and check whether the reduction pair processor is successful
with π′′

2 . Indeed, the constraints can be solved using an LPO where s, g,
and h have equal precedence. Then both dependency pairs are decreasing
and can be removed. Thus, termination can immediately be proved.

JAR06final.tex; 14/09/2006; 10:23; p.39

40 Giesl, Thiemann, Schneider-Kamp, Falke

The example demonstrates that the depth-first search only generates
a small part of the search space when looking for argument filterings.
This is also illustrated by the following tree which depicts the whole
search space for determining Π(P,R). Since we use depth-first search
and stop as soon as the first solution is found, we do not compute
this full tree in a successful termination proof. Instead we stop as soon
as we reach the third leaf, which corresponds to the first element of
Π(P,R). Here, those leaves where Exh is underlined denote success
(i.e., computing Exh does not result in the empty set).

Π(P)
π1

rreeeeeeeeeeeeeeeeeeeeeeee

π2uukkkkkkkkkkk
π3

�� π4 ##GG
GG

G

π5
++WWWWWWWWWWWWWWWWW

π6

--ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

Exg

π
′

1
��

Exg
π
′

2

||yy
yy

y
π
′′

2 ��

π
′′′

2

""EE
EE

E
Exg

π
′

3
��

Exg

π
′

4
��

Exg
π
′

5

||yy
yy

y
π
′′

5 ��

π
′′′

5

""EE
EE

E
Exg

π
′

6
��

Exh Exh
Exh Exh Exh Exh Exh

Exh Exh Exh

6.2. Argument Filterings for the Processor of Thm. 26

When automating the improved reduction pair processor of Thm. 26
instead of Thm. 17, the set of constraints to be satisfied depends on
the argument filtering used. If f ≥d g, then when orienting the rules of
f , we do not necessarily have to orient g’s rules as well, since all occur-
rences of g in f -rules may have been deleted by the argument filtering.
To formalize this, we define a relation “
P,R” on sets of argument
filterings. We extend rpπ to partial filterings by defining rpπ(f) = ∅

for f /∈ DOM (π). Now UR(P, π) is also defined for partial filterings by
disregarding all subterms of function symbols where π is not defined.

For a partial filtering π, whenever RlsR(f) is included in the usable
rules UR(P, π), then the relation “
P,R” can extend π in order to make
the f -rules weakly decreasing. We label each filtering by those function
symbols whose rules are already guaranteed to be weakly decreasing.

DEFINITION 38 (
P,R). Each argument filtering π is labelled with a
set G ⊆ DR and we denote a labelled argument filtering by πG. For
labelled argument filterings, we define πG
P,R π′

G∪{f} if f ∈ DR \ G,

RlsR(f) ⊆ UR(P, π), and π′ ∈ Exf (π). We extend “
P,R” to sets of
labelled filterings as follows: Π ⊎ {πG}
P,R Π ∪ {π′

G′ | πG
P,R π′
G′}.

To automate the reduction pair processor of Thm. 26, we only regard
filterings that result from Π(P) by applying
P,R-reductions as long
as possible. So each π ∈ Π(P) is extended individually by
P,R instead
of building Exf (Π(P)) as in Thm. 17’s automation. The advantage of

P,R is that only those filterings π are extended to include f in their

JAR06final.tex; 14/09/2006; 10:23; p.40

Mechanizing and Improving Dependency Pairs 41

domain where this is required by the usable rules UR(P, π). We denote
the set of filterings that should be regarded when automating Thm. 26.
by Π′(P,R) and compute it by depth-first search, similar to Π(P,R).

EXAMPLE 39. We regard the SCC P = {(21), (22), (23), (24)} of the
REV- and REV2-dependency pairs in Ex. 22 and 27. Here, the filter-
ings in Π(P) are not defined on rev1, since rev1 does not occur in P.
When performing
P,R-reductions, those π ∈ Π(P) which eliminate
the first argument of cons will never be extended to rev1, whereas this
is necessary for other filterings in Π(P).

For example (possibly after some backtracking), the depth-first search
could consider the partial filtering π ∈ Π(P): π(cons) = [2], π(REV) =
π(rev) = 1, and π(REV1) = π(REV2) = π(rev2) = 2, where π is unde-
fined on rev1. Initially, this filtering is labelled with ∅, since no rule is
guaranteed to be weakly decreasing yet. We have RlsR(rev) ⊆ UR(P, π).
To make rev’s rules weakly decreasing, π has to be extended to a filtering
π′ which is also defined on nil, i.e., π∅
P,R π′

{rev}. Since UR(P, π′) =

RlsR(rev) ∪ RlsR(rev2) and since π′ also allows us to make all rev2-
rules weakly decreasing, we obtain π′

{rev}
P,R π′
{rev,rev2}. Thus, π′ is a

normal form w.r.t.
P,R and therefore, it is an element of Π′(P,R).
As soon as one finds a filtering where the constraints of Thm. 26 can
be solved, the depth-first search stops and we do not determine further
elements of Π′(P,R).

So to compute the set of regarded argument filterings Π′(P,R) for
Thm. 26, our aim is to construct the normal form of Π(P) w.r.t.
P,R.
To ensure that this normal form always exists and that it is unique, we
will prove that
P,R is confluent and terminating.

For this proof, we need the following lemma. It states that Ex f (π)
always consists of pairwise incompatible argument filterings. Here, two
argument filterings π1 and π2 are compatible if π1(f) = π2(f) for all
f ∈ DOM (π1) ∩ DOM (π2), cf. [25].8

LEMMA 40 (Incompatibility). Let T be a finite set of terms.

(a) Let π, π1, π2 be (partial) argument filterings. Let π1, π2 ∈ {π′ |π ⊆
π′ and π′ is sufficiently defined for T}, where π1 is a ⊆-minimal
element of this set. If π1 and π2 are compatible, then π1 ⊆ π2.

8 The notion of compatibility was introduced in [25] for a different purpose: there
it was used to merge sets of argument filterings, whereas a statement like Lemma 40
was not presented in [25]. In the setting of [25], Lemma 40 would mean that “AF(T)”
consists of pairwise incompatible argument filterings. Here, “AF(T)” are all minimal
argument filterings that are sufficiently defined for all terms in the set T .

JAR06final.tex; 14/09/2006; 10:23; p.41

42 Giesl, Thiemann, Schneider-Kamp, Falke

(b) If π1, π2 ∈ Exf (π) are compatible, then π1 = π2. In other words,
Exf (π) consists of pairwise incompatible argument filterings.

(c) If Π consists of pairwise incompatible argument filterings, then
Exf (Π) consists of pairwise incompatible argument filterings, too.

Proof.

(a) We perform induction on T using the (multi)set version of the
proper subterm relation. If T = ∅, then the only minimal extension
of π that is sufficiently defined for T is π1 = π. Hence, π1 = π ⊆ π2.

Next let T = T ′ ⊎ {x} for x ∈ V. Now the claim follows from the
induction hypothesis, since π1 and π2 are also sufficiently defined
for T ′ and π1 is a minimal extension of π with this property.

If T = T ′ ⊎ {f(t1, . . . , tn)}, then f ∈ DOM (π1). Let T ′′ = T ′ ∪
{ti | i ∈ rpπ1(f)}. Both π1 and π2 are sufficiently defined for T ′′ (for
π2 this follows from π2(f) = π1(f) by compatibility of π1 and π2).
If π1 is a minimal extension of π that is sufficiently defined for T ′′,
then the claim is implied by the induction hypothesis. Otherwise,
f /∈ DOM (π) and we obtain the following minimal extension π′

1

of π that is sufficiently defined for T ′′: DOM (π′
1) = DOM (π1) \

{f} and π′
1(g) = π1(g) for all g ∈ DOM (π′

1). Then the induction
hypothesis implies π′

1 ⊆ π2. Since π1 only differs from π′
1 on f and

since π1(f) = π2(f), we obtain π1 ⊆ π2.

(b) Let π1, π2 ∈ Exf (π) be compatible. As both filterings are minimal
extensions of π that are sufficiently defined for the terms on left-
or right-hand sides of rules from RlsR(f), we use (a) to conclude
both π1 ⊆ π2 and π2 ⊆ π1, which implies π1 = π2.

(c) Let π′
1, π

′
2 ∈ Π, π1 ∈ Ex f (π′

1), π2 ∈ Ex f (π′
2), and π1 6= π2. If π′

1 =
π′

2, then π1 and π2 are incompatible by (b). Otherwise π′
1 6= π′

2,
and π′

1 and π′
2 are incompatible by the assumption about Π. As

π′
1 ⊆ π1 and π′

2 ⊆ π2, then π1 and π2 are incompatible as well. 2

The next theorem shows the desired properties of the relation
P,R.

THEOREM 41.
P,R is terminating and confluent on sets of filterings.

Proof. Termination of
P,R is obvious as the labellings increase in
every
P,R-step. So for confluence, it suffices to show local confluence.
The only crucial indeterminism in the definition of
P,R is the choice of

JAR06final.tex; 14/09/2006; 10:23; p.42

Mechanizing and Improving Dependency Pairs 43

f . Let f0, f1 ∈ DR\G with f0 6= f1 and RlsR(f0)∪RlsR(f1) ⊆ UR(P, π)
for some labelled filtering πG . This leads to two possible steps:

Π ⊎ {πG}
P,R Π ∪ Π0, where Π0 = {π0
G∪{f0}

| π0 ∈ Ex f0(π)}

Π ⊎ {πG}
P,R Π ∪ Π1, where Π1 = {π1
G∪{f1}

| π1 ∈ Ex f1(π)}

Note that UR(P, π) ⊆ UR(P, πi) holds for all πi ∈ Exfi
(π). Thus,

for all πi
G∪{fi}

∈ Πi, we have f1−i ∈ DR \ (G ∪ {fi}) and RlsR(f1−i) ⊆

UR(P, πi). Hence, we obtain the following reductions (where we also
apply Exf to labelled filterings by simply ignoring their labels).

Π ∪ Π0

|Π0|

P,R (Π \ Π0) ∪
{

π′
G∪{f0,f1}

| π′ ∈ Ex f1(Ex f0(π))
}

|Π∩Π1|

P,R (Π \ (Π0 ∪ Π1)) ∪
{

π′
G∪{f0,f1}

| π′ ∈ Ex f1(Ex f0(π))
}

∪
{

π′
G∪{f1,f0}

| π′ ∈ Ex f0(Π ∩ Π1)
}

Π ∪ Π1

|Π1|

P,R (Π \ Π1) ∪
{

π′
G∪{f1,f0}

| π′ ∈ Ex f0(Ex f1(π))
}

|Π∩Π0|

P,R (Π \ (Π1 ∪ Π0)) ∪
{

π′
G∪{f1,f0}

| π′ ∈ Ex f0(Ex f1(π))
}

∪
{

π′
G∪{f0,f1}

| π′ ∈ Ex f1(Π ∩ Π0)
}

where Exf0(Π ∩Π1) ⊆ Ex f0(Ex f1(π)), Ex f1(Π ∩Π0) ⊆ Ex f1(Ex f0(π)).
To finish the proof we show Exf0(Ex f1(π)) = Ex f1(Ex f0(π)). By sym-
metry, it suffices to prove Ex f0(Ex f1(π)) ⊆ Exf1(Ex f0(π)). Here, we
only have to show that for every π01 ∈ Ex f0(Ex f1(π)) there is a π10 ∈
Exf1(Ex f0(π)) with π10 ⊆ π01. The reason is that in an analogous way
one can show that for π10 there also exists a π′

01 ∈ Ex f0(Ex f1(π)) with
π′

01 ⊆ π10. Hence, π′
01 ⊆ π10 ⊆ π01. By Lemma 40 (b), Ex f1(π) consists

of pairwise incompatible argument filterings and hence by Lemma 40
(c), this also holds for Ex f0(Ex f1(π)). However, π′

01 ⊆ π01 implies that
π′

01 and π01 are compatible. So π′
01 = π01 and thus, π′

01 = π10 = π01.
Let π01 ∈ Ex f0(Ex f1(π)). By the definition of Ex , there is a π1 ∈

Exf1(π) and a reduction pair (%,≻) ∈ RP with π1 ⊆ π01 and π01(l) %
π01(r) for all l → r ∈ RlsR(f0). As π1 ∈ Exf1(π), we also have π ⊆ π1

and π1(l) %′ π1(r) for all f1-rules and some (%′,≻′) ∈ RP . Since
π ⊆ π01 and since the f0-rules can be oriented in a weakly decreasing
way using π01, there exists a π0 ∈ Ex f0(π) with π ⊆ π0 ⊆ π01 such that
the f0-rules can also be oriented using π0. Since π0 ⊆ π01 and since
the f1-rules can be oriented with π01, there is a π10 ∈ Ex f1(π0) with
π0 ⊆ π10 ⊆ π01 such that π10 also permits an orientation of the f1-rules.
As explained above, this proves Exf0(Ex f1(π)) ⊆ Ex f1(Ex f0(π)). 2

JAR06final.tex; 14/09/2006; 10:23; p.43

44 Giesl, Thiemann, Schneider-Kamp, Falke

Now we can define the set of argument filterings Π′(P,R) that are
regarded when automating the reduction pair processor of Thm. 26.
Due to Thm. 41, we can define Π′(P,R) in an unambiguous way (as
the unique normal form of Π(P)).

DEFINITION 42 (Π′(P,R)). Let Nf
P,R
(Π) be the normal form of Π

w.r.t.
P,R. Then we define Π′(P,R) = Nf
P,R
({π∅ | π ∈ Π(P)}).

Thm. 43 states that Π(P,R) resp. Π′(P,R) indeed contain all ar-
gument filterings which could possibly solve the constraints of Thm. 17
resp. Thm. 26. In this way the set of argument filterings is reduced
dramatically and thus, efficiency is increased.

THEOREM 43. Let (P,R, e) be a DP problem. If the constraints of
Thm. 17 (26) are satisfied by some reduction pair from RP and argu-
ment filtering π, then π′ ⊆ π for some π′ ∈ Π(P,R) (π′ ∈ Π′(P,R)).

Proof. Let the constraints (a) and (b) from Thm. 17 or 26 be solved
by some filtering π and some (%,≻) ∈ RP. We first consider Thm. 17.
Let f1, . . . , fk be the defined symbols of UR(P). So we have Π(P,R) =
Exfk

(. . . Ex f1(Π(P)) . . .). We show that for all 0 ≤ j ≤ k there is
a πj ∈ Exfj

(. . . Exf1(Π(P)) . . .) with πj ⊆ π by induction on j. For
j = 0, since π solves the constraints in (a), there is a minimal filtering
π0 ∈ Π(P) with π0 ⊆ π. For j > 0, we assume that there is a πj−1 ∈
Exfj−1

(. . . Ex f1(Π(P)) . . .) with πj−1 ⊆ π. As π(l) % π(r) for all fj-
rules l → r, there is a filtering πj ∈ Ex fj

(πj−1) with πj ⊆ π.
For Thm. 26, let Π(P) = Π0
P,R Π1
P,R . . .
P,R Πk = Π′(P,R)

be a
P,R-reduction to normal form. We show that for all 0 ≤ j ≤ k
there is a πj ∈ Πj with πj ⊆ π by induction on j. For j = 0, since
π solves the constraints in (a), there is again a minimal filtering π0 ∈
Π(P) with π0 ⊆ π. For j > 0, we assume that there is a πj−1 ∈ Πj−1

with πj−1 ⊆ π. So we either have πj−1 ∈ Πj as well or else, Πj results
from Πj−1 by replacing πj−1 by all elements of Ex f (πj−1) for some f
with RlsR(f) ⊆ UR(P, πj−1). Since πj−1 ⊆ π, we have UR(P, πj−1) ⊆
UR(P, π) and hence, π also makes f ’s rules weakly decreasing by the
constraints in (b). Thus, there is a πj ∈ Ex f (πj−1) ⊆ Πj with πj ⊆ π. 2

The converse directions of this theorem do not hold, since in the com-
putation of Π(P,R) and Π′(P,R), when extending argument filterings,
one does not take the orders into account. So even if Ex f (Ex g(. . .)) 6=
∅, it could be that there is no reduction pair such that both f - and
g-rules are weakly decreasing w.r.t. the same reduction pair from RP .

JAR06final.tex; 14/09/2006; 10:23; p.44

Mechanizing and Improving Dependency Pairs 45

7. Using Polynomial Orders for Dependency Pairs

In Sect. 6 we showed how to mechanize the reduction pair processor
with argument filterings and monotonic orders like RPOS or KBO. Now
we regard reduction pairs based on polynomial orders instead, which
are not necessarily monotonic if one also permits the coefficient 0 in
polynomials.9 In contrast to RPOS and KBO, it is undecidable whether
a set of constraints is satisfiable by polynomial orders, and thus one can
only use sufficient criteria to automate them. However, in combination
with dependency pairs, even linear polynomial interpretations with
coefficients from {0, 1} are already very powerful, cf. Sect. 8.

An advantage of polynomial orders is that one does not need any
extra argument filtering anymore, since argument filtering can be sim-
ulated directly by the corresponding polynomials. If

Pol(f(x1, ..., xn)) = a1 x
b1,1

1 . . . x
bn,1
n + . . . + am x

b1,m

1 . . . xbn,m
n (36)

for coefficients aj ≥ 0, then this corresponds to the argument filtering
πPol with πPol(f) = [i | aj > 0∧bi,j > 0 for some 1 ≤ j ≤ m]. However,
disregarding argument filterings is a problem in our improved reduction
pair processor (Thm. 26), since the filtering π is needed to compute the
constraints resulting from the usable rules UR(P, π). Hence, in Sect. 7.1
we adapt the reduction pair processor to polynomial orders such that it
does not use argument filterings anymore. In Sect. 7.2 we improve this
special reduction pair processor by eliminating the indeterminism in the
constraints of type (a). Here, for any DP problem (P,R, e) one had to
select at least one pair from P which should be strictly decreasing.

7.1. Reduction Pair Processor With Polynomial Orders

When automating Thm. 26 with polynomial orders, one fixes the de-
gree of the polynomials and then suitable coefficients have to be found
automatically. So one starts with an abstract polynomial interpretation
Pol. For every function symbol f , Pol(f(x1, . . . , xn)) is as in (36), but
m and bi,j are fixed numbers, whereas aj are variable coefficients. Then
the constraints (a) of Thm. 26 have the form

• Pol(s) − Pol(t) > 0 for all s→ t ∈ P ′ for a non-empty P ′ ⊆ P
• Pol(s) − Pol(t) ≥ 0 for all s→ t ∈ P \ P ′ (37)

An abstract polynomial interpretation Pol can be turned into a con-
crete one by assigning a natural number to each variable coefficient aj .

9 We only consider polynomial orders with natural coefficients. Approaches for
polynomials with negative or real coefficients can be found in [23, 33].

JAR06final.tex; 14/09/2006; 10:23; p.45

46 Giesl, Thiemann, Schneider-Kamp, Falke

We denote such assignments by α and let α(Pol) be the corresponding
concrete polynomial interpretation. A set of constraints of the form
p

(
≥

)
0 is satisfiable iff there exists an assignment α such that all instan-

tiated constraints α(p)
(
≥

)
0 hold. Here α(p) still contains the variables

x, y, . . . occurring in P and we say that α(p)
(
≥

)
0 holds iff it is true for

all instantiations of x, y, . . . by natural numbers. For example, a1x+a2−
a3y > 0 is satisfied by the assignment α where α(a1) = 1, α(a2) = 1,
and α(a3) = 0. The reason is that α turns the above constraint into
x + 1 > 0 which holds for all instantiations of x with natural numbers.

The constraints of type (b) in Thm. 26 require l % r for all l → r ∈
UR(P, πα(Pol)). The problem is how to determine these constraints in
the case of polynomial orders where the argument filtering πα(Pol) is not
given explicitly but depends on the assignment α of natural numbers to
variable coefficients aj . Thus, πα(Pol) is not available yet when building
the constraints although we need it to compute UR(P, πα(Pol)).

The solution is to translate the constraints of type (b) to polynomial
constraints of the following form:

q · (Pol(l) − Pol(r)) ≥ 0 for all rules l → r of UR(P) (38)

Here, q will be a polynomial containing only variable coefficients aj but
no variables x, y, . . . from the rules of R. So for any assignment α, α(q)
is a number. We generate the constraints such that for any assignment
α, we have α(q) = 0 iff l → r /∈ UR(P, πα(Pol)). So for any α, the
constraints (38) are equivalent to requiring Pol(l) − Pol(r) ≥ 0 for all
l → r in UR(P, πα(Pol)), but the advantage is that the constraints (38)
can be constructed before determining the assignment α.

Let Pol be an abstract polynomial interpretation as in (36). To gen-
erate the constraints (38), we first define a polynomial which sums up
the coefficients of those monomials of Pol(f(x1, ..., xn)) that contain xi.

rpPol(f, i) =
∑

1≤j≤m, bi,j>0
aj

So for any assignment α, α(rpPol(f, i)) is a number which is greater
than 0 iff i∈ rpπα(Pol)

(f). Now the constraints corresponding to (b) in

Thm. 26 can be built similar to the definition of usable rules (Def. 21).

DEFINITION 44 (Usable Rules for Polynomial Orders). Let Pol be an
abstract polynomial interpretation. Again, let R′ = R \ RlsR(f). For
any term t, we define the usable rule constraints ConR(t,Pol) as

• ConR(x,Pol) = ∅ for x ∈ V and
• ConR(f(t1, . . . , tn),Pol) = {Pol(l) −Pol(r) ≥ 0 | l → r ∈ RlsR(f)}

∪
⋃

l→r∈RlsR(f) ConR′(r,Pol)

∪
⋃

1≤i≤n {rpPol(f, i) · p ≥ 0 | “ p ≥ 0” ∈ ConR′(ti,Pol)}.

JAR06final.tex; 14/09/2006; 10:23; p.46

Mechanizing and Improving Dependency Pairs 47

For any TRS P, let ConR(P,Pol) =
⋃

s→t∈P ConR(t,Pol).

EXAMPLE 45. Consider the TRS from Ex. 22 again. We use the lin-
ear abstract polynomial interpretation Pol(nil) = anil, Pol(f(x)) = af,0

+af,1 x for f ∈ {rev,REV}, and Pol(f(x, y)) = af,0 + af,1 x + af,2 y for
all other f . Thus, rpPol(f, i) = af,i for all symbols f and positions i.

We compute ConR for the right-hand side of REV2(x, cons(y, z))→
REV(rev2(y, z)). Let R′ = R \ RlsR(rev2) and R′′ = R′ \ RlsR′(rev).

ConR(REV(rev2(y, z)),Pol) = {Pol(l) − Pol(r) ≥ 0 | l → r ∈ RlsR(REV) = ∅}∪
⋃

l→r∈RlsR(REV)=∅
ConR(r,Pol)∪

{aREV,1 · p ≥ 0 |“ p ≥ 0” ∈ ConR(rev2(y, z),Pol)}
= {aREV,1 · p ≥ 0 |“ p ≥ 0” ∈ ConR(rev2(y, z),Pol)}

ConR(rev2(y, z),Pol) = {Pol(l) − Pol(r) ≥ 0 | l → r ∈ RlsR(rev2)}∪
ConR′(nil,Pol) ∪ ConR′(rev(cons(x, ...)),Pol)∪
{arev2,1 · p ≥ 0 |“ p ≥ 0” ∈ ConR′(y,Pol)}∪
{arev2,2 · p ≥ 0 |“ p ≥ 0” ∈ ConR′(z,Pol)}

= {Pol(l) − Pol(r) ≥ 0 | l → r ∈ RlsR(rev2)}∪
ConR′(rev(cons(x, ...)),Pol)

ConR′(rev(cons(x, ...)),Pol) = {Pol(l) − Pol(r) ≥ 0 | l → r ∈ RlsR′(rev)}∪
ConR′′(nil,Pol) ∪ ConR′′(cons(rev1(...), ...),Pol)∪
{arev,1 · p ≥ 0 |“ p ≥ 0” ∈ ConR′′(cons(x, ...),Pol)}

= {Pol(l) − Pol(r) ≥ 0 | l → r ∈ RlsR′(rev)}∪
ConR′′(cons(rev1(...), ...),Pol)

ConR′′(cons(rev1(..), ..),Pol)= {Pol(l) − Pol(r) ≥ 0 | l → r ∈ RlsR′′(cons) = ∅}∪
⋃

l→r∈Rls
R′′ (cons)=∅

ConR′′(r,Pol)∪

{acons,1 · p ≥ 0 |“ p ≥ 0” ∈ ConR′′(rev1(x, l),Pol)}∪
{acons,2 · p ≥ 0 |“ p ≥ 0” ∈ ConR′′(rev2(x, l),Pol)}

= {acons,1 · p ≥ 0 |“ p ≥ 0” ∈ ConR′′(rev1(x, l),Pol)}

ConR′′(rev1(x, l),Pol) = {Pol(l) − Pol(r) ≥ 0 | l → r ∈ RlsR′′(rev1)}∪
⋃

l→r∈Rls
R′′ (rev1)

Con∅(r,Pol)∪

{arev1,1 · p ≥ 0 |“ p ≥ 0” ∈ Con∅(x,Pol)}∪
{arev1,2 · p ≥ 0 |“ p ≥ 0” ∈ Con∅(l,Pol)}

= {Pol(l) − Pol(r) ≥ 0 | l → r ∈ RlsR′′(rev1)}

So ConR(REV(rev2(y, z)),Pol) contains aREV,1·(Pol(l)−Pol(r))≥0 for
rev2- and rev-rules and aREV,1·acons,1·(Pol(l)−Pol(r))≥0 for rev1-rules.

This indicates that if cons is mapped to a polynomial which disregards
its first argument (i.e., if acons,1 = 0), then one does not have to require
that the rev1-rules are weakly decreasing. As shown in Ex. 27, this ob-
servation is crucial for the success of the innermost termination proof.
For example, all constraints (for all SCCs) are satisfied by the assign-
ment α which maps acons,0, acons,2, aREV,1, arev,1, aREV1,2, aREV2,2, and
arev2,2 to 1 and all other variable coefficients to 0. So α turns Pol into a

JAR06final.tex; 14/09/2006; 10:23; p.47

48 Giesl, Thiemann, Schneider-Kamp, Falke

concrete polynomial interpretation where nil and rev1(x, y) are mapped
to 0, cons(x, y) is mapped to 1 + y, REV(x) and rev(x) are mapped to
x, and REV1(x, y), REV2(x, y), and rev2(x, y) are mapped to y.

The following lemma shows that ConR indeed corresponds to the
constraints resulting from the usable rules.

LEMMA 46 (Con and U). Let Pol be an abstract polynomial interpre-
tation and t be a term. An assignment α for Pol’s coefficients satisfies
ConR(t,Pol) iff α satisfies Pol(l)−Pol(r)≥0 for all l→r∈UR(t,πα(Pol)).

Proof. We use induction over the sizes of R and t. If t ∈ V, then
the claim is trivial. Otherwise, let t = f(t1, . . . , tn). The assignment α
satisfies ConR(f(t1, . . . , tn),Pol) iff it satisfies Pol(l)−Pol(r) ≥ 0 and
ConR′(r,Pol) for all l→r ∈ RlsR(f), and if it also satisfies rpPol(f, i)·p
≥ 0 for all constraints p ≥ 0 from ConR′(ti,Pol) where i ∈ {1, . . . , n}.

We have α(rpPol(f, i)) > 0 if i ∈ rpπα(Pol)
(f) and α(rpPol(f, i)) = 0,

otherwise. So α satisfies the last condition iff it satisfies ConR′(ti,Pol)
for i∈rpπα(Pol)

(f). Now the claim follows by the induction hypothesis. 2

Now the reduction pair processor from Thm. 26 can be reformulated
to permit the use of reduction pairs based on polynomial orders.

THEOREM 47 (Reduction Pair Processor with Polynomials). Let Pol
be an abstract polynomial interpretation and let α be an assignment.
Then the following DP processor Proc is sound and complete. We define
Proc((P,R, e)) =

• {(P\P ′,R, e)}, if α satisfies the constraints (37) and ConR(P,Pol)

• {(P,R, e)}, otherwise

Proof. The theorem follows from Thm. 26: for the reduction pair
“(%π,≻π)” in Thm. 26 we choose the polynomial order α(Pol) and for
computing the usable rules “UR(P, π)” in Thm. 26 we use the filtering
πα(Pol). Then (37) clearly corresponds to the constraints (a) in Thm. 26
and ConR(P,Pol) corresponds to the constraints (b) by Lemma 46. 2

7.2. Finding Strict Constraints Automatically

For termination proofs with dependency pairs and polynomial orders,
we have to solve constraints like (37) which have the form

pj ≥ 0 for all 1 ≤ j ≤ k and pj > 0 for one 1 ≤ j ≤ k (39)

JAR06final.tex; 14/09/2006; 10:23; p.48

Mechanizing and Improving Dependency Pairs 49

for polynomials pj. The reason is that for a DP problem (P,R, e),
all pairs in P must be weakly decreasing but at least one has to be
strictly decreasing. The basic approach is to iterate over all k possible
choices for the strict constraint. So in the worst case, the satisfiability
checker for polynomial inequalities is called k times in order to find
an assignment α satisfying (39). We present an equivalent, but more
efficient method where the satisfiability checker is only called once. The
solution is to transform (39) into the following constraint.

pj ≥ 0 for all 1 ≤ j ≤ k and
∑

1≤j≤k pj > 0 (40)

THEOREM 48 ((39) iff (40)). Let the pj be variable disjoint, except for
variable coefficients. An assignment α satisfies (39) iff it satisfies (40).

Proof. If α satisfies (39), then w.l.o.g. we have α(p1) > 0. Using
α(pj) ≥ 0 for all j ∈ {2, . . . , k} we obtain α(

∑

1≤j≤k pj) > 0.
For the other direction, let α satisfy (40) and assume that α(pj) 6> 0

for all j ∈ {1, . . . , k}. Hence, for all j there exists a variable assignment
βj of the variables x, y, . . . in α(pj) such that βj(α(pj)) = 0. Since the
polynomials α(pj) are pairwise variable disjoint, the assignments βj can
be combined to one assignment β which coincides with each βj on βj ’s
domain. Thus, β(α(pj))=0 for all j and therefore β(α(

∑

1≤j≤k pj))=0.
But then α cannot satisfy

∑

1≤j≤k pj > 0 which gives a contradiction. 2

There exist several methods to find variable assignments α satis-
fying polynomial constraints p ≥ 0 or p > 0. Most of them search
for an assignment α where p is absolutely positive [26]. A polynomial
p is absolutely positive if, in addition to p ≥ 0 or p > 0, all suc-

cessive partial derivatives of p are non-negative (i.e., ∂p(x1,...,xn)
∂xi

≥ 0

for all i, ∂2p(x1,...,xn)
∂xi∂xj

≥ 0 for all i and j, etc.). Examples for such

approaches to determine polynomial interpretations are the method of
partial derivation [10, 31] and the shifting method [26].

If in addition to p ≥ 0 or p > 0, the satisfiability checker for poly-
nomial constraints ensures that at least the first partial derivatives are

non-negative (i.e., ∂p(x1,...,xn)
∂xi

≥ 0 for all i), then (40) can be simplified
further to

pj ≥ 0 for all 1 ≤ j ≤ k and
∑

1≤j≤k pj(0, . . . , 0) > 0 (41)

The reason is that then the constraints pj ≥ 0 ensure that all first
partial derivatives of pj must be at least 0. But then, the first partial
derivatives of

∑

1≤j≤k pj are also at least 0. Thus, it suffices to require
∑

1≤j≤k pj > 0 only for the instantiation of all variables x, y, . . . by 0.

JAR06final.tex; 14/09/2006; 10:23; p.49

50 Giesl, Thiemann, Schneider-Kamp, Falke

EXAMPLE 49. For the TRS of Ex. 19 we obtain constraints like (39):

Pol(DIV(x1, y1)) − Pol(QUOT(x1, y1, y1)) (
≥

)
0 (42)

Pol(QUOT(s(x2), s(y2), z2)) − Pol(QUOT(x2, y2, z2)) (
≥

)
0 (43)

Pol(QUOT(x3, 0, s(z3))) −Pol(DIV(x3, s(z3))) (
≥

)
0 (44)

Instead of choosing one of the above constraints to be strict, with our
refinement in (40) one obtains the constraints (42) – (44) with weak
inequalities (i.e., with “≥”) and the additional constraint

Pol(DIV(x1, y1)) − Pol(QUOT(x1, y1, y1))
+ Pol(QUOT(s(x2), s(y2), z2)) − Pol(QUOT(x2, y2, z2))
+ Pol(QUOT(x3, 0, s(z3))) − Pol(DIV(x3, s(z3))) > 0

(45)

If the satisfiability checker guarantees absolute positiveness, then
the above constraint may be simplified by instantiating all xi, yi, and
zi with 0. If we use a linear abstract polynomial interpretation Pol
with Pol(DIV(x, y)) = aDIV,0 +aDIV,1x+aDIV,2y, Pol(QUOT(x, y, z)) =
aQUOT,0 + aQUOT,1x + aQUOT,2y + aQUOT,3z, Pol(s(x)) = as,0 + as,1 x,
and Pol(0) = a0, then instead of (45) we obtain

(aQUOT,1 + aQUOT,2 + aQUOT,3 − aDIV,2) as,0 + aQUOT,2 a0 > 0. (46)

The resulting constraints are satisfied by the assignment which maps
aDIV,1, aQUOT,1, as,0, and as,1 to 1 and all other variable coefficients to
0. In this way, the QUOT-dependency pair corresponding to Constraint
(43) is strictly decreasing and can be removed. The remaining proof is
similar to the one in Ex. 19.10

8. Conclusion and Empirical Results

We improved the dependency pair technique by significantly reducing
the sets of constraints to be solved for (innermost) termination proofs.
To combine these improvements with dependency pair transformations,
we extended the transformations and developed a criterion to ensure
that their application is terminating without compromising their power
in practice. Afterwards, we introduced new techniques to mechanize
the approach both with polynomial orders and with monotonic orders
combined with argument filterings. These implementation techniques
are tailored to the improvements of dependency pairs presented before.

10 In order to remove the dependency pair QUOT(x, 0, s(z)) → DIV(x, s(z)), one
uses Pol(QUOT(x, y, z)) = Pol(DIV(x, y)) = y, Pol(s) = 0, and Pol(0) = 1. After-
wards, the estimated dependency graph has no cycle anymore.

JAR06final.tex; 14/09/2006; 10:23; p.50

Mechanizing and Improving Dependency Pairs 51

Preliminary versions of parts of this paper appeared in [13, 39]. The
present article extends [13, 39] substantially, e.g., by detailed proofs,
by extending all results to the new DP framework of [15], by the new
forward instantiation transformation, by a new section on automating
dependency pairs with polynomial orders, by a detailed description of
our experiments, and by several additional explanations and examples.

We implemented the results of the paper in the system AProVE

[17], available at http://aprove.informatik.rwth-aachen.de/. Due
to the results of this paper, AProVE was the most powerful tool for
(innermost) termination proofs of TRSs at the International Annual
Competition of Termination Tools in 2004, 2005, and 2006 [42].

In our experiments, we tested AProVE on the examples of the Termi-
nation Problem Data Base. This is the collection of problems used in the
annual termination competition [42]. It contains 773 TRSs from differ-
ent sources as a benchmark for termination analysis of term rewriting.
Our experiments are presented in two tables. In the first table, we
tried to prove (full) termination11 and in the second, we tried to prove
innermost termination of all examples.

In our experiments, we used AProVE with the following techniques:

− Thm. 12 applies the dependency graph processor with the estima-
tion of Def. 9 and the reduction pair processor of Thm. 12. This is
the basic dependency pair technique without new improvements.

− Thm. 17 uses the dependency graph and the reduction pair proces-
sor of Thm. 17. Thus, usable rules are also applied for termination
proofs. For innermost termination, this is the same as Thm. 12.

− Thm. 26 uses the dependency graph and the reduction pair pro-
cessor of Thm. 26. Thus, now one applies the usable rules w.r.t. ar-
gument filterings for both termination and innermost termination.

Moreover, we use five different kinds of reduction pairs for the re-
duction pair processor:

− EMB is the embedding order.

− LPO is the lexicographic path order where we allow different sym-
bols to be equal in the precedence.

11 As mentioned, there are classes of TRSs where innermost termination implies
full termination. Thus, here one should only prove innermost termination. However,
this observation was not used in the first table in order to obtain a clearer evaluation
of our contributions for full termination. Similarly, we also did not use additional
recent refinements of the dependency pair technique in our experiments in order to
assess only the impact of contributions which come from the present paper.

JAR06final.tex; 14/09/2006; 10:23; p.51

52 Giesl, Thiemann, Schneider-Kamp, Falke

− POLO-filter searches for linear polynomial interpretations with co-
efficients from {0, 1}. Here, we do not yet use the results of Sect. 7.1
which combine the search for a polynomial order with the search
for an argument filtering. Instead, we first determine an argument
filtering and search for a monotonic polynomial order afterwards.
Moreover, we also do not use the improvement of Sect. 7.2. Instead,
in the reduction pair processor, we try all possibilities in order to
make one dependency pair in the DP problem strictly decreasing.

− POLO-7.1 differs from POLO-filter by using the results of Sect.
7.1. Now we do not search for an argument filtering anymore but
we look for a (not necessarily monotonic) polynomial order. So in
particular, when applying usable rules w.r.t. an argument filtering
in Thm. 26, we proceed as in Thm. 47.

− POLO-7.1+7.2 is like POLO-7.1, but it also uses the refinements
of Sect. 7.2 which avoid the search for a strictly decreasing depen-
dency pair when applying the reduction pair processor.

For the first three reduction pairs, the reduction pair processor has to
search for argument filterings. Here, we use the method of Sect. 6.

Finally, in each of the above settings, we experiment with different
variants for the application of the transformation processors of Def. 28:

− “no” means that we do not use any transformations at all.

− “older” is the heuristic of Def. 33 for safe transformations. The
combination with the reduction pair processor is done as described
at the end of Sect. 5. However, we do not use the new forward
instantiation transformation and instead of Def. 28, we use the
previous applicability conditions for the transformations from [1,
11].

− “old” is like “older”, but with the new more liberal applicability
conditions from Def. 28 instead.

− “safe” is the heuristic of Def. 33 with the transformations from Def.
28. So in contrast to “old”, now we also use forward instantiation.

− “(1)+(2)” differs from “safe” by only regarding those transforma-
tion steps as “safe” which satisfy condition (1) or (2) of Def. 33.

− “lim” uses the transformations of Def. 28 with a different heuris-
tic than Def. 33. Now at most five transformations are allowed
for each dependency pair. To combine the transformations with
the reduction pair processor, the strategy at the end of Sect. 5 is

JAR06final.tex; 14/09/2006; 10:23; p.52

Mechanizing and Improving Dependency Pairs 53

modified as follows: At most two transformation steps are allowed
before applying the reduction pair processor, while the remaining
transformation steps (up to five in total) are performed afterwards.

For each example we used a time limit of 60 seconds. This corre-
sponds to the way that tools were evaluated in the annual competitions
for termination tools. The computer used was an AMD Athlon 64 at 2.2
GHz running Sun’s J2SE 1.5.0 under GNU/Linux 2.6.10 which is simi-
lar in speed to the computer used in the 2005 competition. In the tables,
we give the number of examples where termination could be proved
(“Y”), where AProVE failed within the time limit of 60 seconds (“F”),
and where it failed due to a time-out (“TO”). In square brackets, we
give the average runtime (in seconds) needed for TRSs where AProVE

could prove termination and where it failed within the time limit. The
detailed results of our experiments (including experimental data for all
possible combinations of our settings) can be found at http://aprove.
informatik.rwth-aachen.de/eval/JAR06/. At this URL one can also
download a special version of AProVE with all settings described above.
So this version of AProVE permits to re-run all our experiments.

Termination Proofs

Line Algorithm Order Tr. Y F TO

1 Thm. 12 EMB no 89 [0.8] 680 [1.6] 4

2 Thm. 12 LPO no 245 [3.0] 399 [3.6] 129

3 Thm. 12 POLO-filter no 234 [1.7] 426 [5.3] 113

4 Thm. 12 POLO-7.1 no 251 [0.9] 512 [1.6] 10

5 Thm. 12 POLO-7.1+7.2 no 251 [0.9] 520 [1.5] 2

6 Thm. 17 EMB no 174 [0.7] 588 [1.4] 11

7 Thm. 17 LPO no 277 [1.5] 387 [2.4] 109

8 Thm. 17 POLO-filter no 331 [1.8] 361 [2.0] 81

9 Thm. 17 POLO-7.1 no 341 [1.0] 425 [1.4] 7

10 Thm. 17 POLO-7.1+7.2 no 341 [1.0] 432 [1.4] 0

11 Thm. 26 EMB no 233 [0.8] 529 [1.6] 11

12 Thm. 26 LPO no 292 [1.6] 374 [2.1] 107

13 Thm. 26 POLO-filter no 361 [1.8] 334 [1.8] 78

14 Thm. 26 POLO-7.1 no 368 [1.1] 388 [1.8] 17

15 Thm. 26 POLO-7.1+7.2 no 369 [1.1] 399 [1.7] 5

16/17 Thm. 26 POLO-7.1+7.2 older/old 390 [1.2] 349 [2.4] 34

18 Thm. 26 POLO-7.1+7.2 (1)+(2) 374 [1.2] 394 [1.8] 5

19 Thm. 26 POLO-7.1+7.2 lim 396 [2.1] 268 [1.9] 109

20 Thm. 26 POLO-7.1+7.2 safe 406 [1.1] 330 [2.5] 37

JAR06final.tex; 14/09/2006; 10:23; p.53

54 Giesl, Thiemann, Schneider-Kamp, Falke

Innermost Termination Proofs

Line Algorithm Order Tr. Y F TO

1/6 Thm. 12/17 EMB no 246 [0.8] 516 [1.8] 11

2/7 Thm. 12/17 LPO no 330 [2.1] 350 [3.2] 93

3/8 Thm. 12/17 POLO-filter no 378 [2.1] 324 [2.7] 71

4/9 Thm. 12/17 POLO-7.1 no 388 [1.0] 379 [1.6] 6

5/10 Thm. 12/17 POLO-7.1+7.2 no 388 [1.2] 384 [1.7] 1

11 Thm. 26 EMB no 289 [0.9] 473 [1.6] 11

12 Thm. 26 LPO no 341 [1.6] 341 [2.4] 91

13 Thm. 26 POLO-filter no 402 [1.7] 305 [1.9] 66

14 Thm. 26 POLO-7.1 no 408 [1.2] 350 [1.9] 15

15 Thm. 26 POLO-7.1+7.2 no 408 [1.1] 360 [2.0] 5

16 Thm. 26 POLO-7.1+7.2 older 465 [1.3] 253 [5.6] 55

17 Thm. 26 POLO-7.1+7.2 old 467 [1.3] 250 [5.5] 56

18 Thm. 26 POLO-7.1+7.2 (1)+(2) 441 [1.6] 314 [3.5] 18

19 Thm. 26 POLO-7.1+7.2 lim 386 [3.7] 144 [2.4] 243

20 Thm. 26 POLO-7.1+7.2 safe 480 [1.7] 217 [6.9] 76

Comparing the results for Thm. 12 (lines 1 – 5), Thm. 17 (lines 6 –
10), and Thm. 26 (lines 11 – 15) shows the benefits of our contributions
from Sect. 3 and 4. Irrespective of the underlying reduction pair, Thm.
17 is always more powerful than Thm. 12 and increases the number of
examples where termination can be proved by up to 95.5%. Thm. 26
improves upon Thm. 17 further and increases power by up to 33.9%
(up to 17.5% for innermost termination).

To measure the impact of our contributions in Sect. 7, we compare
the naive use of monotonic polynomial orders (POLO-filter, line 13)
with the more sophisticated approaches of Sect. 7.1 and 7.2 (lines 14 –
15). As all three methods are equally powerful in principle, the differ-
ence is in efficiency. Indeed, the step from POLO-filter to POLO-7.1
and further to POLO-7.1+7.2 reduces the overall runtime dramatically.
The reason is that now a failure can often be detected quickly for
examples which led to a time-out before. Thus, while the number of
examples where termination can be proved within the time limit only
increases slightly, the number of time-outs reduces substantially (by
at least 77.2 % when going from POLO-filter to POLO-7.1 and by at
least 66.7 % when going from POLO-7.1 to POLO-7.1+7.2). This fast-
failure behavior of POLO-7.1+7.2 permits the use of further techniques
in order to attempt a termination proof within the time limit.

Examples for such additional techniques are the dependency pair
transformations from Sect. 5. If one uses the existing “older” transfor-
mations with our new heuristic for their application (line 16), then pow-
er is increased by 5.7% (14.0% for innermost termination). While the
use of dependency pair transformations increases power, it can of course
also increase runtimes. This holds especially for innermost termination
proofs, since here the transformations are much more often applicable.

JAR06final.tex; 14/09/2006; 10:23; p.54

Mechanizing and Improving Dependency Pairs 55

Def. 28 extends the dependency pair transformations in two ways: we
presented more liberal applicability conditions for the transformations
in the innermost case and we introduced a new forward instantiation
transformation. While the new applicability conditions only lead to
a minor improvement of 0.4% in power (cf. the “old” heuristic, line
17), the forward instantiation technique increases power again by 4.1%
(2.8% for innermost termination), cf. the “safe” heuristic in line 20.

Finally, we also evaluate our heuristic from Def. 33 which describes
when to apply dependency pair transformations. We consider two pos-
sible alternatives. The first alternative is a restriction to those transfor-
mations which make the DP problem “smaller”, i.e., which correspond
to Def. 33 (1) or (2), cf. line 18. Our experiments show that allowing
one additional narrowing, instantiation, and forward instantiation step
(as in the “safe” heuristic, line 20) has considerable advantages since it
increases power by 8.6% (8.8% for innermost termination). As a second
alternative, we tried a “lim”-heuristic, which simply applies transfor-
mations up to a certain limit. The experiments demonstrate that our
“safe”-heuristic is significantly better: it increases power (in particular
for innermost termination, where the success rate is improved by 24.4%)
and it reduces runtimes dramatically since the “lim”-heuristic leads to
extremely many time-outs.

In the end, we also ran the experiment with the automatic mode of
the newest AProVE-version (AProVE 1.2) which features several addi-
tional techniques (e.g., semantic labelling [44] and match-bounds [9])
in addition to the results of this paper. Now AProVE could prove ter-
mination of 576 examples while it disproved termination for 94 TRSs.
Innermost termination could be shown for 617 examples while it could
be disproved for 61 TRSs. This corresponds exactly to the results of
AProVE in the termination competition 2005 [42]. The average runtime
for a successful proof was 2.3 s (2.6 s for innermost termination) and
the average time for a successful disproof was 2.7 s (2.9 s for innermost
termination). Finally, AProVE failed on 11 examples within the time
limit (14 for innermost termination) and the average runtime for these
failures was 26.7 s for termination and 8.7 s for innermost termination.

To summarize, our experiments indicate that the contributions of
the paper are indeed very useful in practice. This also holds if our
results are combined with other termination techniques.

While our experiments show that termination analysis of TRSs has
reached a stage where already many realistic examples can be treated
automatically, future work should be devoted to the question on how
these methods can be used in order to analyze termination for programs
from “real” programming languages. These languages pose several ad-
ditional challenges such as evaluation strategies, built-in data types,

JAR06final.tex; 14/09/2006; 10:23; p.55

56 Giesl, Thiemann, Schneider-Kamp, Falke

partial functions, non-termination analysis, higher-order functions, etc.
We report our first results in this direction in [16, 18, 38].

Acknowledgements. We thank the referees for many helpful remarks.

References

1. Arts, T. and J. Giesl: 2000, ‘Termination of Term Rewriting Using Dependency
Pairs’. Theoretical Computer Science 236, 133–178.

2. Arts, T. and J. Giesl: 2001, ‘A Collection of Examples for Termination of Term
Rewriting Using Dependency Pairs’. Technical Report AIB-2001-09, RWTH
Aachen, Germany. Available from http://aib.informatik.rwth-aachen.de.

3. Baader, F. and T. Nipkow: 1998, Term Rewriting and All That. Cambridge
University Press.

4. Borralleras, C.: 2003, ‘Ordering-based methods for proving termination auto-
matically’. Ph.D. thesis, Universitat Politècnica de Catalunya, Spain.

5. Borralleras, C., M. Ferreira, and A. Rubio: 2000, ‘Complete Monotonic
Semantic Path Orderings’. In: Proc. 17th CADE. pp. 346–364. LNAI 1831.

6. Contejean, E., C. Marché, B. Monate, and X. Urbain: 2000, ‘CiME version 2’.
Available from http://cime.lri.fr.

7. Dershowitz, N.: 1987, ‘Termination of Rewriting’. Journal of Symbolic Com-

putation 3, 69–116.
8. Dershowitz, N., N. Lindenstrauss, Y. Sagiv, and A. Serebrenik: 2001, ‘A Gen-

eral Framework for Automatic Termination Analysis of Logic Programs’. Appl.

Algebra in Engineering, Communication and Computing 12(1,2), 117–156.
9. Geser, A., D. Hofbauer, and J. Waldmann: 2004, ‘Match-Bounded String

Rewriting Systems’. Appl. Algebra in Eng., Comm. & Comp. 15(3,4), 149–171.
10. Giesl, J.: 1995, ‘Generating Polynomial Orderings for Termination Proofs’. In:

Proc. 6th RTA. pp. 426–431. LNCS 914.
11. Giesl, J. and T. Arts: 2001, ‘Verification of Erlang Processes by Dependency

Pairs’. Appl. Algebra in Engineering, Communication & Comp. 12(1,2), 39–72.
12. Giesl, J., T. Arts, and E. Ohlebusch: 2002, ‘Modular Termination Proofs for

Rewriting Using Dependency Pairs’. J. Symbolic Computation 34(1), 21–58.
13. Giesl, J., R. Thiemann, P. Schneider-Kamp, and S. Falke: 2003a, ‘Improving

Dependency Pairs’. In: Proc. 10th LPAR. pp. 165–179. LNAI 2850.
14. Giesl, J., R. Thiemann, P. Schneider-Kamp, and S. Falke: 2003b, ‘Mechanizing

Dependency Pairs’. Technical Report AIB-2003-08, RWTH Aachen, Germany.
Available from http://aib.informatik.rwth-aachen.de.

15. Giesl, J., R. Thiemann, and P. Schneider-Kamp: 2005a, ‘The Dependency Pair
Framework: Combining Techniques for Automated Termination Proofs’. In:
Proc. 11th LPAR. pp. 301–331. LNAI 3452.

16. Giesl, J., R. Thiemann, and P. Schneider-Kamp: 2005b, ‘Proving and Disprov-
ing Termination of Higher-Order Functions’. In: Proc. 5th FroCoS. pp. 216–231.
LNAI 3717.

17. Giesl, J., P. Schneider-Kamp, and R. Thiemann: 2006a, ‘AProVE 1.2: Auto-
matic Termination Proofs in the Dependency Pair Framework’. In: Proc. 3rd

IJCAR. pp. 281–286. LNAI 4130.

JAR06final.tex; 14/09/2006; 10:23; p.56

Mechanizing and Improving Dependency Pairs 57

18. Giesl, J., S. Swiderski, P. Schneider-Kamp, and R. Thiemann: 2006b, ‘Auto-
mated Termination Analysis for Haskell: From Term Rewriting to Program-
ming Languages’. In: Proc. 17th RTA. pp. 297–312. LNCS 4098.

19. Gramlich, B.: 1994, ‘Generalized Sufficient Conditions for Modular Termina-
tion of Rewriting’. Appl. Algebra in Eng., Comm. & Comp. 5, 131–158.

20. Gramlich, B.: 1995, ‘Abstract Relations between Restricted Termination and
Confluence Properties of Rewrite Systems’. Fundamenta Informaticae 24, 3–23.

21. Gramlich, B.: 1996, ‘Termination and Confluence Properties of Structured
Rewrite Systems’. Ph.D. thesis, Universität Kaiserslautern, Germany.

22. Hirokawa, N. and A. Middeldorp: 2004a, ‘Dependency Pairs Revisited’. In:
Proc. 15th RTA. pp. 249–268. LNCS 3091.

23. Hirokawa, N. and A. Middeldorp: 2004b, ‘Polynomial Interpretations with
Negative Coefficients’. In: Proc. AISC ’04. pp. 185–198. LNAI 3249.

24. Hirokawa, N. and A. Middeldorp: 2005a, ‘Tyrolean Termination Tool’. In: Proc.

16th RTA. pp. 175–184. LNCS 3467.
25. Hirokawa, N. and A. Middeldorp: 2005b, ‘Automating the Dependency Pair

Method’. Information and Computation 199(1,2), 172–199.
26. Hong, H. and D. Jakuš: 1998, ‘Testing Positiveness of Polynomials’. Journal

of Automated Reasoning 21(1), 23–38.
27. Huet, G. and J.-M. Hullot: 1982, ‘Proofs by Induction in Equational Theories

with Constructors’. Journal of Computer and System Sciences 25, 239–299.
28. Knuth, D. and P. Bendix: 1970, ‘Simple Word Problems in Universal Algebras’.

In: J. Leech (ed.): Computational Problems in Abstract Algebra. pp. 263–297.
29. Koprowski, A.: 2005, ‘TPA’. Available from http://www.win.tue.nl/tpa/.
30. Kusakari, K., M. Nakamura, and Y. Toyama: 1999, ‘Argument Filtering

Transformation’. In: Proc. 1st PPDP. pp. 48–62. LNCS 1702.
31. Lankford, D.: 1979, ‘On Proving Term Rewriting Systems are Noetherian’.

Technical Report MTP-3, Louisiana Technical University, Ruston, LA, USA.
32. Lee, C. S., N. D. Jones, and A. M. Ben-Amram: 2001, ‘The Size-Change

Principle for Program Termination’. In: Proc. 28th POPL. pp. 81–92.
33. Lucas, S.: 2005, ‘Polynomials Over the Reals in Proofs of Termination: From

Theory to Practice’. RAIRO Theor. Informatics and Appl. 39(3), 547–586.
34. Middeldorp, A.: 2001, ‘Approximating Dependency Graphs Using Tree Au-

tomata Techniques’. In: Proc. 1st IJCAR. pp. 593–610. LNAI 2083.
35. Middeldorp, A.: 2002, ‘Approximations for Strategies and Termination’. In:

Proc. 2nd WRS. ENTCS 70(6).
36. Ohlebusch, E., C. Claves, and C. Marché: 2000, ‘TALP: A Tool for Termination

Analysis of Logic Programs’. In: Proc. 11th RTA. pp. 270–273. LNCS 1833.
37. Ohlebusch, E.: 2002, Advanced Topics in Term Rewriting. Springer.
38. Schneider-Kamp, P., J. Giesl, A. Serebrenik, and R. Thiemann: 2006, ‘Auto-

mated Termination Analysis for Logic Programs by Term Rewriting’. In: Proc.

16th LOPSTR. LNCS. To appear.
39. Thiemann, R., J. Giesl, and P. Schneider-Kamp: 2004, ‘Improved Modular

Termination Proofs Using Dependency Pairs’. In: Proc. 2nd IJCAR. pp. 75–90.
LNAI 3097.

40. Thiemann, R. and J. Giesl: 2005, ‘The Size-Change Principle and Dependency
Pairs for Termination of Term Rewriting’. Applicable Algebra in Engineering,

Communication and Computing 16(4), 229–270.
41. Toyama, Y.: 1987, ‘Counterexamples to the Termination for the Direct Sum of

Term Rewriting Systems’. Information Processing Letters 25, 141–143.
42. TPDB web page. http://www.lri.fr/~marche/termination-competition/.

JAR06final.tex; 14/09/2006; 10:23; p.57

58 Giesl, Thiemann, Schneider-Kamp, Falke

43. Urbain, X.: 2004, ‘Modular & Incremental Automated Termination Proofs’.
Journal of Automated Reasoning 32(4), 315–355.

44. Zantema, H.: 1995, ‘Termination of Term Rewriting by Semantic Labelling’.
Fundamenta Informaticae 24, 89–105.

45. Zantema, H.: 2005, ‘Termination of String Rewriting Proved Automatically’.
Journal of Automated Reasoning 34(2), 105–139.

JAR06final.tex; 14/09/2006; 10:23; p.58

