
Loops under Strategies

René Thiemann and Christian Sternagel?

Institute of Computer Science, University of Innsbruck, Austria
{rene.thiemann|christian.sternagel}@uibk.ac.at

Abstract. Most techniques to automatically disprove termination of
term rewrite systems search for a loop. Whereas a loop implies non-
termination for full rewriting, this is not necessarily the case if one
considers rewriting under strategies. Therefore, in this paper we first
generalize the notion of a loop to a loop under a given strategy. In a
second step we present two novel decision procedures to check whether a
given loop is a context-sensitive or an outermost loop. We implemented
and successfully evaluated our method in the termination prover TTT2.

1 Introduction

Termination is an important property of term rewrite systems (TRSs). Therefore,
much effort has been spent on developing and automating powerful techniques for
showing termination of TRSs. An important application area for these techniques
is termination analysis of functional programs. Since the evaluation mechanism
of functional languages is mainly term rewriting, one can transform functional
programs into TRSs and prove termination of the resulting TRSs to conclude
termination of the functional programs [6]. Although “full” rewriting does not
impose any evaluation strategy, this approach is sound even if the underlying
programming language has an evaluation strategy.

But in order to detect bugs in programs, it is at least as important to prove
non-termination of programs or of the corresponding TRSs. Here, the evaluation
strategy cannot be ignored, because a non-terminating TRS may still be termi-
nating when considering the strategy. Thus, in order to disprove termination of
programming languages with strategies, it is important to develop automated
techniques to disprove termination of TRSs under strategies.

Only a few techniques for showing non-termination of TRSs have been in-
troduced so far [4,7,9,10,12]. These techniques can be used to detect loops—a
specific form of derivation which implies non-termination—and are successfully
implemented in many tools (e.g., AProVE[5], Jambox [2], Matchbox [16], NTI [12],
TORPA [17], TTT2 [8]).

If one wants to prove non-termination under strategies then up to now there
are two different approaches. The first one is to directly analyze the loops whether
they also imply non-termination under a given strategy S. This approach was
successfully applied for the innermost strategy in [15] where a decision procedure
was given to determine whether a loop is an innermost loop.

? This author is supported by FWF (Austrian Science Fund) project P18763.

The second approach is to use a complete transformation τS for strategy
S such that R is terminating under S iff τS(R) is (innermost) terminating.
Then one first applies the transformation and then searches for a loop in τS(R)
afterwards. Here, the methods of [3] and [13,14] are applicable which can be used
to disprove context-sensitive and outermost termination.

Although the second approach of using the transformations [3,13,14] seems
to be a good solution to disprove context-sensitive and outermost termination,
there are two main drawbacks. The first problem is a practical one. Often the
loops ofR are transformed into much longer loops in τS(R) and hence, the search
space for loops may become critical. And even more severe is the problem, that
some loops of R are not even translated to loops in τS(R) and hence, one even
looses power if the search problem for loops is ignored.

Thus, there is still need to extend the first approach—to ensure or even
decide that a given loop is a loop under strategies—to other strategies besides
innermost. To this end, in this paper we first generalize the notion of a loop and
an innermost loop to a loop under some arbitrary strategy. Then we develop two
new decision procedures for context-sensitive loops and outermost loops.

The paper is structured as follows. In Sect. 2 we recapitulate the required
notions of rewriting and generalize the notion of a loop for rewriting strategies.
Moreover, we present a decision procedure for the question whether a given loop
is a context-sensitive loop. Then in Sect. 3 we show how to formulate the same
question for the outermost strategy as a set of matching problems. How these
matching problems can be transformed to a simpler kind of problems—identity
problems—is the content of Sect. 4. Afterwards, in Sect. 5 we provide a decision
procedure for solvability of identity problems. All of our techniques have been
implemented in the Tyrolean Termination Tool 2 (TTT2) and the empirical results
are presented in Sect. 6, before we conclude in Sect. 7.

A full version of this paper containing all proofs is available at http://

cl-informatik.uibk.ac.at/~griff/experiments/lus.php. This website also
contains details about our experiments.

2 Loops

We only regard finite signatures and TRSs and refer to [1] for the basics of
rewriting. We use `, r, s, t, u, . . . for terms, f, g, . . . for function symbols, x, y, . . .
for variables, σ, µ for substitutions, i, j, k, n,m, o for natural numbers, p, q, . . .
for positions where ε is the root position, and C,D, . . . for contexts. Here, con-
texts are terms which contain exactly one hole �. For contexts, the term C[t]
is like C where � is replaced by t, i.e., �[t] = t and f(s1, . . . , C, . . . , sn)[t] =
f(s1, . . . , C[t], . . . , sn). We write t|p for the subterm of t at position p, i.e., t|ε = t
and f(s1, . . . , sn)|ip = si|p. The set of variables is denoted by V.

Throughout this paper we assume a fixed TRS R and we write t→p s if one
can reduce t to s at position p with R, i.e., t = C[`σ] and s = C[rσ] for some
` → r ∈ R, substitution σ, and context C with C|p = �. Here, the term `σ is
called a redex at position p. The reduction is an outermost reduction, written

http://cl-informatik.uibk.ac.at/~griff/experiments/lus.php
http://cl-informatik.uibk.ac.at/~griff/experiments/lus.php

t o→p s, iff t contains no redex at a position q above p (written q < p). If the
position is irrelevant we just write → or o→. The TRS R is non-terminating iff
there is an infinite derivation t1 → t2 → It is outermost non-terminating iff
there is such an infinite derivation using o→ instead of →.

An obvious approach to disprove termination is to search for a loop, i.e., a
derivation where the starting term t is reduced to a term containing an instance
of t, i.e., t→+ C[tµ]. The corresponding infinite derivation is

t→+ C[tµ]→+ C[C[tµ]µ]→+ . . .→+ C[C[. . . C[tµ] . . . µ]µ]→+ . . . (?)

where the derivation t →+ C[tµ] is repeated over and over again. This infinite
derivation (?) is obtained because → is closed under both substitutions and
contexts, also known as stability and monotonicity.

However, in general it is not clear whether (?) also is an infinite derivation if
one considers a specific evaluation strategy S. If this is the case then and only
then we speak of an S-loop.

To formally define an S-loop we first need to make the derivations within
(?) precise. Therefore, we must represent terms like C[C[. . . C[tµ] . . . µ]µ] with-
out using “. . . ”. Moreover, we must know the positions of the reductions since
several strategies—like innermost, outermost, or context-sensitive—only allow
reductions at certain positions. To this end, we define the notion of a context-
substitution which combines insertion into a context with the application of a
substitution.

Definition 1 (Context-substitutions). A context-substitution is a pair
(C, µ) consisting of a context C and a substitution µ. The n-fold application
of (C, µ) to a term t, written t(C, µ)n is defined as follows.

• t(C, µ)0 = t
• t(C, µ)n+1 = C[t(C, µ)nµ]

C

C

C

t
µ

µ

µ

µ

µ

µ

Fig. 1. The term t(C, µ)3

From the definition it is obvious
that in t(C, µ)n the context C is added
n-times above t and t is instantiated
by µn. Note that also the added con-
texts are instantiated by µ. For the
term t(C, µ)3 this is illustrated in Fig. 1.

The following lemma shows that
context-substitutions have similar prop-
erties to both contexts and substitu-
tions.

Lemma 1 (Properties of context-substitutions).

(i) t(C, µ)nµ = tµ(Cµ, µ)n.
(ii) t(C, µ)m(C, µ)n = t(C, µ)m+n.

(iii) If C|p = � then t(C, µ)n|pn = tµn.
(iv) Whenever t→q s and C|p = � then t(C, µ)n →pnq s(C, µ)n.

Here, property (i) is similar to the fact that C[t]µ = Cµ[tµ], and (ii) expresses
that context-substitutions can be combined just as substitutions where σmσn =
σm+n. Moreover, the property of contexts that C[t]p = t if C|p = � is extended
in (iii), and finally stability and monotonicity of rewriting are used to show in
(iv) that rewriting is closed under context-substitutions.

With the help of context-substitutions we can now describe the infinite
derivation in (?) more concisely. Since t→+ C[tµ] = t(C, µ) we obtain

t(C, µ)0 →+ t(C, µ)(C, µ)0 = t(C, µ)1 →+ . . .→+ t(C, µ)n →+ . . . (??)

Hence, the terms that occur during the derivation are precisely defined and for
every n the positions of the reductions are prefixed by an additional pn where p
is the position of the hole in C, cf. Lemma 1 (iv). In other words, every reduction
takes place at the same position of the subterm tµn of t(C, µ)n.

Now it is natural to define that a derivation t→+ t(C, µ) is called an S-loop
iff all steps in (??) respect the strategy S.1

Definition 2 (S-loops). Let S be a strategy. A loop t1 →q1 t2 →q2 . . . tn →qn

tn+1 = t1(C, µ) with C|p = � is an S-loop iff all reductions ti(C, µ)m →pmqi

ti+1(C, µ)m respect the strategy S for all 1 ≤ i ≤ n and m ≥ 0.

As a direct consequence of Def. 2 one can conclude that every S-loop of a
rewrite system R proves non-termination of R under strategy S.

Example 1. We consider the TRS Rn for arithmetic with n-bit numbers.

p(0)→ 0 (1)

p(s(x))→ x (2)

minus(x, 0)→ x (3)

minus(x, x)→ 0 (4)

minus(x, s(y))→ p(minus(x, y)) (5)

plus(0, y)→ y (6)

plus(s(x), y)→ s(plus(x, y)) (7)

inf → s(inf) (8)

s2
n

(x)→ overflow (9)

Here, the last rule is used to model that an overflow occurred due to the
n-bit restriction. We focus on the loops

t1 = minus(x, inf)→ minus(x, s(inf))→ p(minus(x, inf)) = C1(t1, µ1) and

t2 = plus(inf, y)→ plus(s(inf), y)→ s(plus(inf, y)) = C2(t2, µ2)

where µ1 = µ2 = { }, C1 = p(�), and C2 = s(�). Here, the first loop is an
outermost loop, but the second one is not. The reason for the latter is that in
every iteration one more s is created. Hence, this will lead to a redex w.r.t. Rule
(9). Note that this example will be hard to handle with the transformational
approaches: using [14] creates a TRS where all infinite reductions are non-looping
and [13] is not even applicable due to non-left-linearity of Rule (4).

1 Another natural definition of an S-loop would just require that t(C, µ)n →+

t(C, µ)n+1 are S-derivations for all n. This alternative was already used in the set-
ting of dependency pairs in [4, Footnote 6]. However, there are problems using this
definition which are described in [15, Sect. 2].

Note that a loop is not only determined by the precise derivation t1 →+ tn+1,
but also by the specific context C that is used. To see this consider the TRS
R = {a → f(a, a), f(f(x, y), z) → b}. Then a → f(a, a) is a looping derivation.
For C = f(a,�) this is an outermost loop. However, for C ′ = f(�, a) we do not
obtain an outermost loop since f(a, a) o→ f(f(a, a), a) 6 o→ f(f(f(a, a), a), a). Hence,
the choice of C is essential.

For automatic non-termination analysis under strategies one main question is
whether a given loop is an S-loop, i.e., whether the loop implies non-termination
even under strategy S. In [15] it was already shown that this question is decidable
for innermost loops.2 There, one has the problem that innermost rewriting is not
stable, although it is monotonic.

In context-sensitive rewriting [11] we have the inverse situation: first, stabil-
ity is given whereas monotonicity is absent. And second, whereas the decision
procedure for innermost loops is quite involved and already known, for context-
sensitive loops we can present a novel decision procedure that is rather straight-
forward, but nevertheless important.

Theorem 1 (Deciding context-sensitive-loops). A loop t →+ C[tµ] is a
context-sensitive loop (using replacement map ν) iff both the derivation t →+

C[tµ] respects the context-sensitive strategy and the hole in C is at a ν-replacing
position.

Proof. Let t1 →q1 t2 →q2 . . . tn →qn tn+1 = t1(C, µ) be a loop where C|p = �.
Then the following statements are all equivalent.

• the loop is a context-sensitive loop
• all ti(C, µ)m →pmqi ti+1(C, µ)m are context-sensitive reductions
• all pmqi are ν-replacing positions of ti(C, µ)m

• p is a ν-replacing position of C and each qi is a ν-replacing position of tiµ
m

• the hole in C is at a ν-replacing position and the derivation t1 →+ t1(C, µ)
is a context-sensitive derivation ut

In the rest of this paper we consider the outermost strategy. As main result
we develop a decision procedure for the question whether a given loop is an out-
ermost loop. Note that for outermost rewriting neither stability nor monotonicity
are given. To see this consider the TRS R = {a → a, f(x) → x, g(f(a)) → a}.
Then a o→ a, but f(a) 6 o→ f(a). Moreover, g(f(x)) o→ g(x), but g(f(a)) 6 o→ g(a).

The problem of missing stability was already present for innermost loops.
Therefore, many techniques of [15] for innermost loops can be reused for out-
ermost loops, too. However, to handle the missing monotonicity of outermost
rewriting we have to extend these techniques by an additional context. And
these contexts will require significant extensions of the techniques of [15] and
are not so easy to treat as in the context-sensitive case.

2 Note that in [15] one did not regard contexts, i.e., for an innermost loop one just re-
quired that all reductions tiµ

m →qi ti+1µ
m are innermost reductions. However, that

definition of an innermost loop is equivalent to Def. 2 since innermost rewriting (de-
noted by i→) is monotonic. Thus, tiµ

m i→qi ti+1µ
m iff ti(C, µ)m i→pmqi ti+1(C, µ)m.

3 Deciding Outermost Loops

Recall the definition of an outermost reduction. An outermost reduction of t
at position p requires that there is no redex at a position q above p, i.e., all
subterms t|q with q < p must not be matched by some left-hand side of a rule
in R. Hence, the question of an outermost reduction can be formulated as a
question of matching.

However, we do not have to consider a single outermost reduction but we
want to know whether each reduction of a term t(C, µ)m at position pmq is an
outermost reduction (where C|p = � and q ∈ Pos(t)). Looking at Fig. 1 one
sees that there are two different cases how to obtain a subterm at a position
above pmq that is matched by some left-hand side. First, the subterm may be
a subterm of tµm. Or otherwise, the subterm starts within the context. For the
former case we can reuse the so called matching problems [15, Def. 12] and for the
latter we need an extended version of matching problems containing contexts.

Definition 3 ((Extended) matching problems). A matching problem is a
pair (M, µ) where M is a set of pairs of terms sm `. It is solvable iff there is a
solution (k, σ) such that for all sm ` ∈M the equation sµk = `σ is satisfied.

An extended matching problem is a quintuple (D m `, C, t,M, µ). It is solv-
able iff there is a solution (n, k, σ) such that the equation D[t(C, µ)n]µk = `σ is
satisfied and (k, σ) is a solution to the matching problem (M, µ).

To simplify presentation we write (D m `, C, t, µ) instead of (D m `, C, t,∅, µ)
and we write (sm `, µ) instead of ({sm `}, µ). Moreover, we use the notion
“matching problem” also for extended matching problems.

To check whether t(C, µ)m has a redex above position pmq one can now
construct a set of initial matching problems. Essentially, one considers matching
problems for the subterms of t above q. Additionally, for each subterm of t(C, µ)m

that starts with a subcontext C|p′ of C, we build an extended matching problem.

Definition 4 (Initial matching problems). Let t →q u be a reduction and
(C, µ) be a context-substitution with C|p = �. Then the following initial match-
ing problems are created for this reduction and context-substitution.

• (t|p′ m `, µ) for each `→ r ∈ R and p′ < q
• (C|p′ m `, Cµ, tµ, µ) for each `→ r ∈ R and p′ < p

Example 2. Consider the loop t1 = minus(x, inf) →2 minus(x, s(inf)) = t2 →ε

p(minus(x, inf)) = t1(C, µ) of Ex. 1 where C = p(�) and µ = { }. For the sec-
ond reduction at root position we only build the extended matching problems
MP1` = (p(�) m `, p(�),minus(x, s(inf)), µ) for all left-hand sides ` of R. For
the first reduction we obtain the similar extended matching problems MP2` =
(p(�) m `, p(�),minus(x, inf), µ), but additionally we also get the matching prob-
lems MP3` = (minus(x, inf) m `, µ).

The following theorem states that we have setup the right initial matching
problems. If we consider all initial problems of all reductions ti →qi ti+1 of a

loop, then solvability of one of these problems is equivalent to the property that
the loop is not outermost.

Theorem 2 (Outermost loops and matching problems). Let t→q u and
(C, µ) be given such that C|p = �. All reductions t(C, µ)m →pmq u(C, µ)m are
outermost iff none of the initial matching problems for t →q u and (C, µ) is
solvable.

Proof. We first prove that any solvable initial matching problem shows that there
is at least one reduction of t(C, µ)m at position pmq which is not an outermost
reduction. There are two cases. First, if (t|p′ m `, µ) is solvable, then there is a
solution (k, σ) such that t|p′µk = `σ. Then t(C, µ)k|pkp′ = tµk|p′ = t|p′µk = `σ
shows that there is a redex in t(C, µ)k above pkq. Thus, t(C, µ)k →pkq u(C, µ)k

is not an outermost reduction.
Otherwise, (C|p′ m `, Cµ, tµ, µ) is solvable. Hence, there is a solution (n, k, σ)

such that C|p′ [tµ(Cµ, µ)n]µk = `σ. Here, we show that the term t(C, µ)n+1+k

has a redex at position pkp′ which is above position pn+1+kq:

t(C, µ)n+1+k|pkp′ = t(C, µ)n(C, µ)(C, µ)k|pkp′ = t(C, µ)n(C, µ)µk|p′
= C[t(C, µ)nµ]µk|p′ = C|p′ [t(C, µ)nµ]µk

= C|p′ [tµ(Cµ, µ)n]µk = `σ

For the other direction we show that if some reduction t(C, µ)m at position
pmq is not an outermost reduction, then one of the initial matching problems
must be solvable. So suppose, the reduction of t(C, µ)m is not outermost. Then
there must be some position q′ < pmq such that the corresponding subterm
t(C, µ)m|q′ is a redex `σ. Again, there are two cases.

First, if q′ ≥ pm then q′ = pmp′ where p′ < q as q′ < pmq. Hence, `σ =
t(C, µ)m|q′ = t(C, µ)m|pmp′ = tµm|p′ = t|p′µm. Thus, the initial matching prob-
lem (t|p′ m `, µ) has the solution (m,σ).

In the other case q′ < pm. Thus, we can split the position q′ into pkp′ where
k < m and p′ < p. Moreover, there must be some n ∈ N that satisfies m =
n+ 1 + k. We conclude

`σ = t(C, µ)m|q′ = t(C, µ)n+1+k|pkp′

= t(C, µ)n(C, µ)(C, µ)k|pkp′ = t(C, µ)n(C, µ)µk|p′
= C[t(C, µ)nµ]µk|p′ = C[tµ(Cµ, µ)n]µk|p′
= C|p′ [tµ(Cµ, µ)n]µk.

Thus, the initial matching problem (C|p′ m `, Cµ, tµ, µ) is solvable. ut

Note that whenever C = � then there is no initial matching problem which
is an extended matching problem. Hence, by Thm. 2 one can already decide
whether a loop t→+ tµ is an outermost loop by using the techniques of [15] to
decide solvability of matching problems. For example it can be detected that all
matching problems MP3` of Ex. 2 are not solvable.

However, in the general case we also generate extended matching problems.
Therefore, in the next section we develop a novel decision procedure for solvabil-
ity of extended matching problems like MP1` and MP2` of Ex. 2.

4 Deciding Solvability of Extended Matching Problems

Since extended matching problems are only generated if C 6= �, in the following
sections we always assume that C 6= �. We take a similar approach to [15]
where we transform each matching problem into >, ⊥, or into solved form. Here
> and ⊥ represent solvability and non-solvability. And if a matching problem is
in solved form then often solvability can immediately be decided. We explain all
transformation rules in detail directly after the following definition.

Definition 5 (Transformation of extended matching problems). Let MP =
(D m `0, C, t,M, µ) be an extended matching problem whereM = {s1m`1, . . . , smm
`m}. Then MP is in solved form iff each `i is a variable. Let Vincr = {x ∈ V |
∃n : xµn /∈ V} be the set of increasing variables.

We define a relation ⇒ which simplifies extended matching problems that are
not in solved form. So, let `j = f(`′1, . . . , `

′
m′).

(i) MP ⇒ (Di′ m `′i′ , C, t,M∪ {ti m `′i | 1 ≤ i ≤ m′, i 6= i′}, µ) if j = 0 and D =
f(t1, . . . , Di′ , . . . , tm′).

(ii) MP ⇒ (D m `0, C, t, (M\ {sj m `j}) ∪ {ti m `′i | 1 ≤ i ≤ m′}, µ) if j > 0 and
sj = f(t1, . . . , tm′).

(iii) MP ⇒ ⊥ if j = 0 and D = g(. . .) where f 6= g.
(iv) MP ⇒ ⊥ if j > 0 and sj = g(. . .) where f 6= g.
(v) MP ⇒ ⊥ if j > 0 and sj ∈ V \ Vincr.

(vi) MP ⇒ (Dµm `0, Cµ, tµ, {siµm `i | 1 ≤ i ≤ m}, µ) if j > 0 and sj ∈ Vincr.
(vii) MP ⇒ > if j = 0, D = �, and (M∪ {tm `0}, µ) is solvable.

(viii) MP ⇒ (C m `0, Cµ, tµ,M, µ) if j = 0, D = �, and (M∪ {tm `0}, µ) is not
solvable.

Recall that MP = (D m `0, C, t, {s1 m `1, . . . , sm m `m}, µ) is solvable iff there
is a solution (n, k, σ) such that D[t(C, µ)n]µk = `0σ and siµ

k = `iσ for all 1 ≤
i ≤ m. Hence, whenever D 6= � or si /∈ V then one can perform a decomposition
(Rules (i) and (ii)) or detect a clash (Rules (iii) and (iv)) as in a standard
matching algorithm.

If sj = x is a non-increasing variable then sjµ
k will always be a variable.

Thus, Rule (v) correctly returns ⊥. But if sj = x is an increasing variable then
there might be a solution if k > 0. Hence, one can just apply µ once on the whole
matching problem using Rule (vi). Note that in the result of Rule (vi) both t
and C are also instantiated. This reflects the property of context-substitutions
that t(C, µ)nµ = tµ(Cµ, µ)n, cf. Lemma 1.

Whereas Rule (v) and a simplified version of Rule (vi) have already been
present in [15], here we also need two additional rules to handle contexts. Note
that for n = 0 and D = � the term D[t(C, µ)n]µk is just tµk and thus, one
only has to consider a non-extended matching problem. Now, in Rules (vii) and
(viii) there is a case distinction whether this non-extended matching problem is
solvable, i.e., whether n = 0 yields a solution or not. If it is solvable then also a
solution of MP is found and Rule (vii) correctly returns >. If it is not possible

then there is only one way to continue: apply the context-substitution at least
once, and this is exactly what Rule (viii) does.

Before we formally state the soundness of the transformation rules in Thm. 3
we illustrate their application on the extended matching problems of Ex. 2.

Example 3. We first consider MP1` = (p(�) m `, p(�),minus(x, s(inf)), µ). If `
is not one of the left-hand sides p(0) or p(s(x)) then ⊥ is obtained by Rule
(iii). If one considers ` = p(0) then (p(�) m p(0), p(�),minus(x, s(inf)), µ) ⇒
(�m 0, p(�),minus(x, s(inf)), µ) by Rule (i). And as (minus(x, s(inf)) m 0, µ) is
not solvable, Rule (viii) yields (p(�) m 0, p(�),minus(x, s(inf)), µ). Finally, an
application of Rule (iii) returns ⊥ and thereby shows that the matching problem
is not solvable. Since the transformation for ` = p(s(x)) also results in ⊥, we
have detected that none of the matching problems MP1` is solvable.

A similar transformation shows that none of the matching problems MP2` is
solvable. Hence, the loop of Ex. 2 is an outermost loop.

Theorem 3 (Soundness and termination of the transformation rules).

(i) If MP ⇒ ⊥ then MP is not solvable.
(ii) If MP ⇒ > then MP is solvable.

(iii) If MP ⇒ MP ′ then MP is solvable iff MP ′ is solvable.
(iv) The relation ⇒ is terminating and confluent.3

Using the above theorem allows us to transform any initial matching prob-
lem into ⊥, >, or into a matching problem in solved form. In the first two
cases solvability is decided, but in the last case we still need a way to ex-
tract solvability. Note that these resulting matching problems are all of the
form MP = (D m x0, C, t, {s1 m x1, . . . , sm m xm}, µ) where each xi ∈ V. Note
that if all xi are different—which is always the case if one considers left-linear
TRSs—then MP is trivially solvable. One just can choose the solution (n, k, σ)
where n = k = 0 and σ = {x0/D[t], x1/s1, . . . , xm/sm}.

The only problem arises if for some i 6= j we have xi = xj . Then to choose
σ(xi) = σ(xj) one has to know that siµ

k = sjµ
k for some k. This so called

identity problem already occurred in [15]. However, if i = 0 then we have to
answer a more difficult question, namely whether D[t(C, µ)n]µk = sjµ

k. This
new kind of problem is introduced as extended identity problem.

Definition 6 ((Extended) identity problems). An identity problem is a
pair (s ≈ s′, µ). It is solvable iff there is some k such that sµk = s′µk.

An extended identity problem is a quadruple (D ≈ s, µ, C, t). It is solvable
iff there is a solution (n, k) such that D[t(C, µ)n]µk = sµk.

We now can transform matching problems in solved form into an equivalent
set of (extended) identity problems.

Theorem 4 (Transforming matching problems into identity problems).
Let MP = (D m x,C, t, {s1 m x1, . . . , sm m xm}, µ) be a matching problem in
solved form. It is solvable iff each of the following identity problems is solvable.

3 Here we need the assumption C 6= �. Otherwise, Rule (viii) would not terminate.

• (D ≈ si, µ, C, t) where i is the least index such that x = xi.
• (si ≈ sj , µ) for all j where i < j is the least index such that xi = xj.

One might wonder why this theorem is sound as each solution of (si ≈ sj , µ)
might yield a different kij . The key point is that the maximum of all these kij ’s
is a solution for all identity problems (si ≈ sj , µ).

Note that [15] describes a decision procedure for solvability of identity prob-
lems (s ≈ s′, µ). Hence, we can already decide solvability of matching problems
(D m x,C, t,M, µ) in solved form where the variable x does not occur in M.
Nevertheless, for the general case we still need a technique to decide solvability
of extended identity problems. Such a technique is described in the next section.

Example 4. Consider the TRS {f(x)→ g(g(x, x), f(s(x))), g(y, y)→ a} with the
loop t = f(x) → g(g(x, x), f(s(x))) = t(C, µ) where µ = {x/s(x)} and C =
g(g(x, x),�). One initial matching problem (g(g(x, x),�) m f(x), Cµ, tµ, µ) is
trivially not solvable due to a symbol clash. But the other initial matching prob-
lem (g(g(x, x),�) m g(y, y), Cµ, tµ, µ) is transformed into the matching problem
MP = (�m y, Cµ, tµ, {g(x, x) m y}, µ). By Thm. 4 solvability of MP is equiva-
lent to solvability of the extended identity problem (� ≈ g(x, x), µ, Cµ, tµ).

5 Deciding Solvability of Extended Identity Problems

In this section we describe a decision procedure for solvability of extended iden-
tity problems. To this end we first introduce the notion of a trace.

Definition 7 (Traces). The trace of term t w.r.t. position p is the sequence of
function symbols and indices that are passed when moving from ε to p in t:

trace(p, t) =

{
ε if t = x or p = ε

f i trace(q, ti) if p = iq and t = f(t1, . . . , tn)

The trace of a context C with C|p = � is trace(C) = trace(p, C). The set of all
traces of a term is Traces(t) = {trace(p, t) | p ∈ Pos(t)}.

Lemma 2 (Properties of traces).

(i) trace(pq, C[t]) = trace(C)trace(q, t) if C|p = �
(ii) trace(p, t) = trace(p, tµ) if p ∈ Pos(t)

(iii) trace(pnq, t(C, µ)n) = trace(C)ntrace(q, tµn) if C|p = � and q ∈ Pos(t)
(iv) trace(p, t) ∈ Traces(t) if trace(pq, t) ∈ Traces(t)

In the following algorithm to decide solvability of extended identity problems,
a Boolean disjunction over non-extended identity problems represents solvability
of at least one of these identity problems.

Definition 8 (Decision procedure for extended identity problems). Let
(D ≈ s, µ, C, t) be an extended identity problem where D|q = �, C|p = �.

(i) if trace(D)trace(C)∗ 6⊆
⋃

i∈N Traces(sµi) =: S then there is some m such that
trace(D)trace(C)m /∈ S; return

∨
n<m (D[t(C, µ)n] ≈ s, µ)

(ii) if trace(C)∗ 6⊆
⋃

i∈N Traces(tµi) then return “not solvable”
(iii) let x be a variable which infinitely often occurs in s|p0 , sµ

1|p1 , sµ
2|p2 , . . .

where each pi is that prefix of qpω which satisfies pi ∈ Pos(sµi); let i be the
minimal number such that sµi|pi

= x
(iv) let j be minimal such that tµj |qj = x where qj is that prefix of pω which

satisfies qj ∈ Pos(tµj); if there is no such j then return “not solvable”
(v) return

∨
n≤max(

|pi|−|qqj |
|p| ,j)

(D[t(C, µ)n] ≈ s, µ)

We will explain the algorithm in detail within the proof of the following
theorem. Afterwards, we present algorithms to automate the non-trivial steps.

Theorem 5. The algorithm of Def. 8 is sound and terminates.

Proof. Termination of the algorithm is obvious. We only remark that the dis-
junction in Step (v) is finite, since |p| > 0 by the assumption C 6= �.

To show soundness of the algorithm first recall the definition of solvability
of (D ≈ s, µ, C, t). This extended identity problem is solvable iff there is a so-
lution (n, k) such that D[t(C, µ)n]µk = sµk. We observe two properties: first,
whenever (n, k) is a solution then (n, k + k′) is also a solution. And second, if
we fix n then the extended identity problem is solvable iff the identity problem
(D[t(C, µ)n] ≈ s, µ) is solvable. From the second observation we conclude that if
one can bound the value of n, then one can reduce solvability of extended iden-
tity problems to solvability of identity problems and is done. And computing
these bounds on n is basically all the algorithm does (in Steps (i) and (v)).

The first idea to extract a bound is to consider how the term D[t(C, µ)n]µk

grows if n is increased. Looking at Fig. 1 on page 3 or using Lemma 2 we see that
D[t(C, µ)n]µk has the trace trace(D)trace(C)n. Thus, if (n, k) is a solution then
sµk must have the same trace. Hence, if trace(D)trace(C)m /∈

⋃
i∈N Traces(sµi) =

S then n < m. This proves soundness of Step (i).
So, after Step (i) we can assume trace(D)trace(C)∗ ⊆ S. Hence, if we increase

the k of sµk then this term grows along the (infinite) trace trace(D)trace(C)ω.
Using the first observation we know that for every solution of the extended
identity problem we can increase k arbitrarily. Thus, D[t(C, µ)n]µk (which is
the same term as sµk) also has to contain longer and longer parts of the trace
trace(D)trace(C)ω when increasing k. Hence, whenever the extended identity
problem is solvable then trace(C)∗ ⊆

⋃
i∈N Traces(tµi) =: T which shows sound-

ness of Step (ii).
If the decision procedure arrives at Step (iii) then both trace(D)trace(C)∗ ⊆ S

and trace(C)∗ ⊆ T , i.e., when increasing k we see no difference of function
symbols of the terms D[t(C, µ)n]µk and sµk along the path qpω. However, there
still might be a difference between D[t(C, µ)n]µk and sµk for each finite value
k. For example, different variables may be used to increase the terms along the
path qpω as in D = �, C = f(�), t = x, s = y, µ = {x/f(x), y/f(y)}. Or one of
the terms is always a bit larger as the other one as in D = �, C = f(�), t =

f(x), s = x, µ = {x/f(x)}. To detect the situation of different variables, Step
(iv) is used, and the latter situation is done via Step (v).

As we are interested in the variables in Steps (iv) and (v), we first compute
a variable x in Step (iii) which infinitely often occurs along the path qpω in
the terms s, sµ, sµ2, This variable must exist, since µ has finite domain and
trace(D)trace(C)∗ ⊆ S. This immediately proves soundness of Step (iv) since
whenever D[t(C, µ)n]µk = sµk then by the first observation we can choose k high
enough such that x = sµk|pk

= D[t(C, µ)n]µk|pk
where pk ≤ qpω, i.e., pk must

be of the form qpnq′ where q′ is a prefix of pω. Thus, x = D[t(C, µ)n]µk|qpnq′ =
t(C, µ)nµk|pnq′ = tµn+k|q′ shows that Step (iv) cannot stop the algorithm with
“not solvable”.

The main idea of Step (v) is as in Step (i) to bound n but now for a different
reason. Observe that whenever we increase n then sµk stays the same whereas
D[t(C, µ)n]µk has the subterm tµn+k which depends on n. And since trace(C)∗ ⊆
T we know that with larger n also the terms tµn+k become larger. Thus, there
must be a limit where the size of sµk is reached and it is of no use to search for

larger values of n. And this limit turns out to be m := max(
|pi|−|qqj |
|p| , j) which

proves soundness of Step (v). ut

Input: D, C, s, µ
Output: minimal m such that trace(D)trace(C)m /∈

⋃
i∈N Traces(sµ

i) or ∞, otherwise

(1) m := 0, E := D, t := s, S := ∅
(2) if E = f(. . . E′ . . .) and t = f(. . .) where E|i = E′ then E := E′, t := t|i, goto (2)
(3) if E = g(. . .), t = f(. . .), and g 6= f then return m
(4) if E 6= � and t = x /∈ Vincr(µ) then return m
(5) if E 6= � and t = x ∈ Vincr(µ) then t := tµ, goto (2)
(6) if E = � and t ∈ S then return ∞
(7) if E = � and t /∈ S then S := S ∪ {t}, m := m+ 1, E := C, goto (2)

Fig. 2. clash(D,C, s, µ).

For the automation one can use the algorithm of [15] for solvability of non-
extended identity problems. To check whether trace(D)trace(C)∗ ⊆ S in Step
(i) one can check whether clash(D,C, s, µ) = ∞ (cf. Fig. 2) which also delivers
the required number m in case that trace(D)trace(C)∗ 6⊆ S. Of course, clash can
also be used for the test in Step (ii) where we call clash(�, C, t, µ).

Theorem 6. The algorithm clash terminates and is sound.

For Step (iii) of the decision procedure the function var∞(s, q, p, µ) in Fig. 3
computes a triple (x, pi, i) such that x infinitely often occurs in the sequence
s|p0

, sµ|p1
, sµ2|p2

, . . . where each pk ∈ Pos(sµk) is the maximal prefix of qp∞

and i is the smallest number such that sµi|pi
= x. Note that the precondition is

satisfied, since var∞ is only called if trace(D)trace(C)∗ ⊆
⋃

i∈N Traces(sµi) which
directly implies qp∗ ⊆

⋃
i∈N Pos(sµi).

Preconditions: p 6= ε and qp∗ ⊆
⋃

j∈N Pos(sµ
j)

Input: s, q, p, µ
Output: (x, pi, i) such that x infinitely often occurs in terms sµj along path qpω

where i and pi < qpω are minimal such that sµi|pi = x

(1) i := 0, u := s, pstart := ε, pend := q, S := ∅
(2) if u = x and (x, , pend,) ∈ S then return (x, pstart

′, i′) where i′ is the smallest value
such that (x, pstart

′, , i′) ∈ S
(3) if u = x and (x, , pend,) /∈ S then u := uµ, S := S ∪ {(x, pstart, pend, i)}, i := i+ 1,

goto (2)
(4) (a) if pend = ε then pend := p

(b) let pend = jp′ and u = f(u1, . . . , un); u := uj , pend := p′, pstart := pstartj, goto (2)

Fig. 3. var∞(s, q, p, µ)

Theorem 7. The algorithm var∞ terminates and is sound.

Preconditions: p 6= ε and p∗ ⊆
⋃

i∈N Pos(tµ
i)

Input: x, t, p, µ
Output: (j, q) if j is minimal such that tµj |q = x where q ∈ Pos(tµj) is prefix of pω

or ⊥, if there is no such j

(1) j := 0, u := t, pstart := ε, pend := ε, S := ∅
(2) if u = x then return (j, pstart)
(3) if u = y 6= x and (y, pend) ∈ S then return ⊥
(4) if u = y 6= x and (y, pend) /∈ S then j := j+1, S := S∪{(y, pend)}, u := uµ, goto (2)
(5) (a) if pend = ε then pend := p

(b) let pend = ip′ and u = f(u1, . . . , un); u := ui, pend := p′, pstart := pstarti, goto (2)

Fig. 4. idx(x, t, p, µ)

Finally, for Step (iv) a small adaptation of var∞ yields the last required
algorithm idx in Fig. 4 to check whether x occurs along pω in some term tµj .

Theorem 8. The algorithm idx terminates and is sound.

Note that both algorithms var∞ and idx become unsound if one only considers
equal variables in the set S, but not equal positions pend.

6 Empirical Results

In the following we first give some details about the actual implementation of
our method and after that empirical results. To find loops, we use unfoldings as

defined in [12], Section 3 (without any refinements mentioned in later sections).
For efficiency reasons we restrict to non-variable positions. Further we do not
use a combination of forward and backward unfoldings by default. Our basic
method uses the following heuristic to decide the direction of the unfoldings:
For systems that are duplicating but whose inverse is non-duplicating we unfold
backwards. For all other systems we unfold forwards.

In contrast to finding loops for full termination, for a specific strategy S,
we cannot always stop when a loop was found (since it could turn out to be
no longer relevant when switching from full rewriting to S-rewriting). Hence we
compute a lazy list of potential loops that is checked one at a time corresponding
to S. If the checked loop is no S-loop, the next loop is requested (and lazyness
makes sure that the necessary computations are only done after the previous
element dropped out).

For context-sensitive rewriting as well as outermost rewriting we reduce the
search space by filtering the set of unfoldings after each iteration. In both cases
we remove derivations containing rewrite steps that disobey the strategy.

As already mentioned in the introduction there is the transformational ap-
proach for both, context-sensitive rewriting [3] and outermost rewriting [13,14].
In both cases a problem for finding loops, is that the length of an existing loop
may increase dramatically, or even worse, a loop is transformed into a non-
looping infinite derivation.

To evaluate our implementation in TTT2 we used all 291 (214) outermost
examples as well as all 109 (15) context-sensitive examples of version 5.0.2 of the
Termination Problems Data Base.4 Here, in brackets the number of those TRSs
is given, where outermost resp. context-sensitive termination has not already
been proven. The results on these possibly non-terminating TRSs are as follows:

outermost TRSs CSRs
AProVE TrafO TTT2 TTT2

NO score 37 30 191 4
avg. time (msec) 6689 6772 340 38

For outermost rewriting we compare to the sum of non-termination proofs
(NO score) achieved by AProVE and TrafO5 at the January 2009 termination
competition.46 The success of our technique is clearly visible: TTT2 was able
to disprove termination of nearly 90 % of all possible non-terminating TRSs,
including all examples that could be handled by AProVE and TrafO (which use
the transformational approaches of [14] and [13] respectively).

For context-sensitive rewriting we just give the NOs of TTT2 since we are not
aware of any other tool that has disproven context-sensitive termination of a
single TRS. Here, our implementation could at least solve one quarter of the
potentially non-terminating TRSs.

4 http://termcomp.uibk.ac.at
5 http://www.win.tue.nl/~mraffels/trafo.html
6 The numbers for TTT2 differ from those of the competition since the competition

version did not feature the reduction of the search space which is described above.

http://termcomp.uibk.ac.at
http://www.win.tue.nl/~mraffels/trafo.html

7 Conclusion and Future Work

To prove non-termination of rewriting under strategy S, we first extended the
notion of a loop to an S-loop. An S-loop is an S-reduction with a strong regu-
larity which admits the same infinite reduction as an ordinary loop does for full
rewriting. Afterwards, we developed two novel procedures to decide whether a
given loop is a context-sensitive loop or an outermost loop. It is easy to see that
the conjunction of both procedures decides context-sensitive outermost loops.

Since [6] only describes a way to prove termination of Haskell programs, it
might be an interesting future work to combine our technique for outermost
loops with [6] to also disprove termination of Haskell programs.

References

1. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

2. J. Endrullis. Jambox. Available at http://joerg.endrullis.de.
3. J. Giesl and A. Middeldorp. Transformation techniques for context-sensitive

rewrite systems. Journal of Functional Programming, 14(4):379–427, 2004.
4. J. Giesl, R. Thiemann, and P. Schneider-Kamp. Proving and disproving termina-

tion of higher-order functions. In Proc. FroCoS ’05, LNAI 3717, pages 216–231,
2005.

5. J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic termina-
tion proofs in the DP framework. In Proc. IJCAR ’06, LNAI 4130, pages 281–286,
2006.

6. J. Giesl, S. Swiderski, P. Schneider-Kamp, and R. Thiemann. Automated termina-
tion analysis for Haskell: From term rewriting to programming languages. In Proc.
RTA ’06, LNCS 4098, pages 297–312, 2006.

7. J. Guttag, D. Kapur, and D. Musser. On proving uniform termination and re-
stricted termination of rewriting systems. SIAM J. Computation, 12:189–214, 1983.

8. M. Korp, C. Sternagel, H. Zankl, and A. Middeldorp. Tyrolean Termination Tool
2. In Proc. RTA ’09, LNCS, 2009.

9. W. Kurth. Termination und Konfluenz von Semi-Thue-Systemen mit nur einer
Regel. PhD thesis, Technische Universität Clausthal, Germany, 1990.

10. D. Lankford and D. Musser. A finite termination criterion. Unpublished Draft.
USC Information Sciences Institute, 1978.

11. S. Lucas. Context-sensitive computations in functional and functional logic pro-
grams. Journal of Functional and Logic Programming, 1:1–61, 1998.

12. Étienne Payet. Loop detection in term rewriting using the eliminating unfoldings.
Theoretical Computer Science, 403(2-3):307–327, 2008.

13. M. Raffelsieper and H. Zantema. A transformational approach to prove outermost
termination automatically. In Proc. WRS ’08, ENTCS 237, pages 3–21, 2009.

14. R. Thiemann. From outermost termination to innermost termination. In Proc.
SOFSEM ’09, LNCS 5404, pages 533–545, 2009.

15. R. Thiemann, J. Giesl, and P. Schneider-Kamp. Deciding innermost loops. In
Proc. RTA ’08, LNCS 5117, pages 366–380, 2008.

16. J. Waldmann. Matchbox: A tool for match-bounded string rewriting. In Proc.
RTA ’04, LNCS 3091, pages 85–94, 2004.

17. H. Zantema. Termination of string rewriting proved automatically. Journal of
Automated Reasoning, 34:105–139, 2005.

http://joerg.endrullis.de

	Loops under Strategies
	René Thiemann and Christian Sternagel

