From outermost termination to innermost
termination

René Thiemann

Institute of Computer Science, University of Innsbruck, Austria
rene.thiemann@uibk.ac.at

Abstract. Rewriting is the underlying evaluation mechanism of func-
tional programming languages. Therefore, termination analysis of term
rewrite systems (TRSs) is an important technique for program verifica-
tion. To capture the evaluation mechanism of a programming language
one has to take care of the evaluation strategy, where we focus on the
outermost strategy.

As there are only few techniques available to analyze outermost termina-
tion of TRSs directly, we introduce a new transformation such that a TRS
is outermost terminating iff the transformed TRS is innermost terminat-
ing. In this way all of the several techniques that have been developed
to investigate innermost termination become applicable to analyze out-
ermost termination, too. We have implemented the transformation and
successfully evaluated it on a large collection of TRSs.

1 Introduction

Termination is an essential property of programs and in the last years there has
been much progress in the area of automated termination analysis. We consider
term rewrite systems (TRSs) since rewriting is the basic evaluation mechanism of
functional programs [17]. However, to mimic the evaluation of programs correctly
it is essential to respect the evaluation strategy—Ilike outermost or innermost.
Proving termination of TRSs without a fixed strategy (full termination) is a
well-studied field with a large collection of available techniques [1,3,7,8,11,13,20].
Also for innermost termination analysis there are many techniques available
[1,4,6,7,13,19] which include more powerful variants of those methods that are
used for full termination. However, there are only few techniques available which
investigate outermost termination of TRSs [12,18]. Whereas [12] introduces a
direct method to prove outermost termination, [18] presents a transformational
approach: a given TRS is transformed into another TRS such that full termina-
tion of the resulting TRS implies outermost termination of the original TRS. In
this way, one can reuse all the existing techniques for proving full termination.
In this paper we present another transformational approach to analyze out-
ermost termination, but with two major differences compared to [18]. First, in
our approach one has to investigate innermost termination of the resulting TRS
and second, our transformation is proven to be complete. Thus, as in [18], we
can also profit from a variety of existing techniques for termination analysis

and even more important, we can additionally disprove outermost termination.
Therefore—as far as the author knows—we present the first automatic method
for disproving outermost termination.

The paper is structured as follows. In Sect. 2 we recapitulate the required no-
tions of term rewriting. Then in Sect. 3 our transformation is presented. Sound-
ness and completeness of the transformation are proven in Sect. 4 and Sect. 5,
respectively. An improved version of the transformation is presented in Sect. 6.
Finally, a discussion on related work and experimental data is given in Sect. 7.

2 Preliminaries

We refer to [2] for the basics of term rewriting. We always assume a countable
infinite set of variables V. We write 7 (X,V) for the set of terms over some
signature X. For each f € X we write ar(f) for the arity of f. A TRS R over
X is a set of rules ¢ — r where {,r € T(X,V), £ ¢ V, and V(¢) D V(r). Here,
V(t) is the set of variables occurring in a term ¢. We restrict ourselves to finite
TRSs and often omit the signature X' if it is clear from the context. For a TRS
the defined symbols are the root symbols of the left-hand sides of the rules. The
remaining symbols of X' are constructors. A position p € Pos(t) is either the
empty position € or p = iq where t = f(t1,...,t,), 1 <i <mn, and g € Pos(t;).
Position p is strictly above position ¢ (or ¢ is strictly below p) iff p is a proper
prefix of ¢g. A context is a term C with a hole at some position p € Pos(C). We
write C[t], as the term where the hole of C is replaced by ¢.

A term ¢ can be reduced with R to s at position p, written ¢ —g , s iff
t = Cllo], and s = C[ro], for some rule { — r € R and substitution o. The
reduction is an outermost reduction, written t ‘%R’p s iff there is no ¢ strictly
above p such that t —x 4 s. It is an innermost reduction, written ¢ '—>R7p s iff
there is no ¢ strictly below p such that ¢ —x ; s. The rewrite relation of R is
defined as t —x s iff ¢t -, s for some position p. The outer- and innermost
rewrite relations 2., and - are defined accordingly via > and i—>R)p. A
term ¢ is in normal form w.r.t. R iff there is no s such that ¢t —x s. A TRS is
(outermost / innermost) terminating iff —x (%5 / “+5) is well-founded.

Ezample 1. Consider the following TRS R which generates a list of zeros. Here,
the second rule is used to stop the reduction if a cons appears at the outside.

zeros — cons(0, zeros) (1)

cons(z, xs) — terminate (2)
It is neither terminating nor innermost terminating due to the infinite reduction
zeros 5, cons(0, zeros) -+ cons(0, cons(0, zeros)) L ...

However, R, is outermost terminating as cons(0,zeros) must be outermost re-
duced to terminate because of rule (2). But if we add the following rules to
compare the lengths of two lists

longer(nil, ys) — false
longer(cons(x, xs), nil) — true

longer(cons(x, zs), cons(y, ys)) — longer(zs, ys)
then the resulting TRS R is not outermost terminating.

longer(zeros, zeros) %1, longer(cons(0, zeros), zeros)
%, longer(cons(0, zeros), cons(0, zeros))

o o
%, longer(zeros, zeros) %5 ...

3 The transformation

To study the outermost termination behavior of a TRS we take a transforma-
tional approach. The idea is to transform a given TRS into another TRS such
that outermost termination of the original TRS can be concluded from termina-
tion of the transformed TRS. Transformational approaches to prove termination
are quite common for extensions of plain rewriting, e.g., there are various trans-
formations for conditional TRSs and context-sensitive TRSs [14]. An overview
over these transformations is given in [15] and [5].

The general structure of our transformation is similar to the structure of
the complete transformation for context-sensitive TRSs [5]. (This structure is
also used in [18].) First, each term of the original signature is mapped to a
corresponding term over an enriched signature which contains additional symbols
(also called markers). The symbol top will be used to mark the top of the original
term and the symbol reduce and go_up are used to indicate the position of the
reduction. Then one simulates a reduction t %1 s of the original TRS in three
phases.

e First, in the term top(reduce(t)) the reduce-marker is moved to position p.

e Second, the reduction to s is simulated by applying the corresponding rewrite
rule that is used in the reduction ¢ %R,p s. Moreover, the reduce-marker is
changed into a go_up-marker.

e Third, the go_up-marker is moved back from position p to the top of the term
yielding top(go-up(s)), and finally go_up is converted into the reduce-marker
to be able to perform an upcoming reduction.

To simulate outermost rewriting with this scheme, the most difficult part
is the first phase. Here, the rules of the transformed systems must ensure that
reduce can be moved to all valid positions w.r.t. outermost rewriting to ensure
that every original reduction can be simulated. Moreover, it is also desirable that
reduce cannot be moved to any of the remaining positions in order to obtain a
precise simulation.

In detail, one has to investigate the set of positions of a term t = f(t1,...,t,)
which are allowed w.r.t. outermost rewriting, and move the reduce-marker in the
term reduce(t) accordingly. (The top-marker is not important for this part.)

There are two possibilities. Either ¢ itself is a redex. Then it is not allowed to
reduce any of t’s subterms and therefore, the reduce-marker should not be moved.
Or otherwise, t is not a redex. In that case it must be possible in the transformed
system to rewrite reduce(t) to C'reduce(t;)] where C is some context which also
has to store f,t1,...,ti—1,tit1,--,tn.

Applying this idea leads to the following transformation which will be dis-
cussed in detail directly afterwards.

Definition 2 (Transformation of outermost TRSs). Let R be a TRS over
Y. We define the extended signature as X' = X W {top, reduce, go_up, result} &
{checky,redexy,ins; | f € X,1 < i < ar(f)}. Moreover, we define the trans-
formed system R’ over X’ to consist of the following rules

reduce(f(z1,...,x,)) — checky(redex;(z1,...,z,))

N

checky(redexs(x1,...,&n)) — ingi(x1,. .., reduce(z;),. .., oy)

ot

redex ({1, . .,En — result(r)

D

ingi(x1,...,g0up(z;),. .., xyn) — go_up(f(x1,...,2n))
top(go_up(z)) — top(reduce(z))

P

(0]
I DD D D

)

)

)
check ¢ (result(z)) — go_up(x)

)

)

where (3) and (6) are for all f € X, (4) and (7) are for all f € X, 1 <4 < ar(f),
and (5) is for all f(€y,...,4,) = r €R.

Rules {(3),(5), (6)} and {(7),(8)} can be used to perform the necessary re-
ductions in the second and third phase of the transformation scheme. To il-
lustrate this, consider R; of Ex. 1. One can simulate the outermost reduction
zeros >, cons(0, zeros) by applying the rules (3), (5), (6), (8).

top(reduce(zeros)) i—>R,1 top(checkyeros (redexyeros)) (9)
“ 7 top(checkzeros (result(cons(0, zeros))))
~ top(go-up(cons(0, zeros)))
“ . top(reduce(cons(0, zeros)))

The first phase needs some more explanation. One might think of a problem
that also non-outermost reductions can be simulated in the transformed TRS
since every term reduce(f(¢1, .. .,t,)) can be rewritten to Creduce(¢;)] with rules
(3) and (4). However, this problem does not arise since innermost rewriting is
considered for the transformed TRS: whenever f(ty,...,t,) is a redex w.r.t. R
then an application of rule (4) on the term checky(redexy(t1,...,t,)) is prohib-

ited by rule (5) as the latter rule imposes a redex at a deeper position. This can
also be seen when continuing in the example. After the reduction

top(reduce(cons(0, zeros))) i—>R/1 top(checkeons(redexcons(0, zeros)))
it is not allowed to apply rule (4), but one has to rewrite the inner subterm.
top(checkeons(redexcons(0, zeros))) i—>R/1 top(checkeons(result(terminate))

Afterwards it is only possible to rewrite to a normal form. The following main

theorem states that our transformation indeed characterizes outermost termina-
tion of the original TRS, i.e., the transformation is both sound and complete.

Theorem 3. R is outermost terminating iff R’ is innermost terminating.

The available techniques for innermost termination analysis in combination
with Thm. 3 can now successfully handle the TRSs of Ex. 1. More precisely,
outermost termination of Ry and outermost non-termination of Ry are proven
fully automatically. Before we discuss the empirical results in detail, we prove
both directions of Thm. 3 separately in the upcoming two sections.

4 Simulation of outermost reductions

To prove soundness of the transformation we will show that every outermost re-
duction of the original TRS can be simulated by a series of innermost reductions
in the transformed TRS (Lemma 5). To this end, we first make the following
observation that each term of the original signature cannot be reduced with the
transformed TRS. This observation will be useful to argue that in the simulation
we only perform innermost reductions.

Lemma 4. Ift € T(X,V) then t is a normal form w.r.t. R'.
Proof. Obvious, since every f € X is a constructor of R'. ad

Lemma 5. Ift € T(X,V) and t %4 s then reduce(t) 5%, go_up(s).

Proof. Since t is reducible it is not a variable, so let t = f(t1,...,t,). We perform
induction on the position of the redex in ¢ %4 s.
If p=cethent=/{o — ro = s for some rule £ = f(¢1,...,¢,) — r € R where

t; = £;o for all i. Thus, we can build the following innermost reduction:

reduce(f(t1,...,tn)) g, check;(redexy(t1,...,t,))
452/ check(result(ra)) = check (result(t))
i g0up(t)
Note that all these reductions are indeed innermost reductions due to Lemma 4.
If p=iq then t; > s; and s = f(t1,...,8;,...,ts). From the induction
hypothesis we conclude reduce(t;) -5, go_up(s;). Thus, it is possible to build
the desired reduction as follows:
reduce(f(t1,...,tn)) “x, checky(redexs(t,...,t,))
Lmringi(ty, ... reduce(t;), ..., t,)
Lk ingi(t, ... goup(si), -y th)
Lo goup(f(ti, ..., Siy-nstn))

= go_up(s)
Here, the second reduction is indeed an innermost step. The reason is that
by Lemma 4 we only have to guarantee that the term redexy(t1,...,t,) is not a

redex of R’. However, if this term were a redex of R’, then by the definition of
R’ the term f(t1,...,t,) =t would be a redex of R. But this is in contradiction

to the fact that ¢ is reduced below the root using outermost rewriting. O
With the help of Lemma 5 it is now easy to prove one direction of Thm. 3.
Corollary 6. If R’ is innermost terminating then R is outermost terminating.

Proof. If R were not outermost terminating then there would be an infinite
reduction

t S by Oty S L
where all t; € 7(X,V). Lemma 5 and Lemma 4 directly yield the following
infinite innermost reduction of R'.

top(reduce(t1)) 5%, top(go-up(t2)) 5% top(reduce(t2)) 55, ... 0

5 Extracting outermost reductions

In this section we prove completeness of our transformation. To this end, we show
that outermost termination of the original TRS implies innermost termination
of the transformed TRS. This is achieved by extracting an infinite outermost
reduction of R from every infinite innermost reduction of R'. Here we have
to deal with a new problem which did not arise in the previous section: for
innermost termination we have to consider all terms of the extended signature,
i.e., we even have to consider terms which contain multiple occurrences of top-
and reduce-markers and we have to consider all possible reductions.

To solve this problem we show two main lemmas (7 and 10). In the first lemma
we prove that whenever the transformed TRS is not innermost terminating then
there also is a reduction of a special form which is similar to the one that we have
constructed in the soundness-proof. Then in the second lemma we show how one
can extract an outermost reduction from this special reduction. Combining both
lemmas then directly yields completeness of our transformation.

Lemma 7. If R’ is not innermost terminating then there is an infinite inner-
most reduction of the following form where all t; are in normal form w.r.t. R'.1

top(go_up(t1)) i—>R/7E top(reduce(t1)) i—>}§/7>5 top(go_up(t2)) i—>R,7~E e ()

To prove this lemma we make use of Dependency Pairs [1], a powerful tech-
nique to analyze innermost termination of TRSs. Essentially, instead of analyzing
the rewrite relation i—>R/ directly, one considers two TRSs P and R’ in combi-
nation and investigates so called innermost-(P, R’)-chains which are reductions
of the following form.

i [IE3 i ik i iox
51 7P t TR!L,>e 52 TP 12 TR/, >e 83 TP t3 TRL,>e v

The main result of [1] states that R’ is innermost terminating iff there are
no infinite innermost-(DP(R’), R')-chains.? Here, DP(R’) is the following TRS
consisting of all Dependency Pairs of R'.

! The relation i—>R,7>6 is like -5, except that it is not allowed to rewrite at the root.
2 For more details and further extensions of Dependency Pairs we refer to [1,7,11,13].

top*(go_up(z)) — top”(reduce(x)) (10)
top?(go_up(z)) — reduce®(x) (11)

reduce’ (f(z1,...,xn)) — check® G (redexs(z1, ..., 2n)) (12)
reduce’ (f(z1,...,2,)) — redex’ p(@1,.. ., zn) (13)
checkgc(redexf(xl7 cey) — |nf J(xy, ... reduce(z;),...,xy) (14)
) (15)

checkgv(redexf(:cl, ..., y)) — reduce’(z;)

We can now prove that every innermost non-terminating TRS R’ entails an
infinite reduction of the form in ().

Proof. If R’ is not innermost terminating then there is an infinite innermost
(DP(R'),R')-chain. To investigate the form of possible infinite chains we com-
pare the root-symbols of the Dependency Pairs and obtain the following Depen-
dency Graph [1].

C(10) (11) (12) (14)
L]

This graph contains two strongly connected components {(10)} and {(12), (15)}.
Therefore, every infinite innermost chain will end in either an infinite innermost
({(10)},R")- or ({(12), (15)}, R')-chain. We now show that there are no chains
of the latter kind. The reason is that for the following polynomial order, both
(12) and (15) are strictly decreasing and the only usable rules? (5) are weakly
decreasing.

[reduce] (z) = [check’](z) = 1+ 2
[fl@e, .. zn) =1+a1+ -+, for all fe X
[redexy](x1,...,2n) =21 4+ -+ + Ty
[result](z) =0

Thus, there must be an infinite innermost ({(10)}, R’)-chain. But this directly
corresponds to the infinite reduction (x): one just has to replace top? by top. O

With the help of Lemma 7 it is now possible to extract the infinite innermost
reduction (x) from every non-innermost terminating transformed TRS. Recall
that the aim is to extract an infinite outermost reduction of the original TRS
from (%). The natural idea is to just take the terms t1, 2, ¢s, ... and then to show
that these lead to an outermost reduction of R. But here we have to face one
more problem: in (%) the terms t1, 2, ts, ... are terms over the extended signature
X', but we need to extract terms over the original signature X'. To this end we
use the following mapping which always yields terms over the original signature.

Definition 8. The mapping O : T (X', V) — T (X, V) is defined follows:

o O(f(t1,...,tn)) = f(O(t1),...,0(ty)) for all f € X

o O(t) = xy, otherwise
For each substitution o the substitution O(o) is defined as xO(0) = O(x0o).

Before we state and prove the second main lemma, we need some properties
of @ about matching.

Lemma 9. e If{cT(X,V) then O(lo) = LO(o) for all substitutions o.
o If O(t) = Lo for some substitution o then t = €8 for some substitution §.

Proof. e Straightforward structural induction on £.

e First note that O is injective. Hence, the inverse mapping O~! is properly
defined which can again be lifted to a mapping from substitutions to sub-
stitutions where O~!(o) is defined as zO~!(c) = O~ !(zo). We show that
t = {O~1(0) by induction on /, i.e., we choose § = O~ (o).

If ¢ is a variable x then O(t) = zo and thus, t = O~ 1(O(t)) = O~ Y xo) =
2O (o) =107 1(0).

Otherwise, £ = f(¢1,...,£,). Thus, O(t) = bo = f(¢0,...,£L,0) implies that
t=f(t1,...,tn), f € X,and O(t) = f(O(t1),...,0(tn)). Hence, O(t;) = 4;0
for all i and by induction we obtain t; = £;0~1(s). But this directly yields
t=f(l;07 o), ..., 0,07 o)) = f(ly,...,0,)O0 o) =LO (o). O

We will now prove the second main lemma to achieve completeness of our
transformation, namely that an innermost reduction reduce(t;) -%, go_up(ti4+1)
in (%) corresponds to an outermost reduction of the original system.

Lemma 10. Let s,t € T (X', V) where t is in normal form w.r.t. R'. Whenever

reduce(t) %, go-up(s) then O(t) =5 O(s) and s is in normal form w.r.t. R'.

Proof. We perform induction on the length of the reduction. If reduce(t) reduces
to go_up(s) the first step must be done with (3) since ¢ is in normal form. Hence,
t=f(t1,...,t,) for some f € X and normal forms ¢1,...,t, and moreover, the
reduction must start with reduce(t) -+, checky(redexs(ty,...,t,)). From the
new term checky(redexs(t1,...,t,)) there are only two possible ways to continue
the reduction to go_up(s), either using (5) or using (4).

In the former case we obtain the reduction check(redexs(t1,...,t,)) “>p,
checky(result(s’)). Hence, there must be some f(¢1,...,¢,) — r € R such that
t; = Lo and s’ = ro. As o is a normalized substitution and as r € T(X,V) is
a constructor term w.r.t. R’, we know that s’ is in normal form. Moreover, as
additionally each ¢; € 7(X,V) we can apply Lemma 9 and obtain

O(t) = O(f(lro,...,0,0)) = f(l1,...,£,)O(c) 24 rO(c) = O(ro) = O(s').

From check s (result(s’)) -+%, go_up(s) and the fact that the only possible reduc-
tion of checky(result(s’)) is via rule (6) to go_up(s’) we conclude that s’ = s.
Hence, by our previous results we have proven O(t) %4 O(s’) = O(s) and that
s = ¢’ is in normal form. This finishes the first case.

In the second case the reduction of checky(redexs(t1,...,ty,)) is performed

by rule (4) which yields the new term iny;(¢1,...,reduce(t;), ... tn).

Note that there is only one way to reach the term go_up(s) from this new term:
one must first reduce reduce(t;) to some term go_up(s;). Since this reduction
is shorter than the whole reduction we can apply the induction hypothesis to
obtain O(t;) %4 O(s;) and conclude that s; is in normal form. Moreover, there
is only one way to continue the reduction towards go_up(s): one has to reduce
ingi(ti,...,go-up(s;),...,t,) to goup(f(ti,...,si...,t,)) with rule (7).

However, since this last term is in normal form—jf € Y is a constructor of
R'—we know that s must be the normal form f(¢y,...,s;,...,t,). Hence,

o(t) = f(O(t1),. ... O(t:),-..,O(ty))

—r [(O(t1),...,0(s:),...,0(tn))

:O(f(tla"'vsia'~-;tn))

=0(s)
It only remains to prove that the above reduction is indeed an outermost-
reduction. Since we know that O(t;) =, O(s;) we only have to prove that
O(t) is not a redex of R. So, suppose O(t) is a redex. Hence, there is some
rule £ — r € R such that O(t) = fo. By Lemma 9 we know that then ¢ =
f(t1,...,tn) = €0 and thus, t; = ¢;d for all i. Hence, the term redexs(t1,...,t,)
is not in normal form w.r.t. R'. However, this is a contradiction to the fact that
checky(redexy(t1, ..., t,)) was innermost reduced at top-level. O

With the help of Lemmas 7 and 10 completeness of our transformation is
easily established.

Corollary 11. If R is outermost terminating then R’ is innermost terminating.

Proof. Assume that R’ is not innermost terminating. Then by Lemma 7 there
is the infinite innermost reduction

top(go-up(t1)) -/ . top(reduce(t1)) S5 <. top(go_up(t2)) /. - .-
which by Lemma 10 directly leads to the infinite outermost reduction

O(ty) &5 O(ty) &g ... 0

6 Improved Transformation

In this section we present an improved variant of our transformation. The idea
is that the check for an outermost-redex is superfluous if the outermost symbol
is a constructor. Moreover, whenever a constant is reduced, then the reduction
can only be at the top-level. Hence, in that case there also is no need for the
check. These ideas lead to an improved transformation which produces a smaller
TRS than the transformation of Def. 2. Moreover, each outermost step of the
original TRS can be simulated by less innermost steps of the transformed TRS.

Definition 12 (Improved transformation of outermost TRSs). Let R
be a TRS over Y. We define the improved transformed system R over X’ to
consist of rules {(3) — (8)} with the following additional rules.

reduce(f(z1,...,2n)) — inyi(z1,. .., reduce(z;),. .., xy) (16)
reduce(f) — go_up(r) (17)

However, in difference to Def. 2, (3) and (6) are only for defined symbols f
with ar(f) > 0, (4) 4s only for defined symbols f, and (5) is only for rules
flly, ..., 6,) — r € R with ar(f) > 0. The new rule (16) is for all constructors
fand 1 <i<ar(f), and the new rule (17) is for all defined constants, i.e., for
all rules f — r € R where ar(f) = 0.

To illustrate that an outermost reduction can be simulated by less innermost
reductions using the improved transformation, recall the simulation of zeros <
cons(0, zeros) of Ex. 1. The transformation of Def. 2 needs four steps to reduce
top(reduce(zeros)) to top(reduce(cons(0, zeros))), cf. (9), whereas the improved
transformation only needs two steps.

As for the transformation of Def. 2, we obtain sound- and completeness.

Theorem 13. R is outermost termating iff R is innermost terminating.

This theorem is proven in the same way as Thm. 3.

7 Related Work and Experiments

Termination of programming languages with outermost strategy has also been
studied in [10,16]. However, in contrast to our work their emphasis is on programs
which also contain non-terminating functions, and where the goal is to prove
termination of a set of starting terms.

Relating our approach to the direct technique of [12] to prove outermost
termination of TRSs, we see the benefit of our approach that it can also be used
to disprove outermost termination. Since the success of our approach heavily
depends on the techniques to analyze innermost termination, the best way to
investigate the relative proving power is by an extensive empirical comparison.
Unfortunately, a fully automatic implementation of [12] is currently not available.
However, a by-hand-calculation on a small set of examples has shown that in
practice our technique is of incomparable power to [12], i.e., there are examples
where only one of both techniques is successful.

The most similar work to ours is the transformation of [18] to prove out-
ermost termination. Although the general structure of both transformations is
similar, there are important differences. The advantage of [18] is that their trans-
formation does not rely on innermost rewriting. Therefore, more techniques are
applicable on the resulting TRSs. However, there are also some drawbacks of [18]
in comparison to our transformation. First, it is unknown whether the transfor-
mation of [18] is complete. Moreover, we do not have the limitation to quasi-left-
linear TRSs as in [18]. And finally, our transformation is easier to implement
and cannot lead to exponentially larger resulting TRSs. Empirically, our trans-
formation is incomparable® to [18].

3 Although the detailed experiments indicate that our transformation is strictly more
powerful, in practice this is not the case if one tries the transformation of [18] with
several different provers as backend: then both transformations are incomparable.

10

For our experiments we considered only those 434 TRSs from the termina-
tion problem database? (TPDB 4.0) where full termination could not already be
proven by the termination prover AProVE [9]. We considered three transforma-
tions to analyze outermost termination where afterwards we always used AProVE
as backend. For each TRS and transformation we used a timeout of one minute.
The machine was an Intel Core 2 Duo with 2.4 Ghz running under Mac OS X.
The details of our experiments can be viewed at http://cl-informatik.uibk.
ac.at/~thiemann/outermost. The following table gives a summary.

Transformation | R | R | [18]°
of TRSs where outermost termination was disproven| 39| 40 0
of TRSs where outermost termination was proven 7 7 6

We first consider disproving outermost termination. Note that only 162 TRSs
of the 434 TRS are detected to be non-terminating. Here we can see the success
of our transformation as it is applicable on 40 TRSs whereas we know of no
other method that can disprove outermost termination automatically. For the
remaining 122 TRSs there are two major reasons why outermost termination
cannot be disproven: first, some of these TRSs are outermost terminating.

And second, our transformation destroys looping reductions, i.e., although
the original TRS might contain a looping outermost reduction, this does not
necessarily correspond to a looping innermost reduction in the transformed TRS.
To solve this problem, as future work we plan to develop a direct method for
disproving outermost termination similar to the one in [19].

With these experiments one can also illustrate the benefit of the improved
transformation. There is one TRS where only transformation R” is able to dis-
prove outermost termination. Here, the failure of R’ is just due to the length
of the simulation. The looping reduction of R” is some steps shorter than the
corresponding reduction in R’. That this can be crucial is due to the fact that
the complexity of searching for looping reductions is exponential in the length
of the reduction.

Unfortunately the numbers for proving outermost termination do not look
that good. However, this is mainly due to the fact that there are hardly any
examples in the TPDB which are designed for outermost rewriting: there are
only six.

To conclude, we have developed a successful transformation for proving and
especially for disproving outermost termination of TRSs.

Acknowledgments. We thank Isabelle Gnaedig for her helpful feedback on
questions about [12].

4 Available at http://www.lri.fr/~marche/tpdb/.
5 To be comparable we always added a fresh constant to the signature when using
[18]. The reason is that otherwise [18] only proves outermost-ground termination.

11

http://cl-informatik.uibk.ac.at/~thiemann/outermost
http://cl-informatik.uibk.ac.at/~thiemann/outermost
http://www.lri.fr/~marche/tpdb/

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. The-
oretical Computer Science, 236:133-178, 2000.

F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

A. Geser, D. Hofbauer, J. Waldmann, and H. Zantema. On tree automata that
certify termination of left-linear term rewriting systems. Information and Compu-
tation, 205(4):512-534, 2007.

J. Giesl and T. Arts. Verification of Erlang processes by dependency pairs. Appl.
Algebra in Engineering, Communication and Computing, 12(1,2):39-72, 2001.

J. Giesl and A. Middeldorp. Transformation techniques for context-sensitive
rewrite systems. Journal of Functional Programming, 14(4):379-427, 2004.

J. Giesl, R. Thiemann, S. Swiderski, and P. Schneider-Kamp. Proving termination
by bounded increase. In Proc. CADE 07, LNAI 4603, pp. 443-459, 2007.

J. Giesl, R. Thiemann, and P. Schneider-Kamp. The dependency pair framework:
Combining techniques for automated termination proofs. In Proc. LPAR 04, LNAI
3452, pp. 301-331, 2005.

J. Giesl, R. Thiemann, and P. Schneider-Kamp. Proving and disproving termina-
tion of higher-order functions. In Proc. FroCoS ’05, LNAI 3717, 2005. 216-231.

. J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic termina-

tion proofs in the DP framework. Proc. IJCAR ’06, LNAI 4130, pp. 281-286, 2006.
J. Giesl, S. Swiderski, P. Schneider-Kamp, and R. Thiemann. Automated termina-
tion analysis for Haskell: From term rewriting to programming languages. In Proc.
RTA ’06, LNCS 4098, pp. 297-312, 2006.

J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and im-
proving dependency pairs. Journal of Automated Reasoning, 37(3):155-203, 2006.
I. Gnaedig and H. Kirchner. Termination of rewriting under strategies. ACM
Transactions on Computational Logic, 2008. To appear. Available at http://
tocl.acm.org/accepted/315gnaedig.ps.

N. Hirokawa and A. Middeldorp. Tyrolean Termination Tool: Techniques and fea-
tures. Information and Computation, 205(4):474-511, 2007.

S. Lucas. Context-sensitive computations in functional and functional logic pro-
grams. Journal of Functional and Logic Programming, 1:1-61, 1998.

E. Ohlebusch. Termination of logic programs: Transformational methods revisited.
Appl. Algebra in Eng., Communication and Computing, 12(1-2):73-116, 2001.

S. E. Panitz and M. Schmidt-Schauss. TEA: Automatically proving termination
of programs in a non-strict higher-order functional language. In Proc. SAS 97,
LNCS 1302, pp. 345-360, 1997.

R. Plasmeijer and M. van Eekelen. Functional Programming and Parallel Graph
Rewriting. Addison Wesley, 1993.

M. Raffelsieper and H. Zantema. A transformational approach to prove outermost
termination automatically. In informal Proc. WRS 08, pp. 76-89, 2008. Avail-
able as technical report RISC-Linz 08-09 at http://www.risc.uni-linz.ac.at/
publications/download/risc_3452/wrs2008.pdf.

R. Thiemann, J. Giesl, and P. Schneider-Kamp. Deciding innermost loops. In
Proc. RTA 08, LNCS 5117, pp. 366—-380, 2008.

H. Zantema. Termination of term rewriting by semantic labelling. Fundamenta
Informaticae, 24:89-105, 1995.

12

http://tocl.acm.org/accepted/315gnaedig.ps
http://tocl.acm.org/accepted/315gnaedig.ps
http://www.risc.uni-linz.ac.at/publications/download/risc_3452/wrs2008.pdf
http://www.risc.uni-linz.ac.at/publications/download/risc_3452/wrs2008.pdf

	From outermost termination to innermost termination
	René Thiemann

