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1. INTRODUCTION

In the area of term rewriting, techniques for automated termination analysis have
been studied for decades. While early work focused on the development of suit-
able well-founded orders (see e.g. [Dershowitz 1987] for an overview), in the last
10 years much more powerful methods were introduced which can handle large
and realistic term rewrite systems (TRSs); see e.g. [Endrullis et al. 2008; Geser
et al. 2004; Hirokawa and Middeldorp 2005; Giesl et al. 2006¢; Zantema 2003].
Moreover, numerous powerful automatic tools for termination analysis of TRSs
have been developed whose power is demonstrated at the annual International
Termination Competition. For more information on the competition, we refer to
http://termination-portal.org/wiki/Termination_Competition.

However, in order to make methods for termination analysis of term rewriting
applicable in practice, one has to adapt them to real existing programming lan-
guages. In this paper, we show for the first time that termination techniques from
term rewriting are indeed very useful for termination analysis of functional pro-
gramming languages. Specifically, we consider the language Haskell [Peyton Jones
2003], which is one of the most popular functional programming languages.

Since term rewriting itself is a Turing-complete programming language, in princi-
ple it is of course possible to translate any program from any programming language
into an equivalent TRS and then prove termination of the resulting TRS. However
in general, it is not clear how to obtain an automatic translation that creates TRSs
which are suitable for existing automated termination techniques. In other words,
a naive translation of programs into TRSs is likely to produce very complicated
TRSs whose termination can hardly be shown by existing automated techniques
and tools.

Although functional programming languages are in some sense “close” to term
rewriting, the application and adaption of TRS-techniques for termination analysis
of Haskell is still challenging for several reasons:

e Haskell has a lazy evaluation strategy. However, most TRS-techniques ignore
such evaluation strategies and try to prove that all (or all innermost) reductions
terminate.

e Defining equations in Haskell are handled from top to bottom. In contrast, for
TRSs, any rule may be used for rewriting.

e Haskell has polymorphic types, whereas TRSs are untyped.

e In Haskell-programs with infinite data objects, only certain functions are termi-
nating. But most TRS-methods try to prove termination of all terms.

e Haskell is a higher-order language, whereas most automatic termination tech-
niques for TRSs only handle first-order rewriting.

There are many papers on verification of functional programs (see e.g. [Kobayashi
2009; Ong 2006; Rondon et al. 2008] for some of the most recent approaches). How-
ever, up to now there exist only few techniques for automated termination analysis

IVery recently, there has been work on termination analysis of rewriting under an outermost
evaluation strategy [Endrullis and Hendriks 2009; Gnaedig and Kirchner 2008; Raffelsieper and
Zantema 2009; Thiemann 2009], which however does not correspond to the lazy evaluation strategy
of Haskell (as illustrated later in Section 2.2).
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of functional languages. Methods for first-order languages with strict evaluation
strategy were for example developed in [Giesl 1995; Lee et al. 2001; Manolios and
Vroon 2006; Walther 1994], where the size-change method of [Lee et al. 2001] was
also extended to the higher-order setting [Sereni and Jones 2005; Sereni 2007]. The
static call graph constructed by the methods of [Sereni and Jones 2005; Sereni
2007] is related to the graphs constructed in our approach in order to analyze ter-
mination. However, the size-change method fixes one particular order to compare
values for each data type. (This also holds for higher-order types whose values
are closures. These closures are typically compared by the subtree order.) Here
our approach is more flexible, because the orders to compare values are not fixed.
Instead, we translate all data objects (including objects of higher-order type) into
first-order terms and afterwards, one can use existing techniques from term rewrit-
ing to automatically generate suitable well-founded orders comparing these terms.
For a thorough comparison of the size-change method with techniques from term
rewriting, we refer to [Thiemann and Giesl 2005].

For higher-order languages, several papers study how to ensure termination by
typing (e.g. [Abel 2004; Barthe et al. 2000; Blanqui 2004; Xi 2002]) and [Telford and
Turner 2000] define a restricted language where all evaluations terminate. A suc-
cessful approach for automated termination proofs for a small Haskell-like language
was developed in [Panitz and Schmidt-Schaufl 1997] and extended and implemented
in [Panitz 1997].2 This approach is related to the technique of [Gnaedig and Kirch-
ner 2008], which handles outermost evaluation of untyped first-order rewriting.
However, these are all “stand-alone” methods which do not allow the use of mod-
ern termination techniques from term rewriting. Indeed, the general opinion of the
Haskell community was that “current advances in automatic termination proofs are
still limited, especially for lazy programs” [Xu et al. 2009).

In our approach we build upon the method of [Panitz and Schmidt-Schauf§ 1997,
but we adapt it in order to make TRS-techniques applicable.® As shown by our
experimental evaluation, the coupling with modern powerful TRS-techniques solves
the previous limitations of termination methods for lazy functional programs. Now
automated termination proofs for functions from real Haskell-libraries indeed be-
come feasible.

We recapitulate Haskell in Section 2 and introduce our notion of “termination”.
As described in Section 3, to analyze termination, our method first generates a cor-
responding termination graph (similar to the “termination tableaux” in [Panitz and
Schmidt-Schaufl 1997]). But in contrast to [Panitz and Schmidt-Schaufi 1997], then
our method transforms the termination graph into dependency pair problems which
can be handled by existing techniques from term rewriting (Section 4). Our ap-

2In addition to methods which analyze the termination behavior of programs, there are also several
results on ensuring the termination of program optimization techniques like partial evaluation, e.g.
[Glenstrup and Jones 2005]. Here, in particular the approach of [Sgrensen and Gliick 1995] uses
graphs that are similar to the termination graphs in [Panitz and Schmidt-Schaufl 1997] and in our
approach.

3 Alternatively as discussed in [Giesl and Middeldorp 2004], one could try to simulate Haskell’s
evaluation strategy by context-sensitive rewriting [Lucas 1998]. But in spite of recent progress in
that area (e.g. [Giesl and Middeldorp 2004; Alarcén et al. 2006; Alarcén et al. 2008]), termination
of context-sensitive rewriting is still hard to analyze automatically.
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proach can deal with any termination graph, whereas [Panitz and Schmidt-Schaufl
1997] can only handle termination graphs of a special form (“without crossings”).*
While the dependency pair problems in Section 4 still contain higher-order func-
tions, in Section 5 we improve the construction in order to obtain first-order de-
pendency pair problems. Section 6 extends our approach to handle more types of
Haskell, in particular type classes. We implemented all our contributions in the
termination prover AProVE [Giesl et al. 2006b]. Section 7 presents extensive exper-
iments which show that our approach gives rise to a very powerful fully automated
termination tool. More precisely, when testing it on existing standard Haskell-
libraries, it turned out that AProVE can fully automatically prove termination of
the vast majority of the functions in the libraries. This shows for the first time that

e it is possible to build a powerful automated termination analyzer for a functional
language like Haskell and that

e termination techniques from term rewriting can be successfully applied to real
programming languages in practice.

2. HASKELL

A real programming language like Haskell offers many syntactical constructs which
ease the formulation of programs, but which are not necessary for the expressiveness
of the language. To analyze termination of a Haskell-program, it is first checked for
syntactical correctness and for being well typed. To simplify the subsequent ter-
mination analysis, our termination tool then transforms the given Haskell-program
into an equivalent Haskell-program which only uses a subset of the constructs avail-
able in Haskell. We now give the syntax and semantics for this subset of Haskell. In
this subset, we only use certain easy patterns and terms (without “\”), and we only
allow function definitions without “case”-expressions or conditionals. So we only
permit case analysis by pattern-matching left-hand sides of defining equations.’
Indeed, any Haskell-program can automatically be transformed into a program
from this subset, see [Swiderski 2005]. For example, in our implementation, lambda
abstractions are removed by a form of lambda lifting. More precisely, we replace ev-
ery Haskell-term “\ ¢; ...t, — t” with the free variables x1, ..., x,, by “f21...2,”.
Here, f is a new function symbol with the defining equation fzy ...z t1 ... ¢, =t

2.1 Syntax of Haskell

In our subset of Haskell, we permit user-defined data types such as
data Nats = Z | S Nats data List @ = Nil | Cons a (List a)

These data-declarations introduce two type constructors Nats and List of arity 0
and 1, respectively. So Nats is a type and for every type 7, “List 7”7 is also a

4We will illustrate the difference in more detail in Example 5.2.

50f course, it would be possible to restrict ourselves to programs from an even smaller “core”-
Haskell subset. However, this would not simplify the subsequent termination analysis any further.
In contrast, the resulting programs would usually be less readable, which would also make it
harder for the user to understand their (automatically generated) termination proofs.
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type representing lists with elements of type 7. Apart from user-defined data-
declarations, there are also pre-defined data-declarations like

data Bool = False | True.

Moreover, there is a pre-defined binary type constructor — for function types. So
if 71 and 7o are types, then 71 — 7o is also a type (the type of functions from 7
to 72). Since Haskell’s type system is polymorphic, it also has type variables like a
which stand for any type, and “Lista” is the type of lists where the elements can
have any type a. So the set of types is the smallest set which contains all type
variables and where “d 7y ...7,” is a type whenever d is a type constructor of arity
m and Tq,..., T, are types with n < m.6

For each type constructor like Nats, a data-declaration also introduces its data
constructors (e.g., Z and S) and the types of their arguments. Thus, Z has arity 0
and is of type Nats and S has arity 1 and is of type Nats — Nats.

Apart from data-declarations, a program has function declarations.

Ezample 2.1 (take and from). In the following example, “from z:” generates the
infinite list of numbers starting with x and ‘“take n xs” returns the first n elements
of the list xs. The type of from is “Nats — (List Nats)” and take has the type
“Nats — (Lista) — (Lista)” where 11 — T — T3 stands for 7 — (72 — 73). Such
type declarations can also be included in the Haskell-program, as shown below.

from :: Nats — (List Nats) take :: Nats — (Lista) — (Lista)
froma = Consz (from (Sx)) take Z zs = Nil
taken Nil = Nil

take (Sn) (Consz xs) = Consz (taken xs)

In general, the equations in function declarations have the form “f¢;...¢, ="
for n > 0. The function symbols f at the “outermost” position of left-hand sides
are called defined. So the set of function symbols is the disjoint union of the (data)
constructors and the defined function symbols. All defining equations for f must
have the same number of arguments n (called f’s arity). The right-hand side r is an
arbitrary term, whereas ¢y, ..., £, are special terms, so-called patterns. Moreover,
the left-hand side must be linear, i.e., no variable may occur more than once in
“fly... 0,7,

The set of terms is the smallest set containing all variables, function symbols,
and well-typed applications (1 t2) for terms ¢; and to. As usual, “t; tot3” stands
for “((t1t2)ts)”, etc. The set of patterns is the smallest set with all variables and
all linear terms “ct;...t,” where ¢ is a constructor of arity n and ti,...,t, are
patterns.

The positions of t are Pos(t) = {e} if ¢ is a variable or function symbol. Oth-
erwise, Pos(t1t2) = {e} U{ln | m € Pos(t1)} U{27 | m € Pos(t2)}. As usual, we
define t|. = t and (t1t2)|ix = tilx for ¢ € {1,2}. The term ¢ is a subterm of t,
i.e. ¢ <t, if a position 7 of ¢ exists such that t|, = q. The head of ¢ is t|;» where

6Moreover, Haskell also has several built-in primitive data types (e.g., Int, Char, Float, ...) and
its type system also features type classes in order to permit overloading of functions. To ease the
presentation, we ignore these concepts at the moment and refer to Section 6 for an extension of
our approach to built-in data types and type classes.
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n is the maximal number such that 1™ € Pos(t). So the head of t =taken zs (i.e.,
“(taken) zs”) is t|11 =take. Let V(¢) denote the set of variables of a term.

2.2 Operational Semantics of Haskell

Given an underlying program, for any term ¢ we define the position e(t) where the
next evaluation step has to take place due to Haskell’s lazy evaluation strategy. In
general, e(t) is the top position e. There are two exceptions. First, consider terms
“fti...tntngr... ty” where arity(f) = n and m > n. Here, f is applied to too many
arguments. Thus, one considers the subterm “f¢;... t,” at position 1™~" to find
the evaluation position. The other exception is when one has to evaluate a subterm
of “fti1...t,” in order to check whether a defining f-equation “f¢;... ¢, = r”
will afterwards become applicable at top position. We say that an equation £ = r
from the program is feasible for a term ¢ and define the corresponding evaluation
position ey(t) w.r.t. £ if head(¢) = head(t) = f for some f and either”

(a) £ matches t (then we define ey(t) =€), or

(b) for the leftmost outermost position® 7 where head(|,) is a constructor and
where head(¢|,)#head(t|), the symbol head(t|,) is defined or a variable.
Then ey(t)=m.

So in Example 2.1, if ¢ is the term “takeu (fromm)” where u and m are variables,
then the defining equation “takeZxzs = Nil” is feasible for t. For ¢ = takeZxs,
the corresponding evaluation position is e¢(t) = 12. The reason is that @ = 12
is the leftmost outermost position where head(¢|,) = Z is a constructor that is
different from head(¢|,) = u, which is a variable. Thus, to decide whether the
defining equation is applicable to ¢, one would first have to evaluate ¢ at the position
eg(t) =12.

On the other hand, the defining equation “takeZ xs = Nil” is not feasible for the
term s = take (Swu) (fromm), since head(s|;2) = S is neither defined nor a variable.
In other words, this defining equation will never become applicable to s. But the
second defining equation “taken Nil = Nil” is feasible for s. For ¢ = taken Nil,
we obtain ey (s) = 2, as head(¢'|2) = Nil is a constructor and head(s|z) = from is
defined. So to find out whether “taken Nil = Nil” is applicable to s, one would have
to evaluate its subterm “fromm”.

Since Haskell considers the order of the program’s equations, a term ¢ is evaluated
below the top (at position eg(t)), whenever (b) holds for the first feasible equation
¢ =r (even if an evaluation with a subsequent defining equation would be possible

"To simplify the presentation, in the paper we do not regard data constructors with strictness
annotations “1”. However, by adapting the definition of e,(t), our approach can easily handle
strictness annotations as well. Indeed, in our implementation we permit constructors with strict-
ness annotations. By using such constructors, one can also express operators like “seq” which
enforce a special evaluation strategy. More precisely, one can define a new data type “data Strict a
= BeStrict !a”, a function “seq2 (BeStrict ) y = y”, and then replace every call “seq t1 t2” by
“seq2 (BeStrict t1) t2”.

8The leftmost outermost position can be formally defined as the smallest position w.r.t. <jes.
Here, <j¢, is the lexicographic order on positions where a position 71 = mj ...my is smaller than
a position ma = ny...ny if there is an ¢ € {1,..., min(k + 1,£)} such that m; = n; for all j < ¢,
and m; < n; if i < k. So for example, € <jex 1 <jex 11 <jez 12 <jeg 2.
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at top position). Thus, this is no ordinary leftmost outermost evaluation strategy.
By taking the order of the defining equations into account, we can now define the
position e(t) where the next evaluation step has to take place.

Definition 2.2 (Evaluation Position e(t)). For any term t, we define

1" ift=(ft1 ... thtng1 .. tm), [ is defined, m > n = arity(f),
andm=e( fty...t,)
e(t)ym, ift = (fty...tn), f is defined, n = arity(f), there are
e(t) = feasible equations for t (the first one is “¢ =17), eo(t) # ¢,
and T=e(tle, (1))
£, otherwise

So if ¢ = takeu (fromm) and s = take (Su) (fromm), then t[e(;) = u and se(s) =
fromm.

We now present Haskell’s operational semantics by defining the evaluation relation
—n. For any term ¢, it performs a rewrite step at position e(t) using the first
applicable defining equation of the program. So terms like “xZ” or “takeZ” are
normal forms: If the head of ¢ is a variable or if a symbol is applied to too few
arguments, then e(t) = € and no rule rewrites ¢ at top position. Moreover, a term
s=(fs1... 8m) with a defined symbol f and m > arity(f) is a normal form if no
equation in the program is feasible for s. If additionally head(s|e(s)) is a defined
symbol g, then we call s an error term (i.e., then g is not defined for some argument
patterns). We consider such error terms as terminating, since they do not start an
infinite evaluation (indeed, Haskell aborts the program when trying to evaluate an
error term).

For terms t = (¢ 1 ... t,,) with a constructor ¢ of arity n, we also have e(t) = ¢
and no rule rewrites t at top position. However, here we permit rewrite steps below
the top, i.e., t1,...,t, may be evaluated with —y. This corresponds to the behavior
of Haskell-interpreters like Hugs [Jones and Peterson 1999] which evaluate terms
until they can be displayed as a string. To transform data objects into strings,
Hugs uses a function “show”. This function can be generated automatically for
user-defined types by adding “deriving Show” behind the data-declarations. This
default implementation of the show-function would transform every data object
“cty...t,” into the string consisting of “c” and of show %1, ..., show t,. Thus,
show would require that all arguments of a term with a constructor head have to
be evaluated.

Definition 2.3 (Evaluation Relation —y). We have t —y s iff either

(1) t rewrites to s at the position e(t) using the first equation of the program
whose left-hand side matches t|e(t), or
(2)t=(cty...t,) for a constructor ¢ of arity n, t; —y s; for some 1 < i <mn,
and s = (C tl N ti—l S; ti+1 . tn).
For example, we have the infinite evaluation fromm —p Consm (from (Sm))
—pn Consm (Cons (Sm) (from (S(Sm)))) —n ... On the other hand, the following
evaluation is finite due to Haskell’s lazy evaluation strategy: take (SZ) (fromm) —ny

take (SZ) (Consm (from (Sm))) —n Consm (takeZ (from (Sm))) —n Consm Nil.
Note that while evaluation in Haskell uses sharing to increase efficiency, we ignored
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this in Definition 2.3, since sharing in Haskell does not influence the termination
behavior.

The reason for permitting non-ground terms in Definition 2.2 and Definition 2.3
is that our termination method in Section 3 evaluates Haskell symbolically. Here,
variables stand for arbitrary terminating terms. Definition 2.4 introduces our notion
of termination (which also corresponds to the notion of “termination” examined in

[Panitz and Schmidt-Schauf 1997]).°

Definition 2.4 (H-Termination). The set of H-terminating ground terms is the
smallest set of ground terms t such that

(a) t does not start an infinite evaluation t —y ...,

(b) if t =} (f t1...t,) for a defined function symbol f, n < arity(f), and the
term t' is H-terminating, then (f ¢1...t,t') is also H-terminating, and

(c) ift—} (ct1...t,) for a constructor c, then ti,...,t, are also H-terminating.

A term t is H-terminating iff to is H-terminating for all substitutions o with H-
terminating ground terms. Throughout the paper, we always restrict ourselves to
substitutions of the correct types. These substitutions ¢ may also introduce new
defined function symbols with arbitrary defining equations.

So a term is only H-terminating if all its applications to H-terminating terms
H-terminate, too. Thus, “from” is not H-terminating, as “fromZ” has an infinite
evaluation. But “take u (from m)” is H-terminating: when instantiating v and m
by H-terminating ground terms, the resulting term has no infinite evaluation.

Ezample 2.5 (nonterm). To illustrate that one may have to introduce new defin-
ing equations to examine H-termination, consider the function nonterm of type
Bool — (Bool — Bool) — Bool:

nonterm True x = True nonterm False z = nonterm (z True)

The term “nonterm False z” is not H-terminating: one obtains an infinite evaluation
if one instantiates x by the function mapping all arguments to False. But for this
instantiation, one has to extend the program by an additional function with the
defining equation g y = False. In full Haskell, such functions can of course be
represented by lambda terms and indeed, “nonterm False (\y — False)” starts an
infinite evaluation.

3. FROM HASKELL TO TERMINATION GRAPHS

Our goal is to prove H-termination of a start term t. By Definition 2.4, H-
termination of t means that to is H-terminating for all substitutions ¢ with H-
terminating ground terms. Thus, ¢ represents a (usually infinite) set of terms and
we want to prove that they are all H-terminating. Without loss of generality, we
can restrict ourselves to normal ground substitutions o, i.e., substitutions where
o(z) is a ground term in normal form w.r.t. —y for all variables z in t.

9As discussed in [Panitz and Schmidt-Schaul 1997], there are also other possible notions of ter-
mination like “lazy termination”, which however can be encoded via H-termination, see [Panitz
and Schmidt-Schaufl 1997; Raffelsieper 2007].

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, November 2010.



Automated Termination Proofs for Haskell by Term Rewriting : 9

We consider the program of Example 2.1 and the start term ¢ = take u (from m).
As mentioned before, here the variables u and m stand for arbitrary H-terminating
terms. A naive approach would be to consider the defining equations of all needed
functions (i.e., take and from) as rewrite rules and to prove termination of the
resulting rewrite system. However, this disregards Haskell’s lazy evaluation strategy.
So due to the non-terminating rule for “from”, we would fail to prove H-termination
of t.

Therefore, our approach begins by evaluating the start term a few steps. This
gives rise to a so-called termination graph. Instead of transforming defining Haskell-
equations directly into rewrite rules, we transform the termination graph into
rewrite rules. (Actually, we transform it into so-called “dependency pair prob-
lems”, as described in Section 4.) The advantage is that the initial evaluation steps
in this graph take the evaluation strategy and the types of Haskell into account and
therefore, this is also reflected in the resulting rewrite rules.

To construct a termination graph for the start term ¢, we begin with the graph
containing only one single node, marked with ¢. Similar to [Panitz and Schmidt-
Schauf} 1997], we then apply expansion rules repeatedly to the leaves of the graph
in order to extend it by new nodes and edges. As usual, a leaf is a node with no
outgoing edges. We have obtained a termination graph for t if no expansion rule is
applicable to its leaves anymore. Afterwards, we try to prove H-termination of all
terms occurring in the termination graph, as described in Section 4. A termination
graph for the start term “takew (fromm)” is depicted in Figure 1. We now describe
our five expansion rules intuitively. Their formal definition is given in Definition
3.1.

Case A

Bual take (Sn) (fromm)

Bual { take (Sn) (Consm (from (Sm))) } E

}

ParSplit { Consm (taken (from (Sm))) }

Ins
o

taken (from (Sm))

ParSplit

5,

K

Fig. 1. Termination graph for “takew (fromm)”.

When constructing termination graphs, the goal is to evaluate terms. However,
t = takeu (fromm) cannot be evaluated with —p, since it has a variable u at
its evaluation position e(t). The evaluation can only continue if we know how
u is going to be instantiated. Therefore, the first expansion rule is called Case
Analysis (or “Case”, for short). It adds new child nodes where w is replaced by
all terms of the form (¢ x1 ...x,). Here, ¢ is a constructor of the appropriate type
and x1,...,x, are fresh variables. The edges to these children are labelled with
the respective substitutions [u/(cxy ...x,)]. In our example, u is a variable of type
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Nats. Therefore, the Case-rule adds two child nodes B and C to our initial node A,
where u is instantiated by Z and by (Sn), respectively. Since the children of A were
generated by the Case-rule, we call A a “Case-node”. Every node in the graph
has the following property: If all its children are marked with H-terminating terms,
then the node itself is also marked with a H-terminating term. Indeed, if the terms
in nodes B and C are H-terminating, then the term in node A is H-terminating as
well.

Now the terms in nodes B and C can indeed be evaluated. Therefore, the Eval-
uation-rule (“Eval’) adds the nodes D and E resulting from one evaluation step
with —u. Moreover, E is also an Fval-node, since its term can be evaluated further
to the term in node F. So the Case- and Ewal-rules perform a form of narrowing
that respects the evaluation strategy and the types of Haskell. This is similar to
evaluation in functional-logic programming languages (e.g. [Hanus 2007]).

The term Nil in node D cannot be evaluated and therefore, D is a leaf of the
termination graph. But the term “Consm (taken (from (Sm)))” in node F may be
evaluated further. Whenever the head of a term is a constructor like Cons or a
variable,'” then one only has to consider the evaluations of its arguments. We
use a Parameter Split-rule (“ParSplit’) which adds new child nodes with the
arguments of such terms. Thus, we obtain the nodes G and H. Again, H-termination
of the terms in G and H obviously implies H-termination of the term in node F.

The node G remains a leaf since its term m cannot be evaluated further for any
normal ground instantiation. For node H, we could continue by applying the rules
Case, Fval, and ParSplit as before. However, in order to obtain finite graphs
(instead of infinite trees), we also have an Instantiation-rule (“Ins”). Since the
term in node H is an instance of the term in node A, one can draw an instantiation
edge from the instantiated term to the more general term (i.e., from H to A).
We depict instantiation edges by dashed lines. These are the only edges which
may point to already existing nodes (i.e., one obtains a tree if one removes the
instantiation edges from a termination graph).

To guarantee that the term in node H is H-terminating whenever the terms in
its child nodes are H-terminating, the Ins-rule has to ensure that one only uses
instantiations with H-terminating terms. In our example, the variables u and m
of node A are instantiated with the terms n and (Sm), respectively. Therefore, in
addition to the child A, the node H gets two more children I and J marked with n
and (Sm). Finally, the ParSplit-rule adds J’s child K, marked with m.

To illustrate the last of our five expansion rules, we consider a different start term,
viz. “take”. If a defined function has “too few” arguments, then by Definition 2.4
we have to apply it to additional H-terminating arguments in order to examine H-
termination. Therefore, we have a Variable Expansion-rule (“VarExp’) which
adds a child marked with “take x” for a fresh variable x. Another application of
VarEzxp gives “take x xs”. The remaining termination graph is constructed by the
rules discussed before. We can now give a formal definition of our expansion rules.

Definition 3.1 (Termination Graph). Let G be a graph with a leaf marked with
the term t. We say that G can be expanded to G’ (denoted “G = G'7) if G’

10The reason is that “cty ...t,” H-terminates iff the terms ¢1,...,%, H-terminate.
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results from G by adding new child nodes marked with the elements of ch(t) and
by adding edges from t to each element of ch(t). Only in the Ins-rule, we also
permit the addition of an edge to an already existing node, which may then lead to
cycles. All edges are marked by the identity substitution unless stated otherwise.

Eval: ch(t) = {t}, ift = (ft1...tn), f is a defined symbol, n > arity(f), t —p t.

Case: ch(t) = {to1,...,tox}, if t = (ft1...t,), [ is a defined function symbol,
n > arity(f), tlew) is a variable x of type “dry...7,,” for a type constructor d,
the type constructor d has the data constructors ¢; of arity n; (where 1 <1i < k),
and o; = [z/(c; 21 ... xp,)] for pairwise different fresh variables x1,...,2,,. The
edge from t to to; is marked with the substitution o;.

VarEzp: ch(t) = {tz}, if t = (ft1...tn), [ Is a defined function symbol, n <
arity(f), = Is a fresh variable.

ParSplit: ch(t) = {t1,...,tn}, if t = (ct1...t,), ¢ is a constructor or variable,
n > 0.

Ins: ch(t) = {s1,...,8m,t}, ift = (f t1...t,), t is not an error term, f is a defined
symbol, n > arity(f), t = to for some term t, o = [x1/51,...,Tm/Sm], Where
V() = {z1,...,2m}. Here, either t = (v y) for fresh variables'' x and y or
t is an Eval- or Case-node. Ift is a Case-node, then it must be guaranteed
that all paths starting in t reach an Eval-node or a leaf with an error term after
traversing only Case-nodes. This ensures that every cycle of the graph contains
at least one Eval-node. The edge from t to t is called an instantiation edge.

If the graph already has a node marked with t, then instead of adding a new
child marked with t, one may add an edge from t to the already existing node t.

Let G; be the graph with a single node marked with t and no edges. G is a
termination graph for t iff G; =* G and G is in normal form w.r.t. =.

If one disregards Ins, then for each leaf there is at most one rule applicable (and
no rule is applicable to leaves consisting of just a variable, a constructor, or an
error term). However, the Ins-rule introduces indeterminism. Instead of applying
the Case-rule on node A in Figure 1, we could also apply Ins and generate an
instantiation edge to a new node with # = (takew ys). Since the instantiation is
[ys/(from m)], the node A would get an additional child node marked with the non-
H-terminating term (fromm). Then our approach in Section 4 which tries to prove
H-termination of all terms in the termination graph would fail, whereas it succeeds
for the graph in Figure 1. Therefore, in our implementation we developed a heuristic
for constructing termination graphs. It tries to avoid unnecessary applications of
Ins (since applying Ins means that one has to prove H-termination of more terms),
but at the same time it ensures that the expansion terminates, i.e., that one really
obtains a termination graph. For details of this heuristic we refer to [Swiderski
2005].

Of course, in practice termination graphs can become quite large (e.g., a termi-
nation graph for “take u [(m:Int) .. ]” using the built-in functions of the Hugs
Prelude [Jones and Peterson 1999] already contains 94 nodes).'? Nevertheless, our

1See Example 3.2 for an explanation why instantiation edges to terms (x y) can be necessary.
12See http://aprove.informatik.rwth-aachen.de/eval/Haskell/take_from.html
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experiments in Section 7 will show that constructing termination graphs within
automated termination proofs is indeed feasible in practice.

Ezample 3.2 (tma). An instantiation edge to t = (v y) is needed to obtain ter-
mination graphs for functions like tma which are applied to “too many” arguments
in recursive calls.*®

tma :: Nats — a

tma (Sm) =tmamm

We get the termination graph in
Figure 2. After applying Case
and Eval, we obtain “tmamm”
in node D which is not an in-
stance of the start term “tman”
in node A. Of course, we could
continue with Case and FEwval
infinitely often, but to obtain a termination graph, at some point we need to apply
the Ins-rule. Here, the only possibility is to regard t = (tmamm) as an instance
of the term t = (xy). Thus, we obtain an instantiation edge to the new node E. As
the instantiation is [x/(tmam), y/m], we get additional child nodes F and G marked
with ‘tmam” and m, respectively. Now we can “close” the graph, since “‘tmam”
is an instance of the start term “‘tman” in node A. So the instantiation edge to
the special term (zy) is used to remove “superfluous” arguments (i.e., it effectively
reduces the analysis of “‘tmamm” in node D to the analysis of “tmam” in node
F). Of course, in any termination graph it suffices to have at most one node of the
form “(zy)”. To expand the node “(xy)” further, one uses the ParSplit-rule to
create its child node with the term y.

Fig. 2. Termination graph for “tman”

Theorem 3.3 shows that by the expansion rules of Definition 3.1 one can always
obtain normal forms.'4

THEOREM 3.3 (EXISTENCE OF TERMINATION GRAPHS).  The relation = s
normalizing, i.e., for any term t there exists a termination graph.

4. FROM TERMINATION GRAPHS TO DP PROBLEMS

Now we present a method to prove H-termination of all terms in a termination
graph. To this end, we want to use existing techniques for termination analysis
of term rewriting. One of the most popular termination techniques for TRSs is
the dependency pair (DP) method [Arts and Giesl 2000]. In particular, the DP
method can be formulated as a general framework which permits the integration
and combination of any termination technique for TRSs [Giesl et al. 2005a; Giesl
et al. 2006¢; Hirokawa and Middeldorp 2005; 2007]. This DP framework operates
on so-called DP problems (P, R). Here, P and R are TRSs where P may also have
rules ¢ — r where r contains extra variables not occurring in £. P’s rules are called

3Note that tma is not Hindley-Milner typeable (but has a principal type). Hence, Haskell can
verify the given type of tma, but it cannot infer the type of tma itself.
14 All proofs can be found in the appendix.
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dependency pairs. The goal of the DP framework is to show that there is no infinite
chain, i.e., no infinite reduction sjo1 —p t101 =% s209 —p toos —% ... where
s; — t; € P and o; are substitutions. In this case, the DP problem (P, R) is called
finite. See e.g. [Giesl et al. 2005a; Giesl et al. 2006¢; Hirokawa and Middeldorp
2005; 2007] for an overview of techniques to prove finiteness of DP problems.*?

Instead of transforming termination graphs into TRSs, the information available
in the termination graph can be better exploited if one transforms these graphs into
DP problems.'® Then finiteness of the resulting DP problems implies H-termination
of all terms in the termination graph.

Note that termination graphs still contain higher-order terms (e.g., applications
of variables to other terms like “xy” and partial applications like “takeu”). How-
ever, most methods and tools for automated termination analysis only operate on
first-order TRSs. Therefore, one option would be to translate higher-order terms
into applicative first-order terms containing just variables, constants, and a binary
symbol ap for function application, see [Kennaway et al. 1996; Giesl et al. 2005b;
Giesl et al. 2006a; Hirokawa et al. 2008]. Then terms like “xy”, “take u”, and
“take uzs” would be transformed into the first-order terms ap(x,y), ap(take,u),
and ap(ap(take, u), zs), respectively. In Section 5, we will present a more sophis-
ticated way to translate the higher-order terms from the termination graph into
first-order terms. But at the moment, we disregard this problem and transform
termination graphs into DP problems that may indeed contain higher-order terms.

Recall that if a node in the termination graph is marked with a non-H-terminating
term, then one of its children is also marked with a non-H-terminating term. Hence,
every non-H-terminating term corresponds to an infinite path in the termination
graph. Since a termination graph only has finitely many nodes, infinite paths have
to end in a cycle. Thus, it suffices to prove H-termination for all terms occurring
in strongly connected components (SCCs) of the termination graph. Moreover, one
can analyze H-termination separately for each SCC. Here, an SCC is a maximal
subgraph G’ of the termination graph such that for all nodes n; and ny in G’ there
is a non-empty path from ny to ns traversing only nodes of G’. (In particular, there
must also be a non-empty path from every node to itself in G’.) The termination
graph for “takew (fromm)” in Figure 1 has just one SCC with the nodes A, C, E, F,
H. The following definition is needed to generate dependency pairs from SCCs of
the termination graph.

Definition 4.1 (DP Path). Let G' be an SCC of a termination graph containing
a path from a node marked with s to a node marked with t. We say that this
path is a DP path if it does not traverse instantiation edges, if s has an incoming
instantiation edge in G', and if t has an outgoing instantiation edge in G'.

So in Figure 1, the only DP path is A, C, E, F, H. Since every infinite path
has to traverse instantiation edges infinitely often, it also has to traverse DP paths

15In the DP literature, one usually does not consider rules with extra variables on right-hand
sides, but almost all existing termination techniques for DPs can also be used for such rules. (For
example, finiteness of such DP problems can often be proved by eliminating the extra variables
by suitable argument filterings [Arts and Giesl 2000; Giesl et al. 2005a].)

16We will discuss the disadvantages of a transformation into TRSs at the end of this section.
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infinitely often. Therefore, we generate a dependency pair for each DP path. If
there is no infinite chain with these dependency pairs, then no term corresponds to
an infinite path, so all terms in the graph are H-terminating.

More precisely, whenever there is a DP path from a node marked with s to a
node marked with ¢ and the edges of the path are marked with oy, ..., ok, then we
generate the dependency pair soy ...o0r — t. In Figure 1, the first edge of the DP
path is labelled with the substitution [u/(Sn)] and all remaining edges are labelled
with the identity. Thus, we generate the dependency pair

take (Sn) (fromm) — taken (from (Sm)). (1)

The resulting DP problem is (P,R) where P = {(1)} and R = @.17 When us-
ing an appropriate translation into first-order terms as sketched above, automated
termination tools (such as AProVE [Giesl et al. 2006b], T1Ty [Korp et al. 2009],
and others) can easily show that this DP problem is finite. Hence, the start term
“takeu (fromm)” is H-terminating in the original Haskell-program.

Similarly, finiteness of the DP problem ({tma (Sm) — tmam}, @) for the start
term “tman” from Figure 2 is also easy to prove automatically.

The construction of DP problems from the termination graph must be done in
such a way that there is an infinite chain whenever the termination graph contains
a non-H-terminating term. Indeed, in this case there also exists a DP path in the
termination graph whose first node s is not H-terminating. We should construct
the DP problems in such a way that s also starts an infinite chain. Clearly if s is
not H-terminating, then there is a normal ground substitution ¢ where so is not
H-terminating either. There must be a DP path from s to a term ¢ labelled with the

substitutions oy, ..., 0 such that to is also not H-terminating and such that o is
an instance of o . ..oy (as o is a normal ground substitution and the substitutions
o1,...,0% originate from Case analyses that consider all possible constructors of a

data type). So the first step of the desired corresponding infinite chain is so —p to.
The node ¢ has an outgoing instantiation edge to a node ¢ which starts another DP
path. So to continue the construction of the infinite chain in the same way, we now
need a non-H-terminating instantiation of ¢ with a normal ground substitution.
Obviously,  matches ¢ by some matcher p. But while Zuo is not H-terminating, the
substitution po is not necessarily a normal ground substitution. The reason is that
t and hence p may contain defined symbols. The following example demonstrates
this problem.

Ezample 4.2 (take with p). A slightly more challenging example is obtained by
replacing the last take-rule in Example 2.1 by the following two rules, where p
computes the predecessor function.

take (Sn) (Consz xs) = Consz (take (p (Sn)) xs) p(Sz)==x

We consider the start term ‘takeu (fromm)” again. The resulting termination
graph is shown in Figure 3. The only DP path is A, C, E, F, H, which would result
in the dependency pair take (Sn) (fromm) — ¢ with ¢t = take (p (Sn)) (from (Sm)).
Now t has an instantiation edge to node A with t = takeu (fromm). The matcher
is p=[u/(p(Sn)),m/(Sm)]. So u(u) is not normal.

17Definition 4.9 will explain how to generate R in general.
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Case

A

take u (fromm)

[u/2]

take Z (fromm)

D

Eval take (Sn) (fromm)

foat { take (Sn) (Consm (from (Sm))) } E

!

ParSplit { Consm (take (p (Sn)) (from (Sm))) }F
Ins \
G {take(p(sn)) (from (Sm)) }H

L

Eval ParSplit

Fig. 3. Termination graph for new “takewu (fromm)”

In Example 4.2, the problem of defined symbols in right-hand sides of dependency
pairs can be avoided by already evaluating the right-hand sides of dependency pairs
as much as possible. To this end, we define an appropriate function ev. Before
presenting the formal definition of ev in Definition 4.4, we will motivate it step by
step. More precisely, we will discuss how ev(t) should be defined for different kinds
of nodes t.

So instead of a dependency pair soj...or — t we now generate the depen-
dency pair soy ...0, — ev(t). For a node marked with ¢, essentially ev(t) is the
term reachable from ¢ by traversing only Fval-nodes. So in our example we have
ev(p(Sn)) = n, since node 1 is an Evalnode with an edge to node K. Moreover, we
will define ev in such a way that ev(t) can also evaluate subterms of ¢ if ¢ is an Ins-
node or a ParSplit-node with a constructor as head. We obtain ev(Sm) = Sm for
node J and ev(take (p (Sn)) (from (Sm))) = taken (from (Sm)) for node H. Thus,
the resulting DP problem is again (P, R) with P = {(1)} and R = @.

To show how ev(t) Case
should be defined for [b/True]

ParSplit-nodes where
head(t) is a variable, we
consider the function
nonterm from Example
2.5 again. The termina-
tion graph for the start
term  “nontermbz” is
given in Figure 4. We
obtain a DP path from
node A with the start term to node E with “nonterm (x True) 2” labelled with the
substitution [b/False]. So the resulting DP problem only contains the dependency
pair “nonterm Falsez — ev(nonterm (z True) 2)”. If we defined ev(z True) = x True,
then ev would not modify the term “nonterm (x True)2”. But then the resulting
DP problem would be finite and one could falsely prove H-termination. (The rea-
son is that the DP problem contains no rule to transform any instance of “z True”
to False.) But as discussed in Section 3, x can be instantiated by arbitrary H-

Fig. 4. Termination graph for “nontermbz”
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terminating functions and then, “z True” can evaluate to any term of type Bool.
Therefore, we should define ev in such a way that it replaces subterms like “x True”
by fresh variables.

Let Ug be the set of all ParSplit-nodes'® with variable heads in a termination
graph G. In other words, this set contains nodes whose evaluations can lead to any
term of a given type.

Ug = {t |t is a ParSplit-node in G with t = (xty ... t,)}

Recall that if ¢ is an Ins-node or a ParSplit-node with a constructor head, then
ev proceeds by evaluating subterms of t. More precisely, let t = £[z1 /51, ..., Tm /Sm),
where either £ = (¢ x1...x,,) for a constructor ¢ (then t is a ParSplit-node) or
t is an Ims-node and there is an instantiation edge to f. In both cases, ¢ also
has the children sq,...,s,. As mentioned before, we essentially define ev(t) =
tlri/ev(s1), ..., 2m/ev(sy)]. However, whenever there is a path from s; to a term
from Ug (i.e., to a term (z...) that ev approximates by a fresh variable), then
instead of ev(s;) one should use a fresh variable in the definition of ev(t). A fresh
variable is needed because then an instantiation of s; could in principle evaluate to
any value.

Ezample 4.3 (ev for Ins-nodes). Consider the following program:

fZz=f(dz2)z2 der=cz Case /}_\_[‘z/“"”

The termination graph for the start term g,
“axz2” is depicted in Figure 5. From the DP

path A, C, D, we obtain the dependency pair s
“Zz— ev(f (id z Z) z)”. Note that node

D is an Ins-node where (f (id z Z) z) =  ms(;
(frz)[x/(idz2Z), 2/2], ie., here we have t =
(fz 2). Eval

If one defined ev on Ins-nodes by simply ap-
plying it to the child-subterms, then we would
get ev(f (id z Z) z) = f ev(id z Z) ev(z).
Clearly, ev(z) = z. Moreover, (id z Z) (ie.,
node F) is again an Ins-node where (id z Z) = (z y)[z/(id 2), y/Z]. Thus,
ev(id z Z) = ev(id z) ev(Z) = z Z. Hence, the resulting dependency pair
“Zz— ev(f (idz2Z) z)” would be § Z z — f (2 Z) 2”. The resulting DP
problem would contain no rules R. As this DP problem is finite, then we could
falsely prove H-termination of f.

However, there is a path from node F with the child-subterm (id z Z) to node
G with the term (x y) which is in Ug. As discussed above, when computing
ev(f (id z Z) z), ev should not be applied to child-subterms like F, but in-
stead, one should replace such child-subterms by fresh variables. So we obtain
ev(f (id z Z) z) = f u z for a fresh variable u. The resulting dependency pair
fZ z — f u z indeed gives rise to an infinite chain.

Fig. 5. Termination graph for “fz 2"

Let the set PU¢g contain all nodes from which there is a path to a node in Ug.

18To simplify the presentation, we identify nodes with the terms they are labelled with.
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So in particular, we also have Ug C PUg. For instance, in Example 4.3 we have
Ug = {G} and PUg = {A,C,D,F,G}. Now we can define ev formally.

Definition 4.4 (ev). Let G be a termination graph with a node t. Then

x, for a fresh variable x, ift € Ug

t, if t is a leaf, a Case-node, or a VarExp-node
ev(t), ift is an Bval-node with child t
f[wl/tl, N ,,’Em/tm],

ev(t) = ift =t[x1/81,. ., Tm/Sm] and
e t is an Ins-node with the children s1,...,S,,t or
t is a ParSplit-node, t = (c xy ...x,,) for a constructor c
ot — { Yis for a fresh variable y;, if s; € PUg
¢ ev(s;), otherwise

Our goal was to construct the DP problems in such a way that there is an infinite
chain whenever s is the first node in a DP path and so is not H-terminating for a
normal ground substitution o. As discussed before, then there is a DP path from
s to t such that the chain starts with so —p ev(t)o and such that to and hence
ev(t)o is also not H-terminating. The node ¢ has an instantiation edge to some
node . Thus, t = t[x1/51,...,Zm/5m] and ev(t) = t[x1/ev(s1),...,Tm/ev(sm)],
if we assume for simplicity that the s; are not from PUg.

In order to continue the construction of the infinite chain, we need a non-H-
terminating instantiation of ¢ with a normal ground substitution. Clearly, if £ is
instantiated by the substitution [z1/ev(si)o, ...,z /ev(sy)o], then it is again
not H-terminating. However, the substitution [z1/ev(s1)o, ..., Zm/ev(sy)o] is not
necessarily normal. The problem is that ev stops performing evaluations as soon
as one reaches a Case-node (i.e., ev is not propagated over edges originating in
Case-nodes). A similar problem is due to the fact that ev is also not propagated
over instantiation edges.

Therefore, we now generate DP problems which do not just contain dependency
pairs P, but they also contain all rules R which might be needed to evaluate ev(s;)o
further. Then we obtain so —p ev(t)o —% to’ for a normal ground substitution
o’ where to’ is not H-terminating. Since ¢ is again the first node in a DP path, now
this construction of the chain can be continued in the same way infinitely often.
Hence, we obtain an infinite chain.

Ezample 4.5 (take with recursive p). To illustrate this, we replace the equation
for p in Example 4.2 by the following two defining equations:
p(S2) =2 p(Sz)=S(px)

For the start term ‘“takeu (fromm)”, we obtain the termination graph depicted in
Figure 6. So 1 is now a Case-node. Thus, instead of (1) we have the dependency
pair

take (Sn) (fromm) — take(p (Sn)) (from (Sm)), (2)

since now ev(p(Sn)) = p(Sn). Hence, the resulting DP problem must contain
all rules R that might be used to evaluate p (Sn) when instantiated by a normal
ground substitution o.
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Case

take u (fromm)

[u/Z]

take Z (fromm)

D

Eval

Bual { take (Sn) (Consm (from (Sm))) } E

Ins \
G {take (p(Sn)) (from (Sm)) JH

,,,,, ParSplit 3

[/

Case

[n/Z]
Eval

Fig. 6. Termination graph for “takew (fromm)” with modified p-equations

So for any term ¢, we want to detect the rules that might be needed to evaluate
ev(t)o further for normal ground substitutions o. To this end, we first compute
the set con(t) of those terms that are reachable from ¢, but where the computation
of ev stopped. In other words, con(t) contains all terms which might give rise to
further continuing evaluations that are not captured by ev. To compute con(t),
we traverse all paths starting in ¢. If we reach a Case-node s, we stop traversing
this path and insert s into con(t). Moreover, if we traverse an instantiation edge
to some node f, we also stop and insert # into con(t). So in the example of Figure
6, we obtain con(p(Sn)) = {p(Sn)}, since 1 is now a Case-node. If we had
started with the term ¢ = take (Sn) (fromm) in node ¢, then we would reach the
Case-node 1 and the node A which is reachable via an instantiation edge. So
con(t) = {p(Sn),takeu (fromm)}. Moreover, con also stops at leaves and at
VarEzxp-nodes t, since they are in normal form w.r.t. —y. Thus, here con(t) = &.
Finally, note that con is initially applied to Ims-nodes (i.e., to terms on right-hand
sides of dependency pairs). Hence, if a (sub)term ¢ is in PUg, then ev already
approximates the result of ¢’s evaluation by a fresh variable. Thus, one also defines
con(t) = @ for all t € PUg.

Definition 4.6 (con). Let G be a termination graph with a node t. Then

@, ift is a leaf or a VarExp-node ort € PUg
{t}, ift is a Case-node
con(t) ={ {t}Ucon(s;)U...U con(sy,), ift is an Ins-node with

the children si, ..., Sm,t and an instantiation edge from t to t
U chitd or ¢ €OD(t'),  otherwise

Now we can define how to extract a DP problem dpg. from every SCC G’ of
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the termination graph. As mentioned, we generate a dependency pair soy ...0p —
ev(t) for every DP path from s to ¢ labelled with oy, ..., 0% in G’. If t = [z /sy, ...,
T /Sm) has an instantiation edge to £, then the resulting DP problem must contain
all rules that can be used to reduce the terms in con(sy) U... U con(s,,). For
any term g, let rl(q) be the rules that can be used to reduce go for normal ground
substitutions . We will give the definition of rl afterwards.

Definition 4.7 (dp). For a termination graph containing an SCC G’, we define
dpe = (P,R). Here, P and R are the smallest sets such that

e “soy...0r —ev(t)” € P and

e rl(g) C R,

whenever G’ contains a DP path from s to t labelled with o1, ..., 0%, t = t[z1/s1,
.., Zm/Sm] has an instantiation edge to t, and q € con(s1) U...U con(sy,).

In Example 4.5, the termination graph in Figure 6 has two SCCs G (consisting
of the nodes A, ¢, E, F, H) and G (consisting of 1, N, P, Q). Finiteness of the
two DP problems dp, and dpg, can be proved independently. The SCC G only
has the DP path from A to H leading to the dependency pair (2). So we obtain
dpg, = ({(2)},R1) where Ry contains rl(g) for all ¢ € con(p (Sn)) Ucon(Sm) =
{p(Sn)}. Thus, Ry = rl(p(Sn)), i.e,, Ry will contain rules to evaluate p, but no
rules to evaluate take.!® Such rules are not needed in R since the evaluation of
take is already captured by the dependency pair (2). The SCC G2 only has the DP
path from 1 to Q. Hence, dpg, = (P2, R2) where P, consists of the dependency
pair “p(S(Sx)) — p(Sx)” (since ev(p(Sz)) = p(Sz)) and Rs contains rl(q) for
all ¢ € con(z) = @, i.e., Ry = @. Thus, finiteness of dpg, can easily be proved
automatically.

For every term s, we now show how to extract a set of rules rl(s) such that every
evaluation of so for a normal ground substitution o corresponds to a reduction
with rl(s).2° The only expansion rules which transform terms into “equal” ones
are Fval and Case. This leads to the following definition.

Definition 4.8 (Rule Path). A path from a node marked with s to a node marked
with t is a rule path if s and all other nodes on the path except t are Fval- or Case-
nodes and t is not an Eval- or Case-node. So t may also be a leaf.

In Figure 6, there are two rule paths starting in node 1. The first one is I, M, O
(since O is a leaf) and the other one is 1, N, P (since P is a ParSplit-node).

While DP paths give rise to dependency pairs, rule paths give rise to rules.
Therefore, if there is a rule path from s to ¢ labelled with o1, ..., 0%, then rl(s)
contains the rule soy ..o, — ev(t). In addition, rl(s) must also contain all rules
required to evaluate ev(t) further, i.e., all rules in rl(q) for ¢ € con(t).?!

Formally, this is because Definition 4.7 only includes con(s;) but not con(f) in R.

20More precisely, so —{ q implies so _’:l(s) q' for a term ¢’ which is “at least as evaluated” as
q (i.e., one can evaluate ¢ further to ¢’ if one also permits evaluation steps below or beside the
evaluation position of Definition 2.2. For more details, see the proofs in the appendix).

2180 if t = t[x1/81,- -, Tm/Sm] has an instantiation edge to Z, then rl(t) also includes all rules of
rl(f), since con(t) = {¢} Ucon(s1)U...Ucon(sy,). In contrast, in the definition of dp (Definition
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Definition 4.9 (rl). For a node labelled with s, rl(s) is the smallest set with

113

o “so1...0, —ev(t)” erl(s) and
o xl(g) C rl(s),

whenever there is a rule path from s to t labelled with o1,..., 0, and g € con(t).

In Example 4.5, we obtained the DP problem dpg, = ({(2)},rl(p(Sn))). Here,
rl(p (Sn)) consists of

p(SZ) — Z (due to the rule path from I to 0) (3)
p(S(Sz)) — S(p(Sx)) (due to the rule path from I to P), (4)

as ev does not modify the right-hand sides of (3) and (4). Moreover, the require-
ment “rl(¢) C rl(p(Sn)) for all ¢ € con(Z) and all ¢ € con(S(p(Sz)))” does not
add further rules. The reason is that con(Z) =@ and con(S(p(Sz)))={p(Sn)}.
Now finiteness of dpg, = ({2},{(3), (4)}) is also easy to show automatically.

Ezample 4.10 (applyToZero). Eml
Next consider the following program and A

the corresponding termination graph in appIyToZerog 777777 éff appIyToZerOT

1)
Figure 7.
VarEa: ParSpht
gx = applyToZerog applyToZerox =xZ
This example shows that one also has to I"S gy
. "

traverse edges resulting from VarExp when
Fig. 7. Termination graph for “gz”

constructing dependency pairs. Otherwise
one would falsely prove H-termination.
Since the only DP path goes from node A to
F, we obtain the DP problem ({gz — gy}, R) with R = rl(y) = @. This problem
is not finite and indeed, “gx” is not H-terminating, since gZ —y applyToZerog —n
gZ —y ... In contrast, the definition of rl stops at VarExp-nodes.

The following theorem states the soundness of our approach.

THEOREM 4.11 (SOUNDNESS). Let G be a termination graph. If the DP prob-
lems dpg are finite for all SCCs G' of G, then all nodes in G are H-terminating.*?

Ezample 4.12 (Incompleteness of our Approach). The converse of Theorem 4.11
does not hold. Consider the following program.

stuck :: Bool — Bool — (Bool — Bool) — a
stuck True False b = stuck (b True) (b True) b

4.7) we only consider the rules rl(q) for ¢ € con(s1)U...Ucon(sm), but not rl(f). The reason is
that if ¢ is a right-hand side of a dependency pair, then the evaluations of  are already captured
by the dependency pairs, as remarked in Footnote 19.

22Tnstead of dpgs = (P, R), for H-termination it suffices to prove finiteness of (P#, R), as shown
in the appendix. Here, P! results from P by replacing each rule (ft1 ...tn) — (gs1...6m) in P
by (ftt1...tn)—(g" 51 ...5m), where f# and g* are fresh “tuple” function symbols, see [Arts and
Giesl 2000].
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Clearly, the term (stuck zy b) is H-terminating, because there is no Boolean func-
tion b which returns both True and False when applying it to True. Nevertheless,
there exists no termination graph for the start term (stuckxyb) where the re-
sulting DP problem would be finite. The only dependency pair obtained from
the termination graph is (stuck TrueFalse b) — ev(stuck (b True) (bTrue)bd), i.e.,
(stuck True False b) — (stuckxyb). Hence, the resulting DP problem is obviously
not finite.

Although we have chosen to transform termination graphs into DP problems,
it would also be possible to transform termination graphs into TRSs instead and
then prove termination of the resulting TRSs. However, this approach has several
disadvantages. For example, if the termination graph contains a VarEzp-node
or a ParSplit-node with a variable as head, then we would obtain rules with
extra variables on right-hand sides and thus, the resulting TRSs would never be
terminating. In contrast, a DP problem (P, R) with extra variables in P can still
be finite, since dependency pairs from P are only applied at top positions in chains.
Note that due to the definition of ev, there are never any extra variables in the
rules R of the resulting DP problems (P, R).

5. FROM HIGHER-ORDER TERMS TO FIRST-ORDER DP PROBLEMS

Up to now, the termination graphs still contain higher-order terms and thus, higher-
order terms also occur in the DP problems resulting from these graphs. As discussed
in the beginning of Section 4, this is problematic since most approaches for auto-
mated termination analysis of term rewriting focus on first-order rewriting only. In
Section 4, we already mentioned a possible solution to this problem: higher-order
terms could be represented as applicative first-order terms using a special binary
function symbol ap (i.e., “map z zs” would be transformed into ap(ap(map, z), zs)).
But in spite of some recent approaches for termination analysis of applicative TRSs
[Giesl et al. 2005b; Hirokawa et al. 2008], termination techniques are usually con-
siderably more powerful on “ordinary” non-applicative rewrite systems. Therefore,
in this section we present an improvement which first renames the terms in the
termination graph into first-order terms.?? Here, we benefit from the structure of
the termination graph and thus, we do not construct “applicative terms” as above.
Afterwards, the DP problems are constructed from this renamed termination graph.
This results in DP problems that only contain first-order terms. In this way, we
avoid the disadvantages of the “brute-force method” that simply converts all terms
into applicative form. Another advantage of these renamed termination graphs is
that they allow us to treat types more accurately, as will be explained in Section
6.2.3.

The basic idea for this renaming is to introduce a new function symbol for (al-
most) every node of the termination graph. Consider again the program from
Example 4.5 and the associated termination graph from Figure 6. For node A, we
introduce a new function symbol f and replace “takeu (fromm)” by a term built

23The only exception are terms from Ug. These are not renamed into first-order terms, since ev
replaces them by fresh variables anyway when constructing DP problems from the termination
graph.
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with f. As arguments of f we take the variables occurring in “takeu (fromm)”. So
“takeu (fromm)” is replaced by the term “fwm”. This means that any term of the
form “taket; (fromtz2)” can now be represented as “f t1t3”.

Formally, to perform this renaming of the term “takeu (fromm)” into “fum”, we
use a renaming function r which is applied to each node of the termination graph.
The function r gives new names to the nodes in the graph, but it does not modify
variables and it also does not modify constructors if they occur as head symbols.

More precisely, each Eval-, Case-, or VarEzxp-node t is renamed to the term
r(t) = (fix1...x,), where f; is a new renaming function symbol for the term ¢
and V(t) = {z1,...,2,}. Here we always assume that there is a total order on the
variables to determine the order of the sequence x1,...,x,. Thus, instead of using
t in the construction of the left-hand sides of dependency pairs and rules, we now
use r(t). Note that all variables occurring in ¢ are still contained in r(¢). So if ¢
is the start node of a DP path or rule path, then when constructing the left-hand
sides of dependency pairs or rules, the substitutions on the DP path or rule path
are now applied to r(t). In Example 4.5, this means that the substitution [u/(Sn)]
on the DP path from node A to H must be applied to the renamed term “fum”
in node A. So the left-hand side of the dependency pair corresponding to the DP
path from A to His “f (Sn)m”.

Next we explain how r operates on Ins-nodes. For an Ins-node t with ch(t) =
{s1,...,5m,t}, where t is connected to node # via an instantiation edge and where
t = t[x1/51,- .., Zm/Sm], we do not introduce a fresh renaming function symbol
f+- Instead, we re-use the function symbol f; already introduced for £. The reason
is that ¢ is an instance of £. So while?* r(f) = (f; =1...2,), we now define
r(t) = (fir(s1)...v(sm)). Hence, now r(t) is also an instance of r(t). So for node
H in the termination graph of Example 4.5, we obtain

r(take (p(Sn)) (from(Sm))) = f r(p(Sn)) r(Sm)

Finally, we also define r on ParSplit-nodes. Here, the head symbol is not
changed and r is only applied to the arguments. So for a ParSplit-node t =
(cty...t,) where ch(t) = {t1,...,t,}, we have r(t) = (cr(t1)...r(¢,)). This holds
both for constructors and variables ¢. So for node J we have r(Sm) = Sr(m) = Sm,
since r does not modify leaves of the termination graph like “m”.

For the Case-node 1, we introduce a new function symbol g and obtain r(p (Sn))
=gn. So “gt3” stands for any term of the form “p (St3)”. So instead of the DP

take (Sn) (fromm) — take(p (Sn)) (from (Sm)), (2)
in Example 4.5 we now obtain the DP
f(Sn)m — f(gn)(Sm). (5)

This DP makes clear that the structure of the term (represented by f) does not
change when going from the left- to the right-hand side and that only the two
“arguments” of the term are modified. In the corresponding DP problem, up to

24However, r(f) = (f; z1...Tm) only holds if £ is not the special term (z y), see Definition 3.1.
In this special case where ¢ € Ug, we use a fresh renaming function symbol f; for the Ins-node t.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, November 2010.



Automated Termination Proofs for Haskell by Term Rewriting : 23

Eval

Parsplit | Consmi (take (p (Sn)) (from (Sm))) | F
Consm (f (gn) (S rn))

m take Sn)) (from-( Sm))
G f(gn)(Sm)

Fig. 8. Renamed termination graph for “takeu (fromm)”.

now we had the rules

p(SZ) — Z (due to the rule path from I to 0) (3)
p(S(Sz)) — S(p(Sx)) (due to the rule path from I to P) (4)

Since the start node 1 of the rule paths has been renamed from “p (Sn)” to “gn”,
we now have the rules

gZ — Z (due to the rule path from I to 0) (6)
g(Sz) — S(gx) (due to the rule path from I to P) (7)

instead. Indeed, the right-hand side of (7) is ev(r(S(p(Sx)))) = ev(Sr(p(Sz))) =

ev(S(gr(z))) =ev(S(gz)) =S (gx). So instead of the problem ({(2)}, {(3),(4)})
we now obtain the DP problem ({(5)}, {(6), (7)}) from the renamed termination

graph. The whole termination graph which results from Figure 6 by the renaming
r is depicted in Figure 8. To summarize, we obtain the following definition of r.
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Definition 5.1 (r). Let G be a termination graph and let t be a node in G. Then

t, if t is a leaf
(ftz1...xn), if t is an Eval-, Case-, VarExp-,
or Ins-node with instantiation edge tot € Ug,
where V(t) = {1,...,%n}
(cr(t1)...r(ty)), Iiftis a ParSplit-node with
r(t) = head(t) — ¢ and ch(t) = {t1,...,tn}
(fr(s1)...r(sm)), ift is an Ins-node with
t=t[x1/81,- - Tm/Sml,
ch(t) = {s1,...,5m,t}, t ¢ Ug,
andr(t) = (fx1...Tm)

Now the main soundness theorem (Theorem 4.11) still holds: if all DP problems
for the SCCs of the renamed termination graph are finite, then all terms in the
original termination graph are H-terminating.

Note that when using this renaming, all terms in DP problems resulting from a
termination graph correspond to first-order terms. The left-hand sides of DPs and
rules are constructed by renaming the start node (which results in a term of the
form (fx1...x,) for a fresh function symbol f) and by applying all substitutions
on a path to this term. The ranges of these substitutions contain only terms of
the form (cyi ...ym) where ¢ is a constructor with arity(c) = m. The right-hand
sides of DPs and rules are of the form ev(t), where ev replaces all subterms of
the form (xty ...tg) by fresh variables. So the renaming solves the problems with
higher-order terms containing “partial applications” of functions.

Ezample 5.2 (mapTree). To demonstrate this, we consider one of the most clas-
sical examples of higher-order functions, i.e., the map-function on lists which is then
used to define a map-function mapTree on variadic trees.

map :: (a —b) — (Lista) — (Listb)
map x Nil = Nil
map z (Cons y ys) = Cons (z y) (map z ys)

data Tree a = Node a (List (Tree a))

mapTree :: (a —b) — (Treea) — (Treeb)
mapTree g (Node e ts) = Node (g e) (map (mapTree g) ts)

For the term “mapTree g t”, we obtain the termination graph in Figure 9, where
the terms of the original termination graph are crossed out and are replaced by
the terms of the renamed termination graph. The termination graph has one SCC
G consisting of the nodes A, B, C, E, H, J, K, and L. If one considers the original
termination graph, then dp contains the following dependency pairs:

mapTree g (Node e (Cons y ys)) — mapTree g y
mapTree g (Node e (Cons y ys)) — map (mapTree g) ys
map (mapTree g) (Consy ys) — mapTree gy
map (mapTree g) (Consy ys) — map (mapTree g) ys)
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Case
f] gt

[t/Node e ts]

Eval
fg gets

ParSpltt

Node (g e) fgg ts)

map (mapTree g) ts-
fsgts

ParSplit

[ts/Nil] [ts/(Consy ys)]

Fig. 9. Renamed termination graph for “mapTreegt”.

Here, sometimes mapTree is applied to two arguments, but the left- and right-hand
sides of dependency pairs also contain the higher-order subterm “mapTree g” where
the second argument of mapTree is missing. Thus, these dependency pairs do not
correspond to ordinary first-order term rewriting, but they represent a challenging
form of recursion: mapTree calls itself recursively via a partial application in an
argument to the higher-order function map. However, this recursion structure is
substantially simplified when considering the renamed termination graph. Now one
obtains the following dependency pairs without any partial applications.

f1 g (Node e
f; g (Node e
fs g
fs g

— figy
— f3gys
— figy
— f3gys

Cons y ys)
Cons y ys)
Cons y ys)
Cons y ys)

Py

Note that this example cannot be handled by the approach of [Panitz and Schmidt-
Schaufl 1997] since one obtains a termination graph with “crossings”. The main
reason why our approach can deal with arbitrary termination graphs is the dif-
ference in the identification of recursive calls. [Panitz and Schmidt-Schaufl 1997]
build so-called recursive pairs and directly construct ordering constraints. A recur-
sive pair is only built from the target and the source node of each instantiation edge,
but not from the target of one instantiation edge and the source of another dif-
ferent instantiation edge. So for this example, [Panitz and Schmidt-Schaufl 1997]
would only build the recursive pairs (A,K) and (E,L). In contrast, we also con-
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struct dependency pairs for the the DP paths from A to L and from E to K which
are necessary to achieve a sound approach for termination graphs with crossings.

To translate the DPs and rules that result from the renamed termination graph
into real first-order terms, we introduce new function symbols f,, for every function
symbol f and every n € N, and apply the following translation tr:

tr(z) =z for variables z
tr( (ft1...tn)) = faltr(ty),...,tr(t,)) for function symbols f

After this translation, there is no connection between a function symbol f applied
to two arguments (which is translated to the symbol f3) and an application where
f is only applied to one argument (which is translated to the symbol f1). Indeed,
such remaining partial applications of functions no longer pose a problem. More
precisely, if a function symbol f is only applied to m arguments with m < arity(f),
then by rewriting with DPs or rules, it will never be possible to “supply” the
missing arguments which would be needed to evaluate f. The reason is that the
DPs and rules no longer contain any subterms of the form (xt; ...¢,). Moreover,
it is no longer possible to have rules in the DP problems which add more and more
arguments to a function symbol.

Ezample 5.3. To illustrate this, consider again the tma-program from Example
3.2 and the corresponding termination graph in Figure 2. If we abbreviate the fresh
function symbol “fimarn” by tma, then applying rl to the renamed node A yields
the rule “tma (Sm) — tmamm?”. Hence, after applying tr, we obtain the rule

tmay(S1(m)) — tmaz(m,m).

This rule does not correspond to the real behavior of tma, since the connection
between tma; and tmas is lost. However, this problem only occurs in SCCs of the
termination graph where an argument of a function symbol is “removed” via an
instantiation edge to the node “xy”. Thus, nodes like A are predecessors of “xy”,
i.e., they are contained in PUqg. According to the definition of con, one never
creates any rules for such nodes, even if “tman” occurred in the recursive call of
another function.

The renaming r has another important benefit. It ensures that one obtains DPs
and rules that are non-overlapping. As shown in [Giesl et al. 2005a], for such
DP problems it suffices to prove that they are finite w.r.t. innermost rewriting.
This has important advantages since in general, proving innermost termination is
significantly easier than proving full termination automatically.

6. IMPROVED HANDLING OF TYPES

In this section, we improve our method by considering also built-in primitive data
types (Section 6.1) and by handling type classes and overloading (Section 6.2).
6.1 Pre-defined Data Types

To treat the pre-defined data types Int, Integer, Char, Float, and Double of Haskell, we
use a very straightforward approach and simply represent them using the following
data-declarations:
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data Nats = Z | S Nats data Char = Char Nats
data Int = Pos Nats | Neg Nats data Float = Float Int Int
data Integer = Integer Int data Double = Double Int Int

So our termination analyzer internally converts every integer number into a term
built with the constructors Pos and Neg which take arguments of type Nats. Hence,
1 is converted into “Pos(SZ)” and the number 0 has two possible representations
“PosZ” and “NegZ”.2> Our representation of integers does not handle overflows,
i.e., it treats fixed-precision integers (Int) in the same way as arbitrary-precision
integers (Integer). In fact, the Haskell-specification [Peyton Jones 2003] does not
determine how to deal with overflow.26

Similarly we represent characters (Char) by the type Nats. Floating-point num-
bers are internally represented as fractions and we ignore their underflow and over-
flow, too. (Again, the Haskell-specification [Peyton Jones 2003] does not deter-
mine the implementation of floating-point numbers.) Other built-in data types
like Haskell’s lists and tuples simply correspond to user-defined “ordinary” types
with a different syntax. Thus, they are internally translated into the corresponding
ordinary types.

For each type, we internally implement the required primitive functions by ap-
propriate defining equations. For example, we use the following implementations
for addition of integers and multiplication of floating-point numbers.

primPlusint :: Int — Int — Int

primPlusint  (Pos ) (Neg y) = primMinusNats = y
primPlusint  (Neg x) (Pos y) = primMinusNats y «
primPlusint  (Pos ) (Pos y) = Pos (primPlusNats z y)
primPlusint  (Neg x) (Neg y) = Neg (primPlusNats z y)

primPlusNats :: Nats — Nats — Nats

primPlusNats Z Z =7

primPlusNats Z Sy) =Sy

primPlusNats (S z) Z =Sz

primPlusNats (Sz) (Sy) = S (S (primPlusNats z y))

250f course, this representation has disadvantages when considering “large” numbers. Very re-
cently, there has been work on extending termination methods from term rewriting such that they
can also deal with rewrite rules containing integers and other pre-defined data types [Falke and
Kapur 2008; Fuhs et al. 2009]. Then such data types do not have to be represented by terms
anymore. In future work, we will investigate the use of such extensions of term rewriting for
termination analysis of Haskell. Nevertheless, our experiments in Section 7 show that even the
above straightforward encoding of data types already yields an extremely powerful method for
automated termination analysis.

26 Moreover, we treat the functions primMinlnt and primMaxInt that return the smallest and largest
number of type Int as being non-H-terminating. In this way, our method does not prove termina-
tion for programs depending on the handling of overflow errors via primMinint and primMaxInt.
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primMinusNats :: Nats — Nats — Int

primMinusNats Z Z = Pos Z
primMinusNats Z (Svy) = Neg (S y)
primMinusNats (S z) z = Pos (S z)
primMinusNats (S z) (Sy) = primMinusNats z y

primMulFloat :: Float — Float — Float
primMulFloat  (Float 21 22) (Float y1 y2) =
Float (primMulint 21 y1) (primMulint 22 y2)

The result of more complex primitive functions is “approximated” by free vari-
ables. For example, consider the primitive sine function primSinFloat for the type
Float. The result of “primSinFloat ¢” for a term ¢ is irrelevant for the termination
behavior of most programs in practice. Thus, instead of implementing a complex
algorithm to compute such results, we decided to return a fresh variable for each
evaluation of primSinFloat. More precisely, we introduce a new primitive function
terminator of type a, which is replaced by a new fresh variable when building depen-
dency pairs or rules (i.e., ev(terminator) is a fresh variable). Then we use equations
like the following to define complex functions like primSinFloat:

primSinFloat = terminator

Finally, we describe how we handle Haskell’s built-in 10 functions. Since devices
could be non-responding, 10 functions that read from a device are considered to be
potentially non-terminating. Furthermore, primitive functions handling exceptions
are also considered to be possibly non-terminating, since exceptions bypass the
usual evaluation process of Haskell. All other 10 functions (in particular those that
only write to some device) are considered to be terminating.

6.2 Type Classes and Overloading

Up to now, we did not permit any use of type classes when analyzing the termination
behavior of Haskell-programs. In this section, we will extend our approach appro-
priately. Section 6.2.1 illustrates the concept of type classes in Haskell. Afterwards,
Section 6.2.2 describes how to construct termination graphs for Haskell-programs
with type classes and how to obtain DP problems from these termination graphs.
Finally, Section 6.2.3 shows how to adapt the renaming refinement from Section 5
to Haskell-programs with type classes.

6.2.1 Type Classes in Haskell

Ezample 6.1 (Size and Max). Now we also permit programs with class- and in-
stance-declarations like the following.

data Maybe b = Nothing | Just b

class Size b where class Max b where
size :: b — Nats max :: b

instance Size Bool where instance Max Bool where
sizex = SZ max = True
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instance Size Nats where instance Max b = Max (Maybe b) where
sizex = Sz max = Just max

instance Size b = Size (Maybe b) where headSize :: Size b = List b — Nats
size (Just ) = S (size z) headSize (Cons = xs) = size x
size Nothing = S Z

The first class-declaration introduces the new type class Size with the method
size. This means that if a type T is an instance of the class Size, then there must be
a function size of type 7 — Nats. The idea is that for any object t, “sizet” should
compute the number of data constructors in t. Similarly, the type class Max with
the method max is introduced. Here, the idea is that for any type T of class Max,
max :: 7 should return a “largest” object of type 7. To declare that a type is an
instance of a class, an instance-declaration is used. Here, the type Bool is declared
to be an instance of the class Size. In the corresponding instance-declaration, the
function size of type Bool — Nats is defined. So this implementation of size is
executed whenever size is applied to an argument of type Bool. For example, we
have size True =S Z.

The next instance-declaration below states that the type Nats is also an instance
of the class Size and it implements the function size of type Nats — Nats. Thus,
size is overloaded and when evaluating a term ‘size t”, it depends on the type of
the argument term t which implementation of size is executed. For example, we
havesize (SZ)=S(SZ) .

The function headSize returns the size of the first element in a list. It can be
applied to any argument of type “List 7”7, provided that size is defined on arguments
of type 7. In other words, it can be applied whenever T is an instance of the type
class Size. So the type of the function headSize is not “List b — Nats” (since
the type variable b may not be instantiated by arbitrary types), but its type is
“Size b = List b — Nats”. Here, “Size b” is a class context which ensures that the
type variable b may only be instantiated by types from the class Size. In general,
class contexts take the form “(Cy 11,...,Cpn )", where the C; are classes and the
7; are types. Such a context means that the type variables in 1, ..., T, may only
be instantiated in such a way that the resulting instantiated types are instances of
the classes C1,...,C,.

Class contexts can also be used in instance-declarations and class-declarations.
For example, “instance Size b = Size (Maybe b)” means that the type “Maybet”
is an instance of the class Size, provided that 7 is also an instance of the class Size.
Similar statements hold for the instance-declarations of the class Max. For more
details about type classes in Haskell we refer to [Peyton Jones 2003].

In order to handle the overloading of functions properly, we now consider anno-
tated terms. An annotated term is a term where every variable and every function
symbol is annotated with a corresponding type. For example Nil Jenotes the term

7 Lista
Nil annotated by its type “Lista”. Similarly, Lis’:"\:!ts is also an annotated term, but

this time, Nil is not annotated by its most general type. A more complex annotated
term is Cons £ Nil ¢ we additionally want to state the class context

Nats— List Nats— List Nats Nats List Nats

for an annotated term, then we add it in front. This results in annotated terms
headSize

List b— Nats

like Size b= since the term headSize has the type “List b — Nats” and the
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class context “Size b”. Another example for an annotated term is Size a=—225- Z,

a—Nats a

Of course, annotated terms have to be well typed. So for terms of the form

(% f—zf—") we must have 11 = 75 — 73 — ... — T, — Tp41. Moreover, if a
n
term contains several occurrences of the same variable (i.e., %, .oy =), then we
n
must have 71 = ... = 7,.

From now on, we only consider annotated terms (which we simply refer to as
“terms”). While V(¢) denotes the set of (object) variables of a term, we now also
define V1 (t) to be the set of type variables occurring in an (annotated) term ¢. So
if t is Size a=—>25- £ then we have V(t) = {x} and V1 (t) = {a}. If a function f is

annotated with a type 7 and there is no defining equation ¢ = r with head(¢) = f
where the type of f in £ is the same or more general?” than the type 7, then we

SIZ€_ ip a term with the class context “Size a” is

a— Nats

say that é is indetermined. So
size

Bool— Nats
size

function symbol has no arity (e.g., arity(->%=-) is undefined). The reason is that
an overloaded function may have different arities in the different instances of a
class. In other words, f may have n arguments in the defining equations of one
instance declaration, but m arguments in the defining equations of another instance
declaration, where m can be different from n.

Similarly, concerning the operational semantics of Haskell, now an equation ¢ = r
with head(¢) = f can only be feasible for a term ¢ with head(t) = f if the type of
f in £ is the same or more general than the type of f in .

is not indetermined. Note also that an indetermined

indetermined, whereas

Ezample 6.2 (Feasible Equations for Overloaded Functions). To illustrate this,
consider the program of Example 6.1 and let t be the annotated term Size a=>—>25- Z,

a—Nats a
The left-hand side of the first defining equation of size (in the instance-declaration
of Bool) is 22— L This equation is not feasible, since the type “Bool — Nats”

of “size” in ¢ is not the same or more general than the type ‘Size a = a — Nats”
of “size” in t. So in fact, no equation is feasible for t.?8

In an analogous way, one also has to take the types of annotated terms into
account during pattern matching and during evaluations with “—y”.

6.2.2 Termination Graphs and DP Problems for Haskell with Type Classes

The next example illustrates the construction of termination graphs for programs
using type classes. We consider the program of Example 6.1 and the following start
term t:

size x

- (8)

a—Nats a

(Max a, Size a) =

In the beginning, the graph only consists of the node A marked with the start
term, as in Figure 10. Now we try to evaluate ¢t. But due to the overloading of the
function size, this is not possible since it is unclear which instance of size should

270f course, here one also has to take the respective class contexts into account.

28This would even hold if there were a (default) implementation of the function size in the decla-
ration of the class Size. The reason is that such a default implementation is only copied into those
instance declarations of Size where an implementation of the function size is missing. So even
then, there would not be any defining equation where “size” has the type “Size a = a — Nats”.
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Z&/Case{ size }
(Max a, Size a) = ——— = |q.
a—Nats a [T -
A

[a/Maybe b]

[a/Bool]

Case

size T
Maybe b — Nats Maybe b C

[;t/Nothin‘g/ \f“ust vl

size Nothing | Ev® size Just y)}
F

Eval size x

Bool—Nats  Bool

(Max b, Size b) =
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Fig. 10. Termination graph for “size x”

be used. An evaluation is only possible if we know how the type variable a is
instantiated. More precisely, there is no feasible defining equation “size... =...”
where the type of size is the same or more general than the type “(Max a, Size a) =
a — Nats” of size in the term ¢. In other words, this occurrence of the function
size is indetermined. Therefore, we introduce a new Type Case-rule (“TyCase”)
which works on type variables in essentially the same way that the Case-rule works
on object variables. To apply the TyCase-rule, we first check how the type variable
a in size’s type “(Max a, Size a) = a — Nats” could be instantiated in order to
make a defining equation of size applicable. Here, we proceed in two steps. In
the first step, we ignore all class contexts like (Max a, Size a). Then size has the
type “a — Nats” in the term ¢. Now we compute all possible substitutions of the
type variable a that would allow defining equations of size to become applicable.
In general, for any function f and any type 7, let instances(f, 7) be the set of the

most general substitutions {41, ...,y } such that there are defining equations for f
in which f has the type 61(7),...,dn(7) (or a more general one). So for example,
we obtain

instances(size,a — Nats) = {[a/Bool], [a/Nats], [a/Maybe b]} 9)

The general definition of instances is as follows. Without loss of generality, here
we assume that the type variables in the type 7 of the function f are disjoint from
the type variables occurring in class- and instance-declarations. (Otherwise, the
variables in the class- and instance-declarations are renamed.)

instances(f,7) = {0 | f is a method declared in a declaration “class C'b ..."”,
in this class declaration, f has the type 7/,
there is a declaration “instance cx = C 7" ...
4 is the mgu of 7 and 7/[b/7"]}

7

, and

Here, “ca” denotes an arbitrary class context.
To illustrate the definition, consider again our example, where f is the function
size and 7 is the type a — Nats. The function size is a method of the class Size (i.e.,
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C'is Size) and in this class-declaration, size has the type 7/ which is b — Nats. Now
we consider every instance of the class Size. For example, Bool is declared to be an
instance of the class Size. So here, cx is an empty class context and 7”7 is the type
Bool. Hence, in the defining size-equation of this instance declaration, the function
size has the type 7/[b/7"] which is Bool — Nats. Therefore, the first substitution &
in the set instances(size, a — Nats) is the mgu of 7 and 7/[b/7"], i.e., of a — Nats
and Bool — Nats. Thus, § = [a/Bool]. By considering the other two instances of
the class Size, one also obtains the other substitutions in instances(size,a — Nats),
see (9).

So if f occurs in a term t where f has the type 7, then instances(f, 7) computes
all substitutions § which would have to be applied to the type 7 in order to resolve
the overloading of f and to apply actual defining f-equations. However, the term
t usually also has a class context and this class context could rule out some of
the possible substitutions ¢ in instances(f,7). For example, the term ¢ from
(8) has the class context “(Max a, Size a)”. Hence, not all substitutions from
instances(size,a — Nats) can really be used. The first substitution [a/Bool] is
indeed possible, since Bool is an instance of both classes Max and Size. In other
words, the instantiated class context (Max Bool, Size Bool) is valid and can be
reduced to the empty class context. Hence, the first child node of ¢ that is created
by the TyCase-rule is marked with the term “size x” where size has the type
Bool — Nats and the class context is empty.

In contrast, the second substitution [a/Nats] from instances(size,a — Nats) is
ruled out by the class context of . When instantiating (Max a, Size a) with this
substitution, the resulting class context (Max Nats, Size Nats) could be reduced to
(Max Nats) since Nats is an instance of Size, but the remaining context is invalid
since Nats is not an instance of Max. So the substitution [a/Nats| may not be used
when applying the TyCase-rule to t.

Finally, when applying the substitution [a/Maybebd], we obtain the instantiated
class context (Max (Maybebd), Size (Maybebd)). According to the instance declara-
tions this can be reduced, since “Size (Maybe b)” holds whenever “Size b” holds
(and similar for Max). This results in the reduced class context (Max b, Size b).
So the second child node of ¢ that is created by the TyCase-rule is marked with
the term “size &” where size has the type “Maybe b — Nats” and it has the class
context “(Max b, Size b)”. In other words, the node A gets the child nodes B and ¢

which are marked with
size T size T

and (Max b, Size b) =
Bool—Nats  Bool Maybe b — Nats Maybe b

To perform this reduction of class contexts, we define the following relation — on
class contexts. Whenever a class context contains the constraint “C' (d 71 ...7m)”
for a class C, a type constructor d, and types 71, ..., 7, and whenever there exists
a declaration

instance (Cy aiyy ..., Croa;,) = C(day...ap) ...

with n > 0, then one can replace the constraint “C' (d 71 ...7)” by the new con-
straints Cy 7, ..., Cp 7;,,. For example, consider the constraint “Size (Maybe b)”.
So here C' is the class Size, the type constructor d is Maybe, and 7 is the type
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variable b. Due to the instance declaration
instance Size b = Size (Maybe b)
(where Cy corresponds to the class Size), we obtain the reduction
Size (Maybe b) — Size b.

It is clear that the relation — is confluent and terminating (as cyclic dependencies
of classes or “overlapping” instance declarations are forbidden in Haskell). For any
class context cx, let reduce(cz) be the normal form of cz w.r.t. —. In other words,
reduce(cz) is the result of applying — repeatedly as long as possible to cz. For
example, we have

e reduce( (Max Bool, Size Bool)) = ( ), since
(Max Bool, Size Bool) +— (Max Bool) — ()

e reduce( (Max Nats, Size Nats) ) = (Max Nats), since
(Max Nats, Size Nats) +— (Max Nats)

e reduce( (Max (Maybe b), Size (Maybe b)) ) = (Max b, Size b), since
(Max (Maybe b), Size (Maybe b)) — (Max (Maybe b), Size b) — (Max b, Size b)

Recall that we considered an annotated term ¢ containing a function f of type 7
and our goal was to compute all specializations of 7 such that the function f can
be evaluated. To this end, we first ignored the class context cx of the term ¢. Then
instances(f,7) contains all most general substitutions § of the type variables in
7 such that defining f-equations would become applicable if f had the type (7).
However, now we have to filter out those substitutions  from instances(f, 7) which
contradict the class context cx. To this end, we apply the type substitution § also
on the class context cx and then reduce the instantiated class context, i.e., we build
reduce(d(cx)). If reduce(d(cx)) is not invalid, then the TyCase-rule generates a
child node marked with ¢, but where the types of all variables and function symbols
in ¢ are refined by applying 0 to them. Moreover, the former class context czx is
replaced by reduce(d(cx)). A reduced class context is invalid whenever it contains
a constraint like “C' (d 71 ...7,)” where d is a type constructor. (Indeed, then
(d T1...7m) is not an instance of the class C', because otherwise “C' (d 71...7m)"
would have been reduced further with the relation —.) So the only constraints
which may occur in a valid reduced class context are of the form “C (a 71...7p)”
where a is a type variable. For instance, a valid reduced class context could contain
a constraint like “Max a” (where a is a type variable and there are no argument
types Ti ...Tm, i.e., m = 0). It could also contain a constraint like “Max (a Bool)”.

Given a set S of type substitutions and a class context cz, filter(S, cx) removes all
substitutions ¢ from S where the instantiated class context é(cz) would be invalid
(i.e., where reduce(d(cz)) contains constraints like “C' (d 71 ...7)"):

filter(S,cx) = {0 € S | reduce(d(cx)) does not contain any constraint
“C(dT...7m)" where d is a type constructor}

When computing the children of node A in Figure 10, S is instances(size,a —
Nats), i.e., S = {[a/Bool|, [a/Nats], [a/Maybe b]}. Moreover, cx is (Max a, Size a).
The substitutions [a/Bool] and [a/Maybe b] lead to valid reduced class contexts, as
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reduce((Max Bool, Size Bool)) = () and reduce((Max (Maybe b), Size (Maybe b)))
= (Max b, Size b). But the substitution [a/Nats] yields an invalid reduced class
context, as reduce( (Max Nats, Size Nats)) = (Max Nats). So here the reduced
context has the form (C' d) for the class C' = Max and the type constructor d = Nats.
Hence, we obtain

filter(S, cx) = { [a/Bool], [a/Maybe b] }.

For this reason, in the graph in Figure 10 the node A only has two children B
and ¢ corresponding to the substitutions [a/Bool] and [a/Maybe b], but no child
corresponding to the substitution [a/Nats].

For the nodes B and C we can apply the other expansion rules as before. Once
we have reached node J, we can again apply the Ins-rule, because the term in node
J is an instance of the term in node A. Here, one not only has to instantiate the
object variable z in a suitable way, but one also has to instantiate the type variable
a of the term in node A, i.e., x and a are instantiated by y and b, respectively.

Thus, we now adapt the definition of termination graphs (Definition 3.1) which
describes how to extend a graph with a leaf marked with ¢ by adding new children
ch(t). Now the nodes in the graph are marked with annotated terms. The expansion
rules of Definition 3.1 remain the same, except for three changes. The first change
consists of adding a new TyCase-rule in addition to the previous five rules for
extending graphs. In the following three expansion rules, we make the class contexts
explicit and let ¢ denote an annotated term without class context.

TyCase: ch(cz=t) = {cz1=01(t),...,cam=0n(t)} if head(t) is a defined function
symbol and head(t|ey)) = £ for a defined function symbol g which is inde-
termined. Here, let {61,...,6,,} = filter(instances(g,7),cz) and let cx; =
reduce(d;(cz)), for 1 < i < m. The edge from ca=t to cz;=0;(t) is marked with
the substitution 6;.

The second change concerns the VarExp-rule. This rule is used to add additional
arguments whenever a function symbol is applied to less arguments than its arity
requires. But for indetermined functions, the arity is not yet clear and thus, here
one should apply the TyCase-rule first. Thus, the VarExp-rule is now restricted
to function symbols that are not indetermined.

VarEzp: ch(ca=t) = {cast £}, if t = (% t1...tn), 7 has the form 7 — ... —

Tn+1
Tn — Tna1l — T, % is a defined function symbol which is not indetermined,
n < arity(%), x is a fresh variable.

The last change compared to Definition 3.1 is that in the Ims-rule, we now also
take the types and the class context into account.
Ins: ch(ca=t) = {ca1=81,. .., com=8m,a=t}, if t = (% t1...ts), t is not an error
term,?” % is a defined symbol which is not indetermined, n > arity(f), t =

T

29Note that the definition of error terms from Section 2 now also has to be adapted, since a
term where further evaluations are only blocked because of an indetermined overloaded function
symbol are no error terms. So an (annotated) term s is an error term if there is no feasible
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to for some term t, 0 = [v1/81,...,%m/Sm, @1/T1,...,a0/7e], where V() =
{x1,...,2m} and V1(t) = {a1,...,a;}. Moreover, the instantiated class context
o(cx) must be the same or more general than the context cz, i.e., reduce(c(cx))
C reduce(cr). Here, either t = (x y) for fresh variables z and y or t is an
Eval-, Case-, or TyCase-node. Ift is a Case- or TyCase-node, then it must
be guaranteed that all paths starting in ¢ reach an Eval-node or a leaf with an

error term after traversing only Case- or TyCase-nodes.

Now Theorem 3.3 still holds, i.e., for every (annotated) start term there exists a
termination graph.

The extraction of DP problems from the termination graph works as in Section 4.
The only change is that we have to extend the functions ev and con from Definition
4.4 and 4.6 to TyCase-nodes. Here, we simply treat TyCase-nodes in the same
way as Case-nodes. So for any annotated term ¢ in a TyCase-node, we define

ev(t)=t and con(t) = {t}.

Similarly, TyCase-nodes are also treated like Case-nodes in the definition of rule
paths (Definition 4.8).

So from the only SCC of the termination graph in Figure 10, we obtain the DP
problem ({t; — t2}, &), where

_ . size Just Yy
t = (Max (Maybe b), Size (Maybe b)) = o= S (= v <)
. Size
to = (Max b, Size b) = o Y

6.2.3 First-Order DP Problems for Type Classes

Now we show how to adapt the technique of Section 5 which renames the higher-
order terms in the termination graph to first-order terms such that it can also deal
with type classes. To rename a term t in a TyCase-node, we again proceed as for
Case-nodes and replace the term by a new function symbol f;. The arguments of f;
are the variables occurring in ¢. However, since we now deal with annotated terms,
we can also benefit from the type information in these terms. So in addition to the
object variables in V(t), the type variables in Vr(t) are also given to f; as additional
arguments. So each Fval-, Case-, TyCase-, or VarExp-node t is renamed to the
term r(t) = (frx1...xpa1...a¢), where f; is a new function symbol for the term
t, V() ={x1,...,zn}, and V1(t) = {a1,...,ae}. Note that while ¢ is an annotated
term, the renamed term r(t) is no longer annotated. Now the definition of r in
Definition 5.1 can be refined as follows for any termination graph G and any node
tin G.

equation for s, if head(s) and head(s|e(s)) = % are defined function symbols, and if % is not
indetermined. Moreover, a TyCase-node without children in the termination graph (i.e., where
filter(instances(g, 7), cx) = @) also corresponds to an error term. In the following, we will not
consider such nodes as TyCase-nodes anymore, but simply as error terms. So when speaking of
TyCase-nodes, we now assume that they have at least one child.
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t, if t is a leaf, where t results from the
annotated term t by removing all annotations
(fex1...xpay...ap), iftis an Eval-, Case-, TyCase-, VarEzp-,
or Ins-node with instantiation edge tot € Ug,
where V(t) = {z1,...,2n}
and Vr(t) = {a1,...,a¢}
r(t) = (cr(t)...r(tn)), if t is a ParSplit-node with
head(t) = € and ch(t) = {t1,...,tn}
(fr(s1)..x(sm)11...7¢), if t is an Ins-node with
t =tlxy/s1,. .. ,xm/sjn, ~a1/7'1, ey ap /T,
ch(t) ={s1,...,8m,t}, t ¢ Ug,
andr(t) = (fz1...Tmay...ap)

Again, our main soundness theorem (Theorem 4.11) still holds: if all DP problems
for the SCCs of the renamed termination graph are finite, then all terms in the
original termination graph are H-terminating.

Finally, we again use the translation tr from Section 5 to obtain first-order terms.
Here, tr also transforms types into terms (i.e., now there are function symbols for
type constructors like List, Maybe, etc.).3’ Note that due to the renaming r we
then again obtain non-overlapping DPs and rules. For overloaded functions, this
non-overlappingness is only due to the fact that the renaming r transforms the
types into additional arguments. As in Section 5, consequently it suffices to prove
that the resulting DP problems are finite w.r.t. innermost rewriting.

Ezxample 6.3. To illustrate the renaming for programs with type classes, we con-
sider the program from Example 6.1 and the start term t in (8) again. When
applying the renaming to the termination graph in Figure 10, instead of the de-
pendency pair given at the end of Section 6.2.2, we now obtain the dependency
pair

f(Just(y), Maybe(b)) — f(y,b).

(Here, we wrote “Maybe” instead of “Maybe,” etc. to ease readability.) Now it is
straightforward to prove automatically that the corresponding DP problem is finite.

The following example shows why it is crucial to add the type variables from Vy(t)
when translating terms with the function r. Indeed, in this example this addition is
required in order to prove termination, since only the type of the term is decreasing

30Note that due to constructor classes like Monad, there can be type variables m whose type is a
class. As an example consider the following program.

f::Monadm = a —mb—c

fey="fyy
To avoid “higher-order” terms resulting from types, we represent applications of type variables
to other types in applicative notation using the special symbol ap. So from the renamed ter-
mination graph of this example, we obtain a dependency pair of the form h(z,y,m,a,b,c) —
h(y,y, m,ap(m,b),b,c). As long as such an applicative notation is only used for the representa-
tion of types, this does not yield problems for automated termination proofs, because then ap is

not a defined symbol (i.e., there is no rule or dependency pair with ap at the root position of the
left-hand side).
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in the recursive call. This is another important advantage of the renaming, because
in this way, type information can be taken into account although the rewrite rules
in DP problems only contain untyped terms.

TyCase

[a/Maybe b]

Ezxample 6.4.  Consider
the program of Example 6.1
and the start term t: Bval

[a/Bool]

max
Maybe b

Max b =

max

Max a =

a

ParSplit| Just  max
ax b — Maybe b b

Its (original non-renamed)
termination graph is shown IHS@F _____
in Figure 11. If one ignores — —————

the types, then the DP con- Fig. 11. Original termination graph for “max”
structed from the only DP

path A, C, E, F is “max — max”. Showing termination for this dependency pair
must fail, due to the existence of the infinite chain “max —p max —p ...”. How-
ever, in reality, the function max terminates. For example, the term 50— has the
following reduction:

max Just max Just True
—H _— —H _—
Maybe Bool Bool — Maybe Bool Bool Bool — Maybe Bool  Bool

The type of the function symbol max decreases whenever the recursive equation
“max = Justmax” is applied. In other words, the start term t is terminating
since the type decreases in the DP path A, C, E, F. This becomes clear when
considering the corresponding re-
named termination graph in Figure
12. From this renamed graph, we ob-
tain the DP problem with the follow-
ing dependency pair.

f(Maybe(b)) — f(b)

TyCase

Since we have encoded types as extra
arguments, finiteness of this DP prob-
lem is easy to show automatically.

Fig. 12. Renamed termination graph for “max”

7. EXPERIMENTS

We implemented our technique in the automated termination prover AProVE [Giesl
et al. 2006b]. The implementation accepts the full Haskell 98 language defined in
[Peyton Jones 2003]. However, we do not handle extensions like quantified types
that are available in several implementations of Haskell. Our goal was to make
all recent advances in automated termination analysis of term rewriting applicable
for termination analysis of Haskell. The power of termination tools is compared
at the annual International Termination Competition and AProVE has been the
most powerful system for automated termination analysis of term rewriting in all
these competitions so far. Therefore, to solve the DP problems resulting from
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Haskell-programs, in our implementation we apply the termination techniques and
the strategy used by AProVE in the most recent competition 2009.

A main application of automated termination analysis in practice is to prove
termination of as many auxiliary functions as possible. In contrast, the “main”
function in a program is often non-terminating. For example, this main function
may read input from the user repeatedly and it only terminates if the user explicitly
“quits” the program. But it is important that most of the auxiliary functions used
by this main function are terminating. Therefore, to assess the power of our method,
we evaluated our implementation with the standard libraries FiniteMap, List, Monad,
Prelude, and Queue from the distribution of the popular Haskell-interpreter Hugs
[Jones and Peterson 1999]. These are indeed typical auxiliary functions that are
used in many real Haskell applications. As described in Section 6.1, we supplied
implementations for primitive functions like primPlusInt, primMulFloat, ... that
are declared but not implemented in the Hugs-prelude. Moreover, we also wanted
to evaluate the effects of the renaming improvement in Section 5. Therefore, in
addition to the full version of AProVE that contains all contributions of the current
paper, we also tested a version (called AProVEg, y) where we ignored the results of
Section 5. Since some of AProVE’s termination techniques are only applicable for
proving innermost termination, they could not be used in the variant AProVEp zix-

We ran AProVE and AProVE; v on a test corpus consisting of 1272 examples.
Here, we tried to prove H-termination of every exported function in the above
Hugs-libraries. For each such function, we first attempted a termination proof for
its “most general” version. Moreover, whenever the most general type of a function
had a class context “C'a”, then we also tried termination proofs for all versions
of the function where the type variable a was instantiated with an instance of the
type class C. The reason is that by considering all instances separately, we get a
finer analysis for those cases where the most general form of the function does not
H-terminate (or cannot be shown H-terminating), whereas the function can still be
proved H-terminating for certain instances.

The following table summarizes the results of our experimental evaluation. Each
termination proof was performed with a time limit of 5 minutes. Here, YES indi-
cates the number of functions where proving H-termination succeeded. MAYBE
gives the number of examples where the H-termination proof failed within 5 min-
utes and TIMEOUT shows the number of functions where no proof could be
found within the time limit. It should be mentioned that it is impossible to prove
H-termination for all 1272 examples, since at least 49 of the functions are actually
not H-terminating.

[ Version | YES | MAYBE | TIMEOUT |
AProVEpian || 717 (56.37 %) [ 104 (8.12 %) | 451 (35.46 %)
AProVE 999 (78.54 %) | 68 (5.35 %) | 205 (16.12 %)

The table shows that our approach is indeed very powerful for analyzing the
termination behavior of Haskell-functions — in particular, of auxiliary functions used
in Haskell-programs. Discounting the functions known to be not H-terminating,
AProVE can prove H-termination for 81.68 % of all functions in these libraries.
The examples where AProVE fails in proving H-termination are mostly functions
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on rational numbers, 10 functions, and several of those functions that require a
special evaluation strategy (due to the use of the “seq” operator). A MAYBE
typically results from cases where the resulting DP problems are not finite. (As
illustrated in Example 4.12, due to the incompleteness of our approach, this does not
necessarily imply non-H-termination of the original Haskell-function). The results
are similar to the results in the Termination Competitions, where a shorter time
limit of 1 minute was used. Indeed, 950 of the 999 successful termination proofs
above already succeed within 1 minute (and many of these proofs need only a few
seconds). So in fact, the time limit has no big impact on the success rate, as long
as one permits runtimes of at least 1 minute.

Moreover, the table also shows that AProVE is substantially more powerful than
AProVE; ,iv. In other words, the improvements of Section 5 lead to a significant
increase in power. Here, it is also interesting to investigate in which modules these
gains in power were achieved. The next table shows the numbers broken down
according to the modules.

[ Module | Version || YES | MAYBE | TIMEOUT |
AProVEpian || 116 (36.13 %) | 16 (4.98 %) | 189 (58.87 %)
FiniteMap | AProVE 258 (80.37 %) | 0 (0.00 %) | 63 (19.62 %)
AProVEpianw || 64 (36.78 %) | 29 (16.66 %) | 81 (46.55 %)
List AProVE 168 (96.56 %) | 4 (2.29 %) 2 (1.14 %)
AProVEp .y || 68 (85.00 %) | 11 (13.75 %) 1 (125 %)
Monad AProVE 69 (8625 %) | 11 (13.75 %) 0 (0.00 %)
AProVEp i || 464 (67.05 %) | 48 (6.93 %) | 180 (26.01 %)
Prelude AProVE 499 (72.10 %) | 53 (7.65 %) | 140 (20.23 %)
AProVEeram 5 (100.00 %) | 0 (0.00 %) 0 (0.00 %)
Queue AProVE 5 (100.00 %) | 0 (0.00 %) 0 (0.00 %)

So in particular for the modules FiniteMap and List, the number of functions where
H-termination can be proved is more than doubled by the contributions of Section
5. This is due to the high number of higher-order functions in these libraries. For
these functions, the better handling of higher-order terms by the renaming tech-
nique of Section 5 is very advantageous. Furthermore, the gain is more than 5 % for
the Prelude. This is also due to the better handling of higher-order functions, but
also due to the fact that the renaming technique results in non-overlapping DPs
and rules. Therefore, it suffices to prove only innermost termination. The tech-
niques to prove finiteness of DP problems for innermost rewriting are considerably
more powerful than the corresponding techniques for full rewriting. To access the
implementation via a web interface, for further information on our experiments,
and for further details of our method, we refer to:

http://aprove.informatik.rwth-aachen.de/eval/Haskell/

8. CONCLUSION

We presented a technique for automated termination analysis of Haskell which works
in three steps: First, it generates a termination graph for the given start term. Then
it extracts DP problems from the termination graph. Finally, one uses existing
methods from term rewriting to prove finiteness of these DP problems.
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A preliminary version of parts of this paper was already presented in [Giesl et al.
2006a]. However, the present paper extends [Giesl et al. 2006a] substantially:

(a) In [Giesl et al. 2006a], Haskell-terms with higher-order functions were converted
into applicative first-order terms for termination analysis. In contrast, in the
current paper we presented a technique to rename the terms in termination graphs
which avoids the problems of applicative terms, see Section 5. Moreover, in
this way we can improve the handling of types and convert Haskell-termination
problems to termination problems for innermost rewriting.

(b) In [Giesl et al. 2006a], we only considered a restricted version of Haskell without
type classes. In contrast, in Section 6 of the current paper, we extended our
approach to deal with type classes and overloading. Moreover, in [Giesl et al.
2006a] we did not handle any pre-defined data types of Haskell, whereas we now
included such data types.

(¢) In contrast to [Giesl et al. 2006a], the appendix of the present paper contains
the full proofs for the theorems. We have also included a detailed description of
our experimental evaluation in Section 7.

Moreover, compared to [Giesl et al. 2006a], several details were added and improved
throughout the paper.

In this paper, we have shown for the first time that termination techniques from
term rewriting are indeed suitable for termination analysis of an existing func-
tional programming language. Term rewriting techniques are also suitable for ter-
mination analysis of other kinds of programming languages. In [Schneider-Kamp
et al. 2009; Schneider-Kamp et al. 2010], we recently adapted the dependency pair
method in order to prove termination of Prolog programs and in [Otto et al. 2010;
Brockschmidt et al. 2010], it was adapted to prove termination of Java Bytecode.
While there have been impressive recent results on automated termination analysis
of imperative languages (e.g. [Albert et al. 2008; Berdine et al. 2006; Bradley et al.
2005; Chawdhary et al. 2008; Colon and Sipma 2002; Cook et al. 2006; Podelski
and Rybalchenko 2004a; 2004b; Spoto et al. 2010; Tiwari 2004]) the combination of
these results with approaches based on rewriting yields substantial improvements,
in particular for programs operating on user-defined data types.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Li-
brary by visiting the following URL: http://www.acm.org/pubs/citations/
journals/toplas/2010-V-N/p1i-.
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In the following, we give the proofs for all theorems in their most general form. So
for Theorem 3.3, we also include the refinements of Section 6 in order to handle
type classes and overloading. To ease readability, in the following we will sometimes
omit the annotations of terms (i.e., the types and class constraints).

THEOREM 3.3 (EXISTENCE OF TERMINATION GRAPHS).  The relation = s
normalizing, i.e., for any (annotated) term t there exists a termination graph.

PRrROOF. We will first construct a graph G in normal form w.r.t. = which contains
nodes marked with “fx;...z,” for all defined symbols f where the z; are pairwise
different variables and arity(f) = n. (For overloaded methods f of some class C,
G contains a different f-node for every instance of C.) How to construct G will be
explained below. Afterwards, by performing suitable expansion steps and by adding
instantiation edges to the nodes marked with “fx;...x,”, the graph G; (which
only consists of one node that is marked with ¢) can easily be transformed into
normal form. In the end, all nodes which are not reachable from ¢ are removed.3!

To construct G, we start with the nodes “fz;...x,” for all defined symbols f.
Currently, the nodes of G are not reached by any edges. By performing Case- and
FEval-steps, we obtain paths from “fzq...xz,” to all right-hand sides of f-rules.
Then we apply the following procedure: We apply ParSplit until we end up with
leaves of the form “gs;...s;” for defined symbols g. If g is indetermined, then
we apply the TyCase-rule to obtain children with leaves “gs;...s;” where g is
no longer indetermined. Now if k = arity(g), then we can add an instantiation

310f course, this strategy for constructing termination graphs is not optimal in practice, since
then one would have to prove termination of all occurring functions f. However, the purpose of
this proof is not to present a successful strategy, but just to show that termination graphs can
always be obtained.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright /server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
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edge to the already existing node “gx;...x;” and continue this process with the
nodes 1, ..., s (i.e., we apply ParSplit again until we reach leaves with a defined
symbol as head). If k < arity(g), then we perform a number of VarExzp-steps to
obtain a term where the number of arguments of g is arity(g). If k > arity(g), then
we perform Ins-steps with instantiation edges to the node “zy” until we obtain a
term where g’s number of arguments is arity(g). O

We now prove our main soundness theorem (Theorem 4.11). However, we only
give the proof for its most powerful version, i.e., we include the refinements of
Section 5 and Section 6. Hence, we distinguish between the original and the corre-
sponding renamed termination graph (see Section 5) and we include the handling
of type classes and overloading (see Section 6).

We first need a lemma about the semantics of ev, con, and rl (Lemma A.7) and
a lemma about the semantics of dp (Lemma A.9). To describe the semantics of ev,
con, and rl, we use the following relation =4 on annotated terms, which differs
from the evaluation relation —y by also permitting reductions at positions beside
or below the evaluation position.

Definition A.1 (=n). We define t = s iff t rewrites to s at a position m which
is not strictly above e(t) using the first equation of the program whose left-hand
side matches t|.

As an example, we consider the program of Example 4.5 and the term ¢; =
take (p (SZ)) (from Z). Here, t1|e(,) = p(SZ) and thus, t; —y takeZ (from Z). But
with =4, we can also evaluate the subterm (from Z) which is beside the evaluation
position and obtain t; =y take(p(SZ))(ConsZ (from (SZ))). Similarly, let ¢t =
takeZ (from Z). Here e(t2) = ¢ and thus, t2 —n Nil. But with =4, we can also
evaluate the subterm (fromZ) which is below the evaluation position and obtain
to =n takeZ (ConsZ (from (SZ))).

Since we now have renamed terms in the renamed termination graph, we need a
rewrite relation —, which does such a renaming for arbitrary terms.

Definition A.2 (—y, =, ,). The relation —, is the rewrite relation resulting
from the rewrite rules

t—r(t)

for all terms ¢ in the original (non-renamed) termination graph. Moreover, we
define =}, , as the composition of =}, and —7, i.e., as =}, o —}.

So for the program of Example 4.5 with the renamed termination graph in Figure
8, we get p(SZ) —, gZ and t; —F f(gZ) (from Z) for t; as above. (Moreover, we
also have p (SZ) —, gi1.) Thus, t; =, f (gZ) (ConsZ (from (S Z))).

The following lemma shows that = allows us to simulate all reductions that are
performed by the function ev. This lemma will be needed in order to describe the
semantics of ev in Lemma A.7. Here, for any node ¢ in the renamed termination
graph, we denote the corresponding node in the original (non-renamed) termination
graph by ¢°. Thus, r(t°) = t.

LEMMA A.3 (SIMULATION OF ev BY =y). Let G° be an original termination
graph and let G be the corresponding renamed termination graph. We consider the
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function ev for the renamed graph G. Let o be a substitution such that t°c =, o
holds whenever ev replaces a (sub)term t by a fresh variable .32 Then t°c =iy
ev(t)o holds for all nodes t° of G°.

PROOF. We use induction on the edge relation of G where we remove all in-
stantiation edges. This relation is well founded, since after the removal of the
instantiation edges, G is a tree.

We first consider the case where ev(t) = t. Then we have t°c —, r(t°)o = to =
ev(t)o and thus t°c =, . ev(t)o. Thus, it remains to consider the cases where
ev(t) #t.

If t is an Fvalnode with child ¢ then t° —y t°. Hence, t°c —y t°c and thus,
t°c =y t°0. By the induction hypothesis we obtain t°c =fr ev(f)o and hence
t°c =n t°0 =}, . ev(t)o = ev(t)o, ie., t°c =7, . ev(t)o.

If t € Ug, then ev(t) is a fresh variable z. Thus, by the prerequisite of the
lemma we know that t°c =}, zo = ev(t)o, i.e., t°c =}, . ev(t)o.

Finally, let t = t[x1/81, .-, Tk/Sky Thi1/Skt1s---sTm/Sm,a1/T1,--.,a/T¢] be an
Ins-node or a ParSplit-node with a constructor head, where we assume s, ..., S
¢ PUg and sg41,...,8m € PUg. Moreover, 7,..., 7, are types. Then the terms
Sk+1,- - -, Sm are replaced by fresh variables ygy1,...,¥ym in the term ev(t). Thus,
we have s{o =, y;0 for k+1 < i < 'm by the prerequisite of the lemma. The edges
from t to its children si,...,s; are no instantiation edges. Hence, the induction
hypothesis is applicable for s1, ..., s;. This implies
t°c
t:o[;vl/s‘l’, s TSPy T 1 /SR p1s o Tm /Sy Q1) T, ey g/ Te]O

= to[x1/890, ..., /830, Ty1/57, 10, ., Tm /55,0,

~ CLl/TlU,...,ag/TgU]
=y t°clx1/ev(s1)0, ...,k /€V(Sk)0, Tit1/Yk+t10, s T /Ym0,
_ CLl/TlU,...,ag/TgU]
—y tofxi/ev(s1)o, ..., 2k /ev(sg)o, Tii1/Yk+10, s Tm /Ym0,
) a1/7m0, ..., a0/ 700
tz1/ev(s1), ..., Tk /eV(Sk), Tht1/Yk+1s - Tm/Ym, A1/T1, .., Ge/Te]o
= ev(t)o O

Lemma A.7 about the semantics of ev, con, and rl shows a kind of converse
to Lemma A.3, i.e., how to simulate reductions with —y by ev, con, and rl.
Essentially, our goal is to show that if ¢ is a node in the renamed termination graph

and there is a reduction t°c —}; ¢, then we also have ev(t)o _>Ds€con(t) ri(s) 4 for

some term ¢’ with ¢ ={, . ¢".

Since the rules Usecon(t) rl(s) do not take o into account, this does not hold
in general if the terms introduced by o are evaluated in the reduction t°c —
q. A possibility would be to restrict ourselves to normal substitutions o, i.e., to
substitutions where o(x) is in normal form w.r.t. —y for all variables x. However,
to ease the proof of Lemma A.7, we consider a slightly larger class of substitutions.
We only require that o is evaluated enough in the reduction t°c —}; ¢. This means

32 According to Definition 4.4, ev replaces t by a fresh variable = whenever t € Ug or whenever t
is a subterm in PUg at a ParSplit- or Ins-node.
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that in this reduction we do not evaluate those terms introduced by ¢ which may
have a non-functional type. (Terms with a functional type of the form 7, — 75 may
give rise to future evaluations when they are used in subterms that supply them
with an argument. However, this does not lead to any problems for our desired
lemma, because ev replaces such subterms by fresh variables.)

We formalize this concept in the two following definitions. Here, “drop” replaces
all non-functional terms by fresh variables, except those terms whose head is already
a constructor.

Definition A.4 (drop,undrop). We define a function drop from annotated terms
to annotated terms as follows:
e drop(t) = t, if t has a functional type (i.e., an instance of the type a — b)
e drop(cty...tm) =cdrop(ty)...drop(tm), if ¢ is a constructor of arity m
e drop(t) = z:, otherwise; here x; is some fresh variable, where x; has the same
class context as t and it is annotated by t’s type

We define undrop as the inverse function of drop, i.e., undrop is the substitution
which replaces every variable x; by t. For any substitution o, let oqrop be the substi-
tution with o4rop () = drop(o(x)) for all variables x. (Here, we allow substitutions
with infinite domains.)

For example, if we have a data type

dataDa=C(a—a) |Ea |Gaa

and a defined function symbol f of type a, then drop({) = & drop( E i) =

a—Da a

ﬁ %, drop(i(aﬂgaw —aia) = 7@%:)1011 aia (since here, the subterm —aia has a
G f) =—G ; (since here, the whole term has

functional type), and drop(—2— <
the functional type a — D a).

Now we define that a substitution is evaluated enough for a reduction if this
reduction could also be performed when replacing all terms introduced by the sub-
stitution by fresh variables (except constructors and terms of functional type). The
constructors cannot be replaced since they are needed for pattern matching. The
terms of functional types cannot be replaced either since they can be substituted
for variables in the heads of subterms (i.e., for variables z in subterms of the form
“xty...t,” and they can be further evaluated when supplied with suitable argu-
ments ty...t,).

a—a—Da

Definition A.5 (Evaluated Enough). We say that a substitution o is evaluated
enough in a (possibly infinite) reduction to —u t1 —u ta —nH ... Iff t0drop —H
$1 —H S2 —H ... and t; = undrop(s;) for all .

An evaluated enough substitution may introduce terms of functional type which
may be evaluated further during a reduction. We have to ensure that such an
evaluation only happens if this is required in order to obtain again a subterm with
a constructor as head. Otherwise, t°c —}; ¢ does not imply ev(t)o _>Ds*€con(r) rl(s) q

for some term ¢’ with ¢ =}, , ¢’. The reason is that ¢ could be a variable x at a leaf
of the termination graph (i.e., con(t) = @) and o could instantiate x by a term of
functional type which is then reduced to q.
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Therefore, we restrict ourselves to so-called necessary reductions t°c —y, q.
These reductions are needed in order to facilitate pattern matching. The idea
of necessary reductions is the following restriction: “if one performs reductions at
all, then one has to evaluate until the head is a constructor”.

Definition A.6 (Necessary Reduction). We say that a reduction t —}, s is nec-
essary iff t = s or both s = (¢ $1 ... $p,) for some constructor c of arity m and

o t=(ct1...ty) and all reductions t; —|, s; are necessary or

e t=(ft1...ty) =% (9 l1...0x) —n (cT1...7y) for some defined symbol g and
all reductions r; —{, s; are necessary.

Note that whenever ¢ starts a necessary reduction of length greater than zero,
then ¢ has a non-functional type (i.e., a type that is not an instance of a — b), since
t can be reduced to (¢ s1...$y) for some constructor ¢ of arity m. The following
lemma states the needed properties of ev, con, and rl.

LEMMA A.7 (PROPERTIES OF ev, con, AND rl). Let G° be an original (non-
renamed) termination graph and let G be the corresponding renamed termination
graph. We consider the functions ev, con, and rl for the renamed graph G. Let
t € PUg be a node in G and let t°c —}, q be a necessary reduction where o is
evaluated enough. Then we have33

(a) ev(t)o —>Ds€conm ri(s) q' for some term q' with ¢ =, . q'.

(b) If t is an Eval-, a Case-, or a TyCase-node and if t°c # q, then there is a
rule path from t to some term t which is labelled by the substitutions oy, . .., 0
such that o = oy ...0x¢ and ev(t)E -0 ) q for some term q' with

=%, 4"

yri(s

s€con(f

PROOF. We prove (a) and (b) simultaneously by induction. The induction rela-
tion is obtained using the lexicographic combination of the length of the reduction
t°0c —{, q and the edge relation of the graph which results from G by removing all
outgoing edges of Evalnodes. (Due to the condition on the Ins-rule in Definition
3.1, after removing these edges the remaining graph is acyclic. Hence, the edge
relation is well founded and can be used as induction relation.) In other words, as
induction hypothesis we may assume that the lemma holds for all nodes # where
the corresponding reduction °c —{ q is shorter or where the reduction has the
same length but £ is a child of the term t provided that t is not an Ewval-node.

We first consider the case where t°c = ¢q. Here, we choose ¢ = ev(t)o. By
Lemma A.3 we obtain ¢ = t°c =}, ev(t)o = ¢’. Note that w.l.o.g., o indeed
satisfies the prerequisites required in Lemma A3, ast ¢ PUg ensures that ev does
not replace any subterms by fresh variables.

Therefore, (a) is fulfilled and (b) trivially is true. So, in the remainder of the
proof we can assume that t°c # ¢ and as the reduction was necessary we can further
assume that the head of ¢ is a constructor. We perform case analysis according to

33Here, o may have to be extended appropriately to fresh variables z in ev(f) that do not occur
in ¢.
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the expansion rule applied to generate t’s children.

Leaf

If ¢ is a leaf then ¢ is an error term, a constant constructor, or a variable x. In the
first two cases t°0 cannot be reduced with —y and hence, we obtain t°c = ¢ which
is a contradiction.

Now we show that also in the last case where ¢t = x, we obtain t°c = q. Recall
that the reduction is necessary and o is evaluated enough. This implies drop(t°c) =
drop(zo) = 20drop = t°Tdrep —1y ¢’ for some term ¢’ with undrop(q’) = ¢. Now we
show the following claim for arbitrary terms s, p, and p': if s —{, p is a necessary
reduction and drop(s) —{, p’ with undrop(p’) = p, then s = p. Then we use this
result for s = t°c, p = q, and p’ = ¢’. We perform induction on s:

e If s has a functional type then by the definition of necessary reduction we obtain
s=p.

o If s = (¢ 81...8m) for some constructor ¢ of arity m, then p = (¢ p1...pm)
where s; —| p; are necessary reductions. Moreover, as drop(s) = (c drop(s1)...
drop(sm)) —}; p’ where p = undrop(p’), we know that p’ = (¢ p...p,) with
drop(s;) —1; p; and undrop(p;) = p;. Hence, the induction hypothesis implies
s; = p; and hence, s = p.

e Otherwise, we have drop(s) = xs. From drop(s) —; p’ we conclude p’ = xs.
Hence, p = undrop(p’) = undrop(z;) = s.

Fval

If t is an Eval-node with child ¢, then ev(t) = ev(f), con(t) = con(f), and t° —y 1°.

Since every evaluation of t°c has to start with this evaluation step, we have the
reduction t°c —y %0 —{; ¢ where the reduction t°c —{; q is shorter than the
reduction of t°c to q. Moreover, this shorter reduction also fulfills the requirements
of Lemma A.7: By Definition A.6 it is obvious that the reduction is also necessary.
As o is evaluated enough in the original reduction, we obtain t°oq4rop —}; p Where
undrop(p) = ¢. The first step in this reduction is t°0drop —H f"admp which proves
that o is evaluated enough in the reduction t°c —{, q¢. Hence, we can use the
induction hypotheses for (a) and (b).

By the induction hypothesis for (a) we have ev(f)o ={ ¢, and thus,

se€con(f) rl(s)
/

ev(t)o = ri(s) q' for some term ¢ with ¢ =}, ¢".

s€con(t)

Next we prove (b). If £ is no Eval-, Case-, or TyCase-node, then the edge from
t to t is a rule path. So by defining £ = £ and ¢ = o, (b) follows from the induction
hypothesis for (a). Thus, here we need (a) in order to prove (b).

Otherwise, if ¢ is an Eval-, Case-, or TyCase-node, then the head of £° is defined.
Since the reduction is necessary, the head of ¢ is a constructor and consequently,
t°c # q. By the induction hypothesis for (b) there is a rule path from ¢ to £
satisfying the conditions in (b). Then there is also a corresponding rule path from
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t to t, which proves (b).

Case

If t is a Case-node, then ev(t) = t, con(t) = {t}, and t°|¢(0) is a variable x.
Moreover, as o is evaluated enough, the term o(x) must be of the form (¢ ¢y ...¢,)
for some constructor ¢ of arity n.

One of the children of ¢ is ¥ where t° = t°6 and where § = {z/(c z1...7,)}
for fresh variables zi,...,z,. Let ¢ be like o, but on these fresh variables we
define &(z;) = t; for all i. Then we have o = §6. Thus, t°6 = t°66 = t°c —}, q
is a necessary reduction. As o is evaluated enough in the original reduction, we
obtain G drep = t°0Gdrop = t°00drop|r1/drop(ts), . . ., xn/drop(t,)] = t°0drep and
therefore & is evaluated enough in the reduction ° -4 q.

We first prove (b). If £ is no Eval-, Case-, or TyCase-node, then the edge from
t to t is a rule path. In this case, we define ¢ = # and obtain & = &. Then (b) follows
from the induction hypothesis for (a). So here we again need (a) to prove (b).

Now we prove (b) in the case where f is an Ewal-, Case-, or TyCase-node.
Since ¢ is smaller than ¢ (it is the child of ¢) and since the reduction £°5 —, ¢ has
the same length as the reduction t°c —}; ¢, the induction hypothesis for (b) implies
that there is a rule path from f to some term ¢ which is labelled by oy, ..., oy such
that & = o1 ...0%¢ and ev(f)¢ _)quconm ris) ¢ for some term ¢’ with ¢ =}, ¢'.

Hence, there is also a rule path from ¢ to ¢ which is labelled by 6,01, . .., 0% such
that 0 = 06 = do7 ... o€ which proves (b).

Note that the rule “tdo...05 — ev(t)” is contained in rl(t) and that rl(s) C
rl(t) for all s € con(t). Then we can now prove (a):

ev(t)o = to
= téoy ...oK€
—r) ev(f)¢
—’:1@) q

where ¢ =}, . ¢’. Thus, here we need (b) in order to prove (a).

TyCase

If t is a TyCase-node, then ev(t) =t and con(t) = {t}. Moreover, head(t°|g()) =
% for a defined function symbol g which is indetermined. Since t°c # ¢, the
substitution o must instantiate 7 in such a way that there are defining equations
for g in which g has the type o(7) or a more general one. Hence, there is a child
t of t with3* t° = t°§ such that ¢ = 06 for a suitable substitution 6. Thus,
°6 = t°66 = t°c —{ ¢ is a necessary reduction. As o is evaluated enough in
the original reduction, we obtain foﬁdmp = t°0Fdrop = t°(66)drop = t°Tdrop, as 0
only instantiates type variables. Thus, & is also evaluated enough in the reduction
t°s —h q-

Since # is smaller than ¢ (it is the child of ¢), we can use the induction hypothesis
to prove (b), similar to the proof where ¢t was a Case-node. As in that proof, one

34T0 be precise, £° is not exactly the instance t°§, but the class context of t° is first instantiated
by 0 and then simplified using the function reduce.
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then also shows that (b) implies (a).

VarEzxp

If t is a VarExzp-node then ¢°c has a functional type. But recall that in any
necessary reduction t°c —}; ¢ of length greater than zero, t°c has a non-functional
type. Thus, we obtain ¢°c = g which is a contradiction.

ParSplit, where head(t) is a constructor

Now we have t = (ct1...t,), t° = (ct]...t2), and ¢ = (c q1 ... ¢qn) With tfo =], ¢
for all i. As t°c # ¢ and as the original reduction is necessary, the arity of ¢ must
be n. By Definition A.6, all the reductions to —{, ¢; are necessary. Moreover,
t°0drop = (€ t90drop - - - 19 0drop) —1; (€ P1...pn) where undrop(p;) = ¢; for all i.
This implies that o is evaluated enough in every reduction t{o —{; ¢; as t70drop —1
p;. We have ev(t) = (c ev(ty)...ev(t,)) and con(t) = con(t1) U ... U con(ty,).
Since the reductions t{o —, ¢; have at most the same length as the reduction from
t°c to ¢ and since t; is a child of ¢, the induction hypothesis implies

ev(t)o = (cev(ti)o ...ev(ty)o) = (cqy ...q,)

s€con(t1)U...Ucon(tn)=con(t) rl(s)

for terms ¢, with ¢; =, ¢;. By defining ¢ = (¢ ¢} ...q],) we therefore obtain
q =1, ¢, as desired.

ParSplit, where head(t) is a variable

In this case, we have t € PU¢, which contradicts the assumption.

Ins

If ¢ is an Ins-node, then we have t° = t°[x1/s$,...,m/s%,, ai/71,...,as/7]. Note
that t° = (z y) is impossible, because then we would have ¢ € Ug and thus,
t € PUg which contradicts the assumptions.

So due to the condition on the Ins-rule in Definition 3.1, # must be an Ewval-,
Case-, or TyCase-node. We obtain t°c = °[x1/s%0,...,2m /82,0, a1/Ti0,...,
ag/Te0] = g

Now instead of the above reduction, we start with first evaluating the sub-
terms s{o “as much as ever needed in the reduction t°c —; ¢”. In this way,
each s{o is evaluated to a term ¢;. For a precise definition of ¢;, we consider
the reduction #°[x1/590,...,2m /85,0, a1/T10,...,as/Tec] —}; ¢ more closely. Ini-
tially, we choose ¢; = s?o. Our goal is to ensure that with the resulting substi-
tution [z1/q1, ...y Zm/Gm, a1/7T10,...,a¢/7e0], this reduction would be evaluated
enough. This would mean that °([x1/q1,...,Tm/Gm, a1/T10,... ,ae/Te0])drop =
tolz1/drop(qr), - - -, T /drop(gm), ai/m10, ..., ar/Te0] —7 p for some term p with
undrop(p) = ¢. If this already holds, then we have found our final terms ¢;. Other-
wise, at some point the evaluation of £°[z; /drop(q1), .. ., Tpm /drop(qm), a1/Ti0,. ..,
ag/Te0] gets stuck, as we have to evaluate a variable z, that was introduced by
applying “drop” on some of the ¢;. Then we replace this ¢; by evaluating it fur-
ther. More precisely, since the original reduction was necessary, instead of x,
the reduction requires a term of non-functional type with a constructor as head.
In the original reduction, we were able to continue the evaluation. Therefore,
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the term r must be reducible to a term of the form (¢ ry...r;). Then, we
replace the subterm r of ¢; by (¢ r1...7;) and can continue behind the point
where we got stuck before. The reason is that for the old definition of ¢; we got
drop(g;) = C[drop(r)] = C[xz,] for some context C, but for the new definition of
g; we obtain drop(g;) = C[drop(cry ...7%)] = Clc drop(ry) .. .drop(ry)] and hence,
now the required constructor c is present. In this way we re-define every ¢; until
all constructors that are necessary for the reduction are present. Note that by con-
struction all reductions s{o —{; g; are necessary. Furthermore, as o was evaluated
enough in the reduction t°c —}; ¢ and as this reduction includes all reductions
s{o —{ qi, the substitution o is evaluated enough in the reductions sfoc —{ g,
too. The length of each reduction s{o —{; ¢; obviously has at most the same length
as the original reduction t°c —{, ¢. Thus, we can apply the induction hypotheses
for these reductions as every s; is a child of .

So in this way we finally obtain the necessary reduction °[x1/q1, ..., Tm/qm,
a1/mo,...,a¢/70] —4; G for a term ¢ with ¢ =}, §, where this reduction has
at most the same length as the original reduction t°c —} ¢. The substitution
[®1/q1, -y Zm/qm, a1/710,...,a¢/Te0] is evaluated enough by construction.

For every reduction s{o —} ¢;, the induction hypothesis (a) implies

ev(s;)o —{; 5 4; for some term g; with g; =, . q;. (10)

sceon(s;) TI(

Moreover, a further reduction of ¢; to ¢, does not destroy the above properties,
i.e., for the substitution o’ = [z1/¢},...,Tm/d,,, a1/T10,...,a¢/7¢0] we still have
t°o’ —}; ¢" for a term ¢” with

q =" (11)
Again, the reduction t°¢’ —}, ¢ is necessary, it has at most the same length as the
original reduction t°c —{, ¢, and the substitution ¢’ is evaluated enough.

Note that the reduction t°¢’ —; ¢” has length greater zero, as head(q) =
head(g") is a constructor and as head(£°) is defined. So this satisfies the prerequi-
sites of Lemma A.7. As ¢ is an Eval-, Case-, or TyCase-node, we use induction
hypothesis (b) for the child # of t. We obtain a node t and a substitution ¢ such
that there is a rule path from ¢ to ¢ labelled by substitutions o7y,..., o where
o' =o1...0k§ and

ev(i)¢ —{ 5) q' for some term ¢' with ¢" =, . ¢". (12)

s€con(f) rl

So the rule toy...0, — ev(t) is included in rl(f). As rl(s) C rl(#) for all
s € con(t),
ev(t)o = ev(r(t°))o
= ev(fio $1...8m T1...T0) O
(fro €V(s1)0...eV(8y )0 T10 ... T40)

Hbsecog(sl)uu.ucon(sm) rl(s) (fro ¢4 .. ¢, 1O ... T40) by (10)
= tlz1/qy, - Tm/4q,,, a1/T10,...,a¢/Tec] by Definition 5.1
= to’

= toy .. o€

=) ev(t)

—nm ¢ by (12)
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Thus, ev(t)o - q’. Note that we again needed (b) to prove (a). As

sE€con(t) !‘1(5)
desired, we have

q =, q" by (11)
=hrs ¢ by (12) O

Now we can prove the lemma about the semantics of dp. It states the desired
connection between the DP problems obtained with dp and the termination of
the nodes in the termination graph. More precisely, it shows that every non-H-
terminating node corresponds to an infinite path in the termination graph and that
the rules in a DP problem can be used for the step from the last node of a DP
path to the first node in the next DP path. Here, — denotes a rewrite step at top
position and =%, denotes a rewrite step which is strictly below the top position.

In order to simplify the proof we introduce a new relation —p which we use
instead of H-termination. The advantage is that in this way, we can again use the
notion that a substitution is evaluated enough, but this time we use it for —y-
reductions instead of —y-reductions.3®

Definition A.8 (—n). We define s —y t iff

(1) s—nt, or
(2) s=(f s1...sy) for a defined function symbol f with n < arity(f)
andt = (f s1...sp, t') for an H-terminating term ¢,  or

(3) s=(ct1...ty) for a constructor ¢ and t = t; for some i.

It is easy to see that a ground term is H-terminating iff it does not start an
infinite <—y-reduction. For a non-ground term ¢, one can only conclude that ¢
terminates w.r.t. <y if ¢ is H-terminating, but not vice versa. In the following
lemma about the semantics of dp, we say that a substitution ¢ is “terminating” iff
o(z) is terminating for all x € V.

LEMMA A.9 (PROPERTIES OF dp). Let G° be an original termination graph, let
G be the corresponding renamed termination graph, and let s be a node in G. If
there is a substitution o such that s°c starts an infinite —y-reduction, where o is
evaluated enough and terminating w.r.t. —n, then there is a path (possibly of length
zero) from s to an Ins-node t = t[x1/s1,...,Tm/8m, a1/T1,...,ae/Te] labelled with
o1,...,0% and an instantiation edge from t to a node t such that

o 0 =01...0,E for some substitution & such that t°¢ is not —n-terminating.>®

o ev(t)e 255 tu for R = Upecon(s1)u...ucon(s,,) FL(P) such that t°u starts an in-
finite —n-reduction and p is a substitution which is evaluated enough in this
reduction and terminating w.r.t. —y.

350therwise, one would have to adapt the notion of “evaluated enough” substitutions to “H-
termination”. This would be problematic, since “evaluated enough” refers to reductions with
some relation. But of course, one can use the notion “evaluated enough” for different relations.
So in Lemma A.7 we used it for —y-reductions, whereas now we use it for <—y-reductions.

36 Again, o may have to be extended to fresh variables z in t that do not occur in s. As before,
then o(z) must be a <—y-terminating term which is evaluated enough in the reduction. Similarly,
& may have to be extended to the fresh variables introduced in ev(t).
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PROOF. The lemma is proved by induction on the edge relation of the graph
obtained from G by removing all instantiation edges. In other words, as induction
hypothesis we may assume that the lemma holds for all children of the term s
(except those which are only reachable via instantiation edges). We perform case
analysis according to the expansion rule applied on s.

Leaf

If s is a leaf then s is an error term, a constant constructor, or a variable x. In all
cases s°0 is a normal form w.r.t. <y where in the last case this is ensured by the
requirements on o as s°0drop = Tse is a normal form. Hence, s°c cannot start an
infinite reduction in contradiction to the requirements.

Fval

If s is an FEval-node with child 3, then we have s° —y 5° and thus, the infinite < -
reduction of s°¢ has to start with s°c <y 5°0. Hence, 5°¢ is also not terminating
w.r.t. <y and o is evaluated enough in the infinite reduction of §°¢. Since § is the
child of s, the induction hypothesis implies the lemma.

Case

If s is a Case-node, then 5°|¢(,0) is a variable . As o is evaluated enough and as we
have an infinite reduction, o(z) must be of the form (c s;...s,) for a constructor
c of arity n.

One of the children of s is § where §° = s°6 with 6 = {z/(c x1...x,)} for fresh
variables x1,...,2,. So we have o = §& for the substitution & with 5(z;) = s;.
Then we obtain s°c = s°66 = §°G, i.e., §°G also starts an infinite —y-reduction.
We argue in the same way as for Case-nodes in the proof of Lemma A.7 to show
that & is evaluated enough in the infinite reduction of 5°6.

Since 5§ is a child of s, we can use the induction hypothesis for 5. This implies the
existence of a path labelled with o1,...,0k from § to a suitable Ins-node ¢ such
that 6 = o1 ...0r€. Hence, the path from s to ¢ is labelled by d,071,...,0r and we
have 0 = §6 = 007 ...or€. This implies the lemma for s.

TyCase

If s is a TyCase-node, then head(s°|e(se)) = £ for a defined function symbol g
which is indetermined. Since s°c has an infinite <—y-reduction, the substitution o
instantiates 7 in such a way that there are defining equations for g in which g has
the type o(7) or a more general one. Hence, there is a child § of s with §° = s°
such that o = 06 for a suitable substitution &. Thus, §°6G = s°§6 = s°0 starts an
infinite —y-reduction. The same argument as in the proof of Lemma A.7 shows
that & is evaluated enough in the infinite —y-reduction of §°6. Since § is a child
of s, the lemma follows from the induction hypothesis as for Case-nodes.

VarExp

If s is a VarExzp-node, then the only possible reduction is of the form s°c —y
(s°0) s’ for some H-terminating term s’. Recall that H-termination implies termi-
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nation w.r.t. —p. Hence, s’ cannot start an infinite —p-reduction and w.l.o.g. we
assume that s’ is evaluated “as much as ever needed in the infinite reduction of
(s°0) §'”, as in the proof of Lemma A.7 for Ins-nodes. Let § be the child of s.
Thus, §° = (s° ). Then we extend o to the fresh variable z by defining o(z) = ¢’
Thus, §° 0 = (s° x)o is not terminating w.r.t. <y and § is smaller than s (it is the
child of s). Moreover, by construction o remains evaluated enough in the infinite
reduction of §° and instantiates all variables with terms that terminate w.r.t. —n.
Thus, the lemma follows from the induction hypothesis.

ParSplit

In this case, we have s° = (¢ s ...s2) for a constructor ¢ or s° = (x s9 ...s%) for a
variable z. Since s°c is not terminating w.r.t. <y, there must be an s such that
50 is not terminating w.r.t. <y either. Since s; is the child of s, the lemma again
follows from the induction hypothesis.

Ins
Now we have s® = §°[x1/59,...,%m /8%, a1/T1,...,a¢/7¢) and the children of s are
S1y.++,8m, and S.

We first consider the case that there is an 1 < i < m where s{o starts an infinite
—p-reduction. Since s; is smaller than s (it is the child of s), the lemma again
follows from the induction hypothesis. Note that if 52 = (x; x2) then we are always
in this case. The reason is the same as in the ParSplit-case where the head is a
variable: If both s{o and sjo were terminating w.r.t. <, then this would also be
the case for (s§o) (s§o) = s°0.

Finally we consider the case where all s{o are terminating w.r.t. —p and thereby
terminating w.r.t. —y. W.l.o.g, we assume that there exists a k < m such that
for all 1 <4 < k, we have s; € PUg, and for all k < i < m we have s; € PUg.
Then ev(s) = 8[z1/ev(s1), ... xk/€V(Sk), Tht1/Yk+1, s Tm/Ym, a1/T1, ..., ae/Tel,
where yr41,...,Ym are fresh variables. Let t = s, t; = s;, t = 5, and £ = 0.
Then s%c = t°6€ = w1 /19, ..., 2 /106, a1/Ti€, ..., ar/T€] starts an infinite
—p-reduction. Clearly, we also have an infinite <»n-reduction for any term which
results from %[z /196, ..., 20 [t9.€, a1/TiE, . .., as/Te€] by first reducing the terms
t9T “as much as ever needed in the infinite reduction”, as in the proof of Lemma
A.7 in case of Ins-nodes. In this way, each t7{ evaluates to a term g;. We extend
¢ to the fresh variables ygi1, ..., ym by defining &(y;) = ¢;.

By construction the reduction t7§ —, g; is necessary and £ is evaluated enough.
Hence for 1 <4 < k, Lemma A.7 (a) implies ev(t;)¢ —»Dpecon(m rl(p) q} for some
term ¢; with ¢; =}, . ¢;.

Let p be like &, but on the variables 1, ..., 2, we define p(z;) = ¢}, where
q; = ¢; for k < i < m. Furthermore, we define u(a;) = ;€ for 1 < i < £. Then, the
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following holds:
ev(l) = ev(r(t?))

ev(fiot1...tm 11 ... T0)E
(fro ev(t1)€...ev(te)s yrr1&- . ym& T1€. .. Tek)
= (fro @1+ @ Ykt1& - ym€ T1E ... TeE)

UpEcon(tl)U...Ucon(tk) rl(p)
= (fp &1~ am 1€ .- Te§)
= gfgo Tl coi Ty Q1 ... QO

As argued above, then °u also starts an infinite —n-reduction. Moreover, by
construction p is evaluated enough and terminating w.r.t. —y. O

Finally, we prove the main soundness theorem for our approach.

THEOREM 4.11 (SOUNDNESS). Let G° be an original termination graph and let
G be the corresponding renamed termination graph. If the DP problems dpg. are
finite for all SCCs G’ of G, then all nodes in G° are H-terminating. More precisely,
if there is a non-H-terminating node in G°, then there exists a SCC G’ of G with
a DP problem dpg = (P, R) such that there is an infinite reduction of the form

81 Spty 255 59 Sp ity 25k L.
This implies that there is also an infinite reduction of the form
51 Spr t] 2% 59 Sy ty 2% ...
In other words, the DP problem (P*,R) is not finite either.

PROOF. Let t be a node in G° that is not H-terminating. Then there is a sub-
stitution o with H-terminating terms such that to is a non-H-terminating ground
term. As H-termination implies termination w.r.t. <y we know that o is terminat-
ing w.r.t. —y. Moreover, we know that to starts an infinite <—y-reduction, because
for ground terms H-termination is the same as termination w.r.t. <—y. As o is ter-
minating we may assume that o is evaluated enough in this infinite reduction by
first reducing the terms in ¢ “as much as ever needed in the infinite reduction”, as
in the proof of Lemma A.7 in case of the Ins-node. Then by Lemma A.9 there is
an infinite path in G. Since G is finite, this path must end in some SCC G’. We
consider the infinite tail of this path which only traverses nodes and edges of G'.
By Lemma A.9, there must be an infinite sequence of nodes s1,%1, S2,t2,... and
substitutions o1, 03,03, ... such that for all 4

e the path from s; to t; is a DP path in G’ labelled with o, ..., 0}
(thus P contains the rule s;0} ...0}, — ev(t;))

e 570, is not terminating w.r.t. <y

oo, =o0t... oziﬁi for substitutions &;

o ev(t;)&; i;‘z Si+10i+1

Thus, we have

101 = 510%...0i1§1 Spoev(t))é ?;‘2
S909 = szcrf...crizgg Sp oev(ty)é =55

§303 ... O
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