
University of Innsbruck Institute of Computer Science

Cumulative Habilitation Thesis

A Formalization of Termination
Techniques in Isabelle/HOL

René Thiemann

January 21, 2013





für Karin, Hannah und Jonas





Contents

I. Preface 3

1. Introduction 5

2. Major Problems 7

3. Related Work 11

4. Contributions 13
4.1. Certification of Termination Proofs using CeTA (Chapter 6) . . . . . . . . . 13
4.2. Certified Subterm Criterion and Certified Usable Rules (Chapter 7) . . . . 15
4.3. Signature Extensions Preserve Termination – An Alternative Proof via De-

pendency Pairs (Chapter 8) . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.4. Modular and Certified Semantic Labeling and Unlabeling (Chapter 9) . . . 18
4.5. Termination of Isabelle Functions via Termination of Rewriting (Chapter 10) 19
4.6. Generalized and Formalized Uncurrying (Chapter 11) . . . . . . . . . . . . 20
4.7. On the Formalization of Termination Techniques Based on Multiset Order-

ings (Chapter 12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.8. Certification of Nontermination Proofs (Chapter 13) . . . . . . . . . . . . . 22
4.9. Further Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.10. Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5. Future Research 27

II. Selected Papers 29

6. Certification of Termination Proofs using CeTA 31
6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.2. Formalizing Term Rewriting . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.3. Certifying Dependency Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.4. Certifying the Dependency Graph Processor . . . . . . . . . . . . . . . . . 36

6.4.1. Certifying Graph Decompositions . . . . . . . . . . . . . . . . . . . 37
6.4.2. Certifying Dependency Graph Estimations . . . . . . . . . . . . . . 38
6.4.3. Certifying Dependency Graph Decomposition . . . . . . . . . . . . 41

6.5. Certifying the Reduction Pair Processor . . . . . . . . . . . . . . . . . . . 41
6.6. Certifying the Whole Proof Tree . . . . . . . . . . . . . . . . . . . . . . . . 42
6.7. Error Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.8. Experiments and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 44



VI Contents

7. Certified Subterm Criterion and Certified Usable Rules 47
7.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.2. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.3. The Subterm Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.4. Usable Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.5. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

8. Signature Extensions Preserve Termination 63
8.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.2. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.3. Dependency Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
8.4. Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.5. Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

9. Modular and Certified Semantic Labeling and Unlabeling 77
9.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
9.2. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

9.2.1. Term Rewriting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
9.2.2. Semantic Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

9.3. Modular Semantic Labeling and Unlabeling . . . . . . . . . . . . . . . . . 80
9.4. Dependency Pair Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 86
9.5. Problems in Certification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
9.6. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
9.7. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

10.Termination of Isabelle Functions via Termination of Rewriting 95
10.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
10.2. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

10.2.1. Higher-Order Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
10.2.2. Supported Fragment . . . . . . . . . . . . . . . . . . . . . . . . . . 97
10.2.3. Function Definitions by Well-Founded Recursion . . . . . . . . . . . 98
10.2.4. IsaFoR - Term Rewriting Formalized in Isabelle/HOL . . . . . . . . 99
10.2.5. Terminology and Notation . . . . . . . . . . . . . . . . . . . . . . . 99

10.3. The Reduction to Rewriting . . . . . . . . . . . . . . . . . . . . . . . . . . 100
10.3.1. Encoding Expressions and Defining Equations . . . . . . . . . . . . 100
10.3.2. Embedding Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 101
10.3.3. Rewrite Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
10.3.4. The Simulation Property . . . . . . . . . . . . . . . . . . . . . . . . 102
10.3.5. Reduction of Termination Goals . . . . . . . . . . . . . . . . . . . . 103
10.3.6. Proof of the Simulation Property . . . . . . . . . . . . . . . . . . . 105

10.4. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
10.5. Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
10.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

11.Generalized and Formalized Uncurrying 111
11.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
11.2. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112



Contents VII

11.3. Applicative Rewriting and Uncurrying . . . . . . . . . . . . . . . . . . . . 112
11.4. Uncurrying in the Dependency Pair Framework . . . . . . . . . . . . . . . 118
11.5. Heuristics and Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 123
11.6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

12.Formalization of Termination Techniques Based on Multiset Orderings 127
12.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
12.2. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
12.3. Formalization of the Generalized Multiset Ordering . . . . . . . . . . . . . 130
12.4. Multiset and Recursive Path Ordering . . . . . . . . . . . . . . . . . . . . 132
12.5. SCNP Reduction Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
12.6. Certification Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
12.7. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

13.Certification of Nontermination Proofs 143
13.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
13.2. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
13.3. A Framework for Certifying Nontermination . . . . . . . . . . . . . . . . . 145
13.4. Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
13.5. Formalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
13.6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Bibliography 159





Acknowledgements

Clearly, without an appropriate environment it would not have been possible to develop
this thesis. Therefore, I want to express my gratitude to those people that made this
thesis possible.

First of all, I want to thank Aart Middeldorp for giving me the freedom to freely let
me pursue my research interests in the last years, for his support in providing me with
the necessary equipment, and for many useful feedbacks.

Insbesondere möchte ich auch Christian Sternagel danken. Es war eine wunderbare
Zeit, jemanden vor Ort zu haben, mit dem man über Isabelle diskutieren konnte und
gemeinsam Ideen in Formalisierungen und Paper umsetzen konnte.

Mein Dank gilt auch Georg Moser. Besonders während langen Isabelle Entwicklungen
war es eine Freude, durch ihn die Gedanken wieder frei zu bekommen: sei es durch
kurze Exkurse in die Welt der Komplexität, durch politische Diskussionen in Steering
Committees, oder besonders durch den Austausch kurzer Anekdoten über unsere Kleinen.

Of course, I’m also grateful to the whole Computational logic group for a pleasant and
friendly research environment.

Natürlich bin ich auch den Entwicklern der Terminierungs Tools AProVE und TTT2
dankbar, insbesondere Bertram Felgenhauer, Carsten Fuhs, Christian Kuknat, Christian
Sternagel, Fabian Emmes, und Harald Zankl: ohne deren Entwicklung der Beweisausgabe
wäre keine Zertifizierung möglich gewesen.

I would also like to express my gratitude to the Isabelle community. Since I started to
work with Isabelle, I always got useful feedback on my questions. Moreover, several recent
developments on Isabelle have been beneficial for this thesis, like the code generator, the
Isabelle collection framework, partial functions, regexp, parallelization, and jedit. Here,
special thanks go to Alexander Krauss, Andreas Lochbihler, Florian Haftmann, Lukas
Bulwahn, Makarius Wenzel, Peter Lammich, and Tobias Nipkow.

Many thanks also goes to the Austrian Science Fund (FWF). They supported all the
selected papers (within the projects P18763 and P22767-N13).

Schließlich möchte ich mich natürlich auch bei meiner Familie bedanken, insbesondere
bei Karin: in ihr fand ich immer den so wichtigen Ausgleich, der mich von der sehr
technischen Arbeit zurück in die reale Welt führte, und ich bekam immer Rückhalt, selbst
in Zeiten, wo ich nur wenig Zeit für die Familie hatte.





Part I.

Preface





1. Introduction

Termination is the important property of a program that all computation paths produce
a result in finite time. Although undecidable in general, much work has been spent on
automated termination analysis. As a result, today there are a variety of powerful tools for
automatic termination analysis for various languages: e.g., there are AProVE [39], COSTA
[1], Julia [93], Matchbox [106], Polytool [82], Terminator [24], and TTT2 [67]. Several of
these tools are competing in the annual international termination competition1 where the
aim is to automatically investigate termination and complexity of programs in different
languages, i.e., currently term rewriting, Prolog, Haskell, or Java.

Due to the complexity of the tools itself, it is obvious that there might be bugs in
the implementations leading to wrong answers. And indeed, nearly every year in the
competition some bugs were spotted since two tools gave contradicting answers, e.g., by
providing a termination and a nontermination proof for the same program. Therefore,
it has been identified as a key challenge to independently certify the correctness of the
generated proofs. Due to the size of these proofs a manual inspection is infeasible and
also error-prone. However, it can be done using interactive theorem provers like Coq [11],
Isabelle [84], and PVS [88]. These theorem provers are used to model various aspects of
mathematics, programming languages, etc. in a logical system and afterwards formally
verify desired properties.

As a result, since 2007 also certifiers have entered the termination competition.

• In the A3PAT project2 [21, 25], the tool CiME was extended by a feature that
transforms termination certificates into Coq scripts. These scripts can be checked
with help of the underlying Coq library Coccinelle on rewriting.

• Similarly, in the CoLoR project3 [13], the tool Rainbow produces Coq-scripts for
certified termination proofs. It is based on CoLoR, the Coq Library on Rewriting
and termination.

• CeTA (Certified Termination Analysis) with its underlying formalization IsaFoR (Is-
abelle Formalization of Rewriting) is our own certifier which entered the competition
in 2009.

With the help of these three certifiers (which we abbreviate by CC for CiME + Coccinelle,
RC for Rainbow + CoLoR, and CI for CeTA + IsaFoR), several implementation bugs have
been revealed which previously remained undetected. Furthermore, the formalization of
the termination techniques also discovered some flaws in pen-and-paper proofs which in
at least one case invalidated the main theorem of a termination technique [97].

In this thesis, we report on our work in this area, i.e., the development of CeTA and
IsaFoR. It is structured as follows. In Chapter 2 we illustrate four main problems when

1http://www.termination-portal.org/wiki/Termination_Competition
2http://a3pat.ensiie.fr
3http://color.inria.fr

http://www.termination-portal.org/wiki/Termination_Competition
http://a3pat.ensiie.fr
http://color.inria.fr


6 Chapter 1. Introduction

trying to develop a certifier. Related work is addressed in Chapter 3. Our own con-
tributions in this area are discussed in Chapter 4. Here, we also explain which part of
each selected paper has been developed by the co-authors. Future work is addressed in
Chapter 5 which ends Part I of this thesis. Afterwards, in Part II the selected papers are
provided in chronological order.



2. Major Problems

In order to develop a certifier for termination proofs three tasks have to be performed.

(i) The definition of termination has to be formally specified.

(ii) Termination methods have to be formalized in some library of a theorem prover.

(iii) Starting from a given certificate, one has to reconstruct a formal termination proof
using the termination methods from the previous step.

Once, these tasks have been established, a possible workflow for getting certified ter-
mination proofs is as follows, cf. Figure 2.1.

First, an untrusted termination tool is invoked which has to deliver the answer (ter-
minating, nonterminating, don’t know) in combination with a certificate which has to
contain enough information to reconstruct a proof to validate the answer. As an example,
the certificate might be an XML-document which states which termination techniques
have been applied and how they have been parametrized.

Afterwards, one can start the reconstruction to obtain a formal proof script. In this
step, one has to link the termination techniques in the certificate to those which have
been formalized. Moreover, in the proof script several assertions have to be stated which
ensure that the termination techniques are applied correctly.

Finally, the formal proof script must be checked within a proof assistant.
In order to maximize the reliability of this certification workflow, one should use proof

assistants which are based on the LCF-approach [43, 45, 89], where all generated proofs
have to be accepted by some small trusted kernel. In that way, one can be quite certain
that during proof checking only correct proofs are accepted. Moreover, for the major
properties and definitions in the specification—which are termination and the rewrite
relation in our case—one can try to prove that their formalization corresponds to various
alternative definitions that are present in the literature [5,100]. For example, we define the
rewrite relation as →R := {(C[`σ], C[rσ]) | `→ r ∈ R} where C ranges over all contexts
and σ over all substitutions, and afterwards we prove that our definition is equivalent to
another standard definition of the rewrite relation: →R = {(t, t[rσ]p) | t|p = `σ, ` → r ∈
R, p ∈ Pos(t)} where Pos(t) is the set of positions in t.

input answer + certificate proof script

accept/failure

termination

tool

proof

reconstruction

proof

checking

Figure 2.1.: workflow for certified termination proofs



8 Chapter 2. Major Problems

Although the reliability is quite high, we want to mention that there still remain certain
risks where we just have to trust the system: the logic of the proof assistant may be
inconsistent, there may be bugs in the kernel of the proof assistant as well as in the
compiler / interpreter that is used to run the proof assistant, and there may be errors
in the operating-system and in the hardware, and the hardware may be damaged. To
minimize these risks, several projects have been performed. For example, with Milawa
and Jitawa there is a verified theorem prover running in a verified Lisp runtime, i.e.,
soundness of the theorem prover was proven down to x86 machine code [80]. And in
another impressive project, an operating-system kernel was proven to be sound [60].

Despite these risks, we believe that formalized proofs contain far less errors than those
which are checked by human—we leave it up to the reader to figure out a list of risks that
arise when proofs are solely checked by humans. But even if we trust formalized proofs,
we have to establish all three tasks that have been mentioned above.

Whereas the first task is easily solved in our case—since the notions of termination and
the rewrite relation of a term rewrite system (TRS) are easily defined—the second task
is by far more challenging because of the following two major problems.

Problem 1: Formalize many termination techniques Termination tools for term
rewriting use several incomparable termination techniques. And for each individual ter-
mination technique, we require a fully formalized proof. Here, standard formalization
problems may arise: proofs in papers can contain gaps and are often not sufficiently de-
tailed (“w.l.o.g.”, “easy to see”, “by induction”, “we consider only the most interesting
case”, . . . ), they may be based on other nontrivial theorems (from Ramsey theory, from
graph-theory, . . . ), they may use nontextual representations like diagrams, and they make
use of intuitive arguments which are hard or tedious to describe formally (“we can easily
reorder this sequence as follows such that . . . ”). Moreover, we will encounter the problem,
that many termination techniques are using completely different concepts in their sound-
ness proofs: the proofs are based on syntactic criteria, graph theory, automata theory,
algebra, combinatorics, etc.

Hence, to get formalized proofs, all gaps have to be filled, all background theories have
to be formalized, and one has to find a good formal model for all the concepts that are
used in the proofs.

Problem 2: Combine termination techniques Even if individual termination tech-
niques have been proven correct, for their combination we need a common semantics,
such that all techniques are sound w.r.t. that semantics. For example, for the rewrite
relation of a TRS luckily there is only one semantics. However, often termination proofs
are performed using the notions of dependency pairs and chains, and here there are at
least two different versions of evaluation (chains and minimal chains) [3]. The problem is
that some termination techniques are only sound for chains whereas other require min-
imal chains. Hence, checking proofs which utilize both kinds of termination techniques
cannot be done without adaptation: one first has to find some notion of chain which is
compatible with all termination techniques.

When considering the third task—proof reconstruction—two additional problems arise.

Problem 3: Check application of termination techniques In principle, the certificate
contains all major proof steps, i.e., every termination technique that has been applied is



9

listed in the certificate in combination with its parameters. However, it must be checked
that the technique has been applied correctly, which is a problem that may range from
easy via complex to undecidable.

For example, some termination methods are based on simple syntactic criteria which
can easily be checked, like the application of dependency pairs or the switch from full- to
innermost-termination for orthogonal TRSs. However, for the latter technique one can
weaken orthogonality to locally confluent overlay TRSs [46]. In that case, checking the
preconditions becomes undecidable as local confluence is undecidable.

As another example, consider termination methods based on well-founded orders, like
polynomial orders [73], the lexicographic path order (LPO) [58], or the recursive path
order (RPO) [27]. For these methods one has to provide an algorithm to check whether
two terms are in relation. This problem is in P (for LPO) [71], NP-complete (for RPO),
and undecidable for polynomial orders. In the latter case, sufficient decidable criteria like
absolute positiveness [56] are used which are again easy to check. Of course, one might
enrich the certificates by providing more detailed evidence why two terms are in relation.
Then checking can be done more efficiently, but the certificates easily become bulky and
are harder to produce.

As a last example, we consider size-change termination which is a PSPACE-complete
problem [74]. Here, there is no chance to enlarge the certificate such that checking the
proof can be done in polynomial time, unless PSPACE = NP. We shortly illustrate why
also in practice an enlarged certificate is not helpful for this technique. One standard
algorithm to decide size-change termination works as follows. It computes a (possibly
exponentially large) closure of size-change graphs where one has to test that no bad
graphs appear in this closure. In principle, one can add the closure to the certificate, but
this does not improve the situation, since checking that the provided closure is correct
has the same asymptotic complexity as computing the closure.

To summarize, we require methods to guarantee the correct application of termination
techniques which is not always easy.

Problem 4: Obtaining certificates It is obvious, that for checking a termination proof
we require certificates from the tools. These certificates should be sufficiently detailed
and in some machine readable format. However, when we started our work, each of the
certifiers had its own proof format with varying level of detail. Hence, for a termination
tool to support many certifier, the tool had to implement many proof printing procedures:
one for each certifier. Putting this into another perspective, we had to convince the tool
authors to also support and integrate our proof format.

As a solution to this problem we developed a common proof format for certificates for
termination problems: the certification problem format (CPF).1 The CPF-format was
designed as a combination of all previously existing formats by several groups: members
from all three certifiers CC, RC, and CI contributed, as well as members from the termina-
tion tools AProVE and TTT2. As a result, today termination tools only have to support one
output format (CPF) and then all three certifiers can be used to independently certify the
answer. Moreover, we also wrote pretty printer which transform CPF proofs into human
readable proofs, so that the termination tool authors can also drop their human readable
export functionality for those parts of the proof that are covered by CPF.

1http://cl-informatik.uibk.ac.at/software/cpf/

http://cl-informatik.uibk.ac.at/software/cpf/




3. Related Work

The alternative certifiers CC and RC clearly have the closest connection to our work.
Moreover, there also is a PVS formalization on term rewriting, trs [34, 35]. It was not
mentioned before, since as far as we know, it is currently not used for certification of
termination proofs.

Although all of the formalizations are on term rewriting there are several differences
which we will list in the remainder of this chapter.

Theorem Prover CI is based on Isabelle/HOL, CC and RC use Coq, and trs utilizes
PVS. As a consequence, the proof of some result in IsaFoR can look quite different from
a similar proof of the same result in one of the other formalizations. Moreover, there is
no easy way to import or share theorems which have already been integrated in the other
formalizations. As a matter of fact, we are only aware that some results are shared among
the Coq based formalizations Coccinelle and CoLoR.

Representation In CI everything is developed using a deep embedding, whereas in CC
and RC also shallow embeddings are used. To shortly illustrate the difference between
deep and shallow embedding, consider the following TRS R for subtraction:

minus(x, 0)→ x

minus(s(x), s(y))→ minus(x, y)

For certification, in both CC and RC first an inductive set or type for the signature is
created on the fly within Coq (shallow), which contains exactly the three symbols minus,
s, and 0. In CI however, there is no dedicated signature—minus, s, and 0 are just strings.
Similarly, for solving arithmetic constraints which may arise from proving termination
of R by a polynomial interpretation, in CC the Coq tactic omega is invoked (shallow),
whereas for CI an algorithm for solving these constraints has been formalized (deep).

Both designs have their own advantages: using a shallow embedding sometimes allows
for more elegant formalizations since the builtin methods from the theorem prover can be
used to adequately model or solve a problem; and with a deep embedding, the certification
algorithms can also run outside the theorem prover and are less brittle to changes in the
theorem prover.

Support of termination techniques As we have focussed our work to develop a certifier
with a high coverage of termination technique for first order term rewriting, CI contains
several techniques in this area which are not available in the other certifier.1 For example,
during the latest full run of termination tools in 2011, where every participating tool was
tested on every problem of the termination problem database, 3675 termination and

1See http://cl-informatik.uibk.ac.at/software/ceta/#introduction for the current list of tech-
niques which are supported by CeTA.

http://cl-informatik.uibk.ac.at/software/ceta/#introduction


12 Chapter 3. Related Work

nontermination proofs have been generated for TRSs.2 In this experiment, there have
been dedicated termination tools to support both CI and CC, i.e., some termination tools
delivered proofs which are known to be supported by CI and other tools delivered proofs
especially for CC. Whereas CC had to refuse 1694 proofs as they contained unsupported
techniques, CeTA only had to refuse 525 proofs. And in the meantime, all 3675 proofs can
be certified using CeTA version 2.8. These numbers clearly demonstrate a high coverage of
CeTA in this area.

However, in other areas the picture is inverted: for example, IsaFoR does not contain
any result on higher-order rewriting, but CoLoR does [63].

2http://termcomp.uibk.ac.at/termcomp/competition/certificationResults.seam?cat=

10235&comp=260918

http://termcomp.uibk.ac.at/termcomp/competition/certificationResults.seam?cat=10235&comp=260918
http://termcomp.uibk.ac.at/termcomp/competition/certificationResults.seam?cat=10235&comp=260918


4. Contributions

In this chapter, we first explain how the selected papers in the second part of this thesis
contribute to solving the four mentioned problems. Here, the papers are listed in order of
their publication date. Afterwards, we report on further work in the area of certification,
which has been performed in IsaFoR but is not covered in the selected papers.

4.1. Certification of Termination Proofs using CeTA
(Chapter 6)

Publication details

René Thiemann and Christian Sternagel. Certification of Termination Proofs using CeTA.
In Proceedings of the 22nd International Conference on Theorem Proving in Higher Order
Logics, volume 5674 of LNCS, pages 452–468. Springer, 2009.

In this initial paper on IsaFoR and CeTA, we give details on our formalization of three
important termination techniques—dependency pairs, dependency graph decomposition,
and reduction pairs—a clear contribution to Problem 1.

Note that all of these techniques are also supported by the other certifiers. Therefore,
the real novelty in this paper is the approach of dealing with Problem 3. Both RC and
CC use a mixture of three possibilities to generate proof scripts for a certificate: invoke
executable functions which have been proven correct, perform on-the-fly generation of
proofs by untrusted tools, and call built-in solvers of the proof assistant. In contrast,
for every termination technique in IsaFoR we always provide an executable function that
checks the correct application—even for those techniques that compose other termination
techniques.

As a consequence, there is also one check-function check-trs-termination-proof

which checks full proof trees. It takes a proof and a TRS as input and we have formally
proven its correctness: if check-trs-termination-proof R results in “OK” then ter-
mination of R is guaranteed. Hence, our proof scripts are always identical, they just
evaluate check-trs-termination-proof and demand that the result is “OK”.

This allows us to not generate a proof script at all. We can just invoke the code
generator of Isabelle [49] to obtain check-trs-termination-proof as external program
(Haskell, OCaml, SML, or Scala) which can then be compiled and executed. And this is
exactly what CeTA is. It consists of a small hand written main function which reads a file,
invokes check-trs-termination-proof on the input, and accepts the proof if the result
is “OK”, and otherwise throws an error-message. Hence, for checking proofs one does not
have to install and run Isabelle, but one can just compile CeTA and execute it like every
other program.



14 Chapter 4. Contributions

This design has several consequences:

• Since proof checking via CeTA is execution of native code, and does not run within
the proof assistant, CeTA is usually faster than the other two certifiers. Moreover, it
allows us to also integrate more time intensive termination techniques. For example,
the dependency graph estimation EDG∗∗∗ (a combination of the estimations in [41]
and [50]), and the termination techniques of semantic labeling [110] (Chapter 9),
size-change termination [74], and matchbounds [36] all have complex application
criteria where the corresponding check-functions benefit from the speedup that is
obtained from running native code.

• If a proof script is rejected, then one can immediately see where the proof is rejected.
Depending on the structure of the proof script, it is then more or less easy to figure
out which part of the termination proof was rejected. In contrast, if the result of
our check-trs-termination-proof function were just a Boolean, then it would
not be visible which part of the proof was rejected. Therefore, the return type of
our check-functions is a disjoint sum: either we return “OK”, or a string which is
the error message. Since all our check-functions provide detailed human readable
error messages, it is easy to figure out which part of the proof is not accepted and
why it is not accepted, where it is not required to read any proof script at all. In
the paper we further describe how readable error messages can be integrated into
the check-functions without becoming an overhead when proving soundness of these
functions.

• Since all our formal proofs are done statically (soundness of termination techniques
and soundness of check-functions), we are quite robust against any changes in the
proof assistant. With every new release of the proof assistant, we just have to
replay all our proofs and immediately detect problems which are due to changes in
the proof assistant—which can then be easily fixed. However, CeTA will be the same
program as before (unless there are severe changes in the code generator), so the
changes in the proof assistant will have no impact on checking the certificates. In
contrast, if we would have generated proof scripts on the fly, then some problems
may occur only during certification which are not visible when replaying the proofs
for the theorems in the library.

• As all our check-functions have to be fully executable, they cannot make use of
internal tactics, solvers, etc., which might be available in the proof assistant. Hence,
it is more tedious to develop these checks, as most parts have to be developed
from scratch. Moreover, our design requires that the full formalization is deeply
embedded, so we cannot model parts of term rewriting by the builtin constructs of
the proof assistant as it is done in both RC and CC.

To summarize, in this paper we formalized well known termination criteria, and pre-
sented a new approach to certify termination proofs via code generation. Here, my con-
tributions are the formalization of EDG∗∗∗, polynomial orders, and the idea of using
code generation and error messages. My co-author formalized dependency pairs and the
underlying theory on abstract reduction systems and term rewrite systems.



4.2. Certified Subterm Criterion and Certified Usable Rules (Chapter 7) 15

4.2. Certified Subterm Criterion and Certified Usable
Rules (Chapter 7)

Publication details

Christian Sternagel and René Thiemann. Certified Subterm Criterion and Certified Us-
able Rules. In Proceedings of the 21st International Conference on Rewriting Techniques
and Applications, volume 6 of LIPIcs, pages 325–340. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2010.

This paper is mainly devoted to Problem 1, the formalization of important termination
techniques. In the following, we will concentrate on the formalization of usable rules
[3, 41, 42] since my co-author developed the part about the subterm criterion [51].

Note that as for the estimation of the dependency graph, there are various definitions of
usable rules. To be able to certify many termination proofs we integrated one of the most
powerful versions of usable rules, namely the one in [41] which additionally is combined
with argument filters as in [42]. Here, we tried to generalize as much as possible.

One of the main results is easily stated where the exact definitions can be seen in
Chapter 7: if R is finite, (P ,R) is a dependency pair problem, (%,�) is a reduction
pair compatible with an argument filter π, U are the usable rules of (P ,R) w.r.t. π, and
P ∪ U ∪ Cε ⊆ %, then for a termination proof it is allowed to delete all pairs s→ t from
P which are strictly decreasing, i.e., which satisfy s � t.

Although this seems exactly like the statement that is given in literature, we want to
illustrate that our formalization contains something more general:

• We do not require that R is a well-formed TRS, i.e., that for every rule `→ r ∈ R
the left-hand side ` must not be a variable and that all variables of r also occur in `.
As a consequence during certification we do not have to check for well-formedness
when applying this techniques. However, it complicates the soundness proof of this
termination technique, as it relies upon the fact that →R is finitely branching, but
non-well-formed TRSs may be infinitely branching.

• We do not make any assumption on the set of variables or function symbols, so
that this technique can be applied for every type of variables and function sym-
bols, even for degenerated cases. As an example consider the TRS Cε which in
the literature is defined as Cε = {c(x, y) → x, c(x, y) → y} which can be used to
make nondeterministic choices. Now let the set of variables be a singleton set, i.e.
x = y. Then there is no choice anymore and the proof would fail. Therefore, in
the formalization we define Cε :=

⋃
s,t{c(s, t) → s, c(s, t) → t} where s and t range

over all terms. With this definition we can prove the result, and moreover, when-
ever {c(x, y) → x, c(x, y) → y} ⊆ %, then also Cε ⊆ % since % is required to be
closed under substitutions. Hence, we do not impose any additional constraint on
the reduction pairs that can be used.

Besides these generalizations, the paper illustrates a nice trick to avoid the development
of a working list algorithm to compute the usable rules: The usable rules are usually
defined via some inductive definition, i.e., they are the least set U ⊆ R such that some
property P on U is satisfied. Although a standard working list algorithm for computing
the usable rules is easily written, it would require a tedious proof to show termination



16 Chapter 4. Contributions

of the algorithm, and of course, one would require proofs for soundness and correctness.
In contrast, if the usable rules are provided in the certificate, then one just has to check
whether they satisfy property P : it is not at all essential, that the given set of rules is
indeed the least set satisfying P .

Note that requiring the usable rules in the certificate is not a severe burden for the
termination tools,1 since they will have to compute the usable rules in any case. Moreover,
providing the usable rules in the certificate has the advantage, that one can also show
this information when pretty printing the certificate into a human readable format.

To summarize, in this paper we formalized two important termination techniques and
generalized them, such that less preconditions have to checked during certification. More-
over, we illustrated how to completely avoid the formalization of a working list algorithm
to compute an inductively defined set.

4.3. Signature Extensions Preserve Termination – An
Alternative Proof via Dependency Pairs (Chapter 8)

Publication details

Christian Sternagel and René Thiemann. Signature Extensions Preserve Termination –
An Alternative Proof via Dependency Pairs. In Proceedings of the 19th Annual Confer-
ence of the EACSL on Computer Science Logic, volume 6247 of LNCS, pages 514–528.
Springer, 2010.

Assume that some property P can be proven for all terms over the signature F where
F are all those symbols that appear in the TRS R. Now consider an extended signature
F ′ ⊇ F . The question of signature extensions is the question for which properties P we
can conclude that P also holds for all terms over F ′.

It is a well-known result that signature extensions are sound for termination and this
fact is also used in termination tools which is illustrated in the following example.

Example 4.1. Let R consist of the following rules, and let F = {a, b, f}.

a(b(b(x)))→ a(b(a(a(a(a(x)))))) (1)

f(x, y)→ x (2)

f(x, y)→ y (3)

Using an polynomial order it is possible to remove rules (2) and (3), and it remains to
prove termination of R′ = {(1)} for all terms over the signature F . Using the result of
signature extensions it suffices to prove termination of R′ w.r.t. the signature F ′ = {a, b}.
Since in F ′ every symbol is unary, one can interpret the terms as strings and apply string
reversal which results in

b(b(a(x)))→ a(a(a(a(b(a(x)))))).

Afterwards there are no dependency pairs and termination is trivially proven.
Without the result on signature extensions, one would not be able to apply string

reversal, and a more complex proof would be required to prove termination of R′ over F .

1In the meantime, IsaFoR also contains an algorithm to compute the usable rules. It was developed for
other termination techniques where the computation of usable rules occurs as a side-problem, and
where adding the usable rules to the certificates would make the certificates too bulky.



4.3. Signature Extensions Preserve Termination – An Alternative Proof via
Dependency Pairs (Chapter 8) 17

In the paper there are essentially three contributions:

(i) There is a new formalized proof that signature extensions are sound for termina-
tion, which is simpler than existing proofs. It just requires that signature extensions
are sound when considering chains of dependency pairs, which can be proven in a
straight-forward way. And using this result in combination with soundness and com-
pleteness of dependency pairs already suffices to establish the signature extension
result.

(ii) A counter-example is provided which proves that signature extensions are unsound
when considering minimal chains of dependency pairs.

(iii) It is shown that under the additional assumption of left-linearity signature exten-
sions are sound for minimal chains.

Especially Contributions (ii) and (iii) are important: In at least two papers [53, 95]
signature extensions are used in combination with minimal chains—taking this unsound
result for granted. Luckily, in case of uncurrying [53], the major result is still valid
(cf. Chapter 11). In contrast, for root-labeling [95] we were able to also construct a
counter-example showing that without further restrictions, root-labeling is unsound when
considering minimal chains. Hence, Contribution (iii) was important since it allows to
use root-labeling at least for left-linear TRSs.

As a consequence, termination tools like AProVE and TTT2 now require left-linearity if
they want to apply root-labeling when using dependency pairs.

Clearly this paper contributes to Problem 1, as now termination techniques such as
string reversal can be certified, however, it shows the overall relevance of formalization, as
we have refuted the soundness of an existing termination technique in theory and practice.

Whereas most of the formalization for this paper was mainly done by my co-author, I
developed the counter-examples for both signature extensions and root-labeling. Both of
us were involved in the process of finding the alternative proof for signature extensions via
dependency pairs and in the process of developing a fix for minimal chains—in the form
of the additional requirement of left-linearity. Note that in the meantime, I extended the
work on signature extensions by integrating the following facts in IsaFoR.

• Signature extensions are sound for innermost rewriting, no matter whether one
considers termination of TRSs, chains, or minimal chains.

• Signature extensions are sound for relative termination of R modulo S2 if S is
well-formed.

• In general, signature extensions are unsound for relative termination. For the TRSs
R = {a → b} and S = {a → x}, we have relative termination of R modulo S if
we consider terms over the signature F = {a, b}, but for the extended signature
F ∪ {f} where f is a binary symbol, relative termination does no longer hold: a→S
f(a, a)→R f(a, b) = C[a]→S C[f(a, a)]→R . . . .

2Relative termination of R modulo S is defined as strong normalization of →R ◦→∗S .



18 Chapter 4. Contributions

4.4. Modular and Certified Semantic Labeling and
Unlabeling (Chapter 9)

Publication details

Christian Sternagel and René Thiemann. Modular and Certified Semantic Labeling and
Unlabeling. In Proceedings of the 22nd International Conference on Rewriting Tech-
niques and Applications, volume 10 of LIPIcs, pages 329–344. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2011.

This paper addresses Problem 1 by formalizing the important termination technique of
semantic labeling [110]. Even more important is the development of a solution to Problem
2, and it also addresses Problem 3.

When applying semantic labeling, one has to find an interpretation such that the rules
are a model (or quasi-model) of this interpretation, cf. Chapter 9 for more details. After-
wards, each rule is replaced by several new labeled variants where the function symbols
are labeled by their semantics, and where one rule is created for every possible assignment.

The advantage is that in this way arbitrary semantic information can be annotated as
labels in the symbols which can then be exploited afterwards, e.g., the precedence for some
RPO can be based on the labels. The disadvantage is that the labeled TRS is much larger
than the original TRS. To this end the following approach is often used: after labeling, one
tries to remove all labeled variants of at least one rule using some termination techniques,
and afterwards removes all labels again, in order to avoid the size-increase from the
labeling. Whereas this approach is sound for rewriting and for chains, i.e., when working
directly on TRSs or on chains of dependency pairs, unfortunately, it is unsound when
considering minimal chains.

Hence, with the standard semantics of dependency pairs, one can either use semantic
labeling and unlabeling (if one considers chains), or one can use the subterm criterion and
usable rules (if one considers minimal chains), but not both at the same time. Since both
techniques contribute significantly to the overall power of a termination tool, it would be
nice to find a new notion of chain—including a new semantics—where all these techniques
are sound. And this is exactly what we developed in this paper.

We proved that semantic labeling and unlabeling are sound w.r.t. to the new semantics,
and we also showed that a whole class of termination techniques can be lifted from the
old to the new semantics, which includes the subterm criterion and usable rules. As a
matter of fact, all but one technique in IsaFoR could be lifted to the new semantics without
requiring a new proof, only for string reversal the soundness proof had to be manually
adapted.

Concerning certification of semantic labeling, we shortly want to mention that certifi-
cation is not just checking syntactic criteria or term-order constraints, since another kind
of problem arises. When using semantic labeling with quasi-models, one has to add the
decreasing rules Dec in addition to the labeled rules. In fact, some termination tools do
not add Dec but just use a subset Dec′ ⊆ Dec such that →Dec ⊆ →+

Dec′ . To accept these
termination proofs, first we have formally proven that it suffices to add such a set Dec′
instead of Dec itself. As a consequence, for certification one now requires an algorithm to
check that →Dec ⊆ →+

Dec′ is satisfied, which we developed in a second step.

For this paper, my co-author developed the formalizations of root-labeling (an in-
stance of semantic labeling which often requires preprocessing using flat-context closures),



4.5. Termination of Isabelle Functions via Termination of Rewriting (Chapter 10) 19

whereas the new semantics, the theory on semantic labeling, and the checks for semantic
labeling with arbitrary finite models was done by myself.

4.5. Termination of Isabelle Functions via Termination of
Rewriting (Chapter 10)

Publication details

Alexander Krauss, Christian Sternagel, René Thiemann, Carsten Fuhs, and Jürgen Giesl.
Termination of Isabelle Functions via Termination of Rewriting. In Proceedings of the 2nd
International Conference on Interactive Theorem Proving, volume 6898 of LNCS, pages
152–167. Springer, 2011.

This paper is not related to one of the four mentioned problems. Instead, it describes an
application of our certifier. Note that in Isabelle/HOL there are three major alternatives
to define recursive functions.

• primrec: functions in primitive recursive form

• fun or function: functions with no syntactic restriction on the recursive calls

• partial-function: functions with no syntactic restriction on the recursive calls

Of course, whenever a function can be conveniently written in primitive recursive form,
one can use primrec. If this is not the case, then one has to use one of the alternatives.
For partial-function there also is a syntactic restriction, namely that the function
must be tail-recursive, or the result of the function must be an option type. Moreover,
partial-function currently does not yield an induction scheme for tail-recursive func-
tions, and it only provides an inconvenient induction scheme if the result is an option type.
Therefore, fun and function are the most frequently used commands to define functions,
where a nice induction scheme is provided, but where termination of the function has to
be proven. If one uses function, this proof has to be done manually, whereas fun first
invokes function, and afterwards tries to find a termination proof using some heuristics.

To give some statistics, in the archive of formal proofs, primrec is used 705 times,
partial-function is only invoked 17 times, fun is applied 1906 times, and function

is utilized 98 times. In over words, for at least 98 functions, the heuristic of fun is not
good enough to prove termination of the function. Notice that even in those cases where
fun was successful, sometimes manual interaction was required—in the form of auxiliary
lemmas that can be used by fun.

The aim of this paper was simple, we wanted to use existing termination tools to reduce
the number of manual termination proofs. To this end, we encode a function f as TRS
Rf , use an external termination tool for getting a termination proof for Rf , execute
CeTA (within Isabelle/HOL) to formally prove termination of Rf , and prove that from
termination of Rf we can conclude termination of f . To this end, we developed a tactic
which essentially shows that the computation of f can be simulated by Rf , where every
Isabelle/HOL term is encoded into a term over the signature of Rf .

Unfortunately, so far the experimental results are a bit disappointing, since for most of
the 98 functions, we have not been able to successfully apply our approach and there are
two major reasons for this.



20 Chapter 4. Contributions

First, our encoding as described in the paper is restricted to first-order functions,
whereas many of the 98 examples are higher-order examples. To this end, we later started
to extend our work by also providing an encoding for higher-order functions. Using these
extensions, we are able to treat functions like “map” and “fold”.

Second, for proving termination of f one has to regard side-conditions. Sometimes
these are easy to encode, for example if they arise from an if-then-else as in

f n = if n > 0 then n * f (n - 1) else 1

where one has to find a well-founded order > such that n > n - 1 whenever n > 0. Here,
the test n > 0 over naturals is converted into the test whether the term n > 0 rewrites
to true via some TRS which encodes comparison of natural numbers.

However, when using higher-order functions these conditions may become more com-
plex. As an example consider the following function which computes the size of varyadic
trees.

size (Node ts) = 1 + listsum (map size ts)

Here, to prove termination one has to find a well-founded order > such that Node ts >

t whenever t ∈ set ts (where set converts a list into a set). Using the same solu-
tion as before, one would demand that the term t ∈ set ts rewrites to true, but the
problem is that t is a free variable, which would immediately result in nontermination
of the TRS. Instead, one can use a function which is dual to membership, namely a se-
lection function, to encode a conditional rewrite rule for size: if select ts→∗ t, then
size (Node ts)→ size t.

It remains as interesting future work to also develop suitable encodings for these con-
ditions, and we believe that once this has been established, indeed our approach can be
useful to reduce the number of manual termination proofs.

Whereas most of the tactics that are described in the paper have been implemented
solely by the first author, I contributed to both the development and the presentation
of the tactics on a higher level. Moreover, the extensions to higher-order are completely
done by myself, and they have already been presented in an invited tool demonstration
at the International Workshop on Higher-Order Rewriting in 2012.

4.6. Generalized and Formalized Uncurrying (Chapter 11)

Publication details

Christian Sternagel and René Thiemann. Generalized and Formalized Uncurrying. In
Proceedings of the 8th International Symposium on the Frontiers of Combining Systems,
volume 6989 of LNCS, pages 243–258. Springer, 2011.

This paper is clearly devoted to partially solve Problem 1, since one important termi-
nation technique has been formalized: Uncurrying. Uncurrying as described in [53] works
over applicative signatures, where there is one binary application symbol ◦, and where all
other symbols are constants. It is used to turn applicative TRSs—TRSs where the sig-
nature is applicative—into functional form. If rules contain head variables, i.e., subterms
of the form x ◦ t1 ◦ . . . ◦ tn, uncurrying is performed as far as possible. For example, the
applicative rewrite rule

map ◦ f ◦ (cons ◦ x ◦ y)→ cons ◦ (f ◦ x) ◦ (map ◦ f ◦ y)



4.7. On the Formalization of Termination Techniques Based on Multiset Orderings
(Chapter 12) 21

is uncurried into

map(f, cons(x, y))→ cons(f ◦ x,map(f, y))

where the subterm f ◦ x could not be uncurried. For the approach to be sound, also the
uncurrying rules have to be added, i.e., rules like cons ◦ x → cons(x) and cons(x) ◦ y →
cons(x, y).

Note that uncurrying is extremely important to successfully treat applicative TRSs,
since several other termination techniques perform badly on applicative signatures.

During the formalization, we immediately spotted one problematic step in the original
soundness proof due to our knowledge on signature extensions (cf. Section 4.3 and Chap-
ter 8): in [53], w.l.o.g. it is assumed that signature extensions are sound when regarding
minimal chains.

However, in contrast to root-labeling, where we have been able to refute the whole
theorem due to this wrong assumption, for uncurrying we could provide an alternative
proof which does not rely upon signature extensions: we just dropped the condition that
uncurrying is only applied on TRSs over applicative signatures, and generalized the whole
proof for arbitrary signatures.

This generalization led to a strictly stronger theorem. For example, using our general-
ization, one may uncurry the map-rule above, even if the remaining TRS contains some
functional rule like plus(s(x), y) → s(plus(x, y)). This is not possible using the original
technique.

My own part in this work was the full formalization and adaptation of the proofs,
whereas my co-author integrated the generalized uncurrying technique in the TTT2 termi-
nation tool, which was essential to obtain empirical results for the adapted termination
technique.

4.7. On the Formalization of Termination Techniques
Based on Multiset Orderings (Chapter 12)

Publication details

René Thiemann, Guillaume Allais, and Julian Nagele. On the Formalization of Termina-
tion Techniques Based on Multiset Orderings. In Proceedings of the 23rd International
Conference on Rewriting Techniques and Applications, volume 15 of LIPIcs, pages 339–
354. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2012.

In this paper we consider two termination techniques which are based on multiset
orders: RPO and an approximation of size-change termination (SCNP reduction pairs),
hence the paper contributes to solve Problem 1.

To support these techniques, of course we required a formalization of the multiset
extension of an order. Although this has already been done in the Isabelle-distribution,
we could not use these results, as we require the multiset extension of two orders � and
% where � is well-founded and % is a compatible nonstrict order.

As a motivation why we need this extension, consider polynomials over the naturals:
we know that 2x % x and y + 1 � y. And for SCNP reduction pairs, we have to be able
to show that the multiset {{2x, y + 1}} is strictly larger than the multiset {{y, x}}, which
is easily possible using our definition, but which is not possible if one only defines the



22 Chapter 4. Contributions

multiset extension of the strict order � and then takes equality as nonstrict order. The
reason is that neither 2x � x nor 2x = x is valid.

Also for RPO we require the multiset extension of two orders, since termination provers
like AProVE use a variant of RPO, where f(g(x, y), s(z)) � f(g(0, y), z). This orientation
is possible, if 0 has least precedence among all symbols: then x % 0 and thus, g(x, y) %
g(0, y), which shows that the multiset {{g(x, y), s(z)}} is strictly larger than {{g(0, y), z}}.

In addition to the formalization effort of the multiset extension of two orders, we also
investigated the difference to the standard multiset extension of one order. Whereas most
properties are similar for both variants, we proved one important difference: the decision
procedure for checking whether two multisets are in relation becomes NP-complete when
using two orders, whereas it is known to be in P for one order. This is clearly an interesting
result w.r.t. Problem 3.

After having integrated the required multiset extension, we formalized RPO and SCNP
reduction pairs. For RPO we used a definition that contains many extensions which is
required for checking proofs that are generated by AProVE. For example, both quasi-
precedences and inference rules like x % 0 are integrated. For strong normalization we
did not use Kruskal’s tree theorem [72], but adapted a direct strong normalization proof of
the lexicographic path order from [17] which uses computability predicates à la Tait and
Girard (a similar and extended proof has also been performed in [57] for the higher-order
recursive path order.) During the formalization we detected that the RPO as defined in
AProVE is not a reduction order, since it is not closed under substitutions. However, we
were able to repair the definition by adding two more inference rules.

Regarding SCNP reduction pairs, there was an even more severe problem. In [20] a
nonstandard definition of reduction pair is used, which turned out to be inconsistent.
Therefore, we first had to find an alternative definition of reduction pair which could be
used to prove the results of the paper. Here, the notion of reduction triples of [51] was
helpful, and eventually we could adapt reduction triples to achieve the soundness result
for SCNP reduction pairs. Moreover, for SCNP reduction pairs we also had to formalize
other multiset extensions of two orders, like the dual-multiset-extension [7].

To summarize, we formalized the multiset extension of two orders, proved that the
decision problem for this order is NP-complete, and formalized and corrected both SCNP
reduction pairs and a powerful variant of RPO.

My work was the full development of LPO in IsaFoR (which was later extended to
RPO by my co-authors), the full formalization of SCNP reduction pairs, and the NP-
completeness proof for the multiset extension of two orders. My co-authors integrated
the multiset extension for two orders in IsaFoR, and implemented RPO in a memoized
version within IsaFoR, since the naive recursive algorithm would immediately result in
exponential runtime, even without performing multiset comparisons.

4.8. Certification of Nontermination Proofs (Chapter 13)

Publication details

Christian Sternagel and René Thiemann. Certification of Nontermination Proofs. In
Proceedings of the 3rd International Conference on Interactive Theorem Proving, volume
7406 of LNCS, pages 266–282. Springer, 2012.



4.8. Certification of Nontermination Proofs (Chapter 13) 23

In the last selected paper, we mainly consider Problem 1. However, this time we
want to certify nontermination proofs. So where in the previous papers, one was mainly
concerned about soundness of termination techniques, here we are looking at completeness
of termination techniques, where we not only consider termination but also innermost
termination.

Luckily, for many termination techniques, completeness is easy to prove. For example
all techniques that just remove rules are immediately sound: whenever the reduced TRS
is nonterminating, then so is the full one. Hence, rule removal with any order, dependency
graph decomposition, and various reduction pair processors are all complete techniques
as they just remove rules and dependency pairs.

However, there is at least one technique which is not trivial, namely the technique which
directly proves nontermination of a TRS. In the paper we consider an easy sufficient
criterion of nontermination, namely loops, i.e., derivations of the form t →+

R C[tσ] for
some context C and substitution σ. Of course, given such a derivation in the certificate,
one can easily check whether all steps in the derivation are indeed correct rewrite steps,
and afterwards can guarantee nontermination, since→R is closed under substitutions and
contexts.

But for innermost termination—where rewriting is performed using the innermost eval-
uation strategy, i.e., in an innermost rewrite step C[`σ] →R C[rσ], all arguments of
`σ must be normal forms—this is not necessarily the case: in general, the innermost
rewrite relation is not closed under substitutions. For example, the TRS {f(s(x)) →
f(s(s(x))), s(s(s(s(x)))) → overflow} is innermost termination, but it has a loop: t =
f(s(x))→ f(s(s(x))) = C[tσ] for the empty context C and the substitution which replaces
x by s(x).

In [103] it was shown, that the question whether a loop is an innermost loop, i.e.,
whether we can conclude innermost nontermination, is decidable. To this end, a complex
algorithm was provided, which works in three phases. Especially the last phase utilizes
some complex algorithm, where one has to decide for given s, t, and σ whether there is
some n such sσn = tσn. Termination of this algorithm is based on Kruskal’s tree theorem
and in the original proof it is argued via infinite terms which are obtained as limit of the
terms s, sσ, sσ2, . . . . To ensure that these limit terms are well defined, some preprocessing
on σ is done before starting the real algorithm.

In contrast, in the formalization we were able to provide a simpler algorithm with
simpler proofs: no preprocessing is required, and termination is easy to prove. Moreover,
from our algorithm one can easily extract a precise bound b on n which results in a
trivial algorithm: there exists an n such that sσn = tσn if and only if sσb = tσb where
b = (|s| · |t| · |σ|)2. This result is then used to prove that the whole decision procedure for
innermost loops is in P.

The paper also contains some contributions w.r.t. Problem 3, namely it shows how
partial-function can be used to develop efficient algorithms in Isabelle which cannot
be defined via function.

For this paper, my co-author implemented a framework for nontermination proofs and
integrated completeness results for several techniques. My own work was the complete
development and implementation of the new decision procedure for innermost loops in
combination with its soundness proof.

In addition to what is written in the paper, I also formalized a result on nonlooping non-
termination [30] and integrated sufficient syntactic criteria where nontermination implies
innermost nontermination which are based on confluence [40,41,46].



24 Chapter 4. Contributions

4.9. Further Contributions

In the area of term rewriting, we integrated several further important results in IsaFoR
that are not addressed in the selected papers.

• on confluence: the critical pair lemma and the result that weak orthogonality implies
confluence

• on termination: Knuth-Bendix orders, matchbounds, bounded increase, switching
between termination and innermost termination, outermost loops, unravelings for
conditional rewriting

• on the word problem: Birkhoff’s theorem and Knuth-Bendix completion

• on complexity: strongly linear interpretations, triangular matrix interpretations,
modular complexity proofs

All of these techniques are complemented with executable functions for certification. As
a result, with CeTA we can also check innermost (non)termination proofs, (non)confluence
proofs, completion proofs, and equational reasoning (dis)proofs. Clearly, these devel-
opments are contributions w.r.t. Problems 1 and 3—if one replaces termination by other
properties like completion, confluence, or complexity. Concerning Problem 4, we extended
CPF for these kinds of proofs as well, and currently CeTA can certify completion proofs
from mkbTT [107] and KBCV [99], (non)confluence proofs from CSI [108], and complexity
proofs from TCT[4] and CaT [81]. For confluence and complexity, CeTA already participated
in the corresponding competitions.3

Besides term rewriting, we also developed several auxiliary libraries which became avail-
able to all Isabelle users in the archive of formal proofs (AFP).4 In the following list, we
only mention those AFP-entries where the majority of the formalization was performed
by ourselves: executable operations on nonlinear multivariate polynomials, executable
operations on matrices, executable algorithms to compute (reflexive-)transitive closures,
the automatic generation of linear orders for algebraic datatypes, and the formalization
of the Babylonian method to compute square roots.

4.10. Summary of Contributions

We formalized a large amount of termination techniques for term rewrite systems (Prob-
lem 1). All of them can be freely combined using a unified semantics for termination
of dependency pair problems (Problem 2). Moreover, for all techniques we developed
executable functions which check the application criteria and can thus be used to certify
termination proofs (Problem 3). These have to provided in the common CPF format
which is supported by the certifiers CC, CI, and RC, as well as the termination tools
AProVE, Matchbox, and TTT2 (Problem 4).

The size of our formalization IsaFoR is over 100,000 lines, and the generated certifier
CeTA is a Haskell program of over 24,000 lines. Both IsaFoR and CeTA are freely available
at http://cl-informatik.uibk.ac.at/software/ceta/.

3http://coco.nue.riec.tohoku.ac.jp/2012/ and http://termcomp.uibk.ac.at/termcomp/

competition/competitionSummary.seam?comp=362062
4http://afp.sourceforge.net

http://cl-informatik.uibk.ac.at/software/ceta/
http://coco.nue.riec.tohoku.ac.jp/2012/
http://termcomp.uibk.ac.at/termcomp/competition/competitionSummary.seam?comp=362062
http://termcomp.uibk.ac.at/termcomp/competition/competitionSummary.seam?comp=362062
http://afp.sourceforge.net


4.10. Summary of Contributions 25

To evaluate the power of CeTA, we performed the following experiment: we took the most
powerful tool from the recent termination competition (AProVE TC 2012) and let it run
on all 2778 TRSs of the termination problem database.5 The results show, that AProVE
can prove termination or nontermination of 2101 TRSs and it fails on the remaining 677
TRSs.6 If we restrict AProVE to only use techniques that are supported by CPF and CeTA
(version 2.8), then AProVE can still prove termination or nontermination of 1850 TRSs,
i.e., the step from untrusted to certifiable proofs reduces the power by only 12 %. And
indeed, all these 1850 generated proofs are correct, as they have been certified by CeTA.

Concerning soundness of termination techniques, the most important observation was
the fact that signature extensions are unsound when used in combination with dependency
pair problems. As a consequence, we could prove that the termination technique of root-
labeling is unsound without additional restrictions. Hence, all tools that implement root-
labeling had to be adapted.

In addition to problems in theory, there were also problems in the implementations of
the termination tools which became visible during certification. In the following, we list
rejected techniques, i.e., techniques whose application was rejected by CeTA at least once,
and the underlying reason why these proofs have been rejected.

termination technique reason for rejection
dependency pairs no well-formedness check
dependency pairs bug in computation of dependency pairs
loop detection evaluation strategy was ignored
bounded increase bug in implementation of calculus for conditional constraints
reduction pair proc. bug in output of LPO
reduction pair proc. bug in computation of usable rules

In the first three problems, it was easy to exploit the bug to let the tool give a wrong
answer, i.e., we could develop nonterminating TRSs where the tools provided termination
“proofs”, or vice versa. In the forth problem, it is currently open, whether the bug can
be exploited to obtain a wrong answer, however in experiments it was shown, that after
fixing the bug, at least for one TRS a termination proof can no longer be detected by
that tool, and it is unknown whether the TRS is terminating or not. Finally, in the fifth
and sixth problem, the bug just had impact on the output, i.e., the principle answer of
termination or nontermination was correct, but the corresponding generated proof was
incorrect. For example, in the sixth problem, one termination tool utilizes two methods
to compute the usable rules. One, which is used in the search engine and has impact on
the internal state (without the bug); and a bogus one for pretty printing the proof.

Several of these bugs have remained undetected for quite some while: they were already
present in versions of the tools, that have participated in competitions and have been used
for getting empirical data for refereed papers, where no one spotted the mistakes in the
generated proofs.

All of these problems have been fixed in the meantime, so that these termination tools
became more reliable due to certification.

5Version 8.0.6, available at http://termcomp.uibk.ac.at/status/downloads/.
6The details of the experiments are available at http://termcomp.uibk.ac.at/termcomp/termexec/

categoryList.seam?competitionId=411173. For technical reasons, the experiments are split into
string rewrite systems (SRS standard) and term rewrite systems (TRS standard).

http://termcomp.uibk.ac.at/status/downloads/
http://termcomp.uibk.ac.at/termcomp/termexec/categoryList.seam?competitionId=411173
http://termcomp.uibk.ac.at/termcomp/termexec/categoryList.seam?competitionId=411173




5. Future Research

As already mentioned, CeTA can currently handle around 88 % of the termination and
nontermination proofs for term rewrite systems since dozens of termination techniques
have already been formalized.

This is in stark contrast to other properties of term rewrite systems. For example, in the
confluence competition 2012, the tools ACP [2], CSI, and Saigawa [52] were successfully on
at least 88 TRSs. In contrast, with the confluence techniques in IsaFoR, only 27 TRSs can
be handled, i.e., the power is reduced to only 30 %. Similarly, if one restricts complexity
tools like AProVE, CaT, Matchbox, or TCT to only use techniques supported by CeTA,
then the power is again significantly reduced, where the most severe loss is for runtime
complexity: in the competition 2012, the restricted version of TCT achieved a score of 27
whereas AProVE and TCT reached a score of at least 92.

For both confluence and complexity, the problem is that there are many techniques in
these areas which require several nontrivial formalizations. It will be an interesting task
to extend IsaFoR towards complexity and confluence to obtain a similar coverage as for
termination techniques.

Even more severe is the situation when regarding complexity or termination techniques
for other programming languages than term rewriting which are integrated in tools like
AProVE, COSTA [1], Julia [93], Polytool, RAML [55], SPEED [47], and Terminator: we are
not aware of any formalizations of these important techniques. Here, it looks promising
to continue our work by formalizing those methods which prove termination via a trans-
formation to TRSs as in [38] (for Haskell) or in [15, 16, 87] (for Java): we can reuse our
existing formalization on rewriting, and there is already an Isabelle/HOL formalization
of a Java like language [61,75].





Part II.

Selected Papers





6. Certification of Termination Proofs
using CeTA

Publication details

René Thiemann and Christian Sternagel. Certification of Termination Proofs using CeTA.
In Proceedings of the 22nd International Conference on Theorem Proving in Higher Order
Logics, volume 5674 of LNCS, pages 452–468. Springer, 2009.

Abstract

There are many automatic tools to prove termination of term rewrite systems, nowadays.
Most of these tools use a combination of many complex termination criteria. Hence gen-
erated proofs may be of tremendous size, which makes it very tedious (if not impossible)
for humans to check those proofs for correctness.

In this paper we use the theorem prover Isabelle/HOL to automatically certify ter-
mination proofs. To this end, we first formalized the required theory of term rewriting
including three major termination criteria: dependency pairs, dependency graphs, and
reduction pairs. Second, for each of these techniques we developed an executable check
which guarantees the correct application of that technique as it occurs in the gener-
ated proofs. Moreover, if a proof is not accepted, a readable error message is displayed.
Finally, we used Isabelle’s code generation facilities to generate a highly efficient and
certified Haskell program, CeTA, which can be used to certify termination proofs without
even having Isabelle installed.

6.1. Introduction

Termination provers for term rewrite systems (TRSs) became more and more powerful in
the last years. One reason is that a proof of termination no longer is just some reduction
order which contains the rewrite relation of the TRS. Currently, most provers construct a
proof in the dependency pair framework which allows to combine basic termination tech-
niques in a flexible way. Then a termination proof is a tree where at each node a specific
technique has been applied. So instead of stating the precedence of some lexicographic
path order (LPO) or giving some polynomial interpretation, current termination provers
return proof trees which reach sizes of several megabytes. Hence, it would be too much
work to check by hand whether these trees really form a valid proof.

That we cannot blindly trust the output of termination provers is regularly demon-
strated: Every now and then some tool delivers a faulty proof for some TRS. But most
often this is only detected if there is some other prover giving the opposite answer on the
same TRS, i.e., that it is nonterminating. To solve this problem, in the last years two sys-
tems have been developed which automatically certify or reject a generated termination
proof: CiME/Coccinelle [21, 25] and Rainbow/CoLoR [12] where Coccinelle and CoLoR are



32 Chapter 6. Certification of Termination Proofs using CeTA

libraries on rewriting for Coq (http://coq.inria.fr), and CiME and Rainbow are used
to convert proof trees into Coq-proofs which heavily rely on the theorems within those
libraries.

proof tree proof.v accept/failure
CiME/Rainbow Coq + Coccinelle/CoLoR

In this paper we present a new combination, CeTA/IsaFoR, to automatically certify ter-
mination proofs. Note that the system design has two major differences in comparison
to the two existing ones. First, our library IsaFoR (Isabelle Formalization of Rewriting,
containing 173 definitions, 863 theorems, and 269 functions) is written for the theorem
prover Isabelle/HOL1 [84] and not for Coq.

Second, and more important, instead of generating for each proof tree a new Coq-proof
using the auxiliary tools CiME/Rainbow, our library IsaFoR contains several executable
“check”-functions (within Isabelle) for each termination technique we formalized. We have
formally proven that whenever such a check is accepted, then the termination technique
is applied correctly. Hence, we do not need to create an individual Isabelle-proof for each
proof tree, but just call the “check”-function for checking the whole tree (which does
nothing else but calling the separate checks for each termination technique occurring in
the tree). This second difference has several advantages:

• In the other two systems, whenever a proof is not accepted, the user just gets a
Coq-error message that some step in the generated Coq-proof failed. In contrast,
our functions deliver error messages using notions of term rewriting.

• Since the analysis of the proof trees in IsaFoR is performed by executable functions,
we can just apply Isabelle’s code-generator [48] to create a certified Haskell program
[90], CeTA, leading to the following workflow.

IsaFoR Haskell program CeTA
Isabelle Haskell compiler

proof tree accept/error message
CeTA

Hence, to use our certifier CeTA (Certified Termination Analysis) you do not have to
install any theorem prover, but just execute some binary. Moreover, the runtime of
certification is reduced significantly. Whereas the other two approaches take more
than one hour to certify all (≤ 580) proofs during the last certified termination
competition, CeTA needs less than two minutes for all (786) proofs that it can handle.
Note that CeTA can also be used for modular certification. Each single application
of a termination technique can be certified—just call the corresponding Haskell-
function.

Concerning the techniques that have been formalized, the other two systems offer tech-
niques that are not present in IsaFoR, e.g., LPO or matrix interpretations. Nevertheless,
we also feature one new technique that has not been certified so far. Whereas currently
only the initial dependency graph estimation of [3] has been certified, we integrated the
most powerful estimation which does not require tree automata techniques and is based

1In the remainder of this paper we just write Isabelle instead of Isabelle/HOL.

http://coq.inria.fr


6.2. Formalizing Term Rewriting 33

on a combination of [41, 50] where the function tcap is required. Initial problems in the
formalization of tcap led to the development of etcap, an equivalent but more efficient
version of tcap which is also beneficial for termination provers. Replacing tcap by etcap
within the termination prover TTT2 [67] reduced the time to estimate the dependency
graph by a factor of 2. We will also explain, how to reduce the number of edges that have
to be inspected when checking graph decompositions.

Another benefit of our system is its robustness. Every proof which uses weaker tech-
niques than those formalized in IsaFoR is accepted. For example, termination provers can
use the graph estimation of [3], as it is subsumed by our estimation.

The paper is structured as follows. In Sect. 6.2 we recapitulate the required notions
and notations of term rewriting and the dependency pair framework (DP framework).
Here, we also introduce our formalization of term rewriting within IsaFoR. In Sect. 6.3–
6.6 we explain our certification of the four termination techniques we currently support:
dependency pairs (Sect. 6.3), dependency graph (Sect. 6.4), reduction pairs (Sect. 6.5),
and combination of proofs in the dependency pair framework (Sect. 6.6). However, to
increase readability we abstract from our concrete Isabelle code and present the checks
for the techniques on a higher level. How we achieved readable error-messages while at
the same time having maintainable Isabelle proofs is the topic of Sect. 6.7. We conclude in
Sect. 6.8 where we show how CeTA is created from IsaFoR and where we give experimental
data.

IsaFoR, CeTA, and all details about our experiments are available at CeTA’s website http:
//cl-informatik.uibk.ac.at/software/ceta.

6.2. Formalizing Term Rewriting

We assume some basic knowledge of term rewriting [5]. Variables are denoted by x, y, z,
etc., function symbols by f , g, h, etc., terms by s, t, u, etc., and substitutions by σ, µ,
etc. Instead of f(t1, . . . , tn) we write f(~tn). The set of all variables occurring in term t is
denoted by Var(t). By T (F ,V) we denote the set of terms over function symbols from F
and variables from V .

In the following we give an overview of our formalization of term rewriting in IsaFoR.
Our main concern is termination of rewriting. This property—also known as strong
normalization—can be stated without considering the structure of terms. Therefore it
is part of our Isabelle theory AbstractRewriting. An abstract rewrite system (ARS) is
represented by the type (’a×’a)set in Isabelle. Strong normalization (SN) of a given
ARS A is equivalent to the absence of an infinite sequence of A-steps. On the lowest
level we have to link our notion of strong normalization to the notion of well-foundedness
as defined in Isabelle. This is an easy lemma since the only difference is the orientation
of the relation, i.e., SN(A) = wf(A−1). At this point we can be sure that our notion of
strong normalization is valid.

Now we come to the level of first-order terms (in theory Term):

datatype (’f,’v)"term" = Var ’v | Fun ’f "(’f,’v)term list"

Many concepts related to terms are formalized in Term, e.g., an induction scheme for
terms (as used in textbooks), substitutions, contexts, the (proper) subterm relation etc.

By restricting the elements of some ARS to terms, we reach the level of TRSs (in theory
Trs), which in our formalization are just binary relations over terms.

http://cl-informatik.uibk.ac.at/software/ceta
http://cl-informatik.uibk.ac.at/software/ceta


34 Chapter 6. Certification of Termination Proofs using CeTA

Example 6.1. As an example, consider the following TRS, encoding rules for subtraction
and division on natural numbers.

minus(x, 0)→ x div(0, s(y))→ 0

minus(s(x), s(y))→ minus(x, y) div(s(x), s(y))→ s(div(minus(x, y), s(y)))

Given a TRS R, (`, r) ∈ R means that ` is the lhs and r the rhs of a rule in R (usually
written as `→ r ∈ R). The rewrite relation induced by a TRS R is denoted by →R and
has the following definition in IsaFoR:

Definition 6.2. Term s rewrites to t by R, iff there are a context C, a substitution σ,
and a rule `→ r ∈ R such that s = C[`σ] and t = C[rσ].

Note that this section contains the only parts where you have to trust our formaliza-
tion, i.e., you have to believe that SN(→R) as defined in IsaFoR really describes “R is
terminating.”

6.3. Certifying Dependency Pairs

Before we introduce dependency pairs [3] formally and give some details about our Is-
abelle formalization, we recapitulate the ideas that led to the final definition (including a
refinement proposed by Dershowitz [28]).

For a TRS R, strong normalization means that there is no infinite derivation t1 →R
t2 →R t3 →R · · · . Additionally we can concentrate on derivations, where t1 is minimal
in the sense that all its proper subterms are terminating. Such terms are called minimal
nonterminating. The set of all minimally nonterminating terms with respect to a TRS R
is denoted by T ∞R . Observe that for every term t ∈ T ∞R there is an initial part of an
infinite derivation having a specific shape: A (possibly empty) derivation taking place
below the root, followed by an application of some rule ` → r ∈ R at the root, i.e.,

t
>ε∗→R `σ

ε→R rσ, for some substitution σ. Furthermore, since rσ is nonterminating, there
is some subterm u of r, such that uσ ∈ T ∞R , i.e., rσ = C[uσ]. Then the same reasoning
can be used to get a root reduction of uσ, . . . , cf. [3].

To get rid of the additional contexts C a new TRS, DP(R), is built.

Definition 6.3. The set DP(R) of dependency pairs of R is defined as follows: For every
rule ` → r ∈ R, and every subterm u of r such that u is not a proper subterm of ` and
such that the root of u is defined,2 `] → u] is contained in DP(R). Here t] is the same as
t except that the root of t is marked with the special symbol ].

Example 6.4. The dependency pairs for the TRS from Ex. 6.1 consist of the rules

M(s(x), s(y))→ M(x, y) (MM) D(s(x), s(y))→ M(x, y) (DM)

D(s(x), s(y))→ D(minus(x, y), s(y)) (DD)

where we write M instead of minus] and D instead of div] for brevity.

Note that after switching to ’]’-terms, the derivation from above can be written as
t] →∗R `]σ →DP(R) u

]σ. Hence every nonterminating derivation starting at a term t ∈ T ∞R
2A function symbol f is defined (w.r.t. R) if there is some rule f(. . . )→ r ∈ R.



6.3. Certifying Dependency Pairs 35

can be transformed into an infinite derivation of the following shape where all→DP(R)-steps
are applied at the root.

t] →∗R s
]
1 →DP(R) t

]
1 →∗R s

]
2 →DP(R) t

]
2 →∗R · · · (1)

Therefore, to prove termination of R it suffices to prove that there is no such derivation.
To formalize DPs in Isabelle we modify the signature such that every function symbol
now appears in a plain version and in a ]-version.

datatype ’f shp = Sharp ’f ("_]") | Plain ’f ("_@")

Sharping a term is done via

fun plain :: "(’f,’v)term => (’f shp,’v)term"

where "plain(Var x) = Var x"

| "plain(Fun f ss) = Fun f@ (map plain ss)"

fun sharp :: "(’f,’v)term => (’f shp,’v)term"

where "sharp(Var x) = Var x"

| "sharp(Fun f ss) = Fun f] (map plain ss)"

Thus t] in Def. 6.3 is the same as sharp(t). Since the function symbols in DP(R) are
of type ’f shp and the function symbols of R are of type ’f, it is not possible to use
the same TRS R in combination with DP(R). Thus, in our formalization we use the
lifting ID—that just applies plain to all lhss and rhss in R.

Considering this technicalities and omitting the initial derivation t] →∗R s]1 from the
derivation (1), we obtain

s]1 →DP(R) t
]
1 →∗ID(R) s

]
2 →DP(R) t

]
2 →∗ID(R) · · ·

and hence a so called infinite (DP(R), ID(R))-chain. Then the corresponding DP problem
(DP(R), ID(R)) is called to be not finite, cf. [40]. Notice that in IsaFoR a DP problem is
just a pair of two TRSs over arbitrary signatures—similar to [40].

In IsaFoR an infinite chain3 and finite DP problems are defined as follows.

fun ichain where "ichain(P ,R) ~s ~t ~σ = (∀i.
(~s i,~t i) ∈ P ∧ (~t i)·(~σ i) →∗R (~s(i+1))·(~σ(i+1))"

fun finite_dpp where

"finite_dpp(P ,R) = (¬(∃~s ~t ~σ. ichain (P ,R) ~s ~t ~σ))"

where ‘t · σ’ denotes the application of substitution σ to term t.
We formally established the connection between strong normalization and finiteness of

the initial DP problem (DP(R), ID(R)). Although this is a well-known theorem, formal-
izing it in Isabelle was a major effort.

Theorem 6.5. wf_trs(R) ∧ finite_dpp(DP(R), ID(R)) −→ SN(→R).

The additional premise wf_trs(R) ensures two well-formedness properties forR, name-
ly that for every `→ r ∈ R, ` is not a variable and that Var(r) ⊆ Var(`).

At this point we can obviously switch from the problem of proving SN(→R) for some
TRS R, to the problem of proving finite_dpp(DP(R), ID(R)), and thus enter the realm

3We also formalized minimal chains, but here only present chains for simplicity.



36 Chapter 6. Certification of Termination Proofs using CeTA

of the DP framework [40]. Here, the current technique is to apply so-called processors to
a DP problem, in order to get a set of simpler DP problems. This is done recursively,
until the leafs of the so built tree consist of DP problems with empty P-components (and
therefore are trivially finite). For this to be correct, the applied processors need to be
sound, i.e., every processor Proc has to satisfy the implication

(∀p ∈ Proc(P ,R). finite_dpp(p)) −→ finite_dpp(P ,R)

for every input. The termination techniques that will be introduced in the following
sections are all such (sound) processors.

So much to the underlying formalization. Now we will present how the check in IsaFoR
certifies a set of DPs P that was generated by some termination tool for some TRS R.
To this end, the function checkDPs is used.

checkDPs(P,R) = checkWfTRS(R) ∧ computeDPs(R) ⊆ P
Here checkWfTRS checks the two well-formedness properties mentioned above (the

difference between wf_trs and checkWfTRS is that only the latter is executable) and
computeDPs uses Def. 6.3, which is currently the strongest definition of DPs. To have a
robust system, the check does not require that exactly the set of DPs w.r.t. to Def. 6.3 is
provided, but any superset is accepted. Hence we are also able to accept proofs from ter-
mination tools that use a weaker definition of DP(R). The soundness result of checkDPs
is formulated as follows in IsaFoR.

Theorem 6.6. If checkDPs(P ,R) is accepted, then finiteness of (P , ID(R)) implies
SN(→R).

6.4. Certifying the Dependency Graph Processor

One important processor to prove finiteness of a DP problem is based on the dependency
graph [3, 40]. The dependency graph of a DP problem (P ,R) is a directed graph G =
(P , E) where (s → t, u → v) ∈ E iff s → t, u → v is a (P ,R)-chain. Hence, every
infinite (P ,R)-chain corresponds to an infinite path in G and thus, must end in some
strongly connected component (SCC) S of G, provided that P contains only finitely many
DPs. Dropping the initial DPs of the chain results in an infinite (S,R)-chain.4 Hence,
if for all SCCs S of G the DP problem (S,R) is finite, then (P ,R) is finite. In practice,
this processor allows to prove termination of each block of mutual recursive functions
separately.

To certify an application of the dependency graph processor there are two main chal-
lenges. First of all, we have to certify that a valid SCC decomposition of G is used, a
purely graph-theoretical problem. Second, we have to generate the edges of G. Since the
dependency graph G is in general not computable, usually estimated graphs G ′ are used
which contain all edges of the real dependency graph G. Hence, for the second problem
we have to implement and certify one estimation of the dependency graph.

Notice that there are various estimations around and that the result of an SCC decom-
position depends on the estimation that is used. Hence, it is not a good idea to implement
the strongest estimation and then match the result of our decomposition against some
given decomposition: problems arise if the termination prover used a weaker estimation
and thus obtained larger SCCs.

4We identify an SCC S with the set of nodes S within that SCC.



6.4. Certifying the Dependency Graph Processor 37

Therefore, in the upcoming Sect. 6.4.1 about graph algorithms we just speak of de-
compositions where the components do not have to be SCCs. Moreover, we will also
elaborate on how to minimize the number of tests (s→ t, u→ v) ∈ E. The reason is that
in Sect. 6.4.2 we implemented one of the strongest dependency graph estimations where
the test for an edge can become expensive. In Sect. 6.4.3 we finally show how to combine
the results of Sections 6.4.1 and 6.4.2.

6.4.1. Certifying Graph Decompositions

Instead of doing an SCC decomposition of a graph within IsaFoR we base our check on
the decomposition that is provided by the termination prover. Essentially, we demand
that the set of components is given as a list 〈C1, . . . , Ck〉 in topological order where the
component with no incoming edges is listed first. Then we aim at certifying that every
infinite path must end in some Ci. Note that the general idea of taking the topological
sorted list as input was already publicly mentioned at the “Workshop on the certification
of termination proofs” in 2007. In the following we present how we filled the details of
this general idea.

The main idea is to ensure that all edges (p, q) ∈ E correspond to a step forward in the
list 〈C1, . . . , Ck〉, i.e., (p, q) ∈ Ci × Cj where i ≤ j. However, iterating over all edges of
G will be costly, because it requires to perform the test (p, q) ∈ E for all possible edges
(p, q) ∈ P × P . To overcome this problem we do not iterate over the edges but over P .
To be more precise, we check that

∀(p, q) ∈ P × P . (∃i ≤ j. (p, q) ∈ Pi × Pj) ∨ (p, q) /∈ E (2)

where the latter part of the disjunction is computed only on demand. Thus, only those
edges have to be computed, which would contradict a valid decomposition.

Example 6.7. Consider the set of nodes P = {(DD), (DM), (MM)}. Suppose that we have
to check a decomposition of P into L = 〈{(DD)}, {(DM)}, {(MM)}〉 for some graph G =
(P , E). Then our check has to ensure that the dashed edges in the following illustration
do not belong to E.

(DD) (DM) (MM)

It is easy to see that (2) is satisfied for every list of SCCs that is given in topological
order. What is even more important, whenever there is a valid SCC decomposition of G,
then (2) is also satisfied for every subgraph. Hence, regardless of the dependency graph
estimation a termination prover might have used, we accept it, as long as our estimation
delivers less edges.

However, the criterion is still too relaxed, since we might cheat in the input by listing
nodes twice. Consider P = {p1, . . . , pm} where the corresponding graph is arbitrary
and L = 〈{p1}, . . . , {pm}, {p1}, . . . , {pm}〉. Then trivially (2) is satisfied, because we can
always take the source of edge (pi, pj) from the first part of L and the target from the
second part of L. To prevent this kind of problem, our criterion demands that the sets
Ci in L are pairwise disjoint.

Before we formally state our theorem, there is one last step to consider, namely the
handling of singleton nodes which do not form an SCC on their own. Since we cannot
easily infer at what position these nodes have to be inserted in the topological sorted



38 Chapter 6. Certification of Termination Proofs using CeTA

list—this would amount to do an SCC decomposition on our own—we demand that they
are contained in the list of components.5

To distinguish a singleton node without an edge to itself from a “real SCC”, we require
that the latter ones are marked. Then condition (2) is extended in a way that unmarked
components may have no edge to themselves. The advantage of not marking a component
is that our IsaFoR-theorem about graph decomposition states that every infinite path will
end in some marked component, i.e., here the unmarked components can be ignored.

Theorem 6.8. Let L = 〈C1, . . . , Ck〉 be a list of sets of nodes, some of them marked, let
G = (P , E) be a graph, let α be an infinite path of G. If

• ∀(p, q) ∈ P × P . (∃i < j. (p, q) ∈ Ci × Cj) ∨ (∃i. (p, q) ∈ Ci × Ci ∧ Ci is marked) ∨
(p, q) /∈ E and

• ∀i 6= j. Ci ∩ Cj = ∅

then there is some suffix β of α and some marked Ci such that all nodes of β belong to
Ci.

Example 6.9. If we continue with example Ex. 6.7 where only components {(MM)} and
{(DD)} are marked, then our check also analyzes that G contains no edge from (DM) to
itself. If it succeeds, every infinite path will in the end only contain nodes from {(DD)}
or only nodes from {(MM)}. In this way, only 4 edges of G have to be calculated instead
of analyzing all 9 possible edges in P × P .

6.4.2. Certifying Dependency Graph Estimations

What is currently missing to certify an application of the dependency graph processor,
is to check, whether a singleton edge is in the dependency graph or not. Hence, we
have to estimate whether the sequence s → t, u → v is a chain, i.e., whether there are
substitutions σ and µ such that tσ →∗R uµ. An obvious solution is to just look at the
root symbols of t and u—if they are different there is no way that the above condition is
met (since all the steps in tσ →∗R uµ take place below the root, by construction of the
dependency pairs). Although efficient and often good enough, there are more advanced
estimations around.

The estimation EDG [3] first replaces via an operation cap all variables and all subterms
of t which have a defined root-symbol by distinct fresh variables. Then if cap(t) and u do
not unify, it is guaranteed that there is no edge.

The estimation EDG∗[50] does the same check and additionally uses the reversed TRS
R−1 = {r → ` | `→ r ∈ R}, i.e., it uses the fact that tσ →∗R uµ implies uµ→∗R−1 tσ and
checks whether cap(u) does not unify with t. Of course in the application of cap(u) we
have to take the reversed rules into account (possibly changing the set of defined symbols)
and it is not applicable if R contains a collapsing rule `→ x where x ∈ V .

The last estimation we consider is based on a better version of cap, called tcap [41]. It
only replaces subterms with defined symbols by a fresh variable, if there is a rule that
unifies with the corresponding subterm.

Definition 6.10. Let R be a TRS.

5Note that Tarjan’s SCC decomposition algorithm produces exactly this list.



6.4. Certifying the Dependency Graph Processor 39

• tcap(f(~tn)) = f(tcap(t1), . . . , tcap(tn)) iff f(tcap(t1), . . . , tcap(tn)) does not unify
with any variable renamed left-hand side of a rule from R

• tcap(t) is a fresh variable, otherwise

To illustrate the difference between cap and tcap consider the TRS of Ex. 6.1 and
t = div(0, 0). Then cap(t) = xfresh since div is a defined symbol. However, tcap(t) = t
since there is no division rule where the second argument is 0.

Apart from tree automata techniques, currently the most powerful estimation is the
one based on tcap looking both forward as in EDG and backward as in EDG∗. Hence, we
aimed to implement and certify this estimation in IsaFoR.

Unfortunately, when doing so, we had a problem with the domain of variables. The
problem was that although we first implemented and certified the standard unification
algorithm of [78], we could not directly apply it to compute tcap. The reason is that to
generate fresh variables as well as to rename variables in rules apart, we need a type of
variables with an infinite domain. One solution would have been to constrain the type of
variables where there is a function which delivers a fresh variable w.r.t. any given finite
set of variables.

However, there is another and more efficient approach to deal with this problem than
the standard approach to rename and then do unification. Our solution is to switch to
another kind of terms where instead of variables there is just one special constructor
“2” representing an arbitrary fresh variable. In essence, this data structure represents
contexts which do not contain variables, but where multiple holes are allowed. Therefore
in the following we speak of ground-contexts and use C,D, . . . to denote them.

Definition 6.11. Let JCK be the equivalence class of a ground-context C where the holes
are filled with arbitrary terms: JCK = {C[t1, . . . , tn] | t1, . . . , tn ∈ T (F ,V)}.

Obviously, every ground-context C can be turned into a term t which only contains
distinct fresh variables and vice-versa. Moreover, every unification problem between t
and ` can be formulated as a ground-context matching problem between C and `, which
is satisfiable iff there is some µ such that `µ ∈ JCK.

Since the result of tcap is always a term which only contains distinct fresh variables,
we can do the computation of tcap using the data structure of ground-contexts; it only
requires an algorithm for ground-context matching. To this end we first generalize ground-
context matching problems to multiple pairs (Ci, `i).

Definition 6.12. A ground-context matching problem is a set of pairs M = {(C1, `1),
. . . , (Cn, `n)}. It is solvable iff there is some µ such that `iµ ∈ JCiK for all 1 ≤ i ≤ n. We
sometimes abbreviate {(C, `)} by (C, `).

To decide ground-context matching we devised a specialized algorithm which is similar
to standard unification algorithms, but which has some advantages: it does neither require
occur-checks as the unification algorithm, nor is it necessary to preprocess the left-hand
sides of rules by renaming (as would be necessary for standard tcap). And instead of
applying substitutions on variables, we just need a basic operation on ground-contexts
called merge such that merge(C,D) = ⊥ implies JCK ∩ JDK = ∅, and merge(C,D) = E
implies JCK ∩ JDK = JEK.



40 Chapter 6. Certification of Termination Proofs using CeTA

Definition 6.13. The following rules simplify a ground-context matching problem into
solved form (where all terms are distinct variables) or into ⊥.

(a) M∪ {(2, `)} ⇒match M
(b) M∪ {(f(~Dn), f(~un))} ⇒match M∪ {(D1, u1), . . . , (Dn, un)}
(c) M∪ {(f(~Dn), g(~uk))} ⇒match ⊥ if f 6= g or n 6= k
(d) M∪ {(C, x), (D, x)} ⇒match M∪ {(E, x)} if merge(C,D) = E
(e) M∪ {(C, x), (D, x)} ⇒match ⊥ if merge(C,D) = ⊥

Rules (a–c) obviously preserve solvability of M (where ⊥ represents an unsolvable
matching problem). For Rules (d,e) we argue as follows:

{(C, x), (D, x)} ∪ . . . is solvable iff

• there is some µ such that xµ ∈ JCK and xµ ∈ JDK and . . . iff

• there is some µ such that xµ ∈ JCK ∩ JDK and . . . iff

• there is some µ such that xµ ∈ Jmerge(C,D)K and . . . iff

• {(merge(C,D), x)} ∪ . . . is solvable

Since every ground-context matching problem in solved form is solvable, we have devised
a decision procedure. It can be implemented in two stages where the first stage just
normalizes by the Rules (a–c), and the second stage just applies the Rules (d,e). It
remains to implement merge.

merge(2, C)⇒merge C

merge(C,2)⇒merge C

merge(f(~Cn), g(~Dk))⇒merge ⊥ if f 6= g or n 6= k

merge(f(~Cn), f(~Dn))⇒merge f(merge(C1, D1), . . . ,merge(Cn, Dn))

f(. . . ,⊥, . . .)⇒merge ⊥

Note that our implementations of the matching algorithm and the merge function in
IsaFoR are slightly different due to different data structures. For example matching prob-
lems are represented as lists of pairs, so it may occur that we have duplicates inM. The
details of our implementation can be seen in IsaFoR (theory Edg) or in the source of CeTA.

Soundness and completeness of our algorithms are proven in IsaFoR.

Theorem 6.14. • If merge(C,D)⇒∗merge ⊥ then JCK ∩ JDK = ∅.

• If merge(C,D)⇒∗merge E then JCK ∩ JDK = JEK.

• If (C, `)⇒∗match ⊥ then there is no µ such that `µ ∈ JCK.

• If (C, `) ⇒∗match M where M is in solved form, then there exists some µ such that
`µ ∈ JCK.

Using ⇒match, we can now easily reformulate tcap in terms of ground-context matching
which results in the efficient implementation etcap.

Definition 6.15. • etcap(f(~tn)) = f(etcap(t1), . . . , etcap(tn)) iff
(f(etcap(t1), . . . , etcap(tn)), `)⇒∗match ⊥ for all rules `→ r ∈ R.



6.5. Certifying the Reduction Pair Processor 41

• 2, otherwise

One can also reformulate the desired check to estimate the dependency graph whether
tcap(t) does not unify with u in terms of etcap. It is the same requirement as demanding
(etcap(t), u)⇒∗match ⊥. Again, the soundness of this estimation has been proven in IsaFoR
where the second part of the theorem is a direct consequence of the first part by using
the soundness of the matching algorithm.

Theorem 6.16. (a) Whenever tσ →∗R s then s ∈ Jetcap(t)K.

(b) Whenever tσ →∗R uτ then (etcap(t), u) 6⇒∗match ⊥ and (etcap(u), t) 6⇒∗match ⊥ where
etcap(u) is computed w.r.t. the reversed TRS R−1.

6.4.3. Certifying Dependency Graph Decomposition

Eventually we can connect the results of the previous two subsections to obtain one
function to check a valid application of the dependency graph processor.

checkDepGraphProc(P , L,R) = checkDecomposition(checkEdg(R),P , L)

where checkEdg just applies the criterion of Thm. 6.16 (b).
In IsaFoR the soundness result of our check is proven.

Theorem 6.17. If checkDepGraphProc(P , L,R) is accepted and if for all P ′ ∈ L where
P ′ is marked, the DP problem (P ′,R) is finite, then (P ,R) is finite.

To summarize, we have implemented and certified the currently best dependency graph
estimation which does not use tree automata techniques. Our check-function accepts any
decomposition which is based on a weaker estimation, but requires that the components
are given in topological order. Since our algorithm computes edges only on demand, the
number of tests for an edge is reduced considerably. For example, the five largest graphs
in our experiments contain 73,100 potential edges, but our algorithm only has to consider
31,266. This reduced the number of matchings from 13 millions down to 4 millions.

Furthermore, our problem of not being able to generate fresh variables or to rename
variables in rules apart led to a more efficient algorithm for tcap based on matching instead
of unification: simply replacing tcap by etcap in TTT2 reduced the time for estimating the
dependency graph by a factor of two.

6.5. Certifying the Reduction Pair Processor

One important technique to prove finiteness of a DP problem (P ,R) is the so-called
reduction pair processor. The general idea is to use a well-founded order where all rules
of P ∪ R are weakly decreasing. Then we can delete all strictly decreasing rules from P
and continue with the remaining dependency pairs.

We first state a simplified version of the reduction pair processor as it is introduced in
[40], where we ignore the usable rules refinement.

Theorem 6.18. If all the following properties are satisfied, then finiteness of (P \�,R)
implies finiteness of (P ,R).

(a) � is a well-founded and stable order



42 Chapter 6. Certification of Termination Proofs using CeTA

(b) % is a stable and monotone quasi-order

(c) % ◦ � ⊆ � and � ◦% ⊆ �

(d) P ⊆ � ∪% and R ⊆ %

Of course, to instantiate the reduction pair processor with a new kind of reduction pair,
e.g., LPO, polynomial orders,. . . , we first have to prove the first three properties for that
kind of reduction pairs. Since we plan to integrate many reduction pairs, but only want
to write the reduction pair processor once, we tried to minimize these basic requirements
such that the reduction pair processor still remains sound in total. In the end, we replaced
the first three properties by:

(a) � is a well-founded and stable relation

(b) % is a stable and monotone relation

(c) % ◦ � ⊆ �

In this way, for every new class of reduction pairs, we do not have to prove transitivity
of � or % anymore, as it would be required for Thm. 6.18. Currently, we just support
reduction pairs based on polynomial interpretations with negative constants [51], but we
plan to integrate other reduction pairs in the future.

For checking an application of a reduction pair processor we implemented a generic
function checkRedPairProc in Isabelle, which works as follows. It takes as input two
functions checkS and checkNS which have to approximate a reduction pair, i.e., whenever
checkS(s, t) is accepted, then s � t must hold in the corresponding reduction pair and
similarly, checkNS has to guarantee s % t.

Then checkRedPairProc(checkS, checkNS,P ,P ′,R) works as follows:

• iterate once over P to divide P into P� and P6� where the former set contains all
pairs of P where checkS is accepted

• ensure for all s→ t ∈ R ∪ P 6� that checkNS(s, t) is accepted, otherwise reject

• accept if P6� ⊆ P ′, otherwise reject

The corresponding theorem in IsaFoR states that a successful application of checkRed-
PairProc(. . . ,P ,P ′,R) proves that (P ,R) is finite whenever (P ′,R) is finite. Obviously,
the first two conditions of checkRedPairProc ensure condition (d) of Thm. 6.18. Note,
that it is not required that all strictly decreasing pairs are removed, i.e., our checks may
be stronger than the ones that have been used in the termination provers.

6.6. Certifying the Whole Proof Tree

From Sect. 6.3–6.5 we have basic checks for the three techniques of applying dependency
pairs (checkDPs), the dependency graph processor (checkDepGraphProc), and the re-
duction pair processor (checkRedPairProc). For representing proof trees within the DP
framework we used the following data structures in IsaFoR.



6.6. Certifying the Whole Proof Tree 43

datatype ’f RedPair = NegPolo "(’f × (cint × nat list))list"

datatype (’f,’v)DPProof = . . . 6

| PisEmpty

| RedPairProc "’f RedPair" "(’f,’v)trsL" "(’f,’v)DPProof"

| DepGraphProc "((’f,’v)DPProof option × (’f,’v)trsL)list"

datatype (’f,’v)TRSProof = . . . 6

| DPTrans "(’f shp,’v)trsL" "(’f shp,’v)DPProof"

The first line fixes the format for reduction pairs, i.e., currently of (linear) polynomial
interpretations where for every symbol there is one corresponding entry. E.g., the list
[(f, (−2, [0, 3]))] represents the interpretation where Pol(f)(x, y) = max(−2 + 3y, 0) and
Pol(g)(x1, . . . , xn) = 1 + Σ1≤i≤nxi for all f 6= g.

The datatype DPProof represents proof trees for DP problems. Then the check for valid
DPProofs gets as input a DP problem (P ,R) and a proof tree and tries to certify that
(P ,R) is finite. The most basic technique is the one called PisEmpty, which demands
that the set P is empty. Then (P ,R) is trivially finite.

For an application of the reduction pair processor, three inputs are required. First, the
reduction pair redp, i.e., some polynomial interpretation. Second, the dependency pairs
P ′ that remain after the application of the reduction pair processor. Here, the datatype
trsL is an abbreviation for lists of rules. And third, a proof that the remaining DP prob-
lem (P ′,R) is finite. Then the checker just has to call createRedPairProc(redp,P ,P ′,R)
and additionally calls itself recursively on (P ′,R). Here, createRedPairProc invokes
checkRedPairProc where checkS and checkNS are generated from redp.

The most complex structure is the one for decomposition of the (estimated) dependency
graph. Here, the topological list for the decomposition has to be provided. Moreover, for
each subproblem P ′, there is an optional proof tree. Subproblems where a proof is given
are interpreted as “real SCCs” whereas the ones without proof remain unmarked for the
function checkDepGraphProc.

The overall function for checking proof trees for DP problems looks as follows.

checkDPProof(P,R,PisEmpty) = (P = [])

checkDPProof(P,R,(RedPairProc redp P ′ prf)) =

createRedPairProc(redp,P,P ′,R) ∧ checkDP(P ′,R,prf)
checkDPProof(P,R,DepGraphProc P ′s) =

checkDepGraphProc(P,map (λ(prfO,P ′).(isSome prfO,P ′)) P ′s, R)
∧

∧
(Some prf,P ′)∈P ′s checkDPProof(P ′,R,prf)

Theorem 6.19. If checkDPProof(P,R,prf) is accepted then (P ,R) is finite.

Using checkDPProof it is now easy to write the final method checkTRSProof for proving
termination of a TRS, where computeID is an implementation of ID.

checkTRSProof(R,DPTrans P prf) =

checkDPs(R,P) ∧ checkDPProof(P,computeID(R),prf)
For the external usage of CeTA we developed a well documented XML-format, cf. CeTA’s

website. Moreover, we implemented two XML parsers in Isabelle, one that transforms a
given TRS into the internal format, and another that does the same for a given proof.

6CeTA supports even more techniques, cf. CeTA’s website for a complete list.

http://cl-informatik.uibk.ac.at/software/ceta/input.php
http://cl-informatik.uibk.ac.at/software/ceta/input.php
http://cl-informatik.uibk.ac.at/software/ceta


44 Chapter 6. Certification of Termination Proofs using CeTA

The function certifyProof, finally, puts everything together. As input it takes two
strings (a TRS and its proof). Then it applies the mentioned parsers and afterwards calls
checkTRSProof on the result.

Theorem 6.20. If certifyProof(R,prf) is accepted then SN(→R).

To ensure that the parser produces the right TRS, after the parsing process it is checked
that when converting the internal data-structures of the TRS back to XML, we get the
same string as the input string for the TRS (modulo whitespace). This is a major benefit
in comparison to the two other approaches where it can and already has happened that
the uncertified components Rainbow/CiME produced a wrong proof goal from the input
TRS, i.e., they created a termination proof within Coq for a different TRS than the input
TRS.

6.7. Error Messages

To generate readable error messages, our checks do not have a Boolean return type,
but a monadic one (isomorphic to ’e option). Here, None represents an accepted check
whereas Some e represents a rejected check with error message e. The theory ErrorMonad

contains several basic operations like >> for conjunction of checks, <- for changing the
error message, and isOK for testing acceptance.

Using the error monad enables an easy integration of readable error messages. For
example, the real implementation of checkTRSProof looks as follows:

fun checkTRSProof where "checkTRSProof R (DPTrans P prf) = (

checkDPs R P

<- (λs. ’’error . . .’’ @ showTRS R @ ’’. . .’’ @ showTRS P @ s)

>> checkDPProof P (computeID R) prf

<- (λs. ’’error below switch to dependency pairs’’ @ s))"

However, since we do not want to adapt the proofs every time the error messages are
changed, we setup the Isabelle simplifier such that it hides the details of the error monad,
but directly removes all the error handling and turns monadic checks via isOK(...) into
Boolean ones using the following lemmas.

lemma "isOK(m >> n) = isOK(m) ∧ isOK(n)"

lemma "isOK(m <- s) = isOK(m)"

Then, for example, isOK(checkTRSProof R (DPTrans P prf)) directly simplifies to
isOK(checkDPs R P) ∧ isOK(checkDPProof P (computeID R) prf).

6.8. Experiments and Conclusion

Isabelle’s code-generator is invoked to create CeTA from IsaFoR. To compile CeTA one aux-
iliary hand-written Haskell file CeTA.hs is needed, which just reads two files (one for the
TRS, one for the proof) and then invokes certifyProof.

We tested CeTA (version 1.03) using TTT2 as termination prover (TC and TC+). Here,
TTT2 uses only the techniques of this paper in the combination TC, whereas in TC+ all
supported techniques are tried, including usable rules and nontermination. We compare
to CiME/Coccinelle using AProVE [39] or CiME [22] as provers (ACC,CCC), and to Rain-
bow/CoLoR using AProVE or Matchbox [106] (ARC,MRC) where we take the results of



6.8. Experiments and Conclusion 45

the latest certified termination competition in Nov 20087 involving 1391 TRSs from the
termination problem database.

We performed our experiments using a PC with a 2.0 GHz processor running Linux
where both TTT2 and CeTA where aborted after 60 seconds. The following table summarizes
our experiments and the termination competition results.

TC TC+ ACC CCC ARC MRC
proved / disproved 401 / 0 572 / 214 532 / 0 531 / 0 580 / 0 458 / 0

certified 391 / 0 572 / 214 437 / 0 485 / 0 558 / 0 456 / 0
rejected 10 0 3 0 0 2

cert. timeouts 0 0 92 46 22 0
total cert. time 33s 113s 6212s 6139s 7004s 3602s

The 10 proofs that CeTA rejected are all for nonterminating TRSs which do not satisfy
the variable condition. Since TC supports only polynomial orders as reduction pairs, it
can handle less TRSs than the other combinations. But, there are 44 TRSs which are
only solved by TC (and TC+), the reason being the time-limit of 60 seconds (19 TRSs),
the dependency graph estimation (8 TRSs), and the polynomial order allowing negative
constants (17 TRSs).

The second line clearly shows that TC+ (with nontermination and usable rules support)
currently is the most powerful combination with 786 certified proofs. Moreover, TC+ can
handle 214 nonterminating and 102 terminating TRSs where none of ACC, CCC, ARC,
and MRC were successful. The efficiency of CeTA is also clearly visible: the average
certification time in TC and TC+ for a single proof is by a factor of 50 faster than in the
other combinations.8

For more details on the experiments we refer to CeTA’s website.
To conclude, we presented a modular and competitive termination certifier, CeTA, which

is directly created from our Isabelle library on term rewriting, IsaFoR. Its main features
are that CeTA is available as a stand-alone binary, the efficiency, the dependency graph
estimation, nontermination and usable rules support, the error handling, and the robust-
ness.

As each sub-check for a termination technique can be called separately, and as our check
to certify a whole termination proof just invokes these sub-checks, it seems possible to
integrate other techniques (even if they are proved in a different theorem prover) as long
as they are available as executable code. However, we will need a common proof format
and a compatible definition.

As future work we plan to certify several other termination techniques where we already
made progress in the formalization of semantic labeling and the subterm-criterion. We
would further like to contribute to a common proof format.

7http://termcomp.uibk.ac.at/
8Note that in the experiments above, for each TRS, each combination might have certified a different

proof. In an experiment where the certifiers where run on the same proofs for each TRS (using only
techniques that are supported by all certifiers, i.e., EDG and linear polynomials without negative
constants), CeTA was even 190 times faster than the other approaches and could certify all 358 proofs,
whereas each of the other two approaches failed on more than 30 proofs due to timeouts.

http://cl-informatik.uibk.ac.at/software/ceta/results.php
http://termcomp.uibk.ac.at/termcomp/competition/competitionResults.seam?category=10235&competitionId=15991&cid=1959




7. Certified Subterm Criterion and
Certified Usable Rules

Publication details

Christian Sternagel and René Thiemann. Certified Subterm Criterion and Certified Us-
able Rules. In Proceedings of the 21st International Conference on Rewriting Techniques
and Applications, volume 6 of LIPIcs, pages 325–340. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2010.

Abstract

In this paper we present our formalization of two important termination techniques for
term rewrite systems: the subterm criterion and the reduction pair processor in combi-
nation with usable rules. For both techniques we developed executable check functions
using the theorem prover Isabelle/HOL. These functions are able to certify the correct
application of the formalized techniques in a given termination proof. As there are several
variants of usable rules, we designed our check function in such a way that it accepts all
known variants, even those which are not explicitly spelled out in previous papers.

We integrated our formalization in the publicly available IsaFoR-library. This led to
a significant increase in the power of CeTA, a certified termination proof checker that is
extracted from IsaFoR.

7.1. Introduction

Termination provers for term rewrite systems (TRSs) became more and more powerful in
the last years. One reason is that a proof of termination no longer is just some reduction
order which contains the rewrite relation of the TRS. Currently, most provers construct
a proof in the dependency pair framework (DP framework). This allows to combine basic
termination techniques in a flexible way. Hence, a termination proof is a tree where at
each node a specific technique is applied. So instead of just stating the precedence of some
lexicographic path order or giving some polynomial interpretation, current termination
provers return proof trees consisting of many different techniques and reaching sizes of
several megabytes. Thus, it would be too much work to check by hand whether these
trees really form a valid proof. (Additionally, checking by hand does not provide a very
high degree of confidence.)

It is regularly demonstrated that we cannot blindly trust in the output of termination
provers. Every now and then, some termination prover delivers a faulty proof. Most
often, this is only detected if there is another prover giving a contradicting answer on the
same problem. To solve this problem, three systems have been developed over the last
few years: CiME/Coccinelle [21, 23], Rainbow/CoLoR [12], and CeTA/IsaFoR [104]. These
systems either certify or reject a given termination proof. Here, Coccinelle and CoLoR



48 Chapter 7. Certified Subterm Criterion and Certified Usable Rules

are libraries on rewriting for Coq (http://coq.inria.fr) and IsaFoR is our library on
rewriting for Isabelle [84]. (Throughout this paper we just write Isabelle whenever we
refer to Isabelle/HOL.)

All of these certifiers can automatically certify termination proofs that are performed
within the DP framework. In this framework one tries to simplify so called DP problems
(P ,R) by processors until all pairs in P are removed.

The reduction pair processor [42, 50] is the major technique to remove pairs. Conse-
quently, it has been formalized in all three libraries. One of the conditions of the processor
demands that all rules in R must be weakly decreasing. If this and all other conditions
are satisfied then one can remove all strictly decreasing pairs. In this paper, we present
the details about the formalization of two important extensions of the reduction pair
processor.

The first extension is the subterm criterion [51]. By restricting the used “reduction pair”
to the subterm relation in combination with simple projections, it is possible to ignore
the R-component of a DP problem. Note that the subterm criterion has independently
(and only recently) been formalized for the Coccinelle-library [23]. Here, we present the
first Isabelle formalization of this important technique.

The other extension is the integration of usable rules [40–42, 50, 105]. With this ex-
tension not all rules in R have to be weakly decreasing but only the usable rules which
are most often a strict subset of R. However, there are several definitions of usable rules
where the most powerful ones ([41] and [42]) are incomparable.

all rules usable rules ([105]) usable rules ([40,50])
usable rules ([42])

usable rules ([41])
⊇ ⊇ ⊇⊇

Although it was often stated that a combination of the definitions of usable rules of [41]
and [42] would be possible there never was a refereed paper which showed such a proof.
(However, there have been unpublished soundness proofs of such a combined definition.)
In this paper we not only present such a combined definition and the first corresponding
formalized soundness proof, but we also simplified and extended the existing proofs. For
example, we never construct filtered terms although we consider usable rules w.r.t. some
argument filter. (An independent formalization of usable rules is present in Coccinelle.
However, this formalization is unpublished and it only uses the variant of [50]: it does not
feature the improvements from [41] and [42].) With these two extensions of the reduction
pair processor we could increase the number of TRSs (from the Termination Problem
Database) where a proof can be certified by our certifier CeTA by over 50%.

Note that all the proofs that are presented (or omitted) in the following, have been
formalized in our Isabelle library IsaFoR. Hence, in the paper we merely give sketches of
our “real” proofs. Our goal is to show the general proof outlines and help to understand
the full proofs. Our library IsaFoR with all formalized proofs, the executable certifier CeTA,
and all details about our experiments are available at CeTA’s website:

http://cl-informatik.uibk.ac.at/software/ceta

The paper is structured as follows: In Sec. 7.2, we recapitulate the required notions
and notations of term rewriting and the DP framework. In Sec. 7.3, we describe our
formalization of the subterm criterion. The reduction pair processor with usable rules
and its formalization is presented in Sec. 7.4. Then, in Sec. 7.5, we shortly describe how
CeTA is obtained from IsaFoR and give a summary about our experiments. We finally
conclude in Sec. 7.6.

http://coq.inria.fr
http://cl-informatik.uibk.ac.at/software/ceta


7.2. Preliminaries 49

7.2. Preliminaries

Term Rewriting. We assume familiarity with term rewriting [5]. Still, we recall the
most important notions that are used later on. A (first-order) term t over a set of
variables V and a set of function symbols F is either a variable x ∈ V or an n-ary function
symbol f ∈ F applied to n argument terms f(~tn). A context C is a term containing exactly
one occurrence of the special constant 2 (that is assumed to be distinct from symbols in
F). Replacing 2 in a context C by a term t is denoted by C[t]. A term t is a (proper)
subterm of a term s—written (s B t) s D t—whenever there exists a context C ( 6= 2),
such that s = C[t]. We write s ≈ t iff s and t are unifiable. An argument filter π is a
mapping from symbols to integers or lists of integers. It induces a mapping from terms to
terms where π(x) = x, π(f(~tn)) = π(ti) if π(f) = i, and π(f(~tn)) = f(π(ti1), . . . , π(tik))
if π(f) = [i1, . . . , ik]. Argument filters are also used to indicate which positions in a term
are regarded. Then π maps symbols to sets of positions. It will be clear from the context
which kind of argument filters is used.

A rewrite rule is a pair of terms ` → r and a TRS R is a set of rewrite rules. The
rewrite relation (induced by R) →R is the closure under substitutions and under contexts
of R, i.e., s→R t iff there is a context C, a rewrite rule `→ r ∈ R, and a substitution σ
such that s = C[`σ] and t = C[rσ]. Reductions at the root are denoted by →R,ε.

We say that an element t is terminating / strongly normalizing (w.r.t. some binary re-
lation S), and write SNS(t), if it cannot start an infinite sequence

t = t1 S t2 S t3 S · · · .

The whole relation is terminating, written SN(S), if all elements are terminating w.r.t. it.
For a TRS R and a term t, we write SN(R) and SNR(t) instead of SN(→R) and SN→R(t).
We write S+ for the transitive closure of S, and S∗ is the reflexive transitive closure.

Lemma 7.1 (Properties of Subterms).

(a) stability: s B t =⇒ sσ B tσ

(b) subterms preserve termination: SNR(s) ∧ s B t =⇒ SNR(t).

Let →SN(R) denote the restriction of →R to terminating terms, i.e., {(s, t) | s →R
t ∧ SNR(s)}. Let

B→SN(R) denote the same relation extended by the restriction of B to
terminating terms, i.e., →SN(R) ∪ {(s, t) | s B t ∧ SNR(s)}.

Lemma 7.2 (Termination Properties). Let S be some binary relation, let R be a TRS.

(a) SN(S)⇐⇒ SN(S+),

(b) SN(
B→SN(R)),

(c) SNS(s) ∧ (s, t) ∈ S =⇒ SNS(t).

Dependency Pair Framework. The DP framework [42] is a way to modularize termination
proofs. Therefore, we switch from TRSs to so called DP problems, consisting of two TRSs.
The initial DP problem for a TRSR is (DP(R),R) where DP(R) are the dependency pairs
of R. A (P ,R)-chain is a possibly infinite derivation of the following form:

s1σ1 →P t1σ1 →∗R s2σ2 →P t2σ2 →∗R s3σ3 →P · · · (?)



50 Chapter 7. Certified Subterm Criterion and Certified Usable Rules

where si → ti ∈ P for all i > 0 (this implies that P-steps only occur at the root). If
additionally every tiσi is terminating w.r.t. R, then the chain is minimal. A DP problem
(P ,R) is called finite [42], if there is no minimal (P ,R)-chain. Proving finiteness of
a DP problem is done by simplifying (P ,R) by so called processors recursively, until
the P-components of all remaining DP problems are empty and therefore trivially finite.
For this to be correct, the applied processors need to be sound. A processor Proc is
sound whenever for all DP problems (P ,R) we have that finiteness of (P ′,R′) for all
(P ′,R′) ∈ Proc(P ,R) implies finiteness of (P ,R). The termination techniques that will
be introduced in the following sections are all such sound processors.1

Example 7.3. In the following TRS R the term set(xs) evaluates to the list [x ∈ xs |
0 < x] where duplicates are removed:

x < 0→ ⊥, (1)

0 < s(y)→ >, (2)

s(x) < s(y)→ x < y, (3)

set(nil)→ nil,

set(x : z)→ if2(0 < x, x, z),

del(x, nil)→ nil, (4)

del(x, y : z)→ if(x < y, y < x, x, y, z), (5)

if(⊥,⊥, x, y, z)→ del(x, z), (6)

if(>, b, x, y, z)→ y : del(x, z), (7)

if(b,>, x, y, z)→ y : del(x, z), (8)

if2(>, x, z)→ x : set(del(x, z)),

if2(⊥, x, z)→ set(z).

After computing the initial DP problem (DP(R),R) we can split it into the three
problems ({(9)},R), ({(13)–(16)},R), and ({(10)–(12)},R). (This is done by applying
the dependency graph processor [3,41,42,50], a well-known technique to perform separate
termination proofs for each recursive function.)

s(x) <] s(y)→ x <] y, (9)

set](x : z)→ if2](0 < x, x, z), (10)

if2](>, x, z)→ set](del(x, z)), (11)

if2](⊥, x, z)→ set](z), (12)

del](x, y : z)→ if](x < y, y < x, x, y, z), (13)

if](⊥,⊥, x, y, z)→ del](x, z), (14)

if](>, b, x, y, z)→ del](x, z), (15)

if](b,>, x, y, z)→ del](x, z). (16)

7.3. The Subterm Criterion

The subterm criterion [51] is a termination technique that can be employed as a processor
of the DP framework. It may be seen as a variant of the reduction pair processor with
an attached argument filtering [3]. The used orders (B and D) allow to ignore the R
component of a DP problem (P ,R). And the argument filtering is restricted to be a so
called simple projection. A simple projection π maps a term to one of its arguments, i.e.,
π(f(~tn)) = ti for some 0 < i 6 n. For convenience we use Rπ to denote the ’composition’
of the binary relation on terms R and π, i.e., (s, t) ∈ Rπ iff (π(s), π(t)) ∈ R.

Theorem 7.4. Finiteness of (P \Bπ,R) implies finiteness of (P ,R), provided:

(a) all rules of P are oriented by Dπ (i.e., P ⊆ Dπ)

1To be more precise, in IsaFoR it is shown that all these processors are chain identifying (chain identi-

fying proc) which is a slightly stronger requirement than soundness [101, Chapter 7]. The reason is
that chain identifying processors can easily be combined with semantic labeling [110]. However, we
omit the details here and just refer to theory DpFramework for the interested reader.



7.3. The Subterm Criterion 51

(b) all lhss and rhss of P are non-variable and non-constant terms where the roots of
rhss are not defined in R (i.e., s = f(~sn) with n > 0 and t = g(~tm) with m > 0 and
g /∈ DR for all s→ t ∈ P)

Example 7.5. The DP problem ({(9)},R) from Ex. 7.3 can be solved using the simple
projection π(<]) = 1, since π(s(x) <] s(y)) = s(x) B x = π(x <] y). Taking π(del]) = 2
and π(if]) = 5 we can remove Pair (13) from ({(13)–(16)},R). The result ({(14)–(16)},R)
is then solved by the dependency graph processor. Removing a pair from ({(10)–(12)},R)
is impossible as there is no π such that Pair (11) is oriented. Note that<], del], if], . . . /∈ DR
whereas <, del, if, · · · ∈ DR.

Before we can prove Theorem 7.4, we need several lemmas. First, we prove that termi-
nation of some element w.r.t. some binary relation S is equivalent to termination of the
same element w.r.t. S+. Note that this is a more general result than Lem. 7.2(a) and thus
allows termination analysis of a single term, no matter if the whole TRS is terminating.

Lemma 7.6. SNS(t)⇐⇒ SNS+(t).

Proof. The direction from right to left is trivial. For the other direction assume that t is
not terminating w.r.t. S+. Hence t = t1 S

+ t2 S
+ t3 S

+ · · · . Let S ′ denote the restriction
of R to terminating terms, i.e., S ′= {(s, t) | s S t ∧ SNS(s)}. By definition we have
SN(S ′) and with Lem. 7.2(a) also SN(S ′+). Using SNS(t) and Lem. 7.2(c) together with
the infinite sequence from above, we get SNS(ti) for all i > 0, and further t1 S

′+ t2 S
′+

t3 S
′+ · · · . This contradicts SN(S ′+).

Next consider a general result on infinite sequences conducted in the union of two binary
relations N and S where often N is a non-strict relation and S a strongly normalizing
relation. Intuitively it states the following: Assume that there is an infinite sequence of
steps, where each step is an N -step or an S-step. Further assume that whenever there
is an N -step directly followed by an S-step, those two steps can be turned into a single
S-step. Additionally, there is no infinite S-sequence starting at the same point as the
sequence we are reasoning about. Then, from some point in our sequence on, there are
no more S-steps, i.e., it ends in N -steps. This is a versatile fact that is used at several
places inside IsaFoR.

Lemma 7.7. Let N and S be two binary relations over some carrier and ~q an infinite
sequence of carrier elements. If

(a) (qi, qi+1) ∈ N ∪ S for all i > 0,

(b) N ◦ S ⊆ S, and

(c) SNS(q1),

then there is some j such that for all i ≥ j we have (qi, qi+1) ∈ N \ S.

Proof. For the sake of a contradiction assume that the lemma does not hold. Then,
together with (a), we obtain ∀i > 0.∃j ≥ i. (qj, qj+1) ∈ S. Using the Axiom of Choice we
get hold of a choice function f such that

∀i > 0. f(i) ≥ i ∧ (qf(i), qf(i)+1) ∈ S, (†)



52 Chapter 7. Certified Subterm Criterion and Certified Usable Rules

i.e., f(i) produces some index of an S-step after position i in ~q. Using f we define a new
sequence [·] of indices inductively

[i] =

{
i if i = 1,

f([i− 1]) + 1 otherwise.

With (†) we have f(i) ≥ i and (qf(i), qf(i)+1) ∈ S for all i > 0. Since f(i) ≥ i there is an
N ∪ S sequence from every qi to the corresponding qf(i). Thus we obtain (qi, qf(i)+1) ∈S+

for all i > 0 using (b). This immediately implies (q[i], q[i+1]) ∈S+ for all i > 0 and
thereby ¬SNS+(q[1]) which is equivalent to ¬SNS(q[1]) by Lem. 7.6. But q[1] = q1 and thus
¬SNS(q1). Together with (c), this provides the desired contradiction.

Lemma 7.8. SNR(t) =⇒ SN(B∪→R)(t).

Proof. Assume that t is not terminating w.r.t. (B ∪→R). Hence, we obtain the infinite
sequence t = t1 (B ∪→R) t2 (B ∪→R) t3 (B ∪→R) · · · . From the assumption we have
SNR(t1) and by Lem. 7.1 and Lem. 7.2(c) we obtain SNR(ti) for all i > 0. Thus, ti

B→SN(R)

ti+1 for all i and since SN(
B→SN(R)) by Lem. 7.2(b) we arrive at a contradiction.

Proof of Theorem 7.4. In order to show that finiteness of (P \Bπ,R) implies finiteness of
(P ,R) we prove its contraposition. Hence, we may assume (in addition to the premises
of Theorem 7.4) that there is a minimal infinite (P ,R)-chain and have to transform it
into a minimal infinite (P \Bπ,R)-chain. Thus we may assume that for all i > 0:

(a) si → ti ∈ P ,

(b) tiσi →∗R si+1σi+1, and

(c) SNR(tiσi).

We start by a case distinction on ∃j > 0.∀i ≥ j. (si, ti) ∈ (P \Bπ). If there is such a j, we
can combine this with (b) and obtain the desired minimal (P \ Bπ,R)-chain by shifting
the original chain j positions to the left. Hence, consider the second case and assume
∀i > 0. ∃j ≥ i. (sj, tj) /∈ (P \Bπ). With (a) and the preconditions of the subterm criterion
processor this results in

∀i > 0.∃j ≥ i. π(sj)σj B π(tj)σj. (17)

From this point on, the proof mainly runs by instantiating the relations N and S of
Lem. 7.7 appropriately and showing the assumptions Lem. 7.7(a)–Lem. 7.7(c) in turn.
For N we use the reflexive and transitive closure of the rewrite relation, i.e., →∗R. For S
we use (B∪→R)+. Finally, we use the infinite sequence q defined by qi = π(si+1)σi+1 (the
index shift is needed to establish termination of q1 later on). From (a) and Thm. 7.4(a),
together with Lem. 7.1(a) we get

π(si)σi D π(ti)σi. (18)

Furthermore, we obtain
π(ti)σi →∗R π(si+1)σi+1, (19)

since the roots of ti and si+1 are guaranteed to be non-constant symbols and the root of ti is
not a defined symbol by Thm. 7.4(b). In combination we get π(si)σi D ◦ →∗R π(si+1)σi+1



7.4. Usable Rules 53

and in turn (qi, qi+1) ∈ N∪S, thereby discharging assumption Lem. 7.7(a). For our specific
relations assumption Lem. 7.7(b) trivially holds. This leaves us with showing termination
of q1 with respect to the relation (B ∪ →R)+. From the minimality of the initial chain
(c) we know SNR(t1σ1) and by Lem. 7.1 we get SNR(π(s2)σ2) and thus SNR(q1). By
Lemmas 7.8 and 7.6 we then achieve SN(B∪→R)+(q1). At this point (by Lem. 7.7) we get
grip of some j > 0 such that

∀i ≥ j. (qi, qi+1) ∈ N \ S. (20)

Now we prove ∀i ≥ j. π(si+1)σi+1 = π(ti+1)σi+1 as follows. Assume i ≥ j and π(si+1)σi+1

6= π(ti+1)σi+1. Then with (18) we get π(si+1)σi+1 B π(ti+1)σi+1. By (19), this results
in π(si+1)σi+1 B ◦ →∗R π(si+2)σi+2 and consequently in (qi, qi+1) ∈ S (contradicting 20).
Thus ∀i ≥ j. qi = π(ti+1)σi+1. However, this contradicts (17).

7.4. Usable Rules

One important technique to prove termination within the DP framework is the reduction
pair processor. A reduction pair (�,%) consists of a well-founded and stable relation �
in combination with a monotone and stable relation %. Further, % has to be compatible
with �, i.e., % ◦ � ⊆ �. Note that it is not required that � and % are partial orders [104].
Examples for reduction pairs are polynomial orders [51,73,76], matrix orders [32,64], and
the lexicographic path order (LPO) [58]. (There are several other classes of reduction
pairs. We listed those which have been formalized in IsaFoR.)

The basic version of the reduction pair processor [42, 50] requires that all rules of R
are weakly decreasing w.r.t. % (then →R ⊆ %) and all pairs of P are weakly or strictly
decreasing. From (?) on page 49 it is easy to see that this implies that every reduction
in a (P ,R)-chain corresponds to a weak or strict decrease. Thus, the strictly decreasing
pairs cannot occur infinitely often and can be removed from P . This technique is already
present in IsaFoR and its formalization is described in [104].

Theorem 7.9. Finiteness of (P \ �,R) implies finiteness of (P ,R), provided:

(a) (�,%) is a reduction pair,

(b) P ⊆ � ∪%,

(c) R ⊆ %.

Starting with [105], there have been several papers [41, 42, 50] on how to improve the
last requirement. Therefore, R in (c) is replaced by the usable rules.

The main idea of the usable rules is easy to explain: since in chains rewriting is only
performed with instances of rhss of P , it should suffice to rewrite with rules of defined
symbols that occur in rhss of P . If these usable rules introduce new defined symbols then
the rules defining them also have to be considered as usable. Hence, in the remaining DP
problem ({(10)–(12)},R) of Ex. 7.3 only rules (1)–(3) and (4)–(8) are usable. This idea
is formally expressed in the following definition.

Definition 7.10 (Usable Rules). The function urClosedU ,R(t) defines whether a term t is
closed under usable rules U w.r.t. some TRS R.

urClosedU ,R(x) = true,

urClosedU ,R(f(~tn)) =
∧

16i6n

urClosedU ,R(ti) ∧
∧

`→r∈R

(root(`) = f =⇒ `→ r ∈ U).



54 Chapter 7. Certified Subterm Criterion and Certified Usable Rules

A TRS Q is closed under usable rules whenever all rhss are closed under usable rules,
i.e.,

urClosedU ,R(Q) =
∧

`→r∈Q

urClosedU ,R(r).

A DP problem (P ,R) is closed under usable rules iff P and U are closed under usable
rules.

urClosedU(P ,R) = urClosedU ,R(P) ∧ urClosedU ,R(U).

The usable rules of DP problem (P ,R) are the least set U satisfying urClosedU(P ,R).

Note that there are several other equivalent definitions of usable rules, e.g., one can
find definitions of usable rules via so called usable symbols (i.e., root symbols of lhss of
usable rules). However, there are also two improvements that yield smaller sets.2

The first improvement is to take the reduction pair into account. If certain positions of
terms are disregarded then their usable rules do not have to be considered. For example,
usually due to the rhs if2](0 < x, x, z) of DP (10) all <-rules are usable. However, if we
would use a reduction pair based on polynomial orders, where Pol(if2](b, x, z)) = z then
the call to < is ignored by the order. This can be exploited by excluding the <-rules from
the set of usable rules. This improvement is called usable rules w.r.t. an argument filter
[42]. Here, argument filters are used to describe which positions in a term are relevant: an
argument filter π with π(f) = {i1, . . . , ik} indicates that in a term f(~tn) only arguments
ti1 , . . . , tik are regarded. This is formalized by the notion of π-compatibility.

Definition 7.11 (π-Compatibility). A relation % is π-compatible iff for all n-ary symbols
f , all i with 1 6 i 6 n, all t1, . . . , tn, and all s and s′:

i /∈ π(f) =⇒ f(t1, . . . , ti−1, s, ti+1, . . . , tn) % f(t1, . . . , ti−1, s
′, ti+1, . . . , tn).

To formally define the usable rules w.r.t. an argument filter, a minor modification of
Def. 7.10 suffices. Just

replace
∧

16i6n

urClosedU ,R(ti) by
∧

i∈π(f)

urClosedU ,R(ti).

The second improvement to reduce the set of usable rules is performed by taking the
structure of terms into account. Observe that in the rhs if2](0 < x, x, z) of DP (10),
the first argument of < is 0. Hence, only the rules (1) and (2) are possibly applicable,
but not the remaining Rule (3). This is not captured by Def. 7.10. As there, all f -rules
have to be usable whenever the symbol f occurs. On the contrary, in [41], an improved
version of usable rules is described which can figure out that Rule (3) is not applicable.
To this end, the condition root(`) = f in Def. 7.10 is replaced by a condition based on
unification. Demanding ` ≈ f(~tn) would be unsound. First f(~tn) has to be preprocessed
by the function tcap of [41]. This function keeps only those parts of the input term which
cannot be reduced, even if the term is instantiated. All other parts are replaced by fresh
variables.
2There also is another extension of usable rules, the generalized usable rules. It allows a variant of the

reduction pair processor where reduction pairs with non-monotone % may be used, cf. [33, Thm. 10].
However, that reduction pair processor is incomparable to both Thm. 7.9 and the upcoming Thm. 7.14.
It may be interesting to formalize the soundness of that processor, too, but that would be a different
proof.



7.4. Usable Rules 55

Definition 7.12. Let R be a TRS.3

tcap(t) =

{
f(tcap(~tn)) if t = f(~tn) and ` 6≈ f(tcap(~tn)) for all lhss ` of R,
a fresh variable otherwise.

Here, tcap(~tn) is the list of terms where tcap is applied to all arguments of ~tn.

Now the second improvement can be defined formally. Again, it is a minor but crucial
modification of Def. 7.10. It suffices to

replace
∧

`→r∈R

(root(`) = f =⇒ `→ r ∈ U) by
∧

`→r∈R

(` ≈ f(tcap(~tn)) =⇒ `→ r ∈ U).

Hence, incorporating both improvements results in the following definition which now
contains a π in the superscript to distinguish it from Def. 7.10.

Definition 7.13 (Improved Closure Under Usable Rules).

urClosedπU ,R(x) = true,

urClosedπU ,R(f(~tn)) =
∧

i∈π(f)

urClosedπU ,R(ti) ∧
∧

`→r∈R

(` ≈ f(tcap(~tn)) =⇒ `→ r ∈ U),

urClosedπU ,R(Q) =
∧

`→r∈Q

urClosedπU ,R(r),

urClosedπU(P ,R) = urClosedπU ,R(P) ∧ urClosedπU ,R(U).

Note that we do not define the improved usable rules of a DP problem (P ,R) (as we
would, by demanding that U is the least set satisfying urClosedπU(P ,R)). Hence, every
set U that satisfies the closure properties can be used later on. It is easy to see, that the
usable rules w.r.t. Def. 7.10 satisfy the closure properties as well as a version of usable
rules which only incorporates one of the two improvements. Thus, by this definition we
gain the advantage that we can handle several variants of usable rules.

Having defined all necessary notions, we are ready to present the improved reduction
pair processor with usable rules where the second part also incorporates [40, Theorem 28]
which allows to delete rules by a syntactic criterion.

Theorem 7.14 (Reduction Pair Processors with Usable Rules). Let c be some binary
symbol, let Cε = {c(x, y) → x, c(x, y) → y},4 and let U be some TRS (called the usable
rules). For every signature F and TRS R, let R¬F = {` → r ∈ R | ` /∈ T (F ,V)}.
Finiteness of (P \ �,R) implies finiteness of (P ,R), provided:

(a) (�,%) is a reduction pair,

3Note that in IsaFoR we do not use tcap, but the more efficient and equivalent version etcap which is
based on ground-contexts. Moreover, unification is replaced by ground-context matching [104, Section
4.2]. But as the notions of tcap and unification are more common, in the following we stick to these
two notions.

4The real definition of Cε in IsaFoR is slightly different due to technical reasons. Since there is no
restriction on the type of variables, there might be only one variable. To this end x and y are replaced
by all possible terms. And as the type of function symbols is also unrestricted there might be no fresh
symbol c. However, in IsaFoR the signature is implicit where every arity is allowed. For example, the
term c(c, c) contains one symbol (c, 1) and two symbols (c, 0) where (c, 1) 6= (c, 0). In this way, we can
always get a fresh symbol (c, n) where n is larger than all arities that occur in R and we use a constant
(d, 0) to obtain this high arity. Hence, we define Cε =

⋃
s,t{c(s, t, d, . . . , d)→ s, c(s, t, d, . . . , d)→ t}.



56 Chapter 7. Certified Subterm Criterion and Certified Usable Rules

(b) P ⊆ � ∪%,

(c) U ∪ Cε ⊆ %,

(d) % is π-compatible,

(e) urClosedπU(P ,R).

If additionally Cε ⊆ �, � is monotone, U ⊆ R, and F is the set of all symbols occurring
in rhss of P ∪ U , then R can be replaced by U without any strictly decreasing rules and
one can remove all rules which contain symbols of F in their left-hand side. Formally,
finiteness of (P¬F \ �,U¬F \ �) implies finiteness of (P ,R).

Regarding requirement (c), observe that most reduction pairs that are currently used
in automated termination tools do satisfy Cε ⊆ %. Therefore, requirement (c) of Thm. 7.9
can usually be replaced by U ⊆ %. Requirement (d) is easy to satisfy by choosing an
appropriate argument filter π which depends on the reduction pair. And if U is chosen as
the usable rules w.r.t. any known definition of usable rules, then condition (e) is satisfied.
Thus, for most reduction pairs one has only replaced requirement R ⊆ % of Thm. 7.9 by
the weaker condition U ⊆ % in Thm. 7.14.

Example 7.15. To solve the remaining DP problem ({(10)–(12)},R) of Ex. 7.5 we
use a polynomial order [73] where Pol(set](x)) = Pol(del(y, x)) = x, Pol(x : y) =
Pol(if(. . . , y)) = y + 1, Pol(if2](x, y, z)) = x + z, Pol(x < y) = Pol(⊥) = Pol(>) = 0,
and Pol(c(x, y)) = x + y. A corresponding compatible argument filter π is defined by
π(set]) = {1}, π(del) = π(:) = {2}, π(if) = {5}, π(if2]) = {1, 3}, π(<) = π(⊥) =
π(>) = ∅, and π(c) = {1, 2}. For this argument filter, the minimal set of usable rules is
U = {(1), (2), (4)–(8)}. Note that it would also be accepted if, e.g., Rule (3) would be
added.

Then all conditions of Thm. 7.14 are satisfied and one can remove Pair (10) as it is
strictly decreasing. The remaining DP problem ({(11),(12)},R) is then easily solved by
another application of the reduction pair processor where one chooses Pol(set](x)) = 0,
Pol(if2](x, y, z)) = 1, Pol(c(x, y)) = x+ y, and where U = ∅.

In theory UsableRules we have proven Thm. 7.14. Although a similar proof has already
been performed by the authors of [41] and [42]—on paper, not formalized—this proof has
never been published in some reviewed article, it is only available in [101]. Moreover,
our proof is not just a formalization of the proof in [101], but there are some essential
differences which are pointed out in the following.

The standard proof of Thm. 7.14 is by transforming a minimal chain t1σ1 →∗R s2σ2 →P
t2σ2 . . . into a chain over filtered terms π(t1)δ1 →∗π(U)∪Cε π(s2)δ2 →π(P) π(t2)δ2 . . . and then

uses the preconditions of the theorem to show that certain pairs of π(P) (and therefore
also pairs of P) cannot occur infinitely often. Here, one uses a transformation Iπ which
transforms σi into δi. For the second part of the theorem where � is monotone, one
requires another transformation I which does not apply any argument filter. Hence,
there are two transformations I and Iπ where for both transformations similar results are
shown.

In our formalization we were able to simplify the proofs considerably by not constructing
filtered terms. Moreover, we use the same transformation I for both parts of the theorem.

A problem in the standard proof of the reduction pair processor with usable rules is
the implicit assumption that the TRS R meets the variable condition, i.e., V(`) ⊇ V(r)



7.4. Usable Rules 57

and ` /∈ V for all rules ` → r ∈ R. Although in practice this condition is nearly always
satisfied, we have to deal with this assumption, where there are three alternatives. First,
one can check that the TRS R meets the variable condition whenever the theorem is
applied on some concrete DP problem (P ,R). This would clearly increase the runtime for
certifying a given proof. Second, one can define finiteness of DP problems or soundness
of processors in a way that it incorporates the variable condition. However, this will
make the development of other processors more complicated which do not care about
the variable condition. And third, one can try to prove Thm. 7.14 without assuming the
variable condition. This is the alternative we have finally formalized and which does not
appear in the literature so far.

For the upcoming formal definition of I we essentially use a combination of the defini-
tions of [40] and [41] where x# xs denotes the Isabelle list with head x and tail xs.

Definition 7.16. Let R and U be two TRSs, let F be some signature, and let c be the
binary symbol of Cε. We define I as a function from terms to terms as follows:

comb([t]) = t,

comb(t# s# ts) = c(t, comb(s# ts)),

rewrite(R, t) = {C[rσ]p | `→ r ∈ R, t = C[u],match(u, `) = σ},
I(x) = x,

I(f(~tn)) =


f(~tn) if ¬SNR(f(~tn)),

f(I(~tn)) if SNR(f(~tn)), f ∈ F , and ∀`→ r ∈ R \ U .` 6≈ f(tcap(~tn)),

comb(f(I(~tn)) # I(rewrite(R, f(~tn)))) otherwise.

I and tcap are homeomorphically extended to operate on lists, i.e., I(~tn) = (I(t1), . . . ,
I(tn)).

The function comb just combines a non-empty list of terms into one term. It is easy to
prove that one can access all terms in the list by rewriting with Cε: comb([. . . , ti, . . . ])→∗Cε
ti.

The function rewrite computes the list of one-step reducts of a given term by using a
sound and complete matching algorithm match. The major difference between {s | t→R
s} and rewrite(R, t) is that the latter instantiates a rule by the matcher of the lhs and
the corresponding redex (as usual), but it never instantiates variables which only occur
in the rhs of the rule. For example, if R = {a → x} then {s | a →R s} is the set of all
terms, whereas rewrite(R, a) = [x]. Hence, rewrite is sound (rewrite(R, t) ⊆ {s | t→R s})
but in general not complete. However, under one condition completeness is achieved:
whenever t →R s by a reduction with a rule that satisfies the variable condition, then
s ∈ rewrite(R, t).

The main reason for introducing rewrite is that without the assumption of the variable
condition on R the set {s | t →R s} may be infinite. Then the definition of I as in
[41]—where {I(s) | f(~tn) →R s} is used instead of I(rewrite(R, f(~tn)))—does not work
in combination with comb, as comb expects a list (or a finite set) as input. Also note that
this input must be finite as one finally wants to obtain a single term containing all input
terms.

The first case of I(f(~tn)) is mainly a technicality. Usually, I is only defined on termi-
nating terms. To make I a total function on all terms we inserted the case distinction
on SNR(f(~tn)). Termination of I is then proven using well-founded induction on

B→SN(R)

where in this proof the soundness result for rewrite is crucial.



58 Chapter 7. Certified Subterm Criterion and Certified Usable Rules

The transformation I is constructed in such a way that for every reduction t →R s
one obtains a weak decrease, provided that the usable rules and Cε are weakly decreasing.
Therefore, in the definition of I there are essentially two cases for a term f(~tn). If only
usable rules can be used to reduce f(~tn) at the root position, then I(f(~tn)) is obtained
by applying I on the arguments, resulting in f(I(~tn)). The corresponding reduction will
then result in a weak decrease as one can also perform the reduction with the usable rules
on the transformed term. The condition that only usable rules are applicable is ensured
by demanding that no lhs of a non-usable rule in R \ U can be unified with f(tcap(~tn)).

Otherwise, all rules may have been used to rewrite f(~tn). Then, in addition to f(I(~tn))
we have to store all one-step reducts of t. This is done by encoding them in a single term
using comb. Now every possible reduct can be accessed using Cε. And since Cε is weakly
decreasing we obtain a weak decrease. This is proven formally in the upcoming lemma.

Lemma 7.17 (Properties of I). Let (%,�) be a reduction pair, let % be π-compatible,
let U ∪ Cε ⊆ %, let urClosedπU ,R(U), and let the rhss of U be terms within T (F ,V). Let

SNR(t), SNR(tσ), and SNR(f(~tn)).

(i) If urClosedπU ,R(t) and t ∈ T (F ,V) then tI(σ) %∗ I(tσ).

(ii) I(tσ)→∗Cε tI(σ). And if t /∈ T (F ,V) then I(tσ)→+
Cε tI(σ).

(iii) If f(~tn) →R,ε s using a rule ` → r and I(f(~tn)) = f(I(~tn)) then ` → r ∈ U ,
I(f(~tn)) %∗ ◦ →U ◦ %∗ I(s). And I(f(~tn))→+

Cε ◦ →U ◦ %
∗ I(s) if ` /∈ T (F ,V).

(iv) If f(~tn)→R s and I(f(~tn)) = comb(. . .) then I(f(~tn))→+
Cε I(s).

(v) If t→R s then I(t) %∗ I(s). Moreover, t→U¬F s or I(t)→+
Cε ◦ %

∗ I(s).

(vi) If t→∗R s then I(t) %∗ I(s). Moreover, I(t) %∗ ◦ →Cε ◦ %∗ I(s) or t→∗U¬F s.

Here, I is homeomorphically extended to substitutions, i.e., I(σ)(x) = I(σ(x)).

In the following proof sketch of Lem. 7.17, all essential points are included, especially
those where we deviate from the standard proofs.

Proof. The proof of (vi) is a straight-forward induction on the reduction length using (v).
We prove (v), by induction over t. First note that t is not a variable. Otherwise, there

would be some x → r ∈ R, contradicting SNR(t). Hence the base case is trivial. In the
step-case, we make a case distinction on how t = f(~tn) is transformed. The case I(t) =
comb(. . .) is solved by (iv). Otherwise, I(t) = f(I(~tn)). For a root reduction we use (iii).
Otherwise, s = f(t1, . . . , si, . . . , tn) and ti →R si. Applying the induction hypothesis is
easy, but some additional effort is required to prove I(s) = f(I(t1), . . . , I(si), . . . , I(tn)).

Proving (iv) essentially requires completeness of rewrite. To this end, we first prove
that if f(~tn) →R s then the employed rule ` → r must satisfy V(`) ⊇ V(r), as otherwise
SNR(f(~tn)) would not hold. Under this condition, completeness of rewrite states that
s ∈ rewrite(R, f(~tn)). The remaining proof of (iv) can be done by simple inductions using
the definitions of comb and Cε.

To prove (iii), we first show that I(f(~tn)) = f(I(~tn)) ensures that the employed rule
` → r is usable. The reason is that f(~tn) = `σ implies f(tcap(~tn)) ≈ ` and hence,
`→ r /∈ R \ U by the definition of I. By the requirement on the rhss of U we know that
r ∈ T (F ,V). Hence, we can build the following steps using (ii) and (i) in combination



7.4. Usable Rules 59

with urClosedπU ,R(U): I(f(~tn)) = I(`σ) %∗ `I(σ) →U rI(σ) %∗ I(rσ) = I(s). And if
` /∈ T (F ,V) then we additionally get I(`σ)→+

Cε `I(σ) by (ii).
Proving (ii) is a straight-forward induction on t.
And finally, for (i), we also use induction on t. In the step-case we first prove that

t ∈ T (F ,V) in combination with urClosedπU ,R(f(~tn)) implies f(I(~tnσ)) = I(f(~tnσ)). Then,
for all argument positions i ∈ π(f), we apply the induction hypothesis to obtain tiI(σ) %∗

I(tiσ). Then, by monotonicity of %, we obtain f(. . . , tiI(σ), . . . ) %∗ f(. . . , I(tiσ), . . . ).
For all other positions, π-compatibility of % provides the same inequality.

With the help of Lem. 7.17 it is now possible to prove the main result of this section.

Proof of Thm. 7.14. Assume that there is a minimal infinite chain where siσi →P tiσi →∗R
si+1σi+1 and SNR(tiσi) for all i. Let F be the set of all symbols that occur in rhss of
P ∪ U . Then by the conditions of the theorem and by using Lem. 7.17 (i), (vi), and (ii),
for all i we conclude

siI(σi)→P tiI(σi) %
∗ I(tiσi) %

∗ I(si+1σi+1) %
∗ si+1I(σi+1). (‡)

By using P ⊆ �∪% we obtain a strict or weak decrease between every two terms siI(σi)
and si+1I(σi+1). Thus, by Lem. 7.7, the strictly decreasing pairs can only occur finitely
often. This shows that there must be some n such that for all i, si+n → ti+n ∈ P \ �.
Hence, there is an infinite minimal (P \ �,R)-chain.

If additionally, Cε ⊆ � and � is monotone, we first prove that there is some n with
tn+iσn+i →∗U¬F sn+i+1σn+i+1 and sn+i ∈ T (F ,V) for all i. If this would not be the case,
then infinitely often tiσ →∗U¬F si+1σi+1 does not hold or infinitely often si /∈ T (F ,V).
Hence, by Lem. 7.17(vi), for infinitely many i, I(tiσi) %∗ ◦ →Cε ◦ %∗ I(si+1σi+1) or
by Lem. 7.17(ii), for infinitely many i, I(siσi) →+

Cε siI(σi). As � contains Cε and is
monotone, we also have →Cε ⊆ �, and hence in both cases we obtain infinitely many
strict decreases. Using the same reasoning as for (‡), we have infinitely many i with
siI(σi) (� ∪%) ◦ %∗ ◦ � ◦ %∗ si+1I(σi+1) and for the remaining is we can use the
previous results showing siI(σ) (� ∪%) ◦ %∗ si+1I(σi+1). Then, using Lem. 7.7 where
N = (� ∪%)∗ and S = N ◦ � ◦N , yields a contradiction.

Hence, for all i we obtain sn+iσn+i →P¬F tn+1σn+i →∗U¬F sn+i+1σn+i+1. Since P ∪ U ⊆
�∪% and since both � and % are monotone and stable, we conclude (again by Lem. 7.7)
that from some point onwards only rules from (P¬F ∪ U¬F) \ � are used. Hence, we
have constructed a (P¬F \�,U¬F \�)-chain which is also minimal since SNR(tiσi) implies
SNU¬F\�(tiσi) as U¬F ⊆ R by the requirement U ⊆ R.

To obtain an executable function which checks for correct applications of Thm. 7.14 it
is only demanded that the input and output DP problem, the reduction pair (without the
details of the fresh symbol c), and the usable rules are given. The corresponding inter-
pretation / precedence / . . . for c is then added automatically. Moreover, the argument
filter is constructed from the reduction pair. For example, for polynomial interpretations
one always defines π in a way that i ∈ π(f) iff xi occurs within Pol(f(~xn)). In this way,
% is always π-compatible and Cε ⊆ %. Hence, for the automation of Thm. 7.14 where �
is not monotone, one only has to check P ⊆ � ∪ %, U ⊆ %, and urClosedπU(P ,R) since
the remaining requirements are satisfied by construction.

For the other case, where also rules of R are deleted, it is additionally checked that �
is monotone and that U ⊆ R. To achieve the former for polynomials, it is ensured that
the coefficients of all variables are larger than zero and that all remaining parts of the



60 Chapter 7. Certified Subterm Criterion and Certified Usable Rules

polynomial are non-negative. For path orders in combination with argument filters, it
is ensured that no argument is dropped, i.e., the argument filter may only permute and
duplicate arguments.

7.5. Experiments

In the end, what we want to have is a workflow which automatically certifies or rejects
a given termination proof in CPF-format (a common format for termination proofs that
is supported by all certifiers).5 To this end, we have to parse the proof, detect which
processors have been applied on which DP problems, and ensure that the preconditions
of every processor are met. We achieved this goal by writing a CPF parser and for each
processor an executable function which checks the preconditions. If a processor application
cannot be certified, the function rejects, providing an informative error message. As the
parser and the check-functions are written in Isabelle, we just invoke Isabelle’s code-
generator [49] to obtain the executable program CeTA from IsaFoR.

This is in contrast to the other two certifiers CiME/Coccinelle and Rainbow/CoLoR.6

Both of them provide a parser (as part of CiME and Rainbow) that takes a termination
proof and produces a Coq-script as output. The resulting script refers to facts proven in
Coccinelle and CoLoR, respectively, which can then be checked by Coq.

For more details on this difference and the architecture of the overall proof-checking
function in CeTA we refer to [104].

To measure the impact of our results we used 5 strategies for the two termination tools
AProVE [39] and TTT2 [67].

• In the basic strategy the termination tools only use the dependency graph pro-
cessor and the reduction pair processor without usable rules. (These are the only
techniques that have been described in [104].)

• The sc strategy is an extension of basic by the subterm criterion processor.

• Similarly, ur is like basic except that usable rules may be used.

• The fourth strategy, sc+ur, is a combination of the previous three.

• Finally, full, is a strategy where all CeTA-certifiable processors may be used. We re-
fer to http://cl-informatik.uibk.ac.at/software/ceta/versions.php for the
details where all techniques are listed. (Our experiments have been performed using
CeTA version 1.10.)

Note that for basic, sc, ur, and sc+ur, we only take linear polynomial interpretations
as reduction pairs, whereas in full also other reduction pairs are used.

For each of the 2132 standard TRSs in the Termination Problem Database (version
7.0.2)7 and for each strategy, we first ran both termination tools for at most one minute
and then tried to certify all successful proofs with CeTA. The experiments were performed
on a machine with 8 Dual Core AMD Opteron 885 processors and 64 GB RAM running
Linux. An overview of the results is given in the following table where the column labels
A, C, and T, refer to AProVE, CeTA, and TTT2, respectively.

5http://cl-informatik.uibk.ac.at/software/cpf/
6Note that for a restricted set of techniques, CoLoR also features code-generation.
7available at http://termcomp.uibk.ac.at/

http://cl-informatik.uibk.ac.at/software/ceta/versions.php
http://cl-informatik.uibk.ac.at/software/cpf/
http://termcomp.uibk.ac.at/


7.5. Experiments 61

basic sc ur sc+ur full
A C A C A C A C A C

YES 453 453 566 566 681 681 684 684 1242 1242
avg. time 0.063 0.051 0.064 0.061 0.051

T C T C T C T C T C
YES 439 439 553 553 663 663 669 669 1223 1223

avg. time 0.059 0.048 0.065 0.062 0.074

The table rows show successful termination proofs / certificates for termination proofs
(YES), and the average time for certifying (in seconds). All details on the experiments are
available on CeTA’s website.

When comparing basic with sc+ur one can observe that adding the subterm criterion
and usable rules helps to increase the number of certified termination proofs by over 50%
for both termination tools. Moreover, checking the additional application conditions of
the new techniques—where urClosedπU(P ,R) is the most expensive one—does not have any
measurable impact on the certification time. That checking AProVE’s proofs is slightly
faster is explained by the fact that TTT2 always produces proofs with polynomial orders
over the rationals, even if all coefficients are naturals. And thus, for TTT2’s proofs, CeTA
always has to perform computations over the rationals.

Our results also helped to win the annual termination competition for certified termi-
nation of TRSs in 2009.8 First several termination tools were run to generate proofs on
a random subset of 365 TRSs from the TPDB. For this, the tools where usually con-
figured for a specific certifier in mind by restricting the set of termination techniques
correspondingly. Then, all certifiers were run on all proofs. The following table summa-
rizes the results, where the bold entries correspond to those proofs which were constructed
specifically for that certifier.

tool AProVE TTT2 AProVE CiME AProVE total
intended certifier CeTA Coccinelle CoLoR
proofs 259 264 165 56 220 964
CeTA 259 264 94 50 107 774
Coccinelle 12 2 104 55 30 203
CoLoR 67 53 92 9 178 399

We observe that many proofs generated for CeTA cannot be handled by the other
certifiers—only between 1 % and 26 % of these proofs have been certified—where one
major reason is that the other certifiers do not incorporate usable rules.

Looking at the other direction we see, that even if the termination tool produced proofs
for another certifier, CeTA (version 1.09) achieved between 60 % and 90 % of the score of
the intended certifier.

In total, only 190 proofs have been rejected by CeTAin the competition. Of these proofs,
65 are supported in the meantime (the competition version did not feature monotone
matrix interpretations [32], which are supported by version 1.10), 117 contain unsupported
techniques (non-linear polynomial orders and RPO [27]), 6 are obviously buggy (e.g., the
subterm criterion is applied with a projection that maps a binary symbol to its third
argument), and 2 are faulty (some LPO was wrongly applied and some argument filter

8http://termcomp.uibk.ac.at/termcomp/competition/certificationResults.seam?cat=

10235&comp=101722

http://termcomp.uibk.ac.at/termcomp/competition/certificationResults.seam?cat=10235&comp=101722
http://termcomp.uibk.ac.at/termcomp/competition/certificationResults.seam?cat=10235&comp=101722


62 Chapter 7. Certified Subterm Criterion and Certified Usable Rules

delivers an unsolvable constraint). (At least for one of these proofs we know that this was
due to an output bug of the proof producing tool.)

7.6. Conclusion

We have presented the first formalization of two important termination techniques within
the theorem prover Isabelle/HOL: the subterm criterion and the reduction pair processor
with usable rules, where we combined the improvements of [41] and [42]. The integration
of these techniques into our termination proof certifier CeTA allowed to certify significantly
more termination proofs.

However, there are several termination techniques that have not been certified by now.
To change this, in the future we aim at certifying several techniques for innermost ter-
mination like narrowing, rewriting, and instantiation [3, 42], or estimations of innermost
dependency graphs [3, 41,50].



8. Signature Extensions Preserve
Termination – An Alternative Proof
via Dependency Pairs

Publication details

Christian Sternagel and René Thiemann. Signature Extensions Preserve Termination –
An Alternative Proof via Dependency Pairs. In Proceedings of the 19th Annual Confer-
ence of the EACSL on Computer Science Logic, volume 6247 of LNCS, pages 514–528.
Springer, 2010.

Abstract

We give the first mechanized proof of the fact that for showing termination of a term
rewrite system, we may restrict to well-formed terms using just the function symbols
actually occurring in the rules of the system. Or equivalently, termination of a term
rewrite system is preserved under signature extensions. We did not directly formalize the
existing proofs for this well-known result, but developed a new and more elegant proof by
reusing facts about dependency pairs.

We also investigate signature extensions for termination proofs that use dependency
pairs. Here, we were able to develop counterexamples which demonstrate that signa-
ture extensions are unsound in general. We further give two conditions where signature
extensions are still possible.

8.1. Introduction

Our main objective is to formally show that the termination behavior of (first-order) term
rewrite systems (TRSs) [5] does not change under signature extensions. This is an impor-
tant part of a bigger development inside IsaFoR (an Isabelle Formalization of Rewriting)
which is used to generate CeTA (a tool for Certified Termination Analysis) [104].1 All
our results have been formalized and machine-checked in the interactive proof assistant
Isabelle/HOL [84]. In the following, whenever we speak about formalizing something, we
mean a machine-checked formalization using Isabelle/HOL.

In the literature, termination of R (denoted by SN(R)), is usually only defined for
terms that do exclusively incorporate function symbols from the signature F of R. Of-
ten, it is implicitly assumed that this is equivalent to termination for terms over arbitrary
extensions F ′ ⊇ F . This is legitimate, since it has been shown that termination is modu-
lar under certain conditions (see [79,85] for details) and signature extensions satisfy these
conditions. A property P is called modular, whenever P R and P S, for TRSs R and S
over disjoint signatures F and G, implies P (R ∪ S). (Note that P x is Isabelle/HOL’s

1http://cl-informatik.uibk.ac.at/software/ceta

http://cl-informatik.uibk.ac.at/software/ceta


64 Chapter 8. Signature Extensions Preserve Termination

way of writing a function or predicate P applied to an argument x.) Now, to use mod-
ularity of termination to achieve SN(R) over the signature F ′ ⊇ F , we choose S = ∅
and G = F ′ − F . Then, the above mentioned conditions are trivially satisfied and we
obtain SN(R) =⇒ SN(R ∪ S), where the latter system has the same rules as R, but the
signature F ′.

In this way, the two aforementioned proofs (which both use rather similar proof tech-
niques), can be used to obtain termination preservation under signature extensions. How-
ever, the first proof [79] is quite long and complicated even on paper (10 pages, neglecting
preliminaries). Concerning the second proof [85]—although short on paper—there are
two reasons for not going that way:

(i) This proof would require to formalize concepts that are currently not available in our
library but are assumed as preliminaries in the paper proof (which is the only reason
that the proof is short). This includes, e.g., multi-hole contexts, and functions like
rank , top, etc. Furthermore, some of those concepts seem bulky to formalize, e.g.,
multi-hole contexts would require that a context having n holes is always applied
to exactly n terms. This cannot be guaranteed on the type level without having
dependent types and would lead to side-conditions that had to be added to all proofs
using multi-hole contexts.

(ii) We do already have a formalization of many term rewriting related concepts. Thus,
it seems only natural to build on top of those available results.

Hence, we take a different road (that may seem as a detour in the beginning). We use
F(R) to denote the signature just containing function symbols that do actually occur in
some rule of R. By þR we denote the rewrite relation induced by R just using terms
over F(R) and by→R the same relation but for terms over arbitrary extensions of F(R)
(i.e., þR is a restriction of →R). Hence, our first main result can be written as

Theorem 8.1. SN(þR) ←→ SN(→R)

In the proof, we concentrate on the direction from left to right, since the converse
trivially holds. Before we give our general proof idea, we want to show why “the direct
approach” is difficult. By “direct” we mean:

Assume that there is an infinite sequence in →R and construct an infinite
sequence in þR out of it.

For this purpose we would have to provide a function f such that f s þR f t is implied by
s →R t for arbitrary terms s and t. This requires that f somehow removes all function
symbols that are not in F(R) from its argument but still preserves any redexes (i.e.,
subterms where rules are applicable). For example the simple idea to clean terms by
replacing all subterms f(. . .) where f /∈ F(R) by the same variable, does not work. The
reason is that a given infinite →R-derivation might take place strictly below a symbol f
/∈ F(R) and then, after turning f(. . .) into a variable, those reductions can no longer be
simulated. To cut a long story short, we stopped at some point to investigate this direction
further, since all our approaches became awfully complicated (especially for mechanizing
the proof).

Our salvation appeared in the form of dependency pairs (DPs). By redirecting the
course of our proof into the DP setting [3] and back again, we were able to give a short
and (in our opinion) elegant proof of Theorem 8.1, using the simple technique of cleaning.



8.2. Preliminaries 65

The reason is that by using DPs we obtain a derivation which contains infinitely many
reductions at the root position. And all these root reductions are still possible after
cleaning. Note that this also shows that signature extensions are sound for termination
problems in the DP setting (Lemma 8.8)—our second main result.

However, after trying to extend our proof to the DP setting with minimal chains, we
discovered a counterexample demonstrating that signature extensions are unsound for
non-left-linear TRSs. A small modification of this counterexample also shows that the
technique of root-labeling [95] in the DP setting with minimal chains—which relies on sig-
nature extensions—is also only sound for left-linear TRSs. This refutes the corresponding
result in [95] which does not demand left-linearity. (As the modularity results of [79, 85]
do not consider minimal chains, these results are not affected by our counterexample.)

In total, in this paper we show that signature extensions are possible for termination
of TRSs and that they can be used in the DP setting for left-linear TRSs or for non-
minimal chains. We also show that the soundness proofs of root-labeling can be repaired
by additionally demanding left-linearity.

The structure of our discourse is as follows: In Section 8.2 we recall some necessary
definitions of term rewriting (as used in our formalization). Afterwards, in Section 8.3, we
give some results on DPs. Two of our main results are given in Section 8.4, where we also
formally prove completeness of DPs. Then, in Section 8.5 we show some applications—
including root-labeling—and limitations of our results. Here, we also discuss the problem
of signature extensions in combination with minimal chains and show that there is no
problem in the left-linear case. We finally conclude in Section 8.6.

Since all facts we are using have been machine-checked, we do not give any proofs for
results from Sections 8.2 and 8.3 and refer the interested reader to the IsaFoR sources
(freely available from its website). Our formalization of Theorem 8.1 can be found under
the name SN wfrstep SN rstep conv in the theory DpFramework. Also in Section 8.4 we
try to skip technical details and give a high-level overview of our proofs.

8.2. Preliminaries

In IsaFoR we are concerned with first-order terms defined by the data type:

datatype (α, β) term = Var β | Fun α ((α, β) term list)

Hence, a term is either a variable, or a function symbol applied to a list of argument
terms. Note that this definition does not incorporate any well-formedness conditions.
In particular, there is no signature that terms are restricted to. We identify a function
symbol by its representation together with its arity. Hence, the function symbol f in the
term Fun f [] is different from the function symbol f in the term Fun f [Var x ] (the former
has arity 0 and the latter arity 1). To increase readability we write terms like the previous
two as f (a constant without arguments) and f(x), respectively. A (rewrite) rule is a
pair of terms and a TRS is a set of rules. A TRS is well-formed iff all left-hand sides of
rules are non-variable terms and for each rule every variable occurring in the right-hand
side also occurs in the left-hand side. We write wf trs R to indicate that the TRS R is
well-formed.

Example 8.2. The TRS { add(0, y)→ y, add(s(x), y)→ s(add(x, y)) }, encoding addition
on Peano numbers, is well-formed.



66 Chapter 8. Signature Extensions Preserve Termination

The rewrite relation induced by a TRS R is obtained by closing R under substitutions
and contexts, i.e., →R is defined inductively by the rules:

(l , r) ∈ R
l →R r

s →R t

sσ →R tσ

s →R t

C [s ] →R C [t ]

Here, tσ denotes the application of a substitution σ to a term t and C [t ] denotes substi-
tuting the hole in the context C by the term t. Whenever s →R t, we say that s rewrites
(in one step) to t.

A TRS is terminating/strongly normalizing iff the rewrite relation→R induced by R is
well-founded—denoted by SN(→R). (We sometimes write SN(R) instead of SN(→R) to
stress that termination is a property depending merely on R.) Termination of a specific
term is written as SNR(t), i.e., there is no infinite →R-derivation starting from t.

Using the definition of →R, termination is formalized as SN(→R) ≡ @ t. ∀ i . ti →R
ti+ 1. Here, we use functions from natural numbers to some type τ , to encode infinite
sequences over elements of type τ , which are written by t in contrast to terms t. We use
subscripts to indicate positions in such infinite sequences, i.e., we write ti to denote the
i-th element in the infinite sequence t.

Remember that by F(R) we denote the signature of function symbols actually occurring
in some rule of R. Using the function

F(x ) = ∅,

F(f (~ts)) = {(f , |~ts|)} ∪
⋃
{F(t) | t ∈ ~ts}.

F(R) is obtained by extending F(·) to TRSs in the obvious way.

Example 8.3. The signature of the TRS from Example 8.2 is {(add, 2), (s, 1), (0, 0)}.

8.3. Dependency Pairs

To get hold of the (recursive) function calls in a TRS, the so called dependency pairs are
used [3, 28].

Definition 8.4. The DPs of a TRS R are defined by

DP(R) = {(l], f ](~ts)) | ∃ r . (l , r) ∈ R ∧ f ∈ D(R) ∧ r � f (~ts) ∧ l 7 f (~ts)}

where (�) � denotes the (proper) subterm relation on terms and D(R) is the set of
defined function symbols in R.2 By ·] we denote the operation of marking the root symbol
of a term with the special marker ]. In examples we use capitalization and hence write F
instead of f ].

Example 8.5. Since the TRS of Example 8.2 contains just one “recursive call,” we get
the single DP ADD(s(x), y)→ ADD(x, y).

Note how DPs get rid of context information. This is exactly what makes them so
useful in our proof.

Having DPs, we can use an alternative characterization of nontermination using DP
problems and chains. A DP problem (P ,R) just consists of two TRSs P and R. Then a
(P ,R)-chain is an infinite sequence of the following shape:

2A function symbol is defined in a TRS, if it occurs as the root of a left-hand side.



8.4. Main Results 67

∀ i . (si, ti) ∈ P ∧ tiσi →∗R si+ 1σi+ 1.

We use the abbreviation ichain (P , R) s t σ for such a sequence. The soundness result
of DPs then states that a (well-formed) TRS R is terminating if there is no infinite
(DP(R),R)-chain where the formalization was described in [104].

Lemma 8.6. wf trs R =⇒ ¬ SN(→R) =⇒ ∃ s t σ. ichain (DP(R), R) s t σ

Sometimes, we are interested in minimal (P ,R)-chains. The only difference between
min ichain (P , R) s t σ and ichain (P , R) s t σ, is the additional requirement in minimal
chains that SNR(tiσi) for all i.

8.4. Main Results

Since our term data type does not take care of building only terms corresponding to a
specific signature, by default any rewrite relation →R in our formalization is defined over
terms containing arbitrary function symbols. Our first goal is to show that once we have
shown termination for terms using only function symbols from F(R), this implies that
→R does terminate for arbitrary terms. Before doing that, we need means to identify
well-formed terms. To this end we use the inductively defined set T (F), containing all
terms that are well-formed with respect to the signature F .

Definition 8.7 (Well-Formed Terms).

x ∈ T (F)

(f , |~ts|) ∈ F ∀ t∈~ts. t ∈ T (F)

f (~ts) ∈ T (F)

Using this definition we can define the well-formed rewrite relation induced by a TRS
R:

þR ≡ {(s , t) | s →R t ∧ s ∈ T (F(R)) ∧ t ∈ T (F(R))}.

Further, let C(F) denote the set of well-formed contexts with respect to the signature F .
What we want to show is SN(þR) =⇒ SN(→R). For the proof we need a way to remove
unwanted function symbols from terms. This is the purpose of the following cleaning
function:

JyKF = y

Jf(~ts)KF = if (f , |~ts|) ∈ F then f (map J·KF ~ts) else z

where z denotes an arbitrary but fixed variable. Intuitively, every subterm of a term whose
root is not in the given signature, is replaced by z. Having this, the proof of SN(þR) =⇒
SN(→R) (actually we prove its contrapositive) is done in three stages:

(i) First, we assume ¬ SN(→R). Then by the soundness of DPs (Lemma 8.6) we obtain
an infinite (DP(R), R)-chain.

(ii) Next, we show that every infinite chain can be transformed into an infinite clean
chain.

(iii) And finally, we show completeness of the DP-transformation for well-formed terms,
i.e., that an infinite clean (DP(R), R)-chain can be transformed into an infinite
derivation w.r.t. þR. Hence, ¬ SN(þR), concluding the proof.



68 Chapter 8. Signature Extensions Preserve Termination

In total we get wf trs R =⇒ SN(þR) =⇒ SN(→R) and since every non-well-formed TRS
is nonterminating, we finally have a proof of Theorem 8.1. Note that the second step also
shows the second main result: signature extensions are valid when performing termination
proofs using DPs (without minimality).

It remains to prove the following two lemmas where we use the abbreviations F(P , R)
≡ F(P) ∪ F(R) and ](R) ≡ F(R) ∪ F ](R) with F ](R) ≡ {(f ], n) | (f , n) ∈ F(R)},
and the cleaning function is extended to sequences of substitutions in the obvious way.

Lemma 8.8 (Signature Restrictions for Chains).
F(P , R) ⊆ F =⇒ ichain (P , R) s t σ =⇒ ichain (P , R) s t JσKF

Lemma 8.9 (Completeness of DPs for þR).
ichain (DP(R), R) s t JσK](R) =⇒ ¬ SN(þR)

Note that by applying first Lemma 8.8 and then Lemma 8.9, we also obtain the classical
completeness result of DPs.

Lemma 8.10 (Completeness of DPs). ichain (DP(R), R) s t σ =⇒ ¬ SN(→R)

Proof. Obviously, we have F(DP(R), R) ⊆ ](R). Together with the assumption ichain
(DP(R), R) s t σ, this yields ichain (DP(R), R) s t JσK](R), using Lemma 8.8. Then,
from Lemma 8.9, we obtain ¬ SN(þR) and thus ¬ SN(→R).

of Lemma 8.8. From the assumptions of Lemma 8.8 we obtain

∀i. si ∈ T (F) ∧ ti ∈ T (F), (1)

∀i. tiσi →∗R si+1σi+1, (2)

∀i. (si, ti) ∈ P . (3)

Further note that whenever there is an R-step from s to t, then either this step is also
possible in the cleaned versions of s and t, or the cleaned versions are equal, i.e.,

s→R t =⇒ JsKF(R) →
=
R JtKF(R).

From this and (2) we may conclude

∀i. JtiσiKF →
∗
R Jsi+1σi+1KF

by induction over the length of the rewrite sequence (remember that F(R) ⊆ F). Using
(1) we may push the applications of the clean function inside, resulting in

∀i. JtiKFJσiKF →
∗
R Jsi+1KFJσi+1KF .

Together with (3) we obtain the desired clean infinite chain as (1) shows JsiKF = si and
JtiKF = ti for all i.

of Lemma 8.9. Again, we show the lemma in its contrapositive form. Thus, we assume
SN(þR). Now, let F denote the signature of R and u(·) the operation of ‘unsharping,’
i.e., removing ]s from terms:

u(t) =

{
f(map u(·) ~ts) if t = f ](~ts) or t = f(~ts), and

t otherwise.



8.5. Applications 69

The extension of u to substitutions is defined as u(σ)(x) = u(σ(x)). For the sake of a
contradiction, assume that there is an infinite (DP(R),R)-chain over s, t, and JσK](R).
Since cleaning does not affect s and t, this implies an infinite (DP(R),R)-chain over
JsK](R), JtK](R), and JσK](R), i.e.,

∀i. (JsiK](R), JtiK](R)) ∈ DP(R) (4)

∀i. JtiK](R)JσiK](R) →
∗
R Jsi+1K](R)Jσi+1K](R) (5)

Then from (4) we obtain

∀i.∃C.C ∈ C(F) ∧ Ju(si)KF →R C[Ju(ti)KF ]

by construction of DP(R). Using the Axiom of Choice we hence obtain a sequence of
contexts C, such that Ci is the context employed in the i-th step of (4), i.e.,

∀i.Ci ∈ C(F) ∧ Ju(si)KF →R Ci[Ju(ti)KF ] (6)

Let D denote the following sequence:

Di =

{
2 if i = 0,

Di−1 ◦ (CiJu(σi)KF) otherwise.

Where ◦ denotes the composition of contexts, i.e., the right context replaces the hole of
the left one. This function gives for the i-th DP-step in the infinite chain, all the contexts
that have been lost due to using DP(R) instead of R and additionally applies all the
necessary substitutions. For the sake of brevity we define:

s′i = Di[Ju(si)KFJu(σi)KF ]

t′i = Di+1[Ju(ti)KFJu(σi)KF ]

Then by (6) we have s′i →R t′i, since rewriting is closed under contexts and substitutions.
From (5) we conclude Ju(ti)KFJu(σi)KF →∗R Ju(si+1)KFJu(σi+1)KF , since removing ]s does
not destroy any redexes of R. By wrapping this derivation in the context Di+1 we obtain
t′i →∗R s′i+1. Combining this with s′i →R t′i yields

s′i →+
R s′i+1

From our assumption SN(þR) we conclude thatR is well-formed. Moreover, it is apparent
from the definitions of J·KF and Di, together with (6) that all the s′is are well-formed,
i.e., s′i ∈ T (F). Together with the well-formedness of R one can prove that also all
intermediate terms in all derivations s′i →+

R s′i+1 are in T (F). Thus we have an infinite
þR-sequence which contradicts our assumption SN(þR).

8.5. Applications

In most termination tools, termination techniques are freely combined within a complex
termination proof. For example, it is a standard procedure to first remove some rules
from R, resulting in R′, and then prove SN(R′) without caring about any changes in
the signature. I.e., proving termination of SN(R′) is performed as if the signature were



70 Chapter 8. Signature Extensions Preserve Termination

F(R′) and not the original signature F(R). The soundness of this approach relies upon
Theorem 8.1.

At first view, Theorem 8.1 might not seem important, as there are several termination
techniques which do not rely upon the signature. For example, when using polynomial
interpretations, it always suffices to give the interpretations for the function symbols
occurring in the TRS, no matter if the signature contains other symbols. The reason is that
the interpretation of any other symbol has no impact when computing the polynomials
for the left-hand sides and right-hand sides of the rules. Similar situations occur for other
reduction orders and other termination techniques, like semantic labeling [110].

However, we are aware of at least two termination techniques where the signature is
essential.

String Reversal. If we restrict terms in rewriting to employ only unary function symbols,
we are in the setting of string rewriting. For notational convenience we write abc instead
of a(b(c(x))), where the variable x is implicit. There are several termination techniques
that work only/better for strings. One of them is string reversal. This technique uses the
fact that a string rewrite system (SRS) S is terminating iff rev(S) is terminating. Here,
rev(S) denotes the mapping of the function

rev(t) =

{
rev(t′)a if t = at′,

t otherwise,

over all left-hand sides and right-hand sides of S. In practice, this often helps to auto-
matically find a termination proof.

Example 8.11. Consider the following TRS

a(b(b(x)))→ a(b(a(a(a(a(x))))))

f(x, y)→ x

which is not an SRS. One can remove the second rule by a polynomial order which maps
a(x) and b(x) to x, and f(x, y) to x+ y + 1. Then the SRS

abb→ abaaaa

remains, where the signature still contains the binary symbol f. As string reversal is only
defined for unary symbols, the presence of f forbids the application of string reversal. But
after applying the signature restriction to a and b we are allowed to forget about f and
apply string reversal to obtain the following SRS:

bba→ aaaaba

Note that in this reversed SRS there are no dependency pairs as ba is a proper subterm
of bba. Therefore, termination is now trivially proven.

Root-Labeling. Root-labeling [95] is a special version of semantic labeling [110]. We
start with a short description of semantic labeling. We interpret a TRS R by an F -
algebra M = (M, {fM}f∈F). That is, we interpret every function symbol f of arity
n, by a function fM : Mn → M , over the carrier M . Then, the interpretation of a
term with respect to a given variable assignment µ, is given by: [µ]M(x) = µ(x) and



8.5. Applications 71

[µ]M(f(t1, . . . , tn)) = fM([µ]M(t1), . . . , [µ]M(tn)). We say that M is a model of R iff for
all assignments µ and all rules l→ r ∈ R, we have [µ]M(l) = [µ]M(r).

Now, we can label the function symbols of R according to the interpretation of their
arguments. For every n-ary function symbol f , we choose a set of labels Lf 6= ∅
in combination with a mapping πf : Mn → Lf . The labeling is extended to terms
as follows: labµ(x) = x and labµ(f(t1, . . . , tn)) = fm(labµ(t1), . . . , labµ(tn)) with m =
πf ([µ]M(t1), . . . , [µ]M(tn)). Then, the labeled TRS Rlab consists of the rules labµ(l) →
labµ(r) for all l → r ∈ R and assignments µ. Zantema [110] has shown that for every
model of R, the TRS R is terminating iff the TRS Rlab is terminating.

The difficult part of applying semantic labeling for proving termination, is to find a
proper model. This is solved in the special case of root-labeling by fixing the interpre-
tation. Every function symbol is interpreted by itself (i.e., fM(x1, . . . , xn) = f) and the
labeling is fixed to tuples of function symbols (i.e., πf (x1, . . . , xn) = (x1, . . . , xn)). Now,
to satisfy the necessary model condition, we close the rules of a TRS under the so called
flat contexts before labeling. This makes sure that for every resulting rule l→ r, the root
symbol of l is the same as the root symbol of r and thus, [µ]M(l) = [µ]M(r) for every
assignment µ. Here, the flat contexts are determined solely by the signature. Again,
Theorem 8.1 shows that one can reduce the possibly infinite set of flat contexts (if the
signature F is infinite) to a finite set of flat contexts (if F(R) is finite).

Example 8.12. Consider the TRS {a(b(x)) → b(a(a(x)))}. This yields the set of flat
contexts {a(2), b(2)}. After closing the TRS under flat contexts we obtain the two rules
{a(a(b(x))) → a(b(a(a(x)))), b(a(b(x))) → b(b(a(a(x))))}.3 Now, root-labeling results in
the following labeled TRS:

aa(ab(ba(x)))→ ab(ba(aa(aa(x))))

aa(ab(bb(x)))→ ab(ba(aa(ab(x))))

ba(ab(ba(x)))→ bb(ba(aa(aa(x))))

ba(ab(bb(x)))→ bb(ba(aa(ab(x))))

The advantage of root-labeling or semantic labeling is that afterwards one can distin-
guish different occurrences of symbols as they might have different labels. For example,
the last but one symbols of the left- and right-hand sides are ab and aa, respectively,
whereas in the original TRS these symbols were just a and could not be distinguished.
That such a distinction can be helpful is demonstrated in several examples [95, 110].

Note that root-labeling is also applied in the DP setting. Here, Lemma 8.8 can be used
to show that it suffices to build the flat contexts w.r.t. the signature of the given DP
problem.

However, many termination tools base their termination analysis on DPs where always
minimal chains are considered. The reason to work with minimal chains is that many
powerful termination techniques are only sound when regarding minimal chains [42,101].

Unfortunately, when trying to lift Lemma 8.8 to minimal chains, we figured out that
this is impossible. It is easy to show that cleaning terms might introduce nontermination
if non-left-linear rules are present. For example if a and b are not in the signature and

3If the signature would be larger, e.g., if there would be an additional ternary symbol c, then the flat
contexts would include {c(2, x2, x3), c(x1,2, x3), c(x1, x2,2)} and for each of these contexts one would
get another rule. Hence, the signature restriction is essential to get few flat contexts and therefore
small systems.



72 Chapter 8. Signature Extensions Preserve Termination

there is a rule f(x, x)→ f(x, x), then this rule cannot be applied on f(a, b). However, it is
applicable on the cleaned term f(z, z).

Moreover, we even found a counter-example where there is an infinite minimal (P ,R)-
chain, but no infinite minimal (P ,R)-chain if only terms over F(P ∪ R) may be used.
Hence, there cannot be any function that transforms an infinite minimal (P ,R)-chain
over an arbitrary signature into an infinite minimal chain which only contains terms over
F(P ∪R). In other words, Lemma 8.8 does not hold if one would replace infinite chains
by minimal infinite chains.

Example 8.13 (Restricting the signature to F(P ∪ R) is unsound for minimal chains).
To present a counter-example we give a “termination proof” for a nonterminating TRS
where the only unsound step is the signature restriction to the signature of the current DP
problem. Here, we make use of the DP-framework [42] in which one proves termination
by simplifying the initial DP problems by termination techniques until one obtains a DP
problem that does not admit an infinite minimal chain. For soundness it is only required
that whenever (P ,R) is simplified to (P ′,R′) then an infinite minimal (P ,R)-chain must
imply the existence of an infinite minimal (P ′,R′)-chain.

So, let R be the following nonterminating TRS.

g(f(x, y, x′, z, z, u))→ g(f(x, y, x, x, y, h(y, x′)))

a→ b

a→ c

h(x, x)→ h(x, x)

h(a, x)→ h(x, x)

h(b, x)→ h(x, x)

h(c, x)→ h(x, x)

h(h(x1, x2), x)→ h(x, x)

h(f(x1, . . . , x6), x)→ h(x, x)

The initial DP problem (DP(R),R) can be simplified to (P ,R) where P = {G(f(x, y, x′,
z, z, u)) → G(f(x, y, x, x, y, h(y, x′)))}. The reason is that there is a minimal infinite
(P ,R)-chain: choose every si and ti to be the left-hand side and right-hand side of the
only rule in P , respectively. Further, choose σi = σ for σ(x) = g(a), σ(y) = σ(z) = g(b),
σ(x′) = g(c), and σ(u) = h(g(b), g(c)).

Note that this chain is also a minimal (P ,R′)-chain where R′ is like R but without the
g(. . . )→ g(. . . )-rule. Thus, (P ,R) can be simplified to (P ,R′).

Using the argument filter processor [101, Theorem 4.37], it is shown that there also
is an infinite minimal chain when collapsing G to its first argument. Hence, the same
substitution σ can be used to obtain an infinite minimal chain for the DP problem (P ′,R′)
where P ′ = {f(x, y, x′, z, z, u)→ f(x, y, x, x, y, h(y, x′))}.

Now, if it would be sound to restrict the signature of (P ′,R′) to F(P ′ ∪ R′) =
{a, b, c, f, h} then we can conclude termination. The reason is that over this signature
there are no infinite minimal (P ′,R′)-chains anymore.

We prove this last statement by contradiction. Suppose there is an infinite minimal
(P ′,R′)-chain over s, t, and δ, where δi instantiates all variables by terms over F(P ′∪R′),
si = f(x, y, x′, z, z, u), and ti = f(x, y, x, x, y, h(y, x′)), for all i. δi. Then all tiδi are
terminating w.r.t. R′. Hence, δ1(y) must be a variable (otherwise, h(y, x′)δ1 would not
be terminating due to the six h-rules of R′). Moreover, by using that δ1(y) is a variable,



8.5. Applications 73

the derivation t1δ1 →∗R′ s2δ2 shows that δ1(y) = δ2(y) and δ1(y) = δ2(z). Note that
since R′ is not collapsing, whenever a term rewrites to a variable then the term must be
identical to the variable. Hence, since δ2(z) is a variable and δ1(x) →∗R′ δ2(z) we obtain
δ1(x) = δ2(z) and for a similar reason we obtain δ1(x) = δ2(x

′). In total, we can conclude
δ2(y) = δ2(x

′). This finally yields a contradiction as there is the nonterminating subterm
h(y, x′)δ2 = h(δ2(y), δ2(y)).

The consequences are severe: termination proofs relying upon techniques that require
minimal chains and also use signature restrictions are unsound without further restric-
tions.

And indeed, for the technique of root-labeling—which performs a signature restriction
within the soundness proof—we were able to construct a counter-example which refutes
the main theorem for root-labeling with DPs.

Example 8.14 (Root-labeling is unsound for minimal chains). We use a similar TRS as
in Example 8.13 to show the problem of root-labeling with minimal chains. Let R consist
of the following rules.

g(f(x, y, x′, z, z, u))→ g(f(x, y, x, x, y, h(y, x′)))

a→ b

a→ c

h(x, x)→ h(x, x)

h(a, x)→ h(x, x)

h(x, a)→ h(x, x)

f(x1, . . . , a, . . . , x5)→ f(x1, . . . , a, . . . , x5)

Here, the last rule represents 6 rules where the a can be at any position.
We again can simplify the initial DP-problem (DP(R),R) to (P ,R) for the same P =
{G(f(x, y, x′, z, z, u)) → G(f(x, y, x, x, y, h(y, x′)))} that we had in the previous example.
The reason is again that there is an infinite minimal chain by choosing σi = σ for σ(x) =
g(a), σ(y) = σ(z) = g(b), σ(x′) = g(c), and σ(u) = h(g(b), g(c)).

Note that by using this substitution we also get an infinite minimal (P ,R′)-chain where
R′ = R \ {g(. . . )→ g(. . . )}. Hence, it is sound to simplify (P ,R) to (P ,R′).

Now, in [95, proofs of Lemmas 13 and 17] it is wrongly stated4 that for this example,
w.l.o.g. one can restrict to substitutions over the signature {a, b, c, f, h}: With a similar
reasoning as in Example 8.13 one can prove that there is no infinite minimal (P ,R′)-chain
using this restricted class of substitutions. We further show in detail that Lemma 17 of
[95] itself is wrong, not only its proof.

The result of Lemma 17 states that if there is an infinite minimal (P ,R′)-chain then
there also is an infinite minimal chain for the DP problem (P ′,R′′) that is obtained by
the flat context closure. In our example we obtain P ′ = P ∪ {G(a)→ G(b),G(a)→ G(c)}
and R′′ = (R′ \ {a→ b, a→ c}) ∪R′′′ where R′′′ consists of the following rules:

h(a, x)→ h(b, x)

h(a, x)→ h(c, x)

h(x, a)→ h(x, b)

h(x, a)→ h(x, c)

4In detail, in [95] our upcoming Lemma 8.17 is used without the requirement of left-linearity.



74 Chapter 8. Signature Extensions Preserve Termination

f(x1, . . . , a, . . . , x5)→ f(x1, . . . , b, . . . , x5)

f(x1, . . . , a, . . . , x5)→ f(x1, . . . , c, . . . , x5)

We show that for this DP problem (P ′,R′′) there are no infinite minimal chains anymore.
So, if Lemma 17 of [95] would be sound, we could wrongly “prove” termination of R.
Again, we assume there is an infinite minimal (P ′,R′′)-chain where δi are the correspond-
ing substitutions and where we do not even restrict the signature of any δi. Obviously, all
(si, ti) are taken from P and not from one of the additional rules in P ′. Since every left-
hand side of R′′ also is a left-hand side of a nonterminating rule in R′′, we know that every
terminating term w.r.t. R′′ is also a normal form w.r.t. R′′. Hence, from t1δ1 →∗R′′ s2δ2
we conclude t1δ1 = s2δ2. Thus, δ2(x

′) = δ1(x) = δ2(z) = δ1(y) = δ2(y). Therefore, we
obtain the nonterminating subterm h(y, x′)δ2 = h(δ2(y), δ2(y)) which is a contradiction
to the minimality of the chain.

To conclude, the current applications of root-labeling in termination tools which rely
upon DPs with minimal chains are wrong for two reasons: first, one cannot restrict the
signature to the implicit signature of the given DP-problem, and second, root-labeling is
unsound in the DP setting with minimal chains.

However, for signature restrictions in combination with minimal chains we were able to
prove soundness, provided that the TRS R of a DP problem (P ,R) is left-linear.

Lemma 8.15 (Signature Restrictions for Minimal Chains). left linear R =⇒
F(P , R) ⊆ F =⇒ min ichain (P , R) s t σ =⇒ min ichain (P , R) s t JσKF

The proof of Lemma 8.15 is similar to the proof of Lemma 8.8. The only missing step
is to prove that left-linearity ensures that cleaning does not introduce nontermination.

Lemma 8.16 (Cleaning of Left-Linear TRSs Preservers SN). (i) left linear R =⇒
F(R) ⊆ F =⇒ SNR(s) =⇒ JsKF →R t =⇒ ∃ u. JuKF = t ∧ s →R u

(ii) left linear R =⇒ F(R) ⊆ F =⇒ SNR(s) =⇒ SNR(JsKF)

Proof. (i) We prove this fact via induction over s. In the base case, s is a variable.
Then we have the rewrite step s →R t, since cleaning does not change variables.
But then, there is a variable left-hand side, implying that R is not terminating and
thus contradicting SNR(s).

In the step case we have s = f(~ss). Now, we proceed by a case distinction. If
(f, |~ss|) /∈ F then cleaning will transform s into the variable z. Again, there would
be a variable left-hand side, contradicting strong normalization of s. Thus, (f, |~ss|) ∈
F . Hence, f(map J·KF ~ss) →R t. If this is a non-root step, the result follows from
the induction hypothesis. Otherwise, this is a root rewrite step. Thus we obtain
a rule (l, r) ∈ R and a substitution σ, such that, Jf(~ss)KF = lσ and rσ = t.
Additionally, we know that this rule is left-linear and that its left-hand side is well-
formed. It can be shown that this implies the existence of a substitution τ , such that,
JτVar(l)KF = σ|Var(l) and f(~ss) = lτ (we omit the rather technical proof). Here, σ|V
denotes the restriction of a substitution σ to a set of variables V, i.e., all variables
that are not in V, are no longer modified by the restricted substitution. Then
JrτKF = JrKFJτKF = rJτVar(l)KF = rσ|Var(l) = rσ = t and s = f(~ss) = lτ →R rτ .
Here, we needed to use the property Var(r) ⊆ Var(l), which must be valid since
otherwise SNR(s) does not hold.



8.6. Conclusion 75

(ii) Assume that JsKF is not terminating. Thus, there is an infinite sequence of R-steps,
starting from JsKF . By iteratively applying the previous result, we obtain an infinite
R-sequence starting at s.

We were also able to formally show that the signature restriction that is done in root-
labeling (which is exactly the upcoming Lemma 8.17 without the requirement of left-
linearity) is sound for minimal chains with the requirement of left-linearity. Hence, with
the following lemma one can repair the paper proofs of [95, Lemmas 13 and 17] by de-
manding left-linearity. Essentially, the lemma states that one can restrict to the symbols
that occur below the root in P (F>ε(P)), together with the symbols of R, under the
additional assumption that neither left-hand sides nor right-hand sides of P are variables
and the roots of P are not defined in R.

Lemma 8.17 (Signature Restrictions Ignoring Roots). left linear R =⇒
F>ε(P) ∪ F(R) ⊆ F =⇒
∀ s t . (s , t) ∈ P −→ s /∈ Var ∧ t /∈ Var ∧ ¬ root(t) ∈ D(R) =⇒
min ichain (P , R) s t σ =⇒ min ichain (P , R) s t JσKF

The lemma is proven in the same way as Lemma 8.15, except that one only applies
cleaning strictly below the root. By cleaning below the root one can also proof a variant
of Lemma 8.17 where minimal chains are replaced by arbitrary chains, and where left-
linearity is no longer required.5

Using Lemma 8.17 and the original proofs of [95] it is shown that root-labeling is sound
in combination with minimal chains if we restrict to left-linear R-components. Hence,
the main example of [95, Touzet’s SRS] is still working, since it applies root-labeling on
a DP problem with left-linear R.

8.6. Conclusion

We presented an alternative, and more importantly, the first mechanized proof of the
fact that termination is preserved under signature extensions. We have also shown that
signature extensions are possible when using DPs, but only if one considers arbitrary
chains or left-linear TRSs. For minimal chains we have given a counterexample which
shows that for non-left-linear TRSs one cannot restrict to the signature of the current DP
problem.

We believe these results to be interesting in their own. However, we developed these
results with a certain goal in mind. In the end we want to apply our main positive results
to be able to certify termination proofs which rely upon techniques where the signature
is essential: string reversal and root-labeling. If one applies these techniques directly on
a TRS, then both techniques can now be certified in the way they are used in current
termination tools. For root-labeling in the DP setting with minimal chains, we have shown
that it is unsound for arbitrary DP problems. We have further shown how to repair the
existing proofs by demanding left-linearity. It remains as future work, to also formalize
the remaining proof for root-labeling in the DP setting.

5However, one needs the additional requirement that left-hand sides of R are not variables, which in
Lemma 8.17 follows from the minimality of the chain.





9. Modular and Certified Semantic
Labeling and Unlabeling

Publication details

Christian Sternagel and René Thiemann. Modular and Certified Semantic Labeling and
Unlabeling. In Proceedings of the 22nd International Conference on Rewriting Tech-
niques and Applications, volume 10 of LIPIcs, pages 329–344. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2011.

Abstract

Semantic labeling is a powerful transformation technique to prove termination of term
rewrite systems. The dual technique is unlabeling. For unlabeling it is essential to drop
the so called decreasing rules which sometimes have to be added when applying semantic
labeling. We indicate two problems concerning unlabeling and present our solutions.

The first problem is that currently unlabeling cannot be applied as a modular step,
since the decreasing rules are determined by a semantic labeling step which may have
taken place much earlier. To this end, we give an implicit definition of decreasing rules
that does not depend on any knowledge about preceding labelings.

The second problem is that unlabeling is in general unsound. To solve this issue, we
introduce the notion of extended termination problems. Moreover, we show how existing
termination techniques can be lifted to operate on extended termination problems.

All our proofs have been formalized in Isabelle/HOL as part of the IsaFoR/CeTA project.

9.1. Introduction

In recent years, termination provers for term rewrite systems (TRSs) became more and
more powerful. Nowadays, we do no longer have to prove termination by embedding all
rules of a TRS into a single reduction order. Instead, most provers construct multi-step
proofs by combining different termination techniques1 resulting in tree-like termination
proofs. As a result, termination provers became more complex and thus, more error-prone.
It is regularly demonstrated that we cannot blindly trust termination provers. Every now
and then, some prover delivers a faulty proof. Most of the time, this is only detected if
there is another prover giving a contradictory answer. Furthermore, it just is too much
work to check a generated proof by hand. (Besides, checking by hand is not very reliable.)

To solve this issue, recent interest is in the automatic certification of termination
proofs [12, 23, 104]. To this end, we formalized many termination techniques in our Is-
abelle/HOL [84] library IsaFoR [104] (in the remainder we just write Isabelle, instead of
Isabelle/HOL). Using IsaFoR, we obtain CeTA, an automatic certifier for termination proofs.

1Several termination techniques are based upon reduction orders, but there are also techniques which do
not generate orders. Hence, the multi-step proofs are not just a lexicographic combination of orders.



78 Chapter 9. Modular and Certified Semantic Labeling and Unlabeling

In this paper, we present our formalization of semantic labeling and unlabeling [110],
two important termination techniques. Semantic labeling introduces differently labeled
variants of the same symbol, allowing a distinction in orders, etc. Semantic labeling
typically produces large TRSs. Hence, unlabeling is important to keep the number of
symbols and rules small.

Example 9.1. Consider the small TRS Secret_05/teparla3 from the termination prob-
lem database (TPDB) which only consists of two rules, has two different symbols, and
two variables. We just describe the structure of the proof that has been generated by the
termination prover AProVE [39] in 21 seconds during the 2008 termination competition.2

After applying the dependency pair transformation [3] and some standard techniques,
a termination problem containing three rules and three different symbols is obtained.
Then, semantic labeling is applied. The result after simplification, is a system with five
rules and seven different symbols. Unlabeling yields a problem with three rules and three
symbols. Another labeling produces a new termination problem with 12 rules. This is
finally proven to be terminating using a matrix interpretation [32] of dimension two.

Note that without the unlabeling step, the second labeling would have returned a
system with 5025 rules instead of 12—for this huge termination problem no suitable
matrix interpretation of dimension two is detected.

Whereas the previous example shows that unlabeling is essential to keep systems small,
we also found examples where unlabeling was the key to get a successful termination proof
at all, cf. Example 9.24 for details.

Unfortunately, unlabeling is not sound in general. In order to allow nested labeling
and unlabeling and turn unlabeling into a sound and modular technique (not relying
on context information), we have designed a new framework. All existing termination
techniques are easily integrated in this framework. In fact, CeTA uses the new framework
for certification.

Note that all the proofs that are presented (or omitted) in the following, have been
formalized as part of IsaFoR. Hence, we merely give sketches of our “real” proofs. Our
goal is to show the general proof outlines and help to understand the full proofs. The
library IsaFoR with all formalized proofs, the executable certifier CeTA, and all details about
our experiments are available at CeTA’s website:

http://cl-informatik.uibk.ac.at/software/ceta

The paper is structured as follows. In Section 9.2, we recapitulate some required notions
of term rewriting as well as the basic definitions of semantic labeling. Afterwards, in
Section 9.3, we give some challenges for modular labeling and unlabeling. Then, in Sec-
tion 9.4, we extend the previous results to the dependency pair framework. We discuss
challenges for the certification in Section 9.5. Our experiments are presented in Section 9.6
before we conclude in Section 9.7.

9.2. Preliminaries

9.2.1. Term Rewriting

We assume familiarity with term rewriting [5]. Still, we recall the most important notions
that are used later on. A (first-order) term t over a set of variables V and a set of function

2See http://termcomp.uibk.ac.at/termcomp/competition/resultDetail.seam?resultId=35708

http://cl-informatik.uibk.ac.at/software/ceta
http://termcomp.uibk.ac.at/termcomp/competition/resultDetail.seam?resultId=35708


9.2. Preliminaries 79

symbols F is either a variable x ∈ V or an n-ary function symbol f ∈ F applied to n
argument terms f(~tn). For brevity we write ~tn to denote a sequence of n elements t1, . . . ,
tn and (h(~tn)) (note the additional pair of parentheses) for (h(t1), . . . , h(tn)), i.e., mapping
a function h over the elements of a sequence ~tn. A context C is a term containing exactly
one hole (2). Replacing 2 in a context C by a term t is denoted by C[t]. A (rewrite) rule
is a pair of terms `→ r and a TRS R is a set of such rules. The rewrite relation (induced
by R) →R is the closure under substitutions and contexts of R, i.e., s→R t iff there is a
context C, a rule `→ r ∈ R, and a substitution σ such that s = C[`σ] and t = C[rσ].

We say that an element t is terminating / strongly normalizing (w.r.t. some binary re-
lation S), and write SNS(t), if it cannot start an infinite sequence t = t1 S t2 S t3 S · · · .
The whole relation is terminating, written SN(S), if all elements are terminating w.r.t. it.
For a TRS R and a term t, we write SN(R) and SNR(t) instead of SN(→R) and SN→R(t).
We write S+ (S∗) for the (reflexive and) transitive closure of S.

Definition 9.2 (Termination Technique). A termination technique is a mapping TT from
TRSs to TRSs. It is sound if termination of TT(R) implies termination of R.

Using sound termination techniques one tries to modify a given TRS R until the empty
TRS is reached. If this succeeds, one obtains a proof tree showing termination of R.

9.2.2. Semantic Labeling

An algebra A over F is a pair (A, {fA}f∈F) consisting of a non-empty carrier A and an
interpretation function fA : An → A for every n-ary function symbol f ∈ F . Given an
assignment α : V → A, we write [α]A(t) for the interpretation of the term t. An algebra
A is a model of a rewrite system R, if [α]A(`) = [α]A(r) for all rules ` → r ∈ R and
all assignments α. If the carrier A is equipped with a well-founded order >A such that
[α]A(`) >A [α]A(r) for all ` → r ∈ R and all assignments α, then A is a quasi-model of
R.

For each function symbol f there also is a corresponding non-empty set Lf of labels for f
and a labeling function `f : An → Lf . The labeled signature Flab consists of n-ary function
symbols fa for every n-ary function symbol f ∈ F and label a ∈ Lf . The labeling function
`f determines the label of the root symbol f of a term f(~tn) based on the values of the
arguments ~tn. For every assignment α : V → A the mapping labα : T (F ,V)→ T (Flab,V)
is inductively defined by

labα(t) =

{
f`f ([α]A(~tn))(labα(~tn)) if t = f(~tn),

t otherwise.

The labeled TRS lab(R) over the signature Flab consists of the rules labα(`)→ labα(r) for
all `→ r ∈ R and α : V → A.

For quasi-models, every set of labels Lf needs to be equipped with a well-founded order
>Lf , giving rise to the set Dec of decreasing rules :

Dec = {fa(~xn)→ fb(~xn) | a, b ∈ Lf , a >Lf b, n-ary f ∈ F}

Furthermore, every interpretation function fA and every labeling function `f has to be
weakly monotone, i.e., if a >A a

′ then fA(a1, . . . , a, . . . , an) >A fA(a1, . . . , a
′, . . . , an) and

`f (a1, . . . , a, . . . , an) >Lf `f (a1, . . . , a
′, . . . , an).



80 Chapter 9. Modular and Certified Semantic Labeling and Unlabeling

Unlabeling a symbol is defined via the following function, removing one layer of labels.
Then, the function is extended homomorphically to terms, rules, and TRSs.

unlab(f) =

{
g if f = ga,

f if f is not labeled.

In [110], Zantema showed that labeled TRSs can simulate their unlabeled counterparts
(corresponding to i and ii in the following lemma; iii and iv are obvious).

Lemma 9.3. Let R be a TRS,A an algebra, and α an arbitrary assignment.

(i) If A is a model of R then t→R u implies labα(t)→lab(R) labα(u).

(ii) If A is a quasi-model of R then t→R u implies labα(t)→+
lab(R)∪Dec labα(u).

(iii) t→lab(R) u implies unlab(t)→R unlab(u).

(iv) t→Dec u implies unlab(t) = unlab(u).

From Lemma 9.3 we obtain that R is terminating if and only if lab(R) (∪Dec) is
terminating when A is a (quasi-)model of R. Completeness is achieved by unlabeling all
terms in a possible infinite rewrite sequence of the labeled TRS. Soundness is proved by
transforming a presupposed infinite rewrite sequence inR into an infinite rewrite sequence
in lab(R) (∪Dec). This is done by applying the labeling function labα(·) (for an arbitrary
assignment α) to all terms in the infinite rewrite sequence of R. Hence, semantic labeling
is sound and complete for termination (using models and quasi-models, respectively).

9.3. Modular Semantic Labeling and Unlabeling

One problem with semantic labeling is that the labeled system is usually large. Hence,
termination provers such as AProVE [39], Jambox [31], Torpa [111], and TPA [62] per-
form labeling, then try to simplify the resulting TRS by sound termination techniques,
and afterwards unlabel the TRS again, to continue on a small system. This poses two
challenges:

(i) If labeling was performed using a quasi-model, then the decreasing rules are added.
However, unlabeling a decreasing rule fa(~xn) → fb(~xn) leads to the nonterminat-
ing rule f(~xn) → f(~xn). Hence, one has to remove the decreasing rules before
unlabeling.

(ii) Between labeling and unlabeling, arbitrary (sound) termination techniques may be
applied. However, for unlabeling we want to remove the decreasing rules that are
determined by the corresponding labeling step. Hence, unlabeling is not a modular
technique that only takes a TRS as input. Instead, it relies on context information,
namely the decreasing rules that have been used in the corresponding labeling step
(which may occur several steps upwards in the termination proof).

Solving the first challenge is technically easy: just remove the decreasing rules before
unlabeling. The only question is, whether it is always sound to remove the decreasing
rules.

To handle the second challenge, we propose an implicit definition of decreasing rules.



9.3. Modular Semantic Labeling and Unlabeling 81

Definition 9.4 (Decreasing rules of a TRS). We define the decreasing rules of a TRS R
as D(R) = {` → r ∈ R | unlab(`) = unlab(r) ∧ ` 6= r}. We further define the unlabeled
version of a TRS as U(R) = unlab(R \ D(R)).

The condition ` 6= r ensures that a labeled variant of an original rule is never decreasing.
For example, if f(~xn)→ f(~xn) is a rule (and hence the original TRS is not terminating),
then each labeled variant has the form fa(~xn) → fa(~xn) for some a ∈ Lf . If we would
consider such a rule as decreasing, we could transform a nonterminating TRS into a
terminating one, using labeling and unlabeling.

Lemma 9.5. Let Lf and >Lf be given for each symbol f to determine Dec. Then
D(Dec) = Dec, D(lab(R)) = ∅, D(lab(R) ∪ Dec) = Dec, and U(lab(R) ∪ Dec) = R.

Now it is easy to define a modular version of unlabeling which does not require external
knowledge about what the decreasing rules are.

Definition 9.6 (Unlabeling as modular termination technique). The unlabeling termi-
nation technique replaces a TRS R by U(R).

Hence, we solved the second challenge and made unlabeling into an independent tech-
nique which does not need any knowledge on the previous application of semantic labeling
that introduced the decreasing rules. Thus, termination proofs can now use the following
structure where no global information has to be passed around:

(i) Switch from R to lab(R) ( ∪ Dec).

(ii) Modify lab(R) ( ∪ Dec) by sound termination techniques resulting in R′.

(iii) Unlabel R′ resulting in U(R′).

Although this approach is used in termination provers, it is unsound in general as not
every sound termination technique may be used between labeling and unlabeling. This is
illustrated by the following example.

Example 9.7. We start with the nonterminating TRS R = {f(a)→ f(b), b→ a}. Then,
we apply semantic labeling using the algebraA with A = {0, 1}, interpretations fA(x) = 0,
aA = 0, bA = 1, Lf = A, `f(x) = x, and the standard order on the naturals. Note that A
is a quasi-model of R. The resulting labeled TRS is lab(R) ∪ Dec = {f0(a)→ f1(b), b→
a, f1(x) → f0(x)}. It is sound to replace lab(R) ∪ Dec by the (nonterminating) TRS
R′ = {f1(x) → f0(x), f0(x) → f1(x)}. However, unlabeling R′ yields U(R′) = ∅ as both
rules in R′ are decreasing according to Definition 9.4. Hence, some of the performed
deductions were not sound. Since semantic labeling and the switch from lab(R)∪Dec to
R′ are sound, we obtain that unlabeling via U is unsound.

The problematic step when unlabeling, i.e., when switching fromR to U(R) = unlab(R\
D(R)), is the removal of the decreasing rules. If the decreasing rules are the only source
of nontermination, then this removal is unsound. However, the decreasing rules Dec that
are obtained from semantic labeling are always terminating. Thus, after labeling we have
to prove termination of the labeled system including the decreasing rules, but we may
assume that the decreasing rules are terminating. If we know that the decreasing rules
are terminating, then unlabeling by U is sound. We obtain the following structure of
termination proofs:



82 Chapter 9. Modular and Certified Semantic Labeling and Unlabeling

(i) Initially we have to prove SN(R).

(ii) After labeling, we have to prove SN(D(R′)) =⇒ SN(R′) for R′ = lab(R) ∪ Dec.

(iii) Then, we modify R′ to R′′ with SN(D(R′′)) =⇒ SN(R′′) implies SN(D(R′)) =⇒
SN(R′).

(iv) Finally, we unlabel R′′ resulting in U(R′′) and have to prove SN(U(R′′)).

This approach works fine for termination proofs where semantic labeling is not nested.
However, we are aware of termination proofs where labeling is applied in a nested way.

Example 9.8. Consider the TRS Gebhardt_06/16 from the TPDB. During the 2008
termination competition, Jambox proved termination of this TRS, applying the following
steps: labeling - labeling - labeling - polynomial order - unlabeling - four applications of
polynomial orders - unlabeling - unlabeling.3

To support this kind of proof we define the following variant of strong normalization.

Definition 9.9. An extended termination problem is a pair (R, n) consisting of a TRS
R and a number n ∈ N. An extended problem (R, n) is strongly normalizing (SN(R, n))
iff

(∀m < n. SN(D(Um(R)))) =⇒ SN(R).

An extended termination technique is a mapping xTT from extended termination problems
to extended termination problems. It is sound iff SN(xTT(R, n)) implies SN(R, n).

The number n in an extended termination problem (R, n) describes how often we can
assume that the decreasing rules are terminating, and hence, it tells us how often we
can delete the decreasing rules during unlabeling. The following lemma provides the link
between both variants of strong normalization.

Lemma 9.10. (i) SN(R) iff SN(R, 0).

(ii) If SN(R) then SN(R, n).

Lemma 9.11 (Extended Unlabeling). Extended unlabeling is sound where

U(R, n) =

{
(U(R), n− 1) if n > 0,

(unlab(R), 0) otherwise.

Proof. We only consider the interesting case where n > 0. So, we have to show SN(R, n)
under the first assumption SN(U(R), n− 1). To prove SN(R, n), we have to prove SN(R)
under the second assumption ∀m < n. SN(D(Um(R))). Since n > 0 we can choose m = 0
and obtain SN(D(R)).

To show SN(R) we assume that there is an infinite →R-derivation t1 →R t2 →R · · ·
and obtain a contradiction. The infinite derivation is also an infinite →R\D(R) ∪→D(R)-
derivation. Since D(R) is terminating, we know that there are infinitely many i with
ti→R\D(R)ti+1. Hence unlab(ti) →U(R) unlab(ti+1) for all these i as U(R) = unlab(R \
D(R)). Moreover, for all i where ti →D(R) ti+1, we know that unlab(ti) →unlab(D(R))

unlab(ti+1) and hence, unlab(ti) = unlab(ti+1) since every rule in unlab(D(R)) has the

3See http://termcomp.uibk.ac.at/termcomp/competition/resultDetail.seam?resultId=27220

http://termcomp.uibk.ac.at/termcomp/competition/resultDetail.seam?resultId=27220


9.3. Modular Semantic Labeling and Unlabeling 83

same left- and right-hand side. Thus, we have constructed an infinite derivation for U(R)
proving that SN(U(R)) does not hold. Together with the assumption SN(U(R), n − 1),
we obtain that ∀m < n− 1. SN(D(Um(U(R)))) does not hold (by Definition 9.9). Hence,
there is some m < n − 1 such that SN(D(Um+1(R))) does not hold. Now, using the
second assumption and m + 1 < n we obtain SN(D(Um+1(R))), providing the required
contradiction.

Lemma 9.12 (Extended Semantic Labeling). Semantic labeling is sound as extended
termination technique: Whenever we can switch from R to lab(R) ( ∪Dec) via semantic
labeling, then it is sound to switch from (R, n) to (lab(R) ( ∪ Dec), n+ 1).

Proof. Note that models are just a special case of quasi-models as already observed in
[110]. Hence, we only consider quasi-models in the proof. So, assuming SN(lab(R) ∪ Dec, n+
1) we have to prove SN(R, n). To show the latter, we may assume ∀m < n. SN(D(Um(R)))
and have to prove SN(R). We do so by assuming that there is an infinite R-derivation
t1 →R t2 →R · · · and deriving a contradiction. As we have a quasi-model we know
that labα(t1) →+

lab(R)∪Dec labα(t2) →+
lab(R)∪Dec · · · is an infinite lab(R) ∪ Dec-derivation,

showing that SN(lab(R) ∪ Dec) does not hold. By the conditions of semantic label-
ing, we further know SN(Dec). Using SN(lab(R) ∪ Dec, n + 1) we conclude that ∀m <
n + 1. SN(D(Um(lab(R) ∪ Dec))) does not hold. Hence there is some m < n + 1 such
that SN(D(Um(lab(R) ∪ Dec))) does not hold. If m = 0 then by Lemma 9.5 we know
that D(Um(lab(R) ∪ Dec)) = D(lab(R) ∪ Dec) = Dec, and thus SN(Dec) does not hold,
a contradiction. Otherwise, m = m′ + 1 for some m′ where m′ < n. Together with
∀m < n. SN(D(Um(R))), we obtain SN(D(Um′(R))). On the other hand, we know that
SN(D(Um′+1(lab(R) ∪ Dec))) does not hold. This again leads to a contradiction since
D(Um′+1(lab(R) ∪ Dec)) = D(Um′(U(lab(R) ∪ Dec))) = D(Um′(R)) by Lemma 9.5.

The previous two lemmas show that labeling and unlabeling can be performed as inde-
pendent techniques on extended termination problems.

The question remains how to integrate other existing termination techniques, i.e., which
techniques may be applied between labeling and unlabeling. Here, we consider two vari-
ants.

Definition 9.13 (Lift). Let TT be some termination technique. Then lift(TT) and
lift0(TT) are extended termination techniques where lift(TT)(R, n) = (TT(R), n) and
lift0(TT)(R, n) = (TT(R), 0).

In principle lift(TT) is preferable, since it does not change n, allowing to remove the de-
creasing rules when unlabeling (which is not possible using lift0(TT)). However, in general
the fact that TT is sound does not imply that lift(TT) is sound. This can easily be seen
by reusing Example 9.7 where the extended termination problem (R, 0) is transformed
to (lab(R) ∪ Dec, 1) by semantic labeling, then to (R′, 1) using lift(TT) for the unnamed
sound termination technique TT in Example 9.7, and then to (∅, 0) by unlabeling. Since
this establishes a complete termination proof for the nonterminating TRS R, and since
labeling and unlabeling are sound, we know that lift(TT) is unsound.

Since we cannot always use lift(TT), we give three different approaches to use termina-
tion techniques as extended termination techniques (in order of preference):

(i) Identify a (hopefully large) class of termination techniques TT for which soundness
of TT implies soundness of lift(TT).



84 Chapter 9. Modular and Certified Semantic Labeling and Unlabeling

(ii) Perform a direct proof that lift(TT) is sound as extended termination technique.

(iii) Use lift0(TT) for any sound termination technique TT.

We first prove soundness of approach iii.

Lemma 9.14. If TT is sound then lift0(TT) is sound.

Proof. We have to prove that SN(TT(R), 0) implies SN(R, n). So, assume SN(TT(R), 0).
Hence, SN(TT(R)) using Lemma 9.10(i). As TT is sound, we conclude SN(R) and this
implies SN(R, n) by Lemma 9.10(ii).

We start to prove soundness of lift(TT) for some sound termination technique TT
in order to detect where the problem is. To prove soundness, we have to show that
SN(TT(R), n) implies SN(R, n). Thus, assume SN(TT(R), n). To prove SN(R, n) we
may assume that ∀m < n. SN(D(Um(R))) and have to prove SN(R). Since TT is sound, it
suffices to prove SN(TT(R)). To this end, it suffices to show ∀m < n. SN(D(Um(TT(R))))
by using SN(TT(R), n). Hence, the only missing step is to conclude

SN(D(Um(R))) =⇒ SN(D(Um(TT(R)))). (?)

Lemma 9.15. If TT is sound and if (?) is satisfied for all m, then lift(TT) is sound.

A sufficient condition to ensure (?) is to demand that TT(R) ⊆ R as unlab, D, and
U are monotone w.r.t. set inclusion. Hence, all techniques that remove rules like rule
removal via reduction pairs, or (RFC) matchbounds [36, 66] can safely be used between
labeling and unlabeling. However, this excludes techniques like the flat context closure
which is required for root-labeling.

Definition 9.16 (Root-Labeling). Let R be a TRS over the signature F . Let AF be
an algebra with carrier F . Moreover, for every n-ary f ∈ F , we fix the interpretation
function fAF (~xn) = f , the set of labels Lf = Fn, and the labeling function `f (~xn) = (~xn).

Note that root-labeling is just a specific instantiation of general semantic labeling with
models. Hence, it is sound whenever AF is a model ofR. However, in general AF does not
constitute a model of R. Hence, a transformation technique was introduced that modifies
R in a way that AF always is a model of the result: the closure under flat contexts.

Definition 9.17 (Flat Context Closure). For an n-ary symbol f , the flat context for
the i-th argument is FCi(f) = f(x1, . . . , xi−1,2, xi+1, . . . , xn), where all the xj are fresh
variables. The set of flat contexts over F is defined by FC(F) = {FCi(f) | n-ary f ∈
F , 1 6 i 6 n}. The closure under flat contexts of a TRS R w.r.t. the signature F is given
by

FCF(R) = {C[`]→ C[r] | C ∈ FC(F), `→ r ∈ Ra} ∪ (R \Ra)

where Ra denotes those rules of R, for which the root of the left-hand side and the root
of the right-hand side differ.

Since Jambox applies root-labeling recursively (the labeling in Example 9.8 is root-
labeling), we definitely would like to aim at a larger class of termination techniques than
those which satisfy TT(R) ⊆ R. A natural extension would be to use the weaker condition
→TT(R) ⊆ →R. Then, also root-labeling together with the closure under flat contexts
would be supported. Unfortunately, →TT(R) ⊆ →R does not imply →D(Um(TT(R))) ⊆
→D(Um(R)) and thus, does not imply (?). Moreover, in the following example we show that
even if TT is sound and →TT(R) ⊆ →R then soundness of lift(TT) cannot be guaranteed.



9.3. Modular Semantic Labeling and Unlabeling 85

Example 9.18. Consider the TRS R = {f1(x) → f0(a), f0(x) → f1(x)}. Let TT be the
termination technique that replaces R by R′ = {f1(a) → f0(a), f0(x) → f1(x)}. Then,
TT is sound as R′ is not terminating. Moreover, →R′ ⊆ →R. Nevertheless, lift(TT) is
unsound, since it would replace (R, 1) by (R′, 1). That this replacement is unsound can
be seen as follows: SN(R, 1) does not hold since R is not terminating but the decreasing
rules of R (i.e., D(R) = {f0(x)→ f1(x)}) are terminating. However, SN(R′, 1) is satisfied
as D(R′) = R′ and hence termination of D(R′) implies termination of R′.

We have seen that requiring TT(R) ⊆ R is too restrictive to allow root-labeling. But
only requiring →TT(R) ⊆ →R is unsound. However, there is another condition which is
weaker than set inclusion, implies soundness, and allows the application of flat context
closures.

Definition 9.19. The context subset relation ⊆c is defined as

R ⊆c S iff ∀`→ r ∈ R.∃C, `′ → r′ ∈ S. ` = C[`′] ∧ r = C[r′].

Lemma 9.20. (i) R ⊆ S implies R ⊆c S

(ii) R ⊆c S implies →R ⊆ →S

(iii) R ⊆c S implies D(R) ⊆c D(S) and U(R) ⊆c U(S)

(iv) If TT is sound and ∀R.TT(R) ⊆c R then lift(TT) is sound

Proof. (i) To show R ⊆c S, let ` → r ∈ R. Using R ⊆ S we know that ` → r ∈ S.
Hence, ∃C, `′ → r′ ∈ S. ` = C[`′]∧r = C[r′] by choosing C = 2 and `′ → r′ = `→ r.

(ii) Assume t = D[`σ] →R D[rσ] = s using some rule ` → r ∈ R. As R ⊆c S, we
obtain C and `′ → r′ ∈ S such that ` = C[`′] and r = C[r′]. Hence, t = D[`σ] =
D[C[`′]σ] = D[Cσ[`′σ]]→S D[Cσ[r′σ]] = D[C[r′]σ] = D[rσ] = s.

(iii) We first show D(R) ⊆c D(S). So, let ` → r ∈ D(R). Hence, ` → r ∈ R,
unlab(`) = unlab(r) and ` 6= r. Using R ⊆c S we obtain C and `′ → r′ ∈ S
such that ` = C[`′] and r = C[r′]. Thus, unlab(C)[unlab(`′)] = unlab(C[`′]) =
unlab(`) = unlab(r) = unlab(C[r′]) = unlab(C)[unlab(r′)] shows that unlab(`′) =
unlab(r′). Similarly, C[`′] = ` 6= r = C[r′] implies `′ 6= r′. So, `′ → r′ ∈ D(S) and
thus, ∃C, `′ → r′ ∈ D(S). ` = C[`′] ∧ r = C[r′].

Now let us show U(R) = unlab(R \ D(R)) ⊆c unlab(S \ D(S)) = U(S). This
property is the crucial part, since potentially we remove less rules from R than
from S. Assume unlab(`) → unlab(r) ∈ U(R), i.e., ` → r ∈ R and unlab(`) 6=
unlab(r) ∨ ` = r. As R ⊆c S we obtain C and `′ → r′ ∈ S such that ` = C[`′]
and r = C[r′]. Hence, unlab(`) = unlab(C[`′]) = unlab(C)[unlab(`′)] and unlab(r) =
unlab(C[r′]) = unlab(C)[unlab(r′)]. Thus, we can simplify unlab(`) 6= unlab(r)∨` = r
to unlab(C)[unlab(`′)] 6= unlab(C)[unlab(r′)]∨C[`′] = C[r′] and further to unlab(`′) 6=
unlab(r′) ∨ `′ = r′. Using `′ → r′ ∈ S this shows that `′ → r′ ∈ S \ D(S) and thus,
unlab(`′) → unlab(r′) ∈ U(S). By choosing the context unlab(C) and the rule
unlab(`′) → unlab(r′) we have finally shown that ∃C, `′ → r′ ∈ U(S). unlab(`) =
C[`′] ∧ unlab(r) = C[r′].



86 Chapter 9. Modular and Certified Semantic Labeling and Unlabeling

(iv) By Lemma 9.15 we only have to prove (?). Using TT(R) ⊆c R and iii one can
show that Um(TT(R)) ⊆c Um(R) by induction on m. Using iii again, we conclude
D(Um(TT(R))) ⊆c D(Um(R)) and thus, →D(Um(TT(R))) ⊆ →D(Um(R)) by ii. Then
(?) immediately follows.

Corollary 9.21. Let R be a TRS over the signature F . Then lift(FCF) is sound.

Proof. It was shown in [95] that FCF is sound for TRSs. Furthermore, FCF(R) ⊆c R by
definition of FC(F) and thus, by Lemma 9.20(iv), lift(FCF) is sound, too.

Note that several termination techniques TT satisfy TT(R) ⊆c R and hence, can be
used between labeling and unlabeling. However, there are still some techniques which do
not satisfy this requirement. Examples would be string reversal and uncurrying [53].

Of course, it is possible to use lift0(TT), however, for string reversal also a direct
soundness proof can be performed to show that lifting string reversal is sound.

Theorem 9.22. Let TT be the technique of string reversal where TT(R) = rev(R), if R
is a string rewrite system, and TT(R) = R, otherwise. Then lift(TT) is sound.

Proof. By Lemma 9.15 we just have to prove (?), i.e., we have to show for all m that
SN(D(Um(R))) implies SN(D(Um(rev(R)))). To this end, we have proven that revers-
ing can be commuted with both D and U : rev(D(R)) = D(rev(R)) and rev(U(R)) =
U(rev(R). Hence, rev(D(Um(R))) = D(Um(rev(R))). This completes the proof: since
string reversal is complete, we know that termination of D(Um(R)) implies termination
of rev(D(Um(R))) and therefore, also of D(Um(rev(R))).

To summarize, we can now certify termination proofs where labeling and unlabeling
are modular techniques (and hence, can be applied recursively), and where all supported
techniques of CeTA (except uncurrying) can be used between labeling and unlabeling.

An easy alternative to our extended termination techniques would be the use of relative
rewriting. The obvious idea is to add the decreasing rules as relative rules when performing
semantic labeling. In this way, unlabeling would directly be modular and sound, since one
can always remove relative rules where both sides of the rule are identical. This alternative
is used in the independent and unpublished formalization of semantic labeling in the
CoLoR library. The main problem with this alternative is that some techniques like RFC
matchbounds can be used in our framework, but not in combination with relative rewriting
in general (during the termination competition in 2010 a tool has been disqualified for
giving a wrong answer for a relative termination problem; the reason was the use of RFC
matchbounds). For a further discussion on matchbounds and relative rewriting we refer
to [54].

9.4. Dependency Pair Framework

The DP framework [42] is a way to modularize termination proofs. Instead of TRSs
one investigates so called DP problems, consisting of two TRSs. The initial DP problem
for a TRS R is (DP(R),R) where DP(R) denotes the dependency pairs of R [3]. A
(P ,R)-chain is a possibly infinite derivation of the form:

s1σ1 →P t1σ1 →∗R s2σ2 →P t2σ2 →∗R s3σ3 →P · · · (?)



9.4. Dependency Pair Framework 87

where si → ti ∈ P for all i > 0. If additionally every tiσi is terminating w.r.t. R, then
the chain is minimal. A DP problem (P ,R) is called finite [42], if there is no minimal
infinite (P ,R)-chain. Proving finiteness of a DP problem is done by simplifying (P ,R)
using so called processors recursively. A processor transforms a DP problem into a new
DP problem. The aim is to reach a DP problem where the P-component is empty (such
DP problems are trivially finite). To conclude finiteness of the initial DP problem, the
applied processors need to be sound. A processor Proc is sound whenever for all DP
problems (P ,R) we have that finiteness of Proc(P ,R) implies finiteness of (P ,R).

Semantic labeling can easily be lifted to DP problems. Soundness of the following
processor is an immediate consequence of [110].

Theorem 9.23. Let (P ,R) be a DP problem and A be an algebra. If A is a quasi-model
of R, then it is sound to return the DP problem (lab(P), lab(R) ∪ Dec).

The following example shows that unlabeling is not only necessary for efficiency, but
that unlabeling is required to apply other techniques.

Example 9.24. We consider the TRS Secret_07/4 from the TPDB.

1: g(c, g(c, x)) → g(e, g(d, x))
2: g(d, g(d, x)) → g(c, g(e, x))
3: g(e, g(e, x)) → g(d, g(c, x))

4: g(x, g(y, g(x, y))) → g(a, g(x, g(y, b)))
5: f(g(x, y)) → g(y, g(f(f(x)), a))

In the 2008 termination competition AProVE found a termination proof of the following
structure (we present a simplified version, missing some unnecessary steps that have been
applied in the original proof).4 First, the initial DP problem is transformed into (P , {1–4})
where P consists of the pairs G(c, g(c, x)) → G(e, g(d, x)), G(d, g(d, x)) → G(c, g(e, x)),
and G(e, g(e, x)) → G(d, g(c, x)). Then, labeling and further processing yields the DP
problem (P ′,R′) where P ′ contains the pairs

G00(c, g00(c, x))→ G00(e, g00(d, x)) G00(e, g00(e, x))→ G00(d, g00(c, x))

G00(d, g00(d, x))→ G00(c, g00(e, x))

and R′ is the following TRS.

g00(c, g00(c, x))→ g00(e, g00(d, x)) g00(c, g01(c, x))→ g00(e, g01(d, x))

g00(d, g00(d, x))→ g00(c, g00(e, x)) g00(d, g01(d, x))→ g00(c, g01(e, x))

g00(e, g00(e, x))→ g00(d, g00(c, x)) g00(e, g01(e, x))→ g00(d, g01(c, x))

Hence, all labeled versions of Rule 4 have been deleted, and unlabeling yields the DP
problem (P , {1–3}). This DP problem is applicative. Hence, we may apply the A-
transformation [41] to obtain the DP problem having the pairs

C(c(x))→ E(d(x)) D(d(x))→ C(e(x)) E(e(x))→ D(c(x))

and the rules

c(c(x))→ e(d(x)) d(d(x))→ c(e(x)) e(e(x))→ d(c(x))

This DP problem is solved using standard techniques. Note that for the A-transformation
it was essential that unlabeling was performed, as the DP problem (P ′,R′) is not applica-
tive.
4See http://termcomp.uibk.ac.at/termcomp/competition/resultDetail.seam?resultId=35909

http://termcomp.uibk.ac.at/termcomp/competition/resultDetail.seam?resultId=35909


88 Chapter 9. Modular and Certified Semantic Labeling and Unlabeling

Unfortunately, unlabeling as processor is in general unsound. In contrast to unlabel-
ing on TRSs, here a problem already arises when using the model-version of semantic
labeling without decreasing rules. The main reason is that unlabeling might introduce
nontermination. Hence, minimality of an unlabeled infinite chain cannot be guaranteed.5

Example 9.25. Consider the DP problem (P ,∅) where P = {F(x)→ F(g(a))}. This DP
problem is obviously not finite. Applying semantic labeling is trivially possible since there
are no rules which have to satisfy the (quasi-)model condition. We choose A = {0, 1},
and for each f we define fA(. . .) = 0 and `f (~xn) = (~xn). We obtain the labeled pairs
lab(P) = {F0(x)→ F0(g0(a)),F1(x)→ F0(g0(a))} and by Theorem 9.23 we know that the
DP problem (lab(P),∅) is again not finite. We can further modify the DP problem by
replacing it with (lab(P),R) where R = {g1(x)→ g1(x)}. Note that this modification is
sound since (lab(P),R) still allows a minimal infinite chain and is therefore not finite.

However, applying unlabeling we obtain the DP problem (P , unlab(R)) which is finite
as now the right-hand side F(g(a)) of the only pair in P is not terminating w.r.t. U(R) =
{g(x) → g(x)}. Hence, unlabeling is unsound in general. The main problem is again
that the notion of soundness is too weak. It allows the application of processors between
labeling and unlabeling which may replace (lab(P),∅) by (lab(P),R).

To solve this problem, we again add a counter n which tells us how often we may
unlabel.

Definition 9.26. An extended DP problem is a triple (P ,R, n) where (P ,R) is a DP
problem and n ∈ N. An extended DP problem (P ,R, n) is finite iff there is no infinite
chain

s1σ1 →P t1σ1 →∗R s2σ2 →P t2σ2 →∗R s3σ3 →P t3σ3 →∗R · · ·

such that for all i: ∀m 6 n. SNUm(R)(unlabm(tiσi)).

Hence, the only difference between finiteness of DP problems and extended DP prob-
lems is the minimality condition (SNR(tiσi) versus ∀m 6 n. SNUm(R)(unlabm(tiσi))). We
therefore obtain a similar lemma to Lemma 9.10, but now for DP problems.

Lemma 9.27. (i) (P ,R) is finite iff (P ,R, 0) is finite.

(ii) If (P ,R) is finite then (P ,R, n) is finite.

As for termination techniques we can lift every processor to an extended processor.

Definition 9.28 (Lift). Let Proc be a processor with Proc(P ,R) = (P ′,R′). Then
lift(Proc) and lift0(Proc) are extended processors where lift(Proc)(P ,R, n) = (P ′,R′, n)
and lift0(Proc)(P ,R, n) = (P ′,R′, 0).

We obtain similar results for lift0 as for termination techniques: whenever Proc is
sound then lift0(Proc) is sound. However, additionally demanding that R′ ⊆c R or even
P ′ ⊆ P ∧ R′ = R where Proc(P ,R) = (P ′,R′) does not suffice to ensure soundness of
lift(Proc). This is demonstrated in the upcoming example.

5There is no problem in the formalization of semantic labeling in CoLoR at this point, as it does not
feature minimal chains.



9.4. Dependency Pair Framework 89

Example 9.29. Let P = {F0(x)→ F0(b)}, P ′ = {F0(x)→ F0(g0(b))}, andR = {g1(x)→
g0(h1(x))}. Then (P ,R, 1) is not finite as obviously there is an infinite (P ,R)-chain
where all terms in the chain are F0(b) and moreover, F0(b) is terminating w.r.t. R and
unlab(F0(b)) = F(b) is terminating w.r.t. U(R) = {g(x) → g(h(x))}. Hence, also (P ∪
P ′,R, 1) is not finite by constructing the same chain.

Note that the processor Proc which replaces (P ∪ P ′,R) by (P ′,R) is sound, since
(P ′,R) is not finite: again, there is an infinite (P ′,R)-chain, and every chain is also
minimal since R is terminating. However, lift(Proc) is unsound as (P ′,R, 1) is finite:
otherwise, there would be an infinite chain where F0(g0(b)) is terminating w.r.t. R and
unlab(F0(g0(b))) = F(g(b)) is terminating w.r.t. U(R). But it is easy to see that F(g(b))
is not terminating w.r.t. U(R).

Since requiring just R′ ⊆c R (or even P ′ ⊆ P ∧ R′ = R) does not suffice to ensure
soundness of lift(Proc) we demand a slightly stronger property than soundness.

Definition 9.30. A processor Proc is chain-identifying iff whenever Proc(P ,R) = (P ′,
R′) and there is some minimal infinite (P ,R)-chain

s1σ1 →P t1σ1 →∗R s2σ2 →P t2σ2 →∗R s3σ3 →P t3σ3 →∗R · · ·

then R′ ⊆c R and there is some k such that

skσk →P ′ tkσk →∗R′ sk+1σk+1 →P ′ tk+1σk+1 →∗R′ sk+2σk+2 →P ′ tk+2σk+2 →∗R′ · · ·

is an infinite (P ′,R′)-chain.

Chain-identifying processors ensure that every minimal infinite chain of (P ,R) has an
infinite tail where R∗-steps can be replaced by R′∗-steps and all pairs are from P ′. Note
that every chain-identifying processor is sound. Moreover, several processors are indeed
chain-identifying. Some examples are the reduction pair processor, the dependency graph
processor, and all standard processors which just remove pairs and rules. The following
lemma shows that chain-identifying processors can be used as extended processors via lift.

Lemma 9.31. (i) If Proc is sound, then lift0(Proc) is sound.

(ii) If Proc is chain-identifying then lift(Proc) is sound.

Proof. Let P , R, P ′, and R′ be given such that Proc(P ,R) = (P ′,R′).

(i) We assume that (P ′,R′, 0) is finite and have to show that (P ,R, n) is finite. By
Lemma 9.27(i) and the assumption we know that (P ′,R′) is finite. Thus, also (P ,R)
is finite using the soundness of Proc. By Lemma 9.27(ii) we conclude finiteness of
(P ,R, n).

(ii) Here, we may assume that (P ′,R′, n) is finite and have to show that (P ,R, n) is
finite. We show finiteness of (P ,R, n) via contraposition. So, assume (P ,R, n) is
not finite. This shows that there is an infinite (P ,R)-chain

s1σ1 →P t1σ1 →∗R s2σ2 →P t2σ2 →∗R s3σ3 →P t3σ3 →∗R · · ·

such that for all i we have ∀m 6 n. SNUm(R)(unlabm(tiσi)). By choosing m = 0 we
also have SNR(tiσi) for all i. Hence, the chain is also a minimal infinite (P ,R)-
chain. Since Proc is chain-identifying we know that R′ ⊆c R and there is some k
such that

skσk →P ′ tkσk →∗R′ sk+1σk+1 →P ′ tk+1σk+1 →∗R′ sk+2σk+2 →P ′ tk+2σk+2 →∗R′ · · ·



90 Chapter 9. Modular and Certified Semantic Labeling and Unlabeling

is an infinite (P ′,R′)-chain. We continue to prove that for every i and every m 6 n
we have SNUm(R′)(unlabm(tiσi)). This leads to the desired contradiction, since then
we have shown that (P ′,R′, n) is not finite.

To prove SNUm(R′)(unlabm(tiσi)) we first use minimality of the (P ,R)-chain to con-
clude SNUm(R)(unlabm(tiσi)). Then the result immediately follows since the rewrite
relation of Um(R′) is a subset of the rewrite relation of Um(R) by Lemma 9.20, ii
and iii.

Using these results allowed us to develop the first certified proof of the TRS in Ex-
ample 9.24. We only had to change the given proof such that uncurrying [53] is used
instead of the A-transformation, since we have only formalized the former technique. The
detailed proof is provided in the IsaFoR/CeTA repository.6

However, unlike for TRSs, root-labeling is not directly supported as root-labeling on
DP problems [95, 97] is not a chain-identifying processor. Here again, root-labeling itself
is not the problem, but making sure that the fixed algebra is a model of R, which is again
done by closing under flat contexts. In the DP framework we need the auxiliary function
block4, given by the equations block4(f(~tn)) = f(4(~tn)) and block4(x) = x.

Definition 9.32 (Flat Context Closure). Let (P ,R) be a DP problem such that R is
left-linear and F is a superset of the signature of R combined with the non-root symbols
of P. Furthermore, let 4 be a function symbol not in F . Then the closure under flat
contexts of (P ,R) is given by FCF(P ,R) = (block4(P),FC{4}∪F(R)).

As the pairs of a DP problem are modified, we do not get soundness of lift(FCF) via
Lemma 9.31. Nevertheless, by using the definition of finiteness of extended DP problems
and providing a manual proof one can show that lift(FCF) is indeed sound.

9.5. Problems in Certification

We present three problems that arose when trying to certify proofs with semantic labeling.
The first problem for the certifier is that internally it only works on extended termi-

nation/DP problems, whereas in the provided proofs just TRSs and DP problems are
given without the additional numbers. However, this problem is fixed by computing the
number during certification. This is easy and seems to be a safe solution: the format for
termination proofs remains unchanged, and so far no termination proof was refused with
the reason that the internal computation of the number was wrong.

The second and third problem are concerned with how semantic labeling is applied, since
usually variations of Lemma 9.12 and Theorem 9.23 are used in termination provers.

The second problem occurs for TRSs as well as DP problems. The theory about se-
mantic labeling demands that Dec is added to the new TRS when using quasi-models.
However, termination provers typically reduce the set of rules and “optimize” semantic
labeling by only adding rules Dec′ such that →Dec ⊆ →+

Dec′ .
For example, if Lf = {0, 1, 2} and the order is the standard order on the naturals,

then Dec = {f2(x) → f1(x), f1(x) → f0(x), f2(x) → f0(x)}. However, the last rule
is often omitted since it can be simulated by the previous two rules. To certify these
termination proofs, we fist need to show that we may safely replace Dec by any Dec′

6See http://cl2-informatik.uibk.ac.at/rewriting/mercurial.cgi/IsaFoR/raw-file/v1.16/

examples/secret_07_trs_4_top.proof.xml

http://cl2-informatik.uibk.ac.at/rewriting/mercurial.cgi/IsaFoR/raw-file/v1.16/examples/secret_07_trs_4_top.proof.xml
http://cl2-informatik.uibk.ac.at/rewriting/mercurial.cgi/IsaFoR/raw-file/v1.16/examples/secret_07_trs_4_top.proof.xml


9.5. Problems in Certification 91

where →Dec ⊆ →+
Dec′ . Moreover, we have to provide a certified algorithm which for a

given TRS Dec′ and a given order can ensure that the condition→Dec ⊆ →+
Dec′ is satisfied.

Furthermore, the algorithm should accept all Dec′ where the condition is satisfied.
The third problem only occurs when dealing with quasi-models in the DP framework.

Note that in standard DP problems the roots of P are special symbols (tuple symbols)
which do not occur in the remaining DP problem. However, when applying Theorem 9.23
as it is, this invariant is destroyed since the decreasing rules for tuple symbols are added as
new rules. We illustrate the problem and two possible solutions in the following example.

Example 9.33. Consider a DP problem (P ,R) where F(s(x), a)→ F(x, b) ∈ P and b is
not defined in R. Then, the dependency graph estimation EDG [3] can detect that there
is no connection from the mentioned pair to itself. However, when performing labeling
with a quasi-model where s(x) is interpreted as min(x+ 1, 2) and where `F(x, y) = x then
for the mentioned pair we get all three rules {6, 8, 10} in the labeled pairs P ′ and the
decreasing rules for F are DecF = {7, 9, 11}.

6: F2(s(x), a) → F2(x, b)
7: F2(x, y) → F1(x, y)

8: F2(s(x), a) → F1(x, b)
9: F2(x, y) → F0(x, y)

10: F1(s(x), a) → F0(x, b)
11: F1(x, y) → F0(x, y)

Note that when adding DecF as new rules, then the EDG contains an edge from
F2(s(x), a)→ F1(x, b) to all other pairs since F1 is defined in DecF. Hence, this is not the
preferred way to add decreasing rules: not even the decrease in the labels is recognized.

One solution is to add DecF as new pairs. Then one obtains a standard DP problem
and the decrease in the labels is reflected in the EDG. But there still is a path from
F2(s(x), a) → F2(x, b) to F1(s(x), a) → F0(x, b) via the pair F2(x, y) → F1(x, y), since the
information that the second argument of Fn is b is lost when passing the pair F2(x, y)→
F1(x, y).

To encounter this problem, there is another solution where DecF is not produced at all,
but where the labels of all tuple-symbols in right-hand sides of P ′ are decreased. In this
example, one would have to add the additional pair F2(s(x), a)→ F0(x, b) to P ′.

Hence, termination proofs might have used one of the two variants instead of Theo-
rem 9.23. Here, the first variant returns the problem (lab(P) ∪ DecF] , lab(R) ∪ DecF)
and the second variant returns (lab(P)≥, lab(R) ∪ DecF) where DecF] are the decreasing
rules for all tuple symbols, DecF are the decreasing rules for the remaining symbols, and
lab(P)≥ = {s→ f`′(~t) | s→ f`(~t) ∈ lab(P), ` ≥Lf `′}.

To certify these termination proofs the problem was mainly in formalizing that these
variants of Theorem 9.23 are indeed sound.

Theorem 9.34. Both variants of Theorem 9.23 are sound, provided that they are applied
on DP problems (P ,R) where neither left- nor right-hand sides of P are variables and
the roots of P are distinguished tuple symbols which do not occur in the remaining DP
problem.

We shortly describe the proof idea. The main problem is that we cannot w.l.o.g. restrict
the substitutions in a chain such that they do not contain tuple symbols [97]. Thus, we
may have to apply rules in DecF] also below the root, in order to simulate a reduction
tiσi →∗R si+1σi+1. The trick is to introduce a second set of labels and labeling functions
for the tuple symbols. The new labeling functions label all tuple symbols by the same
element. Hence, no decreasing rules are required for them (w.r.t. the second set of labeling
functions) and on all other symbols the labeling functions coincide.



92 Chapter 9. Modular and Certified Semantic Labeling and Unlabeling

Afterwards, we use a combined labeling of terms: The root of the term is labeled
according to the original function, and below the root it is labeled w.r.t. the second labeling
function. In this way no decreasing rules for the tuple symbols have to be applied below
the root and moreover, on all terms in the DP problem, the original and the combined
labeling produce the same result. Thus, we can transform a given (P ,R)-chain into a
(lab(P) ∪ DecF] , lab(R) ∪ DecF)-chain. Theorem 9.34 easily follows.

To summarize, we discussed some problems which occurred when trying to certify exist-
ing proofs which are mainly due to optimizations of the basic semantic labeling theorems.
Of course, we also need to check the model condition, whether the orders are weakly
monotone when using quasi-orders, etc. Whereas the general theorems about soundness
of semantic labeling have been formalized for arbitrary carriers, for the certification we
currently only support finite carriers. Then checking the required conditions is performed
via enumerating all possible assignments.

In total, our formalization of pure semantic labeling consists of 3300 lines of Isabelle,
where roughly half of it is about semantic labeling on generic algebras, and the other
half contains executable functions for the certifier using algebras over finite carriers and
soundness proofs for these functions. Moreover, the theory about the semantic labeling
framework with extended termination techniques, extended DP problems, etc., consists
of another 1000 lines.

9.6. Experiments

To test the impact of our formalization we ran AProVE on the TPDB (version 8.0), con-
sidering all 2795 TRSs. We used two different strategies which are similar to the strategy
CERT that was used during the 2010 termination competition in the certified termina-
tion category: –SL is like CERT but with semantic labeling removed, and +SL is like
CERT including all three variants of semantic labeling that are supported by AProVE
(root-labeling, semantic-labeling on finite carriers with models and quasi-models).

We performed all our experiments on a machine with two 2.8 GHz Quad-Core Intel
Xeon processors and 6 GB of main memory. The following results where obtained using
a 60 seconds timeout.

–SL +SL total

termination proofs 1137 1207 1227
nontermination proofs 225 218 227
total time (in minutes) 1186 1219
certification time (in minutes) 1 3

CeTA (version 1.17) certified all but two proofs. On one TRS, both –SL and +SL delivered
a faulty proof, caused by a bug in the LPO output of AProVE (which will be fixed soonish).

The results show that by using semantic labeling we obtain 90 new certified termination
proofs. This is an increase of nearly 8 %. Note that +SL has not solved all TRSs where
–SL was successful. This is due to timing issues in the strategy.

9.7. Conclusion

During our formalization of semantic labeling we have detected that unlabeling is un-
sound when using the current semantics of termination problems. We solved the problem



9.7. Conclusion 93

by extending termination problems and the DP framework such that recursive labeling
and unlabeling are supported, as well as all other existing termination techniques. This
framework forms the semantic basis of our certifier CeTA which now fully supports semantic
labeling.

Acknowledgments We thank Christian Kuknat and Carsten Fuhs for their support in
providing certifiable proofs with semantic labeling generated by AProVE.





10. Termination of Isabelle Functions
via Termination of Rewriting

Publication details

Alexander Krauss, Christian Sternagel, René Thiemann, Carsten Fuhs, and Jürgen Giesl.
Termination of Isabelle Functions via Termination of Rewriting. In Proceedings of the 2nd
International Conference on Interactive Theorem Proving, volume 6898 of LNCS, pages
152–167. Springer, 2011.

Abstract

We show how to automate termination proofs for recursive functions in (a first-order sub-
set of) Isabelle/HOL by encoding them as term rewrite systems and invoking an external
termination prover. Our link to the external prover includes full proof reconstruction,
where all necessary properties are derived inside Isabelle/HOL without oracles. Apart
from the certification of the imported proof, the main challenge is the formal reduction of
the proof obligation produced by Isabelle/HOL to the termination of the corresponding
term rewrite system. We automate this reduction via suitable tactics which we added to
the IsaFoR library.

10.1. Introduction

In a proof assistant based on higher-order logic (HOL), such as Isabelle/HOL [84], re-
cursive function definitions typically require a termination proof. To release the user
from finding suitable termination arguments manually, it is desirable to automate these
termination proofs as much as possible.

There have already been successful approaches to port and adapt existing termination
techniques from term rewriting and other areas to Isabelle [18,68]. They indeed increase
the degree of automation for termination proofs of HOL functions. However, these ap-
proaches do not cover all powerful techniques that have been developed in term rewriting,
e.g., [32, 110]. These techniques are implemented in a number of termination tools (e.g.,
AProVE [39], TTT2 [67] and many others) that can show termination of (first-order) term
rewrite systems (TRSs) automatically. (In the remainder we use ‘termination tool’ exclu-
sively to refer to such fully automatic and external provers.) Instead of porting further
proof techniques to Isabelle, we prefer to use the existing termination tools, giving direct
access to an abundance of methods and their efficient implementations.

Using termination tools inside proof assistants has been an open problem for some
time and is often mentioned as future work when discussing certification of termination
proofs [13, 21]. However, this requires more than a communication interface between
two programs. In LCF-style proof assistants [44] such as Isabelle, all proofs must be
checked by a small trusted kernel. Thus, integrating external tools as unverified oracles is



96 Chapter 10. Termination of Isabelle Functions via Termination of Rewriting

unsatisfactory: any error in the external tool or in the integration code would compromise
the overall soundness. Instead, the external tool must provide a certificate that can be
checked by the proof assistant.

Our approach involves the following steps.

(i) Generate the definition of a TRS Rf which corresponds to the function f .

(ii) Prove that termination of Rf indeed implies the termination goal for f .

(iii) Run the termination tool on Rf and obtain a certificate.

(iv) Replay the certificate using a formally verified checker.

While steps 1 and 3 are not hard, and the ground work for step 4 is already available
in the IsaFoR library [94, 104], which formalizes term rewriting and several termination
techniques,1 this paper is concerned with the missing piece, the reduction of termination
proof obligations for HOL functions to the termination of a TRS. This is non-trivial, as
the languages differ considerably. Termination of a TRS expresses the well-foundedness of
a relation over terms, i.e., of type (term× term) set, where terms are first-order terms. In
contrast, the termination proof obligation for a HOL function states the well-foundedness
of its call relation, which has the type (α × α) set , where α is the argument type of the
function. In essence, we must move from a shallow embedding (the functional program-
ming fragment of Isabelle/HOL) to a deep embedding (the formalization of term rewriting
in IsaFoR).

The goal of this paper is to provide this formal relationship between termination of
first-order HOL functions and termination of TRSs. More precisely, we develop a tactic
that automatically reduces the termination proof obligation of a HOL function to the
termination problem of a TRS. This allows us to use arbitrary termination tools for fully
automated termination proofs inside Isabelle. Thus, powerful termination tools become
available to the Isabelle user, while retaining the strong soundness guarantees of an LCF-
style proof assistant. Since our approach is generic, it automatically benefits from future
improvements to termination tools and the termination techniques within IsaFoR. Our
implementation is available as part of IsaFoR.

Outline of this paper. We give a short introduction on term rewriting, HOL and HOL
functions in §10.2. Then we show our main result in §10.3 on how to systematically
discharge the termination proof obligation of a HOL function via proving termination of
a TRS. In §10.4 we present some examples which show the strengths and limitations of
our technique. How to extend our approach to support more HOL functions is discussed
in §10.5. We conclude in §10.6.

10.2. Preliminaries

10.2.1. Higher-Order Logic

We consider classical HOL, which is based on simply-typed lambda-calculus, enriched
with a simple form of ML-like polymorphism. Among its basic types are a type bool of
truth values and a function space type constructor ⇒ (where α⇒ β denotes the type of

1See http://cl-informatik.uibk.ac.at/software/ceta for a list of supported techniques.

http://cl-informatik.uibk.ac.at/software/ceta


10.2. Preliminaries 97

total functions mapping values of type α to values of type β). Sets are modeled by a type
α set, which just abbreviates α⇒ bool.

By an add-on tool, HOL supports algebraic datatypes, which includes the types nat
(with constructors 0 and Suc) and list (with constructors [ ] and #).

Another add-on tool, the function package [69], completes the functional programming
layer by allowing recursive function definitions, which are not covered by the primitives
of the logic. Since it internally employs a well-founded recursion principle, it requires
the user to prove well-foundedness of a certain relation, extracted automatically from
the function definition (cf. §10.2.3). This proof obligation, by its construction, directly
corresponds to the termination of the function being defined. It is the proof of this goal
that we want to automate.

As opposed to functional programming languages, there is no operational semantics
for HOL; the meaning of its expressions is instead given by a set-theoretic denotational
semantics. As a consequence, there is no direct notion of evaluation or termination of
an expression. Thus, when we informally say that we prove “termination of a HOL
function,” this simply means that we discharge the proof obligation produced by the
function package.

10.2.2. Supported Fragment

Isabelle supports a wide spectrum of specifications, using various forms of inductive,
coinductive and recursive definitions, as well as quantifiers and Hilbert’s choice operator.
Clearly, not all of them can be easily expressed using TRSs. Thus, we must limit ourselves
to a subset which is sufficiently close to rewriting, and consider only algebraic datatypes,
given by a set of constructors together with their types, and recursive functions, given
by their defining equations with pattern matching. Additionally, we impose the following
restrictions:

(i) Functions and constructors must be first-order (no functions as arguments).

(ii) Patterns are constructor terms and must be linear and non-overlapping.

(iii) Patterns must be complete.

(iv) Expressions consist of variables, function applications, and case-expressions only. In
particular, partial applications and λ-abstractions are excluded.

Linearity is always satisfied by function definitions that are accepted by Isabelle’s function
package, and pattern overlaps are eliminated automatically. For ease of presentation, we
assume that there is no mutual recursion (f calls g and g calls f) and no nested recursion
(arguments of a recursive call contain other recursive calls; they may of course contain
calls to other defined functions).

Most of the above restrictions are not fundamental, and we discuss in §10.5 how some
of them can be removed. Our chosen fragment of HOL rather represents a compromise
between expressive power and a reasonably simple presentation and implementation of
our reduction technique. Note that case-expressions encompass the simpler if-expressions,
which can be seen as case-expressions on type bool. Isabelle’s (non-recursive and monomor-
phic) let-expressions can simply be inlined or replaced by case-expressions if patterns are
involved.

The functions half and log below (log computes the logarithm) illustrate our supported
fragment and will be used as running examples throughout this paper.



98 Chapter 10. Termination of Isabelle Functions via Termination of Rewriting

half 0 = 0

half (Suc 0) = 0

half (Suc (Suc n)) = Suc (half n)

log n = (case half n of 0 ⇒ 0 | Suc m ⇒ Suc (log (Suc m)))

10.2.3. Function Definitions by Well-Founded Recursion

When the user writes a recursive definition, the function package analyzes the equations
and extracts the recursive calls. This information is then used to synthesize the termina-
tion proof obligation.

Formally, we define the operation callsf that computes the set of calls to f inside an
expression, each together with a condition under which it occurs.

• callsf (g e1 . . . ek) ≡ callsf (e1)∪. . .∪callsf (ek) if g is a constructor or a defined
function other than f ,

• callsf (f e1 . . . en) ≡ callsf (e1) ∪ . . . ∪ callsf (en) ∪ {(e1, . . . , en,True)},

• callsf (x) ≡ ∅ for all variables x, and

• callsf (case e of p1 ⇒ e1 | . . . | pk ⇒ ek) ≡ callsf (e) ∪ (callsf (e1) ∧ e =
p1) ∪ . . . ∪ (callsf (ek) ∧ e = pk) where callsf (ei) ∧ e = pi is like callsf (ei), but
every (t1, . . . , tm, ϕ) ∈ callsf (ei) is replaced by (t1, . . . , tm, ϕ ∧ e = pi).

The termination proof obligation requires us to exhibit a strongly normalizing relation
� such that for each defining equation f p1 . . . pn = e and each (r1, . . . , rn, φ) ∈ callsf (e)
we can prove φ =⇒ (p1, . . . , pn) � (r1, . . . , rn).

Consider for example the definition of half, where we have callshalf(0) ≡ ∅ and
callshalf(Suc (half n)) ≡ {(n,True)}. We obtain the following obligation.

1. SN ?R
2. ∀n. (Suc (Suc n), n) ∈ ?R

The variable ?R :: (nat×nat) set is a schematic variable, which can be instantiated during
the proof, i.e., it can be seen as existentially quantified.

For log, we have callslog(case half n of 0 ⇒ 0 | Suc m ⇒ Suc (log (Suc m))) ≡
{(Suc m, half n = Suc m)}, and the following proof obligation is produced.

1. SN ?R
2. ∀n m. half n = Suc m =⇒ (n, Suc m) ∈ ?R

Two things should be noted here. First, the fact that the recursive call is guarded by
a case-expression is reflected by a condition in the corresponding subgoal. Without this
condition, which models the usual evaluation behavior of case, the goal would be unprov-
able. Second, the goal may refer to previously defined functions. To prove it, we must
refer to properties of these functions, either through their definitions, or through other
lemmas about them.

When the proof obligation is discharged, the function package can use the result to de-
rive the recursive equations as theorems (previously, they were just conjectures—consider
the recursive equation f x = Suc (f x), which is inconsistent). Additionally, an induction
rule is provided, which expresses “induction along the computation.” The induction rules
for half and log are shown below.



10.2. Preliminaries 99

P 0 =⇒ P (Suc 0) =⇒ (∀n. P n =⇒ P (Suc (Suc n))) =⇒ ∀n. P n
(∀n. (∀m. half n = Suc m =⇒ P (Suc m)) =⇒ P n) =⇒ ∀n. P n

10.2.4. IsaFoR - Term Rewriting Formalized in Isabelle/HOL

In the following, we assume that the reader is familiar with the basics of term rewriting
[5]. Many notions and facts from rewriting have been formalized in the Isabelle library
IsaFoR [104]. Before we can give the reduction from termination of HOL functions to
termination of corresponding TRSs in §10.3, we need some more details on IsaFoR. Terms
are represented straightforwardly by the datatype:

datatype (α, β) term = Var β | Fun α ((α, β) term list)

The type variables α and β, which represent function and variable symbols, respec-
tively, are always instantiated with the type string in our setting. Hence, we abbreviate
(string, string) term by term in the following. For example, the term f(x, y) is represented
by Fun “f” [Var “x”,Var “y”]. A TRS is represented by a value of type (term× term) set.

The semantics of a TRS is given by its rewrite relation→R, defined by closing R under
contexts and substitutions. Termination of R is formalized as SN (→R).

IsaFoR formalizes many criteria commonly used in automated termination proofs. Ul-
timately, it contains an executable and terminating function

check-proof :: (term× term) list⇒ proof⇒ bool

and a proof of the following soundness theorem:

Theorem 10.1 (Soundness of Check). check-proof R prf =⇒ SN (→R)

Here, prf is a certificate (i.e., a termination proof of R) from some external source, en-
coded as a value of a suitable datatype, andR is the TRS under consideration.2 Whenever
check-proof returns True for some given TRS R and certificate prf, we have established
(inside Isabelle) that prf is a valid termination proof for R. Thus, we can prove termi-
nation of concrete TRSs inside Isabelle.

The technical details on the supported termination techniques and the structure of the
certificate (i.e., the type proof ) are orthogonal to our use of the check function, which
only relies on Theorem 10.1.

10.2.5. Terminology and Notation

The layered nature of our setting requires that we carefully distinguish three levels of
discourse. Primarily, there is higher-order logic (implemented in Isabelle/HOL), in which
all mechanized reasoning takes place. The termination goals we ultimately want to solve
are formulated on this level. Of course, the syntax of HOL consists of terms, but to
distinguish them from the embedded term language of term rewriting, we refer to them
as expressions. They are uniformly written in italics and follow the conventions of the
lambda-calculus (in particular, function application is denoted by juxtaposition). HOL
equality is denoted by =. For example, the definition of half above is a HOL expression.

2To be executable, check-proof demands that R is given as a list of rules and not as a set. We ignore
this difference, since it is irrelevant for this paper.



100 Chapter 10. Termination of Isabelle Functions via Termination of Rewriting

The second level is the “sub-language” of first-order terms, which is deeply embedded
into HOL by the datatype term. When we speak of a term, we always refer to a value
of that type, not an arbitrary HOL expression. While this embedding is simple and ade-
quate, the concrete syntax with the Fun and Var constructors and string literals is rather
unwieldy. Hence, for readability, we use sans-serif font to abbreviate the constructors and
the quotes: Instead of Var “v” we write v, and instead of Fun “f” [. . .] we write f(. . .),
omitting the parentheses () for nullary functions. This recovers the well-known concrete
syntax of term rewriting, but we must keep in mind that the constructors and strings are
still present, although they are not written as such.

Finally, we must relate the two languages with each other, and describe the proof
procedures that derive the relevant properties. While the properties themselves can be
stated in HOL for each concrete instance, the general schema cannot, as it must talk
about “all HOL expressions.” Thus, we use a meta-language as another level above
HOL, in which we express the transformations and tactics. This level corresponds to our
implementation (in ML). Functions of the meta-language are written in small capitals
(e.g., callsf ), and variables of the meta-language, which typically range over arbitrary
HOL expressions or patterns, are written e or p, possibly with annotations. For HOL
expressions that are arguments of recursive calls we also use r. Equality of the meta-
language is written ≡ and denotes syntactic equality of HOL expressions. In particular,
e ≡ e′ implies e = e′, since HOL’s equality is reflexive.

Both embeddings are deep, that is, each level can talk about the syntax of the lower
levels. As a simple example, the concept of a ground term can be defined as a recursive
HOL function ground :: term⇒ bool:

ground (Var x ) = False
ground (Fun f ts) = (∀t∈set(ts). ground t)

Then we can immediately deduce that ground (f(x)) = False, due to the presence of x.
Note however that the similar-looking statement ground (f(x)) = False is not uniformly
true. More precisely, its universal closure ∀x. ground (f(x)) = False does not hold, since
we could instantiate x with the term c (i.e., Fun “c” [ ]). Thus, we must not confuse
variables of the different levels. Obviously, we cannot quantify over a variable x, which is
just the Var constructor applied to a string.

Similarly, the meta-language can talk about the syntax of HOL, as in the definition of
callsf , which is recursive over the structure of HOL expressions.

10.3. The Reduction to Rewriting

10.3.1. Encoding Expressions and Defining Equations

We define a straightforward encoding of HOL expressions as terms, denoted by the meta-
level operation enc. For case-free expressions, we turn variables into term variables and
(curried) applications into applications on the term level:

enc(x ) ≡ x

enc(f e1 . . . en) ≡ f(enc(e1), . . . ,enc(en))

Each case-expression is replaced by a new function symbol, for which we will include
additional rules below. To simplify bookkeeping, we assume that each occurrence of a



10.3. The Reduction to Rewriting 101

case-expression is annotated with a unique integer j.

enc(casej e of p1 ⇒ e1 | . . . | pk ⇒ ek)

≡ casej(enc(e),enc(y1), . . . ,enc(ym))

where y1, . . . , ym are all variables that occur free in some ei but not in pi.
The operation rules yields the rewrite rules for a function or case-expression. For a

function f with defining equations `1 = r1, . . . , `k = rk, they are

rules(f) ≡ { enc(`1)→ enc(r1), . . . , enc(`k)→ enc(rk) } .

For the case-expression casej e of p1 ⇒ e1 | . . . | pk ⇒ ek we have

rules(casej) ≡ { casej(enc(p1),enc(y1), . . . ,enc(ym))→ enc(e1),

. . . ,

casej(enc(pk)),enc(y1), . . . ,enc(ym))→ enc(ek) } .

We define the TRS for f as Rf = rules(f) ∪
⋃
g∈Sf rules(g) where Sf is the set of

all functions that are used (directly or indirectly) by f . Our encoding is similar to the
well known technique of unraveling which transforms conditional into unconditional TRSs
[77,86].3

For example, Rlog is defined as follows and completely contains Rhalf.

half(0)→ 0 log(n)→ case0(half(n))

half(Suc(0))→ 0 case0(0)→ 0

half(Suc(Suc(n)))→ Suc(half(n)) case0(Suc(m))→ Suc(log(Suc(m)))

10.3.2. Embedding Functions

At this point, we have defined a translation, but we cannot reason about it in Isabelle,
since enc is only an extra-logical concept, defined on the meta-level. In fact, it is easy to
see that it cannot be defined in HOL: If we had a HOL function enc satisfying enc 0 = 0
and enc (half 0) = half(0), we would immediately have a contradiction, since half 0 = 0,
and half(0) 6= 0, but a function must always yield the same result on the same input.

In a typical reflection scenario, we would proceed by defining an interpretation for
term. For example, if we were modeling the syntax of integer arithmetic expressions,
then we could define a function eval :: term⇒ int (possibly also depending on a variable
assignment) which interprets terms as integers. However, in our setting, the result type
of such a function is not fixed, as our terms represent HOL expressions of arbitrary types.
Thus, the result type of eval would depend on the actual term it is applied to. This
cannot be expressed in a logic without dependent types, which means we cannot use this
approach here.

Instead, we take the opposite route: For all relevant types σ, we define a function
embσ :: σ ⇒ term, mapping values of type σ to their canonical term representation.

Using Isabelle’s type classes, we use a single overloaded function emb, which belongs to
a type class embeddable. Concrete datatypes can be declared to be instances of this class
by defining emb, usually by structural recursion w.r.t. the datatype. For example, here
are the definitions for the types nat and list :

3It would be possible to directly generate dependency pair problems. However, techniques like [96]
and several termination tools rely on the notion of “minimal chains,” which is not ensured by our
approach.



102 Chapter 10. Termination of Isabelle Functions via Termination of Rewriting

emb 0 = 0 emb [ ] = Nil
emb (Suc n) = Suc(emb n) emb (x # xs) = Cons(emb x , emb xs)

This form of definition is canonical for all algebraic datatypes, and suitable definitions
of emb can be automatically generated for all user-defined datatypes, turning them into
instances of the class embeddable. This is analogous to the instances generated auto-
matically by Haskell’s “deriving” statement. It is also possible to manually provide the
definition of emb for other types if they behave like datatypes like the predefined type
bool for the Booleans.

Note that by construction, the result of emb is always a constructor ground term. For a
HOL expression e that consists only of datatype constructors, (e.g., Suc (Suc 0)), we have
emb e = enc(e). For other expressions this is not the case, e.g., emb (half 0) = emb 0 = 0,
but enc(half 0) ≡ half(0).

To formulate our proofs, we need another encoding of expressions as terms: The oper-
ation genc is a slight variant of enc, which treats variables differently, mapping them to
their embeddings instead of term variables.

genc(x ) ≡ emb x
genc(f e1 . . . en) ≡ f(genc(e1), . . . ,genc(en))
genc(casej e of p1 ⇒ e1 | . . . | pk ⇒ ek)
≡ casej(genc(e),genc(y1), . . . ,genc(ym))

where y1, . . . , ym are all variables that occur free in some ei but not in pi.

Hence, genc(e) never contains term variables. However, it contains the same HOL
variables as e. For example, genc(half (Suc n)) ≡ half(Suc(emb n)).

10.3.3. Rewrite Lemmas

The definitions of Rhalf and Rlog above are straightforward, but reasoning with them is
clumsy and low-level: To establish a single rewrite step, we must extract the correct rule
(that is, prove that it is in the set Rhalf or Rlog), invoke closure under substitution, and
construct the correct substitution explicitly as a function of type string⇒ term.

To avoid such repetitive reasoning, we automatically derive an individual lemma for
each rewrite rule. From the definition of Rhalf, we obtain the following rules, which we
call rewrite lemmas :

half(0) →Rhalf 0 half(Suc(0)) →Rhalf 0
∀t . half(Suc(Suc(t))) →Rhalf Suc(half(t))

Note that the term variable n in the last rule has been turned into a universally-quantified
HOL variable by applying the “generic substitution” {n 7→ t}. The advantage of this
format is that applying a rewrite rule merely involves instantiating a universal quantifier,
for which we can use the matching facilities of Isabelle. In particular, we can instantiate t
with emb n, which in general results in a rewrite lemma of the form genc(f p1 . . . pn)→R
genc(e) for a defining equation f p1 . . . pn = e.

10.3.4. The Simulation Property

The following property connects our generated TRSs with HOL expressions.



10.3. The Reduction to Rewriting 103

Definition 10.2 (Simulation Property). For every expression e and R =
⋃
{Rf | f

occurs in e}, the simulation property for e is the statement

genc(e)→∗R emb e.

As we cannot quantify over all HOL expressions within HOL itself, we cannot formalize
that the simulation property holds for all e.

However, we will devise a tactic that derives this property for any given concrete expres-
sion. The basic building blocks of such proofs are lemmas of the following form, which are
derived for each function symbol and can be composed to show the simulation property
for a given expression.

Definition 10.3 (Simulation Lemma). The simulation lemma for a function f of arity
n is the statement

∀x1 . . . xn. f(emb x1, . . . , emb xn)→∗Rf emb (f x1 . . . xn) .

E.g., the simulation lemma for half is ∀n. half(emb n) →∗Rhalf emb (half n).

The lemma claims that the rules that we produced for f can indeed be used to reduce
a function application to the (embedding of) the value of the function. Of course, this
way of saying “Rf computes f” admits the possibility that there are other Rf -reductions
that lead to different normal forms or that do not terminate, since we are not requiring
confluence or strong normalization. But this form of simulation lemma is sufficient for
our purpose.

We show in §10.3.6 how simulation lemmas are proved automatically.

10.3.5. Reduction of Termination Goals

After having proved termination of Rf using a termination tool in combination with
IsaFoR and Theorem 10.1, we now show how to use this result to solve the termination goal
for the HOL function f . Recall from §10.2.3 that we must exhibit a strongly normalizing
relation � such that φ =⇒ (p1, . . . , pn) � (r1, . . . , rn) for all (r1, . . . , rn, φ) ∈ callsf (e)
for each defining equation f p1 . . . pn = e.

To this end, we first define ; as →Rf ∪� where � is the strict subterm relation. The
addition of � is required to strip off constructors and non-recursive function applications
that are wrapped around recursive calls in right-hand sides of Rf . Since →Rf is strongly
normalizing and closed under contexts, also ; is strongly normalizing. This allows us to
finally choose � as the following relation.

(x1, . . . , xn) � (y1, . . . , yn) iff f(emb x1, . . . , emb xn) ;+ f(emb y1, . . . , emb yn)

It remains to show that the arguments of recursive calls decrease w.r.t. �. That is, for
each recursive call we have a goal of the form

φ =⇒ f(emb p1, . . . , emb pn) ;+ f(emb r1, . . . , emb rn)

where f p1 . . . pn = e is a defining equation of f and (r1, . . . , rn, φ) ∈ callsf (e). In the
following, we illustrate the automated proof of this goal.



104 Chapter 10. Termination of Isabelle Functions via Termination of Rewriting

Note that since the pi’s are patterns, we have emb pi = genc(pi), and hence

f(emb p1, . . . , emb pn)

= f(genc(p1), . . . ,genc(pn)) (pi are patterns)

≡ genc(f p1 . . . pn) (definition of genc)

→Rf genc(e) (rewrite lemma)

Thus, it remains to construct a sequence genc(e) ;∗ f(emb r1, . . . , emb rn), which
reduces the right-hand side of the definition to a particular recursive call, eliminating any
surrounding context. We proceed recursively over e.

• If e ≡ g e1 . . . em for a constructor g or a defined function symbol g 6≡ f , then
(r1, . . . , rn, φ) ∈ calls(ei) for some particular i. Hence, we have

genc(e)

≡ g(genc(e1), . . . ,genc(em)) (definition of genc)

� genc(ei) (definition of �)

;∗ f(emb r1, . . . , emb rn) (apply tactic recursively)

• If e ≡ f e1 . . . en then (since we excluded nested recursion) we have ei = ri for all
i. Hence, we have

genc(e)

≡ f(genc(r1), . . . ,genc(rn)) (definition of genc)

→∗Rf f(emb r1, . . . , emb rn) (simulation property)

• If e ≡ casej e0 of p1 ⇒ e1 | . . . | pk ⇒ ek then we distinguish where the recursive
call is located. If (r1, . . . , rn, φ) ∈ callsf (e0), then we have

genc(e)

≡ casej(genc(e0),genc(y1), . . . ,genc(ym)) (definition of genc)

� genc(e0) (definition of �)

;∗ f(emb r1, . . . , emb rn) (apply tactic recursively)

Otherwise, φ ≡ (χ ∧ e0 = pi) for some χ and 1 6 i 6 k, and (r1, . . . , rn, χ) ∈
calls(ei). We may therefore use the assumption e0 = pi and proceed with

genc(e)

≡ casej(genc(e0),genc(y1), . . . ,genc(ym)) (definition of genc)

→∗Rf casej(emb e0,genc(y1), . . . ,genc(ym)) (simulation property)

= casej(emb pi,genc(y1), . . . ,genc(ym)) (assumption e0 = pi)

= casej(genc(pi),genc(y1), . . . ,genc(ym)) (since pi is a pattern)

→Rf genc(ei) (rewrite lemma)

;∗ f(emb r1, . . . , emb rn) (apply tactic recursively)



10.3. The Reduction to Rewriting 105

10.3.6. Proof of the Simulation Property

We have seen that for the reduction of termination goals it is essential to use the simulation
property genc(e)→∗Rf emb e for expressions e that occur below recursive calls or within
conditions that guard a recursive call. Below, we show how this property is derived for an
individual expression, assuming that we already have simulation lemmas for all functions
that occur in it. We again proceed recursively over e.

• If e is a HOL variable x then genc(e) ≡ genc(x) ≡ emb x ≡ emb e and thus, the
result follows by reflexivity of →∗Rf .

• If e ≡ g e1 . . . ek for a function symbol g then

genc(e)

≡ g(genc(e1), . . . ,genc(ek)) (definition of genc)

→∗Rfg(emb e1, . . . , emb ek) (apply tactic recursively)

→∗Rf emb (g e1 . . . ek) (simulation lemma for g)

≡ emb e

• If e ≡ casej e0 of p1 ⇒ e1 | . . . | pk ⇒ ek then we construct the following rewrite
sequence:

genc(e)

≡ casej(genc(e0),genc(y1), . . . ,genc(ym)) (definition of genc)

→∗Rf casej(emb e0,genc(y1), . . . ,genc(ym)) (apply tactic recursively)

Now we apply a case analysis on e0, which must be equal (in HOL, not syntactically)
to one of the patterns. In each particular case we may assume e0 = pi. Then we
continue:

casej(emb e0,genc(y1), . . . ,genc(ym))

= casej(emb pi,genc(y1), . . . ,genc(ym)) (assumption e0 = pi)

= casej(genc(pi),genc(y1), . . . ,genc(ym)) (since pi is a pattern)

→Rfgenc(ei) (rewrite lemma)

→∗Rf emb ei (apply tactic recursively)

= emb e (assumption e0 = pi)

The tactic above assumes that simulation lemmas for all functions in e are already
present. Note the simulation lemma is trivial to prove if f is a constructor, since
f(emb x1, . . . , emb xn) = emb (f x1 . . . xn) by definition of emb.

For defined symbols of non-recursive functions the simulation lemmas are derived by
unfolding the definition of the function and applying the tactic above. Thus, simulation
lemmas are proved bottom-up in the order of function dependencies. When a function
is recursive, the proof of its simulation lemma proceeds by induction using the induction
principle from the function definition.

Example 10.4. We show how the simulation lemma for log is proved, assuming that the
simulation lemmas for 0, Suc, and half are already available.



106 Chapter 10. Termination of Isabelle Functions via Termination of Rewriting

So our goal is to show log(emb n) →∗Rlog emb (log n) for any n :: nat. We apply the
induction rule of log and obtain the following induction hypothesis.

∀m. half n = Suc m =⇒ log(emb (Suc m))→∗Rlog emb (log (Suc m))

Let c abbreviate case half n of 0⇒ 0 | Suc m⇒ Suc (log (Suc m)). Then

log(emb n)

→Rlog case0(half(emb n)) (rewrite lemma)

→∗Rlog case0(emb (half n)) (simulation lemma of half )

We continue by case analysis on half n. We only present the more interesting case half n =
Suc m (the other case half n = 0 is similar):

case0(emb (half n))

= case0(emb (Suc m)) (assumption half n = Suc m)

= case0(Suc(emb m)) (def. of emb)

→Rlog Suc(log(Suc(emb m))) (rewrite lemma)

→∗Rlog Suc(log(emb (Suc m))) (simulation lemma of Suc)

→∗Rlog Suc(emb (log (Suc m))) (induction hypothesis)

→∗Rlog emb (Suc (log (Suc m))) (simulation lemma of Suc)

= emb c (assumption half n = Suc m)

= emb (log n) (def. of log)

10.4. Examples

We show some characteristic examples that illustrate the strengths and weaknesses of
our approach. Each example is representative for several similar ones that occur in the
Isabelle distribution.

Example 10.5. Consider binary trees defined by the type

datatype tree = E | N tree nat tree

and a function remdups that removes duplicates from a tree. The function is defined by
the following equations (the auxiliary function del removes all occurrences of an element
from a tree; we omit its straightforward definition here):

remdups E = E
remdups (N l x r) = N (remdups (del x l)) x (remdups (del x r))

The termination argument for remdups relies on a property of del : the result of del
is smaller than its argument. In Isabelle, the user must manually state and prove (by
induction) the lemma size (del x t) ≤ size t, before termination can be shown. Here, size
is an overloaded function generated automatically for every algebraic datatype.

For a termination tool, termination of the related TRS is easily proved using standard
techniques, eliminating the need for finding and proving the lemma.



10.5. Extensions 107

Example 10.6. The following function (originally due to Boyer and Moore [14]) normal-
izes conditional expressions consisting of atoms (AT ) and if-expressions (IF ).

norm (AT a) = AT a
norm (IF (AT a) y z ) = IF (AT a) (norm y) (norm z )
norm (IF (IF u v w) y z ) = norm (IF u (IF v y z ) (IF w y z ))

Isabelle’s standard size measure is not sufficient to prove termination of norm, and a
custom measure function must be specified by the user. Using a termination tool, the
proof is fully automatic and no measure function is required.

Example 10.7. The Isabelle distribution contains the following implementation of the
merge sort algorithm (transformed into non-overlapping rules internally):

msort [ ] = [ ]
msort [x ] = [x ]
msort xs = merge (msort (take (length xs div 2) xs)) (msort (drop (length xs
div 2) xs))

The situation is similar to Example 10.5, as we must know how take and drop affect
the length of the list. However, in this case, Isabelle’s list theory already provides the
necessary lemmas, e.g., length (take n xs) = min n (length xs). Together with the built-in
arithmetic decision procedures (which know about div and min), the termination proof
works fully automatically.

For termination tools, the proof is a bit more challenging and requires techniques that
are not yet formalized in IsaFoR (in particular, the technique of rewriting dependency
pairs [37]). Thus, our connection to termination tools cannot handle msort yet. However,
when this technique is added to IsaFoR in the future, no change will be required in our
implementation to benefit from it.

These examples show the main strength of our reduction to rewriting: absolutely no user
input in the form of lemmas or measure functions is required. On the other hand, Isabelle’s
ability to pick up previously established results can make the built-in termination prover
surprisingly strong in the presence of a good library, as the msort example shows. Even
though that example can be solved by termination tools (and only the formalization lags
behind), it shows an intrinsic weakness of the approach, since existing facts are not used
and must be rediscovered by the termination tool if necessary.

10.5. Extensions

In this section, we reconsider the restrictions imposed in §10.2.2.

Nested Recursion. So far, we excluded nested recursion like f (Suc n) = f (f n). The
problem is that to prove termination of f we need its simulation lemma to reduce the
inner call in the proof of the outer call, cf. §10.3.5. But proving the simulation lemma
uses the induction rule of f , which in turn requires termination.

To solve this problem, we can use the partial induction rule that is generated by the
function package even before a termination proof [69]. This rule, which is similar to the
one used previously, contains extra domain conditions of the form domf x. It allows us
to derive the restricted simulation lemma domf n =⇒ f(emb n) →∗Rf emb (f n). In



108 Chapter 10. Termination of Isabelle Functions via Termination of Rewriting

the termination proof obligation for the outer recursive call, we may assume this domain
condition for the inner call (a convenience provided by the function package), so that this
restricted form of simulation lemma suffices. Hence, dealing with nested recursion simply
requires a certain amount of additional bookkeeping.

Underspecification. So far, we require functions to be completely defined, i.e., no cases
are missing in left-hand sides or case-expressions. However, head (x# xs) = x is a common
definition. It is internally completed by head [ ] = undefined in Isabelle, where undefined ::
α is an arbitrary but unknown value of type α.

For such functions, we cannot derive the simulation lemma, since this would require
head(Nil) to be equal to emb undefined, which is an unknown term of the form Suck(0).
The obvious idea of adding the rule head(Nil) → undefined to the TRS does not work,
since undefined cannot be equal to emb undefined.

We can solve the problem by using fresh variables for unspecified cases, e.g., by adding
the rule head(Nil) → x. Then, the simulation lemma holds. However, the resulting TRS
is no longer terminating. This new problem can be solved by using a variant of innermost
rewriting, which would require support by IsaFoR as well as the termination tool.

Non-Representable Types and Polymorphism. Clearly, our embedding is limited to
types that admit a term representation. This excludes uncountable types such as real
numbers and most function types. However, even if such types occur in HOL functions,
they may not be relevant for termination. Then, we can simply map all such values to
a fixed constant by defining, e.g., emb (r :: real) = real. Hence, the simulation lemmas
for functions returning real numbers are trivial to prove. Furthermore, a termination
proof that does not rely on these values works without problems. Like for underspecified
functions, the generated TRS no longer models the original function completely, but is
only an abstraction that is sufficient to prove termination.

A similar issue arises with polymorphic functions: To handle a function of type α list⇒
α list we need a definition of emb on type α. Mapping values of type α to a constant is
unproblematic, since the definition is irrelevant for the proof. However, a class instance
α :: embeddable would violate the type class discipline. This can be solved by either
replacing the use of type classes by explicit dictionary constructions (where emblist would
take the embedding function to use for the list elements as an argument), or by restricting
α to class embeddable. Since the type class does not carry any axioms, the system allows
us to remove the class constraint from the final theorem, so no generality is lost.

Higher-Order Functions. Higher-order functions pose new difficulties. First, we cannot
hope to define emb on function types. In particular, this means that we cannot even
state the simulation lemma for a function like map. Second, the termination conditions
for functions with higher-order recursion depend on user-provided congruence rules of a
certain format [69]. These congruence rules then influence the form of the premise φ in
the termination condition.

A partial solution could be to create a first-order function mapf for each invocation
of map on a concrete function f . Commonly used combinators like map, filter and fold
could be supported in this way.



10.6. Conclusion 109

10.6. Conclusion

We have presented a generic approach to discharge termination goals of HOL functions
by proving termination of a corresponding generated TRS. Hence, where before a man-
ual termination proof might have been required, now external termination tools can be
used. Since our approach is not tied to any particular termination proof technique, its
power scales up as the capabilities of termination tools increase and more techniques are
formalized in IsaFoR.

A complete prototype of our implementation is available in the IsaFoR/CeTA distri-
bution (version 1.18, http://cl-informatik.uibk.ac.at/software/ceta), which also includes
usage examples. It remains as future work to extend our approach to a larger class of
HOL functions. Moreover, the implementation has to be more smoothly embedded into
the Isabelle system such that a user can easily access the provided functionality. The
general approach is not limited to Isabelle, and could be ported to other theorem provers
like Coq, which has similar recursive definition facilities (e.g., [6]) and rewriting libraries
similar to IsaFoR [13, 21].

Acknowledgment. Jasmin Blanchette gave helpful feedback on a draft of this paper.

http://cl-informatik.uibk.ac.at/software/ceta




11. Generalized and Formalized
Uncurrying

Publication details

Christian Sternagel and René Thiemann. Generalized and Formalized Uncurrying. In
Proceedings of the 8th International Symposium on the Frontiers of Combining Systems,
volume 6989 of LNCS, pages 243–258. Springer, 2011.

Abstract

Uncurrying is a termination technique for applicative term rewrite systems. During our
formalization of uncurrying in the theorem prover Isabelle, we detected a gap in the
original pen-and-paper proof which cannot directly be filled without further precondi-
tions. Our final formalization does not demand additional preconditions, and generalizes
the existing techniques since it allows to uncurry non-applicative term rewrite systems.
Furthermore, we provide new results on uncurrying for relative termination and for de-
pendency pairs.

11.1. Introduction

In recent years, the way to prove termination of term rewrite systems (TRSs) has changed.
Current termination tools no longer search for a single reduction order containing the
rewrite relation. Instead, they combine various termination techniques in a modular way,
resulting in large and tree-like termination proofs, where at each node a specific technique
is applied.

On the one hand, this combination makes termination tools more powerful. On the
other hand, it makes them more complex and error-prone. It is regularly demonstrated
that we cannot blindly trust the output of termination provers. Every now and then,
some prover delivers a faulty proof. Often, this is only detected if there is another prover
giving a contradictory answer for the same input, as a manual inspection of proofs is
infeasible due to their size.

The problem is solved by combining two systems. For a given TRS, we first use a
termination tool to automatically detect a termination proof (which may contain errors).
Then, we use a highly trusted certifier which checks whether the detected proof is indeed
correct. In total, the combination yields a powerful and trustable workflow to prove
termination.

To obtain a highly trustable certifier, a common approach is to first formalize the
desired termination techniques once and for all (thereby ensuring their soundness) and
then, for a given proof, check that the used techniques are applied correctly [12, 23,
104]. We formalized the dependency pair framework (DP framework) [42] and many
termination techniques in our Isabelle/HOL [84] library IsaFoR [104] (in the remainder



112 Chapter 11. Generalized and Formalized Uncurrying

we just write Isabelle, instead of Isabelle/HOL). From IsaFoR, we code-extract CeTA, an
automatic certifier for termination proofs.

In this paper, we present one of the latest additions to IsaFoR: the formalization of
uncurrying, as described in [53]. However, we did not only formalize uncurrying, but also
generalized it. Furthermore, we found a gap in one of the original proofs, which we could
fortunately close.

Note that all the proofs that are presented (or omitted) in the following, have been
formalized as part of IsaFoR. Hence, in this paper, we merely give sketches of our “real”
proofs. Our goal is to show the general proof outlines and help to understand the full
proofs. The library IsaFoR with all formalized proofs, the executable certifier CeTA, and all
details about our experiments are available at CeTA’s website: http://cl-informatik.

uibk.ac.at/software/ceta.

The paper is structured as follows. In Sect. 11.2, we shortly recapitulate some required
notions of term rewriting. Afterwards, in Sect. 11.3, we describe applicative rewriting,
give an overview of approaches using uncurrying for proving termination, and present our
generalization of uncurrying for TRSs. Then, in Sect. 11.4, we show how to lift uncurrying
to the DP framework. We present heuristics and our experiments in Sect. 11.5, before we
conclude in Sect. 11.6.

11.2. Preliminaries

We assume familiarity with term rewriting [5]. Still, we recall the most important notions
that are used later on. A (first-order) term t over a set of variables V and a set of
(function) symbols F is either a variable x ∈ V or a function symbol f ∈ F applied to
argument terms f(t1, . . . , tn) where the arity of f is ar(f) = n. A context C is a term
containing exactly one hole 2. Replacing 2 in a context C by a term t is denoted by C[t].

A rewrite rule is a pair of terms `→ r and a TRS R is a set of rewrite rules. The set
of defined symbols (of R) is DR = {f | f(. . .) → r ∈ R}. The rewrite relation (induced
by R) →R is the closure under substitutions and contexts of R, i.e., s →R t iff there is
a context C, a rewrite rule ` → r ∈ R, and a substitution σ such that s = C[`σ] and
t = C[rσ]. A term t is root-stable w.r.t. R iff there is no derivation t →∗R `σ for some
`→ r ∈ R and substitution σ.

We say that a term t is terminating w.r.t. R (SNR(t)) if it cannot start an infinite
derivation t = t1 →R t2 →R t3 →R · · · . A TRS is terminating (SN(R)) iff all terms are
terminating w.r.t. R. A TRS R is terminating relative to a TRS S iff there is no infinite
R∪ S-derivation with infinitely many R-steps.

11.3. Applicative Rewriting and Uncurrying

An applicative term rewrite system (ATRS) is a TRS over an applicative signature F =
{◦} ∪ C, where ◦ is a unique binary symbol (the application symbol) and all symbols
in C are constants. ATRSs can be used to encode many higher-order functions without
explicit abstraction as first-order TRSs. In the remainder we use ◦ as an infix-symbol
which associates to the left (s ◦ t ◦ u = (s ◦ t) ◦ u). In examples we omit ◦ whenever this
increases readability.

http://cl-informatik.uibk.ac.at/software/ceta
http://cl-informatik.uibk.ac.at/software/ceta


11.3. Applicative Rewriting and Uncurrying 113

Example 11.1. The following ATRS R (a variant of [53, Example 7], replacing addition
by subtraction) contains the map function (which applies a function to all arguments of
a list) and subtraction on Peano numbers in applicative form.

1: sub 0 → K 0
2: sub x 0 → x
3: sub x x → 0
4: sub (s x) (s y) → sub x y

5: K x y → x
6: map z nil → nil
7: map z (cons x xs) → cons (z x) (map z xs)

Proving termination of ATRSs is challenging without dedicated termination techniques
(e.g., for reduction orders, we cannot interpret sub ◦x ◦ y as x, since sub is a constant and
not binary).

Until now, there have at least been three approaches to tackle this problem. All of them
try to uncurry a TRS such that, for example, Rule 4 from above becomes sub(s(x), s(y))→
sub(x, y).

To distinguish the three approaches, we need the following definitions:

Definition 11.2. A term t is head variable free iff t does not contain a subterm of the
form x ◦ s where x is a variable. The applicative arity of a constant f in an ATRS R
(aaR(f)) is the maximal number n, such that f ◦ t1 ◦ · · · ◦ tn occurs as a subterm in R.
Uncurrying an application f ◦ t1 ◦ · · · ◦ tn with aaR(f) = n yields the term f(t1, . . . , tn).
A term t is proper w.r.t. aaR iff t is a variable or t = f ◦ t1 ◦ · · · ◦ tn where aaR(f) = n
and each ti is proper.

The oldest of the three approaches is from [59]. It requires that all terms in a TRS
are proper w.r.t. aaR, and shows that then termination of R is equivalent to termination
of the TRS obtained by uncurrying all terms of R. Since proper terms do not contain
any partial applications, the application symbol is completely eliminated by uncurrying.
However, requiring proper terms is rather restrictive: Essentially, it is demanded that the
TRS under consideration is a standard first-order TRS which is just written in applicative
form. For example, the approach is not applicable to Example 11.1, since there is a head
variable in the right-hand side of Rule 7 (z ◦x) and sub as well as K are applied to a single
argument in Rule 1, even though aaR(sub) = 2 and aaR(K) = 2.

The second approach was given in [41, 101]. Here, the same preconditions as in [59]
apply, but the results are extended to innermost rewriting and to the DP framework. The
latter has the advantage, that only the current subproblem has to satisfy the preconditions.
For example, when treating the dependency pair

map ◦ z ◦] (cons ◦ x ◦ xs)→ map ◦ z ◦] xs (1)

for the recursive call of map, we can perform uncurrying (since there are no usable rules
and (1) satisfies the preconditions). Moreover, in [101] uncurrying is combined with the
reduction pair processor to further relax the preconditions.

The third approach is given in [53]. Here, the preconditions for uncurrying have been
reduced drastically as only the left-hand sides of the TRS R must be head variable free.
In return, we have to η-saturate R and add uncurrying rules. Moreover, for each constant
f with aaR(f) = n we obtain n new function symbols f1, . . . , fn of arities 1, 2, . . . , n which
handle partial applications.

Example 11.3. When η-saturating the TRS R of Example 11.1, we have to add the rule
sub ◦ 0 ◦ y → K ◦ 0 ◦ y. The uncurried TRS consists of the following rules:



114 Chapter 11. Generalized and Formalized Uncurrying

8: sub1(0) → K1(0)
9: sub2(0, y) → K2(0, y)

10: sub2(x, 0) → x
11: sub2(x, x) → 0

12: sub2(s1(x), s1(y)) → sub2(x, y)
13: K2(x, y) → x
14: map2(z, nil) → nil
15: map2(z, cons2(x, xs)) → cons2(z ◦ x,map2(z, xs))

Moreover, we have to add the following uncurrying rules:

16: s ◦ x → s1(x)
17: K ◦ x → K1(x)
18: K1(x) ◦ y → K2(x, y)
19: sub ◦ x → sub1(x)
20: sub1(x) ◦ y → sub2(x, y)

21: cons ◦ x → cons1(x)
22: cons1(x) ◦ y → cons2(x, y)
23: map ◦ x → map1(x)
24: map1(x) ◦ y → map2(x, y)

Also [53] gives an extension to the DP framework.
To summarize, the traditional technique of uncurrying of [59] is completely subsumed

by [41, 101], but [41, 101] and [53] are incomparable. The advantage of [41, 101] is that
the generated TRSs and DP problems are smaller, and that uncurrying is also available
in a combination with the reduction pair processor, whereas [53] supports head variables
(see [101, Chap. 6] for a more detailed comparison).

Since [53] is used in more termination tools (it is used in at least Jambox [31] and TTT2
[67] whereas we only know of AProVE [39] that implements all uncurrying techniques of
[41,101]), we incorporated the techniques of [53] in our certifier CeTA.

During our formalization we have

• detected a gap in a proof of [53] which could not directly be closed without adding
further preconditions to one of the main results,

• generalized the technique of uncurrying which now entails the result of [53] even
without adding any additional precondition, and

• generalized the technique of freezing from [53].

The structure in [53] is as follows. First, uncurrying is developed for TRSs over ap-
plicative signatures {◦} ∪ C. Then, it is extended to DP problems, introducing a second
application symbol ◦] that may only occur at root-positions of P and is not uncurried at
all. Finally, freezing is applied to uncurry applications of ◦].

Following this structure, we first fully formalized uncurrying on TRSs. However, in
the extension to DP problems there is a missing step which is illustrated in more detail
in Example 11.14 on page 119. The main problem is that signature restrictions on DP
problems are in general unsound.

To fill the gap, one option is to use the results of [97] about signature restrictions, which
can however only be applied if R is left-linear. This clearly weakens the applicability of
uncurrying, e.g., Example 11.1 is not left-linear.

Alternatively, one can try to perform uncurrying without restricting to applicative
signatures. This is what we did. All uncurrying techniques that we formalized work on
terms and TRSs over arbitrary signatures.

The major complication is the increase of complexity in the cases that have to be
considered. For example, using an applicative signature, we can assume that every term
is of the form x ◦ t1 ◦ · · · ◦ tn or f ◦ t1 ◦ · · · ◦ tn where n ∈ N, x is a variable, and f is
a constant. Generalizing this to arbitrary signatures we have to consider the two cases
x ◦ t1 ◦ · · · ◦ tn and f(s1, . . . , sm) ◦ t1 ◦ · · · ◦ tn instead, where f is an m-ary symbol. Hence,



11.3. Applicative Rewriting and Uncurrying 115

when considering a possible rewrite step, we also have to consider the new case that the
step is performed in some si.

We not only generalized uncurrying to work for arbitrary signatures and relative rewrit-
ing, but also to a free choice of the applicative arity aa(f). This is in contrast to [53],
where the applicative arity is fixed by Definition 11.2. We will elaborate on this difference
after presenting our main theorem.

Definition 11.4 (Symbol maps and applicative arity). Let F be a signature. A symbol
map is a mapping π : F → [F ] from symbols to non-empty lists of symbols. It is injective
if for all f and g, π(f) contains no duplicates, π(f) does not contain ◦, and whenever
f 6= g then π(f) and π(g) do not share symbols. If π(f) = [f0, . . . , fn], then the applicative
arity of f w.r.t. π is aaπ(f) = n. The applicative arity of a term is defined by aaπ(t) =
aaπ(f) .−n, where x .−y = max(x−y, 0), for t = f(s1, . . . , sm)◦t1◦· · ·◦tn and is undefined
otherwise.

Intuitively, if π(f) = [f0, . . . , fn] then every application of f on i 6 n arguments
t1, . . . , ti will be fully uncurried to fi(t1, . . . , ti). If more than n arguments are applied,
then we obtain fn(t1, . . . , tn) ◦ tn+1 ◦ . . . ◦ ti. A symbol map containing an entry for f ,
uniquely determines the applicative arity n as well as the names of the (partial) applica-
tions f0, . . . , fn of f .

In the following we assume a fixed symbol map π and just write aa(f) and aa(t) instead
of aaπ(f) and aaπ(t), respectively. Additionally, we assume that π(f) = [f0, . . . , faa(f)]
where in examples we write f instead of f0. Now we can define the uncurrying TRS w.r.t.
π.

Definition 11.5. The uncurrying TRS U contains the rule

fk(x1, . . . , xm, y1, . . . , yk) ◦ yk+1 → fk+1(x1, . . . , xm, y1, . . . , yk+1)

for every f ∈ F with ar(f) = m and aa(f) = n, and every k < n. The variables x1, . . . ,
xm, y1, . . . , yk+1 are pairwise distinct.

In [53], terms are uncurried by computing the unique normal form w.r.t. U . For our
formalization we instead used the upcoming uncurrying function for the following two
reasons: First, we do not have any results about confluence of TRSs. Hence, to even
define the normal form w.r.t. U would require to formalize several additional lemmas
which show that every term has exactly one normal form. This would be quite some
effort which we prefer to avoid. The second reason is efficiency. When certifying the
application of uncurrying in large termination proofs, we have to compute the uncurried
version of a term. It is just more efficient to use a function which performs uncurrying
directly, than to compute a normal form w.r.t. a TRS where possible redexes have to be
searched, etc.

Definition 11.6. The uncurrying function x·y on terms is defined as

• xx ◦ t1 ◦ · · · ◦ tny = x ◦ xt1y ◦ · · · ◦ xtny

• xf(s1, . . . , sm) ◦ t1 ◦ · · · ◦ tny = fk(xs1y, . . . , xsmy, xt1y, . . . , xtky)◦xtk+1y◦ · · · ◦xtny
where k = min(n, aa(f))

It is homomorphically extended to operate on rules, TRSs, and substitutions.



116 Chapter 11. Generalized and Formalized Uncurrying

We establish the link between U and x·y in the following lemma which generalizes the
corresponding results in [53].

Lemma 11.7.

• if k < aa(f) and ar(f) = m then fk(s1, . . . , sm+k) ◦ t→U fk+1(s1, . . . , sm+k, t)

• if k + n 6 aa(f) and ar(f) = m then fk(s1, . . . , sm+k) ◦ t1 ◦ . . . ◦ tn →∗U fk+n(s1, . . . ,
sm+k, t1, . . . , tn)

• xsy ◦ xt1y ◦ · · · ◦ xtny→∗U xs ◦ t1 ◦ · · · ◦ tny

• if aa(s) = 0 or aa(s) is undefined then xs ◦ t1 ◦ · · · ◦ tny = xsy ◦ xt1y ◦ · · · ◦ xtny

• xsy · xσy→∗U xs · σy

• if t is head variable free then xs · σy = xsy · xσy

The last two results show how uncurrying can be exchanged with applying substitutions.
As we will often need the equality x` · σy = x`y · xσy for left-hand sides `, it is naturally
to demand that left-hand sides are head variable free.

Definition 11.8. A TRS is left head variable free if all left-hand sides are head variable
free.

Termination of xRy∪U does not suffice to conclude termination of R, cf. [53, Example
13]. The reason is that first we have to η-saturate R.

Definition 11.9. A TRS R is η-closed iff for every rule `→ r with aa(`) > 0 there is a
rule `◦x→ r ◦x ∈ R where x is fresh w.r.t. `→ r. The η-saturation Rη of R is obtained
by adding new rules ` ◦ x→ r ◦ x until the result is η-closed.

The upcoming theorem is the key to use uncurrying for termination proofs. It allows
to simulate one R-step by many steps in the uncurried system.

Theorem 11.10. Let R be η-closed and left head variable free. Let there be no left-hand
side of R which is a variable. If s→R t then xsy→+

xRy∪U xty.

Proof. Let s = C[`σ] →R C[rσ] = t where ` → r ∈ R. We show xsy →+
xRy∪U xty by

induction on the size of C.

• If C = f(s1, . . . , D, . . . , sm) ◦ t1 ◦ · · · ◦ tn for some f 6= ◦ then by the induction
hypothesis we know that xD[`σ]y→+

xRy∪U xD[rσ]y. Moreover,

xsy = xf(s1, . . . , D[`σ], . . . , sm) ◦ t1 ◦ · · · ◦ tny
= fk(xs1y, . . . , xD[`σ]y, . . . , xsmy, xt1y, . . . , xtky) ◦ xtk+1y ◦ · · · ◦ xtny
→+

xRy∪U fk(. . . , xD[rσ]y, . . . , xsmy, xt1y, . . . , xtky) ◦ xtk+1y ◦ · · · ◦ xtny
= xf(s1, . . . , D[rσ], . . . , sm) ◦ t1 ◦ · · · ◦ tny
= xty

where k = min(n, aa(f)).



11.3. Applicative Rewriting and Uncurrying 117

• If C = t0◦D◦ t1◦· · ·◦ tn then by the induction hypothesis we know xD[`σ]y→+
xRy∪U

xD[rσ]y. If aa(t0) = 0 or aa(t0) is undefined then

xsy = xt0 ◦D[`σ] ◦ t1 ◦ · · · ◦ tny
= xt0y ◦ xD[`σ]y ◦ xt1y ◦ · · · ◦ xtny
→+

xRy∪U xt0y ◦ xD[rσ]y ◦ xt1y ◦ · · · ◦ xtny
= xt0 ◦D[rσ] ◦ t1 ◦ · · · ◦ tny
= xty

Otherwise, aa(t0) > 0 and hence, t0 = f(s1, . . . , sm) ◦ sm+1 ◦ · · · ◦ sm+k where
k < aa(f). It follows that

xsy = xf(s1, . . . , sm) ◦ sm+1 ◦ · · · ◦ sm+k ◦D[`σ] ◦ t1 ◦ · · · ◦ tny
= fk+1+n′(. . . , xsm+ky, xD[`σ]y, xt1y, . . . , xtn′y) ◦ xtn′+1y ◦ · · · ◦ xtny
→+

xRy∪U fk+1+n′(. . . , xsm+ky, xD[rσ]y, xt1y, . . . , xtn′y) ◦ xtn′+1y ◦ · · ·
= xf(s1, . . . , sm) ◦ sm+1 ◦ · · · ◦ sm+k ◦D[rσ] ◦ t1 ◦ · · · ◦ tny
= xty

where n′ = min(aa(f)− k − 1, n).

• If C = 2 ◦ t1 ◦ · · · ◦ tn and n = 0 ∨ aa(`) = 0 then

xsy = x` · σ ◦ t1 ◦ · · · ◦ tny
= x` · σy ◦ xt1y ◦ · · · ◦ xtny
= x`y · xσy ◦ xt1y ◦ · · · ◦ xtny
→xRy xry · xσy ◦ xt1y ◦ · · · ◦ xtny
→∗U xr · σy ◦ xt1y ◦ · · · ◦ xtny
→∗U xr · σ ◦ t1 ◦ · · · ◦ tny
= xty

since ` is head variable free and if n 6= 0 then aa(`σ) = aa(`) = 0.

• If C = 2◦t1◦· · ·◦tn with n > 0 and aa(`) > 0 then `′ → r′ = `◦x→ r◦x ∈ R since
R is η-closed. Moreover, by changing σ to δ = σ ] {x/t1} we achieve s = ` · σ ◦ t1 ◦
· · ·◦ tn = `′δ◦ t2 ◦· · ·◦ tn = D[`′δ] and r = r ·σ◦ t1 ◦· · ·◦ tn = r′δ◦ t2 ◦· · ·◦ tn = D[r′δ]
for the context D = 2◦ t2 ◦ · · · tn which is strictly smaller than C. Hence, the result
follows by the induction hypothesis.

• If C = 2◦ t1 ◦ · · · ◦ tn with n > 0 and aa(`) is undefined then ` = x◦ `1 ◦ · · · ◦ `k with
k ≥ 0. But if k > 0 then ` is not head variable free and if k = 0 then R contains a
variable as left-hand side. In both cases we get a contradiction to the preconditions
in the theorem.

Note that the condition that the left-hand sides of R are not variables is new in com-
parison to [53]. Nevertheless, in the following corollary we can drop this condition, since
otherwise xRy is not terminating anyway.

Corollary 11.11. If Rη is left head variable free then termination of xRηy ∪ U implies
termination of R.



118 Chapter 11. Generalized and Formalized Uncurrying

When using uncurrying for relative termination of R/S, it turns out that the new
condition on the left-hand sides can only be ignored for R – since otherwise relative
termination of xRy/xSy ∪ U does not hold – but not for S.

Corollary 11.12. If Rη ∪ Sη is left head variable free and the left-hand sides of S are
not variables, then relative termination of xRηy/xSηy∪U implies relative termination of
R/S.

Example 11.13. Let R = {f ◦ f ◦ x → f ◦ x} and S = {x → f ◦ x}. Then R/S is not
relative terminating since f◦f◦x→R f◦x→S f◦f◦x→R . . . is an infiniteR∪S-derivation
with infinitely many R-steps.

For π(f) = [f, f1, f2] we have Rη = R, Sη = S, xRηy = {f2(f, x)→ f1(x)}, xSηy = {x→
f1(x)}, and U = {f ◦ x→ f1(x), f1(x) ◦ y → f2(x, y)}. It is easy to see that xRηy/xSηy∪U
is relative terminating by counting the number of f-symbols. Since both Rη and Sη are
head variable free, we have shown that Corollary 11.12 does not hold if one would drop
the new variable condition on S.

As already mentioned, Corollary 11.11 generalizes the similar result of [53, Theorem 16]
in two ways: first, there is no restriction to applicative signatures, and second, one can
freely choose the applicative arities. Since in principle the choice of π does not matter
(uncurrying preserves termination for every choice of π), we can only heuristically deter-
mine whether the additional freedom increases termination proving power and therefore
refer to our experiments in Sect. 11.5.

11.4. Uncurrying in the Dependency Pair Framework

The DP framework [42] facilitates modular termination proofs. Instead of single TRSs, we
consider DP problems (P ,R), consisting of two TRSs P and R where elements of P are
often called pairs to distinguish them from the rules of R. The initial DP problem for a
TRS R is (DP(R),R), where DP(R) = {f ](s1, . . . , sn)→ g](t1, . . . , tm) | f(s1, . . . , sn)→
C[g(t1, . . . , tm)] ∈ R, g ∈ DR} is the set of dependency pairs of R, incorporating a fresh
tuple symbol f ] for each defined symbol f . The initial DP problem is also a standard DP
problem, i.e., root symbols of pairs do not occur elsewhere in P or R.1 A (P ,R)-chain
is a possibly infinite derivation of the form:

s1σ1 →P t1σ1 →∗R s2σ2 →P t2σ2 →∗R s3σ3 →P · · · (?)

where si → ti ∈ P for all i > 0. If additionally every tiσi is terminating w.r.t. R,
then the chain is minimal. A DP problem (P ,R) is called finite [42], if there is no
minimal infinite (P ,R)-chain. Proving finiteness of a DP problem is done by simplifying
(P ,R) using so called processors recursively. A processor transforms a DP problem into a
new DP problem. The aim is to reach a DP problem with empty P-component (such DP
problems are trivially finite). To conclude finiteness of the initial DP problem, the applied
processors need to be sound. A processor Proc is sound whenever for all DP problems
(P ,R) we have that finiteness of Proc(P ,R) implies finiteness of (P ,R).

In the following we explain how uncurrying is used as processor in the DP framework.
In Sect. 11.3 it was already mentioned that in [53] the notion of applicative TRS was
lifted to applicative DP problem by allowing a new binary application symbol ◦] (where

1Several termination provers only work on standard DP problems.



11.4. Uncurrying in the Dependency Pair Framework 119

we sometimes just write ] in examples). The symbol ◦] naturally occurs as tuple symbol
of ◦.

To prove soundness of the uncurrying processor, in [53] it is assumed that there is a
minimal (P ,R)-chain s1σ1 →P t1σ1 →∗R s2σ2 →P · · · , which is converted into a minimal
(xPy, xRηy ∪ U)-chain by reusing the results for TRSs. However, there is a gap in this
reasoning. Right in the beginning it is silently assumed that all terms siσi and tiσi have
tuple symbols as roots and that their arguments are applicative terms, i.e., terms over
an applicative signature {◦} ∪ C. Without this assumption it is not possible to apply the
results of uncurrying for TRSs, since those are only available for applicative terms in [53].

The following variant of [97, Example 14] shows that in general restricting substitutions
in chains to an applicative signature {◦} ∪ C is unsound.

Example 11.14. Consider the applicative and standard DP problem (P ,R) where P =
{g ] (f x y z z u v)→ g ] (f x y x y x (h y u))} and R contains the rules:

a → b
a → c

h x x → h x x

f a x2 x3 x4 x5 → f a x2 x3 x4 x5
f x1 a x3 x4 x5 → f x1 a x3 x4 x5

f (y z) x2 x3 x4 x5 → f (y z) x2 x3 x4 x5
f x1 (y z) x3 x4 x5 → f x1 (y z) x3 x4 x5

There is a minimal (P ,R)-chain taking si = g](f x y z z u v), ti = g] (f x y x y x (h y u)),
and σi = {x/k(a), y/k(b), z/k(b), u/k(c), v/h (k(b)) (k(c))} where k is a unary symbol.
However, there is no minimal (P ,R)-chain using substitutions over the signature {◦}∪C,
regardless of the choice of constants C.

Since our generalizations in Sect. 11.3 do not have any restrictions on the signature, we
were able to correct the corresponding proofs in [53] such that the major theorems are
still valid.2 It follows the generalization of [53, Theorem 33].

Theorem 11.15. The uncurrying processor U ′1 is sound where U ′1(P ,R) ={
(xPy, xRηy ∪ U) if P ∪Rη is left head variable free and π is injective,

(P ,R) otherwise.

Proof. The proof mainly uses the results from the previous section. We assume an infinite
minimal (P ,R)-chain s1σ1 →P t1σ1 →∗R s2σ2 →P t2σ2 →∗R · · · and construct an infinite
minimal (xPy, xRηy ∪ U)-chain as follows.

We achieve xsiσiy = xsiy · xσiy and xtiy · xσiy →∗U xtiσiy since P is left head variable
free. Moreover, using tiσi →∗R si+1σi+1 and Theorem 11.10 we conclude xtiσiy →∗xRηy∪U
xsi+1σi+1y. Here, the condition that Rη must not contain variables as left-hand sides is
ensured by the minimality of the chain: if x → r ∈ Rη then SNR(tiσ) does not hold.
Hence, we constructed a (xPy, xRηy ∪ U)-chain as

xsiσiy = xsiy · xσiy→xPy xtiy · xσiy→∗U xtiσiy→∗xRηy∪U xsi+1σi+1y

for all i. To ensure that the chain is minimal it is demanded that π is injective. Otherwise,
two different symbols can be mapped to the same new symbol which clearly can introduce
nontermination. The structure of the proof that minimality is preserved is similar to the
one in [53] and we just refer to IsaFoR for details.

2After the authors of [53] where informed of the gap, they independently developed an alternative fix,
which is part of an extended, but not yet published version of [53].



120 Chapter 11. Generalized and Formalized Uncurrying

The uncurrying processor of Theorem 11.15 generalizes [53, Theorem 33] in three ways:
the signature does not have to be applicative, we can freely choose the applicative arity
via π, and we can freely choose the application symbol. The last generalization lets
Theorem 11.15 almost subsume the technique of freezing [53, Corollary 40] which is used
to uncurry ◦].

Definition 11.16 (Freezing [53]). A simple freeze f is a subset of F .3 Freezing is applied
on non-variable terms as follows

f(f(t1, . . . , tn)) =

{
f(t1, . . . , tn) if n = 0 or f /∈ f

f g(s1, . . . , sm, t2, . . . , tm) if t1 = g(s1, . . . , sm) and f ∈ f

where each f g is a new symbol. It is homomorphically extended to rules and TRSs. The
freezing DP processor is defined as f(P ,R) =

(f(P),R) if (P ,R) is a standard DP problem where for all s→ f(t1, . . . , tn)

∈ P with f ∈ f, both t1 /∈ V and all instances of t1 are root-stable,

(P ,R) otherwise.

In [53, Theorem 39], it is shown that freezing is sound.

Example 11.17. In the following we use numbers to refer to rules from previous examples.
We consider the DP problem (P ,R) where P = {sub (s x) ] (s y) → sub x ] y} and
R = {2–4}. Uncurrying ◦ with π(s) = [s, s1], π(sub) = [sub, sub1, sub2], π(0) = [0], and
π(]) = []] yields the DP problem (xPy, xRηy ∪ U) where xPy = {sub1(s1(x)) ] s1(y) →
sub1(x) ] y} and xRηy ∪ U consists of {10–12, 16, 19, 20}.

Afterwards we uncurry the resulting DP problem using ◦] as application symbol and π
where π(sub1) = [sub1,−]] and π(f) = [f ] for all other symbols. We obtain (P ′,R′) where
P ′ = {s1(x) −] s1(x)) → x −] y} and R′ = xRηy ∪ U ∪ {sub1(x) ] y → −](x, y)}. Note
that freezing returns nearly the same DP problem. The only difference is that uncurrying
produces the additional rule sub1(x) ] y → x −] y which we do not obtain via freezing.
However, since this rule is not usable it also does not harm that much.

Moreover, uncurrying sometimes is applicable where freezing is not. If we would have
started with the DP problem (P ,R′′) where R′′ = {1–5} then uncurrying would result
in (xPy, xR′′ηy ∪ U ′) where xR′′ηy ∪ U ′ = {8–13, 16–20}. On this DP problem freezing
is not applicable (the instances of sub1(x) in the right-hand side of the only pair in
xPy are not root-stable due to Rule 8). Nevertheless, one can uncurry ◦], resulting in
(P ′, xR′′ηy ∪ U ′ ∪ Rnew) where Rnew = {sub1(x) ] y → x −] y, 0 −] y → K1(0) ] y}. Note
that the uncurrying of ◦] transformed a standard DP problem into a non-standard one,
as −] occurs as root of a term in P ′, but also within Rnew.

Whenever freezing with f = {◦]} is applicable, then also uncurrying of ◦] is possible:
the condition t1 /∈ V in Definition 11.16 implies that P ∪ Rη is left head variable free.
The only difference is that uncurrying produces more rules than freezing, namely the
uncurrying rules and the uncurried rules of those rules which have to be added for the
η-saturation. However, if freezing is applicable then none of these additional rules are

3In [53] one can also specify an argument position for each symbol. This can be simulated by permuting
the arguments accordingly.



11.4. Uncurrying in the Dependency Pair Framework 121

usable.4 Hence, all techniques which only consider the usable rules (like the reduction pair
processor) perform equally well, no matter whether one has applied freezing or uncurrying.
Still, one wants to get rid of the additional rules, especially since they are also the reason
why standard DP problems are transformed into non-standard ones.

In Example 11.17 we have seen that sometimes uncurrying of tuple symbols is applica-
ble where freezing is not. Thus, to have the best of both techniques we devised a special
uncurrying technique for tuple symbols which fully subsumes freezing without the disad-
vantage of U ′1: if freezing is applicable then standard DP problems are transformed into
standard DP problems by the new technique.

Before we describe the new uncurrying processor formally, we shortly list the differences
to the uncurrying processor of Theorem 11.15:

• Since the task is to uncurry tuple symbols, we restrict the applicative arities to be
at most one. Moreover, uncurrying is performed only on the top-level. Finally, the
application symbol may be of arbitrary non-zero arity.

• Rules that have to be added for the η-saturation and the uncurrying rules are added
as pairs (to the P-component), and not as rules (to the R-component).

• If freezing is applicable, we do neither add the uncurrying rules nor do we apply
η-saturation.

Example 11.18. We continue with the DP problems of Example 11.17.
If one applies the special uncurrying processor on (xPy, xRηy ∪ U) then one obtains

(P ′, xRηy ∪ U) which is the same as f(xPy, xRηy ∪ U) for f = {◦]}.
And if one applies the special uncurrying processor on (xPy, xR′′ηy∪U ′) then one obtains

the standard DP problem (P ′ ∪Rnew, xR′′ηy ∪ U ′).

Definition 11.19. Let ◦] be an n-ary application symbol where n > 0. Let π be an
injective symbol map where π(f) ∈ {[f ], [f, f ]]} for all f . The top-uncurrying function
p·q maps terms to terms. It is defined as ptq ={

f ](s1, . . . , sm, t2, . . . , tn) if t = ◦](f(s1, . . . , sm), t2, . . . , tn) and π(f) = [f, f ]]

t otherwise

and is homomorphically extended to pairs, rules, and substitutions. The top-uncurrying
rules are defined as

U t = {◦](f(x1, . . . , xm), y2, . . . , yn)→ f ](x1, . . . , xm, y2, . . . , yn) | π(f) = [f, f ]]}

Then the top-uncurrying processor is defined as top(P ,R) =
(pPηq ∪ U t?,R) if ◦] is not defined w.r.t. R and for all s→ t ∈ Pη : s, t /∈ V,

s 6= ◦](x, s2, . . . , sn), and the root of t is not defined w.r.t. R
(P ,R) otherwise

where U t? = ∅ and Pη = P if for all s → ◦](t1, . . . , tn) ∈ P and σ the term t1σ is
root-stable, and U t? = U t and Pη = P ∪ {◦](`, x2, . . . , xn) → ◦](r, x2, . . . , xn) | ` → r ∈
R, root(`) = g, π(g) = [g, g]]}, otherwise. Here, x2, . . . , xn are distinct fresh variables that
do not occur in `→ r.
4In detail: a technique that can detect that instances of a subterm of a right-hand side of P are root-

stable can also detect that the additional rules are not usable.



122 Chapter 11. Generalized and Formalized Uncurrying

Theorem 11.20. The top-uncurrying processor top is sound.

Proof. The crucial part is to prove that whenever t = f(t1, . . . , tm) →∗R s, f /∈ DR, t
is an instance of a right-hand side of P , and SNR(t), then ptq →∗pPηq∪Ut?∪R psq where

pPηq ∪ U t?-steps are root steps and all terms in this derivation are terminating w.r.t. R.
Using this result, the main result is established as follows. Assume there is an infinite

minimal (P ,R)-chain. Then every step sσ →P tσ →∗R s′σ′ in the chain is transformed
as follows. Since s → t ∈ P , we conclude that tσ = f(t1σ, . . . , tmσ) where f /∈ DR and
SNR(tσ). Hence, using the crucial step we know that ptσq→∗pPηq∪Ut?∪R ps′σ′q. Moreover,

by case analysis on t one can show that ptqσ →∗Ut? ptσq via root reductions, and similarly,

by additionally using the restrictions on s one derives psσq = psqσ. Hence,

psσq = psqσ →pPq ptqσ →∗Ut? ptσq→
∗
pPηq∪Ut?∪R

ps′σ′q

where all terms in this derivation right of →pPq are terminating w.r.t. R and where all
pPηq ∪ U t?-steps are root reductions. Thus, we can turn the root reductions into pairs,
resulting in an infinite minimal (pPηq ∪ U t?,R)-chain.

To prove the crucial part we perform induction on the number of steps where the base
case – no reductions – is trivial. Otherwise, t = f(t1, . . . , tm)→∗R u→R s. Using SNR(t)
we also know SNR(u) and since f /∈ DR we know that u = f(u1, . . . , um) and ti →∗R ui
for all 1 6 i 6 m. Moreover, s = f(s1, . . . , sm) and s is obtained from u by a reduction
ui →R si for some 1 6 i 6 m. Hence, we may apply the induction hypothesis and
conclude ptq→∗pPηq∪Ut?∪R puq.

It remains to simulate the reduction u →R s. The simulation is easy if f 6= ◦], since
then puq = u →R s = psq. Otherwise, f = ◦] and m = n. We again first consider
the easy case where ui →R si for some i > 1. Then an easy case analysis on u1 yields
puq →R psq since u and s are uncurried in the same way (since u1 = s1). Otherwise,
u = ◦](u1, . . . , um), s = ◦](s1, u2, . . . , um) and u1 →R s1. If u1 →R s1 is a reduction below
the root then both s and t are uncurried in the same way and again puq→R psq is easily
established. If however u1 = `σ → rσ = s1 for some rule `→ r ∈ R then we know that u1
is not root-stable and hence also t1 is not root-stable. As t = ◦](t1, . . . , tn) is an instance
of a right-hand side of P we further know that there is a pair s′ → ◦](t′1, . . . , t′n) ∈ P
where t1 = t′1σ. Since t′1σ is not root-stable U t? = U t and Pη ⊇ {◦](`, x2, . . . , xn) →
◦](r, x2, . . . , xn) | ` → r ∈ R, root(`) = g, π(g) = [g, g]]}. Let ` = g(`1, . . . , `k). If
π(g) = [g] then

puq = p◦](g(`1, . . . , `k)σ, u2, . . . , un)q

= ◦](g(`1, . . . , `k)σ, u2, . . . , un)

→R ◦](rσ, u2, . . . , un)

→∗Ut? p◦
](rσ, u2, . . . , un)q

= psq.

And otherwise, π(g) = [g, g]]. Hence, ◦](`, x2, . . . , xn)→ ◦](r, x2, . . . , xn) ∈ Pη. We define
δ = σ ] {x2/u2, . . . , xn/un} and achieve

puq = p◦](g(`1, . . . , `k)σ, u2, . . . , un)q

= g](`1σ, . . . , `kσ, u2, . . . , un)

= g](`1, . . . , `k, x2, . . . , xn)δ

= p◦](g(`1, . . . , `k), x2, . . . , xn)qδ



11.5. Heuristics and Experiments 123

= p◦](`, x2, . . . , xn)qδ

→pPηq p◦](r, x2, . . . , xn)qδ

→∗Ut? p◦
](r, x2, . . . , xn)δq

= p◦](rσ, u2, . . . , un)q

= psq.

Using that π is injective one can also show that termination of all terms in the derivation
is guaranteed where we refer to our library IsaFoR for details.

Note that the top-uncurrying processor fully subsumes freezing since the step from
(P ,R) to (f(P),R) using f = {f1, . . . , fn} can be simulated by n applications of top
where in each iteration one chooses fi as application symbol and defines π(g) = [g, f gi ]
for all g 6= fi. The following example shows that top is also useful where freezing is not
applicable.

Example 11.21. Consider the TRS R where x÷ y computes d x
2y
e.

s(x)− s(y) → x− y
0− y → 0
x− 0 → x
0 + y → y

s(x) + y → s(x+ y)

double(x) → x+ x
double(0) → 0

double(s(x)) → s(s(double(x)))
0÷ s(y) → 0

s(x)÷ s(y) → s((s(x)− double(s(y)))÷ s(y))

Proving termination is hard for current termination provers. Let us consider the interest-
ing DP problem (P ,R) where P = {s(x) ÷] s(y) → (s(x) − double(s(y))) ÷] s(y)}. The
problem is that one cannot use standard reduction pairs with argument filters since one
has to keep the first argument of −, and then the filtered term of s(x) is embedded in the
filtered term of s(x) − double(s(y)). Consequently, powerful termination provers such as
AProVE and TTT2 fail on this TRS.

However, one can uncurry the tuple symbol ÷] where π(−) = [−,−]], π(s) = [s, s]], and
π(f) = [f ], otherwise. Then the new DP problem (P ′,R) is created where P ′ consists of
the following pairs

(x− y)÷] z → −](x, y, z)
s(x)÷] y → s](x, y)

s](x, s(y)) → −](s(x), double(s(y)), s(y))

−](s(x), s(y), z) → −](x, y, z)
−](0, y, z) → 0÷] z
−](x, 0, z) → x÷] z

where the subtraction is computed via the new pairs, and not via the rules anymore.
The right column consists of the uncurried and η-saturated −-rules, and the left column
contains the two uncurrying rules followed by the uncurried pair of P . Proving finiteness
of this DP problem is possible using standard techniques: linear 0/1-polynomial interpre-
tations and the dependency graph suffice. Therefore, termination of the whole example
can be proven fully automatically by using a new version of TTT2 where top-uncurrying is
integrated.

11.5. Heuristics and Experiments

The generalizations for uncurrying described in this paper are implemented in TTT2 [67].
To fix the symbol map we used the following three heuristics:



124 Chapter 11. Generalized and Formalized Uncurrying

• π+ corresponds to the definition of applicative arity of [53]. More formally, π+(f) =
[f0, . . . , fn] where n is maximal w.r.t. all f(. . .) ◦ t1 ◦ · · · ◦ tn occurring in R. The
advantage of π+ is that all uncurryings are performed.

• π± is like π+, except that the applicative arity is reduced whenever we would
have to add a rule during η-saturation. Formally, π±(f) = [f0, . . . , fn] where
n = min(aaπ+(f),min{k | f(. . .) ◦ t1 ◦ · · · ◦ tk → r ∈ R}).

• π− is almost dual to π+. Formally, π−(f) = [f0, . . . , fn] where n is minimal w.r.t.
all maximal subterms of the shape f(. . .) ◦ t1 ◦ · · · ◦ tn occurring in R. The idea is
to reduce the number of uncurrying rules.

We conducted two sets of experiments to evaluate our work. Note that all proofs
generated during our experiments are certified by CeTA (version 1.18). Our experiments
were performed on a server with eight dual-core AMD Opteron® processors 885, running
at a clock rate of 2.6 GHz and on 64 GB of main memory. The time limit for the first
set of experiments was 10 s (as in [53]), whereas the time limit for the second set was 5 s
(TTT2’s time limit in the termination competition).

The first set of experiments was run with a setup similar to [53]. Accordingly, as
input we took the same 195 ATRSs from the termination problem database (TPDB).
For proving termination, we switch from the input TRS to the initial DP problem and
then repeat the following as often as possible: compute the estimated dependency graph,
split it into its strongly connected components and apply the “main processor.” Here, as
“main processor” we incorporated the subterm criterion and matrix interpretations (of
dimensions one and two). Concerning uncurrying, the following approaches were tested:
no uncurrying (none), uncurry the given TRS before computing the initial DP problem
(trs), apply U ′1/U ′2 as soon as all other processors fail (where U ′2 is the composition of U ′1
and top). The results can be found in Table 11.1. Since on ATRSs, our generalization
of uncurrying corresponds to standard uncurrying, it is not surprising that the numbers
of the first three columns coincide with those of [53] (modulo mirroring and a slight
difference in the used strategy for trs). They are merely included to see the relative gain
when using uncurrying on ATRSs.

With the second set of experiments, we tried to evaluate the total gain in certified
termination proofs. Therefore, we took a restricted version of TTT2’s competition strategy
that was used in the July 2010 issue of the international termination competition5 (called
base strategy in the following). The restriction was to use only those termination tech-
niques that where certifiable by CeTA before our formalization of uncurrying. Then, we
used this base strategy to filter the TRSs (we did ignore all SRSs) of the TPDB (version
8.0). The result were 511 TRSs for which TTT2 did neither generate a termination proof
nor a nontermination proof using the base strategy. For our experiments we extended
the base strategy by the generalized uncurrying techniques using different heuristics for
the applicative arity. The results can be found in Table 11.2. It turned out, that the
π− heuristic is rather weak. Concerning π±, there is at least one TRS that could not be
proven using π+, but with π±. The total of 35 in the first row of Table 11.2 is already
reached without taking U ′1 into account. This indicates that in practice a combination of
uncurrying as initial step (trs) and the processor U ′2, gives the best results. Finally, note
that in comparison to the July 2010 termination competition (where TTT2 could gener-
ate 262 certifiable proofs), the number of certifiable proofs of TTT2 is increased by over

5http://termcomp.uibk.ac.at

http://termcomp.uibk.ac.at


11.6. Conclusions 125

Table 11.1.: Experiments as in [53]

direct processor
none trs U ′1 U ′2

subterm criterion 41 53 41 66
matrix (dimension 1) 66 98 95 114
matrix (dimension 2) 108 137 133 138

Table 11.2.: Newly certified proofs

direct processor total
trs U ′1 U ′2

π+ 26 16 22 35
π± 28 15 17 29
π− 24 14 14 24

total 28 16 24 36

10 % using the new techniques. In these experiments, termination has been proven for
10 non-applicative TRSs where our generalizations of uncurrying have been the key to
success.

11.6. Conclusions

This paper describes the first formalization of uncurrying, an important technique to
prove termination of higher-order functions which are encoded as first-order TRSs. The
formalization revealed a gap in the original proof which is now fixed. Adding the newly
developed generalization of uncurrying to our certifier CeTA, increased the number of
certifiable proofs on the TPDB by 10 %.





12. On the Formalization of
Termination Techniques Based on
Multiset Orderings

Publication details

René Thiemann, Guillaume Allais, and Julian Nagele. On the Formalization of Termina-
tion Techniques Based on Multiset Orderings. In Proceedings of the 23rd International
Conference on Rewriting Techniques and Applications, volume 15 of LIPIcs, pages 339–
354. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2012.

Abstract

Multiset orderings are a key ingredient in certain termination techniques like the recur-
sive path ordering and a variant of size-change termination. In order to integrate these
techniques in a certifier for termination proofs, we have added them to the Isabelle For-
malization of Rewriting. To this end, it was required to extend the existing formalization
on multiset orderings towards a generalized multiset ordering. Afterwards, the sound-
ness proofs of both techniques have been established, although only after fixing some
definitions.

Concerning efficiency, it is known that the search for suitable parameters for both
techniques is NP-hard. We show that checking the correct application of the techniques—
where all parameters are provided—is also NP-hard, since the problem of deciding the
generalized multiset ordering is NP-hard.

12.1. Introduction

The multiset ordering has been invented in the ’70s to prove termination of programs [29].
It is an ingredient for important termination techniques like the multiset path ordering
(MPO) [26], the recursive path ordering (RPO) [27], or recently [7,20] it has been used in
combination with the size-change principle of [74], in the form of SCNP reduction pairs.

The original version of the multiset ordering w.r.t. some base ordering � can be defined
as M �ms N iff it is possible to obtain N from M by replacing at least one element of M
by several strictly smaller elements in N .

In other papers—like [7, 20, 92]—a generalization of the multiset ordering is used (de-
noted by �gms). To define �gms one assumes that in addition to � there is a compatible
non-strict ordering %. Then �gms is like �ms, but in the multiset comparison it is ad-
ditionally allowed to replace each element by a smaller one (w.r.t. %). To illustrate the
difference between �ms and �gms , we take � and % as the standard orderings on poly-
nomials over the naturals. Then �gms is strictly more powerful than �ms: for example,



128 Chapter 12. Formalization of Termination Techniques Based on Multiset Orderings

{{x+ 1, 2y}} �gms {{y, x}} since x+ 1 � x and 2y % y, but {{x+ 1, 2y}} �ms {{y, x}} does
not hold, since 2y 6= y and also 2y 6� y as y can be instantiated by 0.

Note that �gms is indeed used in powerful termination tools like AProVE [39]. Hence,
for the certification of termination proofs which make use of SCNP reduction pairs or
RPOs which are defined via �gms , we need a formalization of this multiset ordering.

However, in the literature and in formalizations, often only �ms is considered. And even
those papers that use �gms only shortly list the differences between �ms and �gms—if at
all—and afterwards just assume that both multiset orderings have similar properties.

To change this situation, as one new contribution of this paper, we give the first formal-
ization of �gms , and could indeed show that �ms and �gms behave quite similar. However,
we also found one essential difference between both orderings. It is well known that de-
ciding �ms is easy, one just removes identical elements and afterwards has to find for each
element in the one set a larger element in the other. In contrast, we detected and proved
that deciding �gms is an NP-complete problem.

Note that the original definition of RPO misses a feature that is present in other or-
derings like polynomial interpretations where it is possible to compare variables against
a least element: x % 0. This feature was already integrated in other orderings like KBO
[65], and it can also be integrated into RPO where one allows to compare x % c if c is a
constant of least precedence. For example, the internal definition of RPO in AProVE is
the one of [92]—which is based on �gms—with the additional inference rule of “x % c”.
As a second new contribution we formalized this RPO variant and fixed its definition, as
it turned out that it is not stable. Moreover, we show that the change from �ms to �gms

increases the complexity of RPO: From [71] it is known that deciding whether two terms
are in relation w.r.t. a given RPO or MPO is in P. However, if one uses the definitions of
MPO and RPO in this paper which are based on �gms , then the same decision problem
becomes NP-complete.

As third new contribution we also give the first formalization of SCNP reduction pairs
where we could establish the main soundness theorem, although several definitions had
to be fixed. Again, we have shown that the usage of �gms makes certification for SCNP
reduction pairs an NP-complete problem. As a consequence, the search for suitable SCNP
reduction pairs and the problem whether two terms are in relation for a given SCNP
reduction pair belong to the same complexity class, as they are both NP-complete.

All our formalizations are using the proof assistant Isabelle/HOL [84]. They are avail-
able within the IsaFoR library (Isabelle Formalization of Rewriting, [104]). The new parts
of the corresponding proof checker CeTA—which is just obtained by applying the code
generator of Isabelle [49] on IsaFoR—have been tested on the examples of the experiments
performed in [92]. After fixing some output bugs, eventually all proofs could be certified.
Both IsaFoR and CeTA are freely available at:

http://cl-informatik.uibk.ac.at/software/ceta

The paper is structured as follows. We give preliminaries and the exact definitions for
�ms and �gms in Sec. 12.2. Afterwards we discuss the formalization of �gms in Sec. 12.3.
Different variants of RPO are discussed in Sec. 12.4. Here, we also show that certifying
constraints for the RPO variant used in AProVE is NP-complete. In Sec. 12.5 we discuss
the formalization of SCNP reduction pairs. Finally, in Sec. 12.6 we elaborate on our
certified algorithms for checking whether two terms are in relation w.r.t. RPO or the
orderings from an SCNP reduction pair, and we report on our experimental results.

http://cl-informatik.uibk.ac.at/software/ceta


12.2. Preliminaries 129

12.2. Preliminaries

We refer to [5] for basic notions and notations of rewriting. A signature is a set of symbols
F = {f, g, F,G, . . . }, each associated with an arity. We write T (F ,V) for the set of terms
over signature F and set of variables V . We write V(t) for the set of variables occurring in
t. A relation � on T (F ,V) is stable iff it is closed under substitutions, and it is monotone,
iff it is closed under contexts. A term rewrite system (TRS) is a set of rules `→ r. The
rewrite relation →R of a TRS R is the smallest stable and monotone relation containing
R.

We write Id for the identity relation, and for each relation �, let � be its reflexive
closure.

Definition 12.1 (Ordering pair, reduction pair). The pair (%,�) is an ordering pair
(over carrier A) iff % is a quasi-ordering over A, � is a transitive and well-founded
relation over A, and � and % are compatible, i.e., � ◦% ⊆ � and % ◦ � ⊆ �.

The pair (%,�) is a non-monotone reduction pair iff (%,�) is an ordering pair over
T (F ,V) where both � and % are stable. If additionally % is monotone, then (%,�) is a
reduction pair, and if both � and % are monotone, then (%,�) is a monotone reduction
pair.

Throughout this paper we only consider finite multisets {{x1, . . . , xn}} and we write
P(A) for the set of all multisets with elements from A. For every function f : A→ A and
every multiset M ∈ P(A) we define the image of f on M as f [M ] = {{f(x) | x ∈M}}.

Definition 12.2 (Multiset orderings). Let � and % be relations over A. We define the
multiset ordering (�ms), the generalized multiset ordering (�gms), and the corresponding
non-strict ordering (%gms) over P(A) as follows: M1 �ms / �gms / %gms M2 iff there are
Si and Ei such that M1 = S1 ∪ E1, M2 = S2 ∪ E2, and

• conditions i, ii, and iv are satisfied: M �ms N

• conditions i, iii, and iv are satisfied: M �gms N

• conditions i and iii are satisfied: M %gms N

where conditions i–iv are defined by:

(i) for each y ∈ S2 there is some x ∈ S1 with x � y

(ii) E1 = E2

(iii) E1 = {{x1, . . . , xn}}, E2 = {{y1, . . . , yn}}, and xi % yi for all 1 ≤ i ≤ n

(iv) S1 6= ∅

Whenever Mi is split into Si ∪ Ei we call Si the strict part and Ei the non-strict part.

Note that �gms indeed generalizes �ms, since �gms = �ms if % = Id .



130 Chapter 12. Formalization of Termination Techniques Based on Multiset Orderings

12.3. Formalization of the Generalized Multiset Ordering

Replacing condition ii by iii makes the formalization of �gms a bit more involved than the
one of �ms: the simple operation of (multiset) equality E1 = E2 is replaced by demanding
that both E1 and E2 can be enumerated in such a way that xi % yi for all 1 ≤ i ≤ n.
Note that instead of enumerations one can equivalently demand that there is a bijection
f : E1 → E2 such that for all x ∈ E1 we have x % f(x).

There is one main advantage of formalizing condition iii via enumerations instead of
bijections. It will be rather easy to develop an algorithm deciding �gms . However, using
enumerations we also observe a drawback: the proof that �gms and %gms are compatible
and transitive orderings will be harder than using bijections since composing bijections is
easier than combining enumerations.

The formalization of the following (expected) properties for �gms and %gms has been
rather simple.

Lemma 12.3. �gms and %gms have the following properties:

(i) the empty set is the unique minimum of �gms and %gms

(ii) if % is reflexive then so is %gms

(iii) if � is irreflexive and compatible with % then �gms is irreflexive

(iv) if � and % are closed under an operation op then �gms and %gms are closed under
op[·].

In contrast, the formalization of transitivity and compatibility was more tedious.

Lemma 12.4. If � and % are compatible and transitive then so are �gms and %gms .

Proof. For the sake of simplicity, we will work here with the definition of (�gms ,%gms)
using bijections rather than enumerations: all technical details when using the represen-
tation with enumerations are available in IsaFoR, theory Multiset-Extension. Given that
this lemma states four results that are pretty similar, we will only prove transitivity of
%gms and let the reader see how the proof could be slightly modified in the other cases.

Let M,N and P be three multisets such that M %gms N (1) and N %gms P (2). From
(1) we get the partitions M = M ′ ∪ E and N = N ′ ∪ F and the bijection fMN : E →
F . From (2) we get the partitions N = N ′′ ∪ F ′ and P = P ′ ∪ G and the bijection
fNP : F ′ → G. We define the multiset I as I = F ∩ F ′ and claim that the partitions
M = (M \ f−1MN [I]) ∪ f−1MN [I] and P = (P \ fNP [I]) ∪ fNP [I] and the bijection fNP ◦ fMN

are the ones needed to prove M %gms P .
If p ∈ P \ fNP [I] then we have to find some m ∈ M \m /∈ f−1MN [I] satisfying m � p.

We distinguish two cases. In the first case, p ∈ P ′ and thus there is an n ∈ N ′′ such that
n � p and n /∈ I. If n ∈ N ′ then by (1) there is some m ∈ M ′ with m � n and hence,
m � p by transitivity of �. Moreover, since M ′ ⊆ M \ f−1MN [I] we found the desired
element m. Otherwise, n ∈ F and hence, for m = f−1MN(n) we know m % n using (1). By
compatibility, also m � p. Again, m ∈M \ f−1MN [I] since n /∈ I. In the second case, p ∈ G
and thus for n = f−1NP (p) we conclude n ∈ F ′′ \I and n % p, and hence n /∈ F . Thus, there
is an element m ∈M ′ which satisfies m � n. By compatibility we again achieve m � p.

If p ∈ fNP [I], we have an element n ∈ F ′ such that n % p; n is also in F and therefore
we have an element m ∈ f−1MN [I] such that m % n % p and hence, m % p.



12.3. Formalization of the Generalized Multiset Ordering 131

Here lies the main difference to the formalization of �ms in [63]. While just transitivity
needs to be shown for �ms, we had to show transitivity of both �gms and %gms as well
as compatibility from both sides. Moreover the formalized proofs of these facts get more
complicated since we cannot simply use bijections, set intersections, and differences, but
have to deal with enumerations.

After having established Lem. 12.3 and Lem. 12.4 it remains to prove the most inter-
esting and also most complicated property of �gms , namely strong normalization. In the
remainder of this section we assume that � and % are compatible and transitive, and
that � is strongly normalizing. Our proof is closely related to the one for �ms [83] which
is due to Buchholz: we first introduce a more atomic relation �gms-step which has �gms as
its transitive closure. Then it suffices to prove that �gms-step is well-founded.

Definition 12.5. We define �gms-step as M �gms-step N iff M �gms N where in the split
M = S ∪ E the size of S is exactly one.

Lemma 12.6. �gms is the transitive closure of �gms-step.

For strong normalization we perform an accessibility-style proof, i.e., we define A as
the set of strongly normalizing elements w.r.t. �gms-step and show that A contains all
multisets. Note that to show M ∈ A it suffices to prove strong normalization for all N
with M �gms-step N . Moreover, since �gms-step is strongly normalizing on A, one can use
the following induction principle to prove some property P for all elements in A.

(∀M.(∀N ∈ A.M �gms-step N → P (N))→ P (M))→ (∀M ∈ A.P (M)) (?)

We will later on apply this induction scheme using the first of the following two predi-
cates:

• P (x) is defined as ∀M.M ∈ A →M ∪ {{x}} ∈ A

• Q(M,x) is defined as ∀b.x % b→M ∪ {{b}} ∈ A

For showing that all multisets belong to A, we will require the following technical
lemma.

Lemma 12.7. For all multisets M ∈ A and for all elements a, if ∀N.M �gms-step N →
Q(N, a) and ∀b.a � b→ P (b) then Q(M,a) holds.

Proof. To prove Q(M,a), let b be an element such that a % b where we have to show
M∪{{b}} ∈ A. To prove the latter, we consider an arbitrary N with M∪{{b}} �gms-step N
and have to show N ∈ A. From M ∪ {{b}} �gms-step N we obtain suitable m1, . . . ,mk,
n1, . . . , nk, m, and N ′ to perform the splits M ∪ {{b}} = {{m}} ∪ {{m1, . . . ,mk}} and
N = N ′ ∪ {{n1, . . . , nk}}. We distinguish two cases: either b is part of {{m1, . . . ,mk}} or
equal to m.

If b = mi for some i then M �gms-step N \ {{ni}}. Thanks to the first hypothesis and
the fact that a % ni (because a % b = mi % ni), we can conclude that N ∈ A.

If b = m then one can prove {{n1, . . . , nk}} ∈ A using the fact that {{m1, . . . ,mk}} =
M ∈ A and ∀i.mi % ni. By induction on the size of N ′ and thanks to the second
hypothesis and the fact that for any p ∈ N ′, a % b � p, we deduce that {{n1, . . . , nk}} ∪
N ′ ∈ A which concludes the proof.

Lemma 12.8. ∀M.M ∈ A.



132 Chapter 12. Formalization of Termination Techniques Based on Multiset Orderings

Proof. The proof of the lemma is done by induction on the size of the multiset M .
If M is the empty multiset, then obviously, it is strongly normalizing (hence in A).
Otherwise we have to prove ∀a.∀M ∈ A.M ∪ {{a}} ∈ A which is the same as ∀a.P (a).

We perform a well-founded induction on a (w.r.t. �) using the property P and are left to
prove P (a) assuming that ∀b.a � b→ P (b) holds. We pick a multiset M ∈ A and perform
an induction on M using (?) to prove the property Q(M,a) (which entails P (a) because
% is reflexive): for any M ∈ A we have to prove Q(M,a) given the induction hypothesis
∀N.M �gms-step N → Q(N, a). But this result is a trivial application of Lem. 12.7 using
the two induction hypotheses that we just generated.

Using Lem. 12.6 and Lem. 12.8, strong normalization of �gms immediately follows.

Theorem 12.9. �gms is strongly normalizing.

12.4. Multiset and Recursive Path Ordering

In this section we study variations of MPO and RPO. To this end, throughout this section
we assume that > is some precedence for the signature F . We write > = > \ 6 for the
strict part of the precedence, and ≈ = > ∩6 for its equivalence relation.

A standard version of MPO allowing quasi-precedences can be defined by the following
inference rules.

si �mpo t
f(~s) �mpo t

{{~s}} �mpoms {{~t}}
f(~s) �mpo g(~t)

f ≈ g
f(~s) �mpo ti for all i

f(~s) �mpo g(~t)
f > g

For example for the precedence where g ≈ h we conclude that f(y, s(x)) �mpo f(x, y) and
g(s(x)) �mpo h(x), but f(g(y), s(x)) 6�mpo f(x, h(y)) since {{g(y), s(x)}} 6�mpoms {{x, h(y)}} as
g(y) 6�mpo h(y).

To increase the power of MPO, the following inference rules are sometimes used which
generalize MPO by defining two orderings �gmpo and %gmpo where the multiset extension
is done via �gms . This variant of MPO is the one that is internally used within AProVE,
and if one removes the last inference rule (x %gmpo c), then it is equivalent to the MPO
definition of [92].

(1)
si %

gmpo t

f(~s) �gmpo t (2)
{{~s}} �gmpogms {{~t}}
f(~s) �gmpo g(~t)

f ≈ g (3)
f(~s) �gmpo ti for all i

f(~s) �gmpo g(~t)
f > g

(4)
s �gmpo t
s %gmpo t

(5)
{{~s}} %gmpo

gms {{~t}}
f(~s) %gmpo g(~t)

f ≈ g (6)
x %gmpo c

if ∀f ∈ F : f > c

Hence, there are two differences between �gmpo (the reflexive closure of �gmpo) and %gmpo:
only in %gmpo one can compare multisets using the non-strict multiset ordering, and one
can compare variables against constants of least precedence. This latter feature is similar
to polynomial orderings where x > 0, and it was also added to the Knuth-Bendix-Ordering
[65].

The increase of power of �gmpo in comparison to �mpo is due to both new features in the
non-strict relation. For example, using the same precedence as before, f(g(y), s(x)) �gmpo
f(x, h(y)) as g(y) %gmpo h(y) and s(x) �gmpo x. Moreover, f(f(y, z), s(x)) �gmpo f(x, f(a, z))
if a has least precedence, where this decrease is only possible due to the comparison
y %gmpo a.



12.4. Multiset and Recursive Path Ordering 133

Note that %gmpo is a strict superset of the equivalence relation where equality is defined
modulo ≈ and modulo permutations. For this inclusion, indeed all three inference rules
(4-6) of %gmpo are essential. With (4) and (5) we completely subsume the equivalence
relation, and (6) exceeds the equivalence relation. However, then also (5) adds additional
power by using %gms instead of multiset equality w.r.t. the equivalence relation. As an
example, consider g(x) %gmpo g(a).

Finally note that our definition does not require any explicit definition of an equivalence
relation, one can just use %gmpo ∩ -gmpo. This is in contrast to the RPO in related
formalizations of CoLoR [13] and Coccinelle [21]. In Coccinelle first an equivalence relation
for RPO is defined explicitly, before defining the strict ordering,1 and the RPO of CoLoR
currently just supports syntactic equality.2

The reason that AProVE uses �gmpo for its MPO implementation is easily understood,
as �gmpo is more powerful than �mpo, and the SAT/SMT-encodings of �mpo and �gmpo
to find a suitable precedence are quite similar, so there is not much overhead. Hence, in
order to be able to certify AProVE’s MPO proofs—which then also allows to certify weaker
variants of MPO—we have formally proved that (%gmpo,�gmpo) is a monotone reduction
pair. Concerning strong normalization of �gmpo, we did not use Kruskal’s tree theorem,
but we performed a proof similar to the strong normalization proof of the (higher-order)
recursive path ordering as in [13, 21, 57, 63] (which is based on reducibility predicates
of Tait and Girard.) By following this proof and by using the results of Sec. 12.3, it
was an easy—but tedious—task to formalize the following main result. Here—as for the
generalized multiset ordering—the transitivity proof became more complex as one has to
prove transitivity and compatibility of %gmpo and �gmpo at the same time, i.e., within one
large inductive proof.

Theorem 12.10. The pair (%gmpo,�gmpo) is a monotone reduction pair.

Whereas Thm. 12.10 was to be expected—�gmpo is just an extension of �mpo, and
it is well known that (�mpo,�mpo) is a monotone reduction pair—we detected a major
difference when trying to certify existing proofs where one has to compute for a given
precedence whether two terms are in relation. This problem is in P for �mpo but it turns
out to be NP-complete for �gmpo.

Theorem 12.11. Let there be some fixed precedence. The problem of deciding ` �gmpo r
for two terms ` and r is NP-complete.

Proof. Membership in NP is easily proved. Since the size of every proof-tree for ` �mpo r
is bounded by 2 · |`| · |r|, one can just guess how the inference rules for �mpo have to be
applied; and for the multiset comparisons one can also just guess the splitting.

To show NP-hardness we perform a reduction from SAT. So let φ be some Boolean
formula over variables {x1, . . . , xn} represented as a set of clauses {C1, . . . , Cm} where
each clause is a set of literals, and each literal l is variable xi or a negated variable xi.
W.l.o.g. we assume n ≥ 2.

In the following we will construct one constraint ` �gmpo r for terms `, r ∈ T (F ,V)
where F = {a, f, g, h} and V = {x1, . . . , xn, y1, . . . , ym}. To this end, we define s(l, Cj) =
yj, if l ∈ Cj, and s(l, Cj) = a, otherwise. Moreover, t+x = f(x, s(x,C1), . . . , s(x,Cm)),
t−x = f(x, s(x,C1), . . . , s(x,Cm)), tx = f(x, a, . . . , a). We define L = {{t+x1 , t

−
x1
, . . . , t+xn , t

−
xn}}

1See http://www.lri.fr/~contejea/Coccinelle/doc/term_orderings.rpo.html.
2See http://color.inria.fr/doc/CoLoR.RPO.VRPO_Type.html.

http://www.lri.fr/~contejea/Coccinelle/doc/term_orderings.rpo.html
http://color.inria.fr/doc/CoLoR.RPO.VRPO_Type.html


134 Chapter 12. Formalization of Termination Techniques Based on Multiset Orderings

and R = {{tx1 , . . . , txn , y1, . . . , ym}}. Finally, we define ` = g(L) and r = h(R)—where
here we abuse notation and interpret L and R as lists of terms.

We prove that φ is satisfiable iff ` �gmpo r for the precedence where a ≈ f ≈ g ≈ h.
For this precedence, ` �gmpo r iff L �gmpogms R since there is only one inference rule that
can successfully be applied. The reason is that f 6> g and for each term t±xi of L we have
t±xi 6%

gmpo r where t±xi represents one of the terms t+xi or t−xi . To see the latter, assume
t±xi %

gmpo r would hold. Then {xi, y1, . . . , ym} ⊇ V(t±xi) ⊇ V(r) ⊇ {x1, . . . , xn} being a
contradiction to n ≥ 2.

To examine whether L �gmpogms R can hold, let us consider an arbitrary splitting of R
into a strict part S ′ and a non-strict part E ′. Notice that t+x %gmpo tx and t−x %gmpo tx,
but neither t+x �gmpo tx nor t−x �gmpo tx: the reason is that for each l and Cj we get
s(l, Cj) %gmpo a but not s(l, Cj) �gmpo a. Hence, each tx of R must be contained in E ′.
As moreover, t±xi �

gmpo yj iff t±xi %
gmpo yj we can w.l.o.g. assume that each yj ∈ S ′. In

total, if L �gmpogms R, then R must be split into S ′ ∪ E ′ where S ′ = {{y1, . . . , ym}} and
E ′ = {{tx1 , . . . , txn}} and L must be split into S ∪E such that all conditions of �gmpogms are
satisfied.

At this point we consider both directions to show that φ is satisfiable iff L �gmpogms R.
First assume that φ is satisfiable, so let α be some satisfying assignment. Then we

choose S = {{t+x | α(x) = >}} ∪ {{t−x | α(x) = ⊥}} and E = L \ S. Notice that for each x
exactly one of t+x and t−x is in S, and the other is in E. Hence, for each tx ∈ E ′ there is a
corresponding t±x ∈ E with t±x %gmpo tx. Next, we have to find for each yj ∈ S ′ some term
in S which is larger than yj. To this end, notice that α is a satisfying assignment, thus
there is some literal xi or xi in Cj which evaluates to true. If xi ∈ Cj then α(xi) = > and
hence, t+xi ∈ S where t+xi = f(. . . , yj, . . . ) �gmpo yj. Otherwise, xi ∈ Cj and α(xi) = ⊥ and
hence, t−xi ∈ S where t−xi = f(. . . , yj, . . . ) �gmpo yj. Thus, in both cases there is some term
in S being larger than yj. Moreover, S 6= ∅ since |S| = n ≥ 2.

For the other direction assume that S and E could be found such that L = S ∪E and
all conditions of �gmpogms are satisfied. Hence for each txi ∈ E ′ there is some term t ∈ E
satisfying t %gmpo txi . Then, t can only be t+xi or t−xi since xi ∈ V(tx) and each other term
t±xj with i 6= j does not contain the variable xi. Thus, for each i exactly one of the terms

t+xi and t−xi is contained in E and the other is contained in S. We define the assignment
α where α(xi) = > iff t+xi ∈ S. It remains to show that α is a satisfying assignment for
φ. So let Cj be some clause of φ. Since yj ∈ S ′ we know that there is some t ∈ S with
t �gmpo yj, i.e., yj ∈ V(t). There are two cases. First, if t = t+xi for some i, then by the
definition of t+ we know that yj ∈ V(t+xi) implies xi ∈ Cj, and hence Cj is evaluated to
true, since α(xi) = > by definition of α. Otherwise, t = t−xi for some i where now xi ∈ Cj.
Moreover, as t−xi ∈ S, we know that t+xi /∈ S and hence, α(xi) = ⊥. Together with xi ∈ Cj
this again shows that Cj is evaluated to true. Hence, all clauses evaluate to true using α
which proves that φ is satisfiable.

The following corollary states that NP-completeness is essentially due to fact that �gms

and %gms are hard to compute, even if all comparisons of the elements in the multiset are
given. It can be seen within the previous proof, where the important part of the reduction
from SAT was to define for each formula φ the multisets L and R such that φ is satisfiable
iff L �gmpogms R (and also iff L %gmpo

gms R).

Corollary 12.12. Given two orderings � and %, two multisets M and N , and the set
{(x, y, x � y, x % y) | x ∈ M, y ∈ N}, deciding M �gms N and M %gms N is NP-
complete.



12.4. Multiset and Recursive Path Ordering 135

Of course, if the splitting for the multiset comparison is given, then deciding �gms and
%gms becomes polynomial.

All our results have also been generalized to RPO where for every function symbol
there is a status function τ which determines whether the arguments of each function f
should be compared lexicographically (τ(f) = lex ) or via multisets (τ(f) = mul).3 Here,
the existing inference rules of �gmpo are modified that instead of f ≈ g it is additionally
demanded that τ(f) = τ(g) = mul . Moreover, there are two additional inference rules for
f ≈ g and τ(f) = τ(g) = lex , one for the strict ordering �grpo and one for the non-strict
ordering %grpo.

Again, �grpo is used in AProVE instead of the standard definition of RPO (�rpo,[27]).
However, during our formalization we have detected that in contrast to (%gmpo,�gmpo),
the pair (%grpo,�grpo) is not a reduction pair, as the orderings are not stable. To see
this, consider a precedence where a and b have least precedence, and τ(a) 6= τ(b). Then
x %grpo a, but b 6%grpo a.

Our solution to this problem is to add the following further inference rules which allow
comparisons of terms f(~s) with g(~t) where τ(f) 6= τ(g). In detail, we require that ~t is
empty and for a strict decrease, additionally ~s must be non-empty.

|~s| > 0 |~t| = 0

f(~s) �grpo g(~t)
f ≈ g, τ(f) 6= τ(g)

|~t| = 0

f(~s) %grpo g(~t)
f ≈ g, τ(f) 6= τ(g)

If these inference rules are added, then indeed (%grpo,�grpo) is a monotone reduction
pair. As a consequence, one can interpret AProVE’s version of RPO as a sound, but
non-stable under-approximation of �grpo.

We also tried to to relax the preconditions further, e.g. by allowing vectors~t of length at
most one. But no matter whether we also restrict the length of ~s in some way or not, and
no matter whether we compared the arguments ~s and~t lexicographically or via multisets,
the outcome was always that transitivity or strong normalization are lost.

For example, if we add the inference rule that {{~s}} �grpogms {{~t}}, |~t| ≤ 1, f ≈ g,
and τ(f) 6= τ(g) implies f(s) �grpo g(t), then strong normalization is lost: assume the
precedence is defined by f ≈ g ≈ h and 3 > 2 > 1 > 0, and the status is defined by
τ(f) = τ(h) = lex and τ(g) = mul . Then f(0, 3) �grpo g(2) �grpo h(1) �grpo f(0, 3) clearly
shows that the resulting ordering is not strongly normalizing anymore.

To summarize, �gmpo and �grpo are strictly more powerful reduction orderings than
the standard definitions of MPO and RPO (�mpo and �rpo). The price for the increased
power is that checking constraints for �gmpo and �grpo becomes NP-complete whereas it
is in P for �mpo and �rpo.

Note that if one would provide all required splittings for the multiset comparisons
in �gmpo and �grpo, then constraint checking again becomes polynomial. However, this
would make certificates more bulky, and since in practice the arities of function symbols
are rather small, certification can efficiently be done even without additional splitting
information.

3We do not consider permutations for lexicographic comparisons in the definition of RPO as this feature
can be simulated by generating reduction pairs using an RPO (without permutations) in combination
with argument filterings as defined in [3]. In this way, we only have to formalize permutations once
and we can reuse them for other orderings like KBO.



136 Chapter 12. Formalization of Termination Techniques Based on Multiset Orderings

12.5. SCNP Reduction Pairs

The size-change criterion of [74] to prove termination of programs can be seen as a graph-
theoretical problem: given a set of graphs—encoding for each recursive call the decrease
in size of each argument—one tries to decide the size-change termination condition (SCT
condition) on the graphs, namely that in every infinite sequence of graphs one can find
an argument whose size is strictly decreased infinitely often. If the condition is satisfied,
then termination is proved.

Concerning automation of the size-change principle, there are two problems: first,
the base ordering (or size-measure or ranking function) must be provided to construct
the graphs, and second, even for a given base ordering, deciding the SCT condition is
PSPACE-complete.

To overcome these problems, in [7] and [20] sufficient criteria have been developed.
They approximate the SCT condition in a way that can be encoded into SAT.

Another benefit of [20] is an integration of the approximated SCT condition as a reduc-
tion pair in the dependency pair framework (DP framework) [42], called SCNP reduction
pair.

Although IsaFoR contains already a full formalization of size-change termination as it is
used in [102], an integration of SCNP reduction pairs in the certification process might
be beneficial for two reasons:

• since deciding the SCT condition is PSPACE hard, whereas the approximated con-
dition can be encoded into SAT, the certificates might be easier to check

• the approximated SCT condition is not fully subsumed by the SCT condition as
only the former allows incremental termination proofs in the DP framework

Before we describe our formalization of SCNP reduction pairs, we shortly recall some
notions of the DP framework, a popular framework to perform modular termination proofs
for TRSs. The main data structure are DP problems (P ,R) consisting of two TRSs where
all rules in P are of the form F (. . . )→ G(. . . ) where F,G are symbols that do not occur
in R. The main task is to prove finiteness of the a given DP problem (P ,R), i.e., absence
of infinite minimal chains s1σ → t1σ →∗R s2σ → t2σ . . . where all si → ti ∈ P and all tiσ
are terminating w.r.t. R. To this end, one uses various processors to simplify the initial
DP problem for a TRS until the P-component is empty.

One of the most important processors is the reduction pair processor [42, 51]—where
here we only present its basic version without other refinements like usable rules w.r.t.
an argument filtering [42]. It can remove strictly decreasing rules from P , provided that
both P and R are at least weakly decreasing.

Theorem 12.13 (Reduction pair processor). Let (%,�) be a reduction pair. If P ⊆ �∪%
and R ⊆ % then (P ,R) is finite if (P \ �,R) is finite.

Hence, to prove termination it suffices to find different reduction pairs to iteratively
remove rules from P until all rules of P have been removed. Thus, with SCNP reduction
pairs it is possible to choose different base orderings to remove different rules of P .

In the following we report on details of SCNP reduction pairs as defined in [20] and on
their formalization. Essentially, SCNP reduction pairs are generated from reduction pairs
(%,�) via a multiset extension of a lexicographic combination of � with the standard
ordering on the naturals.



12.5. SCNP Reduction Pairs 137

Definition 12.14 (Multiset extension). We define that µ is a multiset extension iff for
each ordering pair (%,�) over A, the pair (%µ,�µ) is an ordering pair over P(A). More-
over, whenever � and % are closed under an operator op (x

(
%

)
y implies op(x)

(
%

)
op(y)

for all x, y), then �µ and %µ must also be closed under the image of op on multisets
(M

(
%

)µ
N implies op[M ]

(
%

)µ
op[N ]).

We also call (%µ,�µ) the multiset extension of (%,�) w.r.t. µ.

For example, gms is a multiset extension and in [7] and [20] in total four extensions
are listed to compare multisets (gms , min, max , and dms). The extension dms is the
dual multiset extension [8] where our formulation is equivalent to the definition in [20].4

The strict relation is defined as M �dms N iff M = {{x1, . . . , xm}} ∪ {{z1, . . . , zk}}, N =
{{y1, . . . , yn}}∪{{z′1, . . . , z′k}}, n > 0, ∀i.zi % z′i, and ∀xi.∃yj.xi � yj; the non-strict relation
%dms is defined like �dms except that the condition n > 0 is omitted.

For SCNP reduction pairs, multisets are compared via one of the four multiset exten-
sions. And to generate multisets from terms, the notion of a level mapping is used.

Definition 12.15 (Level mapping [20]). For each f ∈ F with arity n, let π(f) ∈
P({1, . . . , n} × N).5 We define the level-mapping L : T (F ,V)→ P(T (F ,V)× N) where
L(f(s1, . . . , sn)) = {{〈si, k〉 | (i, k) ∈ π(f)}}.6

Definition 12.16. Let (%,�) be a reduction pair for terms in T (F ,V). Let µ be a multiset
extension. The ordering pair (%N,�N) over T (F ,V) × N is defined as the lexicographic
combination of (%,�) with the >-ordering on the naturals: 〈s, n〉 %N 〈t,m〉 iff s � t∨(s %
t ∧ n ≥ m), and 〈s, n〉 �N 〈t,m〉 iff s � t ∨ (s % t ∧ n > m). The ordering pair (%N

µ ,�N
µ)

is defined as the multiset extension of (%N,�N) w.r.t. µ.

In principle, �N
µ ∪ %N

µ is the part of a SCNP reduction pair that should be used to
compare left- and right-hand sides of P within the reduction pair processor. However,
one also needs to orient the rules in R via %. To this end, two types are introduced in
[20] so that the final ordering incorporates both �N

µ ∪%N
µ for P and % for R. In detail, the

signature F is partitioned into F b ] F ] consisting of base symbols F b and tuple-symbols
F ]. The set of base terms is T (F b,V), and a tuple term is a term of the form F (t1, . . . , tn)
where F ∈ F ] and each ti is a base term.

Notice that for a DP problem (P ,R) all terms in P are tuple terms and all terms in R
are base terms if one chooses F ] to be the set of root symbols of terms in P . Therefore,
SCNP reduction pairs are defined in a way that the ordering depends on whether tuple
terms or base terms are compared.

Definition 12.17 (SCNP reduction pair [20]). Let µ be a multiset extension and L be a
level mapping. Let (%,�) be a reduction pair over T (F ,V). The SCNP reduction pair
is the pair (%L,µ,�L,µ) where the relations %L,µ and �L,µ over T (F ,V) are defined as
follows. If t and s are tuple terms, then t �L,µ s iff L(t) �N

µ L(s), and t %L,µ s iff
L(t) %N

µ L(s). Otherwise, if t and s are base terms, then t %L,µ s iff t % s, and t �L,µ s
iff t � s.

4There is a difference in the definition of the dual multiset extension in [7, 8] to the definition in [20]
which is similar to the difference between �ms and �gms .

5In [20] there was an additional condition that π(f) may not contain two entries 〈j, k1〉 and 〈j, k2〉. It
turned out that this condition is not required for soundness.

6We use the notation L instead of ` for level mappings as in this paper, ` are left-hand sides of rules.



138 Chapter 12. Formalization of Termination Techniques Based on Multiset Orderings

Before stating the major theorem of [20] that SCNP reduction pairs are reduction pairs,
we first have to clarify the notion of reduction pair: In [20, Sec. 2] a non standard definition
of a reduction pair is used which differs from Def. 12.1. To distinguish between both kinds
of reduction pairs we call the ones of [20] typed reduction pairs.

Definition 12.18 (Typed reduction pair [20]). A typed reduction pair is a reduction pair
(%,�) over T (F ,V) with the additional condition that % compares either two tuple terms
or two base terms.

So, the major theorem of [20] states that whenever (%,�) is a typed reduction pair,
then so is (%L,µ,�L,µ) where µ is one of the four mentioned multiset extensions.

The major problem in the formalization of exactly this theorem required a link between
the two notions of reduction pairs since all other theorems working with reduction pairs
in IsaFoR are using Def. 12.1.

At this point, it turned out that there are problems with Def. 12.18. Of course, to use
the major theorem of [20] one needs a typed reduction pair to start from. Unfortunately,
common reduction pairs like RPO are not typed reduction pairs w.r.t. Def. 12.18. For
example, if F ∈ F ] then F (F (x)) %grpo F (F (x)), but then % does not satisfy the addi-
tional condition of Def. 12.18, since here two terms are in relation which are neither base
terms nor tuple terms.

A possible solution might be to require that (%,�) is just a reduction pair and then
show that (%L,µ,�L,µ) is a typed reduction pair. However, even with this adaptation the
problems remain, since Def. 12.18 itself is flawed: assume (%,�) is a typed reduction pair
and F is a non-constant tuple symbol. Since % is a quasi-ordering (on tuple-terms) it is
reflexive, and thus F (~t) % F (~t) for every list ~t of base terms. By monotonicity of % also
F (. . . , F (~t), . . . ) % F (. . . , F (~t), . . . ) must hold, in contradiction to the condition that %
only compares base terms or tuple terms. So, there is a severe problem in demanding
both monotonicity of % and the additional condition of Def. 12.18.

Repairing Def. 12.18 by only requiring monotonicity w.r.t. F b is also no solution, since
for using reduction pairs in the reduction pair processor, it is essential that % is also
closed under F ]-contexts.

For a proper fix of SCNP reduction pairs, note that the distinction between tuple terms
and base terms in [20] is solely performed, to have two kinds of orderings: % for orienting
rules in R, and %N

µ and �N
µ for orienting rules of P .

However, there is already a notion which allows the usage of different orderings for
orientation of P and R, namely reduction triples. The advantage of this notion is the fact
that it does not require any distinction between base and tuple terms.

Definition 12.19 (Reduction triple, [51]). A reduction triple is a triple (%,%>,�>) such
that (%,�>) is a reduction pair and (%>,�>) is a non-monotone reduction pair.

Reduction triples can be used instead of reduction pairs in Thm. 12.13: in [51] it is
shown that whenever P ⊆ �> ∪%> and R ⊆ % then P can be replaced by P \�> in the
DP problem (P ,R). The proof is similar to the one of Thm. 12.13 and also in IsaFoR it
was easy to switch from reduction pairs to reduction triples. Hence, the obvious attempt
is to define SCNP reduction pairs as reduction triples. As there is no distinction of base
terms and tuple terms, we will not run into problems that are caused by the required
monotonicity of %.

Definition 12.20 (SCNP reduction triple). Let µ be a multiset extension and L be a level
mapping. Let (%,�) be a reduction pair.



12.5. SCNP Reduction Pairs 139

We define %> and �> as t %> s iff L(t) %N
µ L(s), and t �> s iff L(t) �N

µ L(s). Then
the SCNP reduction triple is defined as (%,%>,�>).

If we are able to prove that every SCNP reduction triple is indeed a reduction triple,
then we are done. Unfortunately, it turns out that an SCNP reduction triple is not a
reduction triple, where the new problem is that compatibility between �> and % cannot
be ensured. As an example, consider a reduction pair (%,�) which is defined via an RPO
with precedence b > a and status τ(F ) = lex . Moreover, let the level-mapping be defined
via π(F ) = {{〈2, 0〉}} and take µ = gms . Then F (a, b) �> F (b, a) since L(F (a, b)) =
{{〈b, 0〉}} �N

gms {{〈a, 0〉}} = L(F (b, a)). Furthermore, F (b, a) % F (a, b). However, if
�> and % were compatible, then we would be able to conclude F (a, b) �> F (a, b), a
contradiction.

To this end, we finally have defined a weaker notion than reduction triples which can
still be used like reduction triples.

Definition 12.21 (Root reduction triple). A root reduction triple is a triple (%,%>,�>)
such that (%>,�>) is a non-monotone reduction pair, % is a stable and monotone quasi-
ordering, and whenever s % t then f(v1, . . . , vi−1, s, vi+1, . . . , vn) %> f(v1, . . . , vi−1, t,
vi+1, . . . , vn).

Note that every reduction triple (%,%>,�>) is also a root reduction triple provided
that % ⊆ %>—and as far as we know this condition is satisfied for all reduction triples
that are currently used in termination tools. Moreover, root reduction triples can be used
in the same way as reduction triples to remove pairs which has been proved in IsaFoR.

Theorem 12.22 (Root reduction triple processor). Let (%,%>,�>) be a root reduction
triple. Whenever P ⊆ �> ∪%>, R ⊆ %, and (P \ �>,R) is finite, then (P ,R) is finite.

Hence, the notion of root reduction triple seems useful for termination proving. And
indeed, it turns out that each SCNP reduction triple is a root reduction triple which finally
shows that SCNP reduction triples can be used to remove pairs from DP problems.7

Theorem 12.23. Every SCNP reduction triple is a root reduction triple.

Thm. 12.23 is formally proved within IsaFoR, theory SCNP. Note that this formalization
was straightforward, once the notion of root reduction triple was available: the whole for-
malization takes only 310 lines. It also includes the feature of ε-arguments—an extension
of size-change graphs which is mentioned in both [102] and [20]—and it contains results
on Ce-compatibility and compatibility w.r.t. to argument filterings. The latter results are
important when dealing with usable rules, cf. [42] for further details.

Regarding the formalization of multiset extensions—which is orthogonal to the formal-
ization of SCNP reduction triple—we were able to integrate three of the four mentioned
multiset extensions. However, for the multiset extension dms it is essential that the
signature F is finite as otherwise strong normalization is not necessarily preserved, cf.
Ex. 12.24. Here, the essential issue is that without an explicit bound on the sizes of the
multiset, strong normalization is lost (such a bound is explicitly demanded in [7], but not
in [20]).

7An alternative—but unpublished—fix to properly define SCNP reduction pairs has been developed by
Carsten Fuhs. It is based on typed term rewriting. (private communication)



140 Chapter 12. Formalization of Termination Techniques Based on Multiset Orderings

Example 12.24. In [20] it is assumed that the initial TRS is finite. Hence, also the
initial signature is finite which in turn gives a bound on the sizes of the constructed
multisets. However, for the soundness of SCNP reduction pairs it is essential that the
signature of the current system is finite, since otherwise the following steps would be a
valid termination proof for the TRS R = {a → a} as there is no bound on the sizes of
multisets.

• Build the initial DP problem ({A→ A},R).

• Replace this DP problem by the DP problem D = ({Ai(x, . . . , x)→ Ai+1(x, . . . , x) |
i ∈ N}, ∅) where the arity of each Ai is i. This step is sound, as D is not finite.

• Replace D by (∅, ∅). This can be done using the SCNP reduction pair where µ =
dms, π(Ai) = {〈j, 0〉 | 1 ≤ j ≤ i}, and (%,�) is any reduction pair. The reason is
that

{{〈x, 0〉, . . . , 〈x, 0〉︸ ︷︷ ︸
i times

}} �dms {{〈x, 0〉, . . . , 〈x, 0〉︸ ︷︷ ︸
i+ 1 times

}}.

The demand for a bound on the signature for dms resulted in a small problem in our
formalization, since in IsaFoR we never have finite signatures: for each symbol f we directly
include infinitely many f ’s, one for each possible arity in N. So, in principle there might
not be any bound on the size of the multisets that are constructed by the level mapping.
Hence, we use a slightly different version of dms which includes some fixed bound n on the
size of the multisets: we define M

(
%

)dms-n
N iff M

(
%

)dms
N and |N | ≤ n ∨ |N | = |M |.

Hence, dms-n is a restriction of dms where either the sizes of the multisets are bounded
by n or where multisets of the same sizes are compared.

Note that the additional explicit restriction of |N | ≤ n ensures strong normalization
even for infinite F or unbounded multisets. The other alternative |N | = |M | is added, as
otherwise reflexivity of %dms-n is lost, for example {{x, . . . , x︸ ︷︷ ︸

n+1

}} %dms-n {{x, . . . , x︸ ︷︷ ︸
n+1

}} would
no longer hold.

In practice, the difference between dms and dms-n can be neglected. As for the certifi-
cation we only consider finite TRSs, we just precompute a suitable large enough number
n such that for the resulting constraints dms and dms-n coincide.

We conclude this section by showing that certification of SCNP reduction triples is
NP-hard in the case of µ ∈ {gms , dms} which also implies that deciding �dms is NP-hard.

Theorem 12.25. Given a SCNP reduction triple (%,%>,�>) and µ ∈ {gms , dms}, the
problem of deciding ` �> r for two terms ` and r is NP-hard.

Proof. For µ = gms we use nearly the identical reduction from SAT as we used in the
proof of Thm. 12.11. To be more precise, for each formula φ we use the exactly the same
terms ` and r and the same multisets L and R as before. Moreover, we define the level-
mapping by choosing π(g) = {〈i, 0〉 | 1 ≤ i ≤ 2n} and π(h) = {〈i, 0〉 | 1 ≤ i ≤ n + m}.
Then for L′ = {{〈s, 0〉 | s ∈ L}} and R′ = {{〈s, 0〉 | s ∈ R}} we obtain ` �> r iff L′ �N

gms R
′

iff L �gms R. It remains to choose � as the MPO within the proof of Thm. 12.11. Then
L �gms R iff φ is satisfiable, so in total, ` �> r iff φ is satisfiable.

Furthermore, it can easily be argued that NP-hardness is not a result of our extended
definition of MPO: we also achieve L �gms R iff φ is satisfiable if we define � by a
polynomial interpretation Pol with Pol(f(x0, . . . , xm)) = 1+x0+ · · ·+xm and Pol(a) = 0.

For µ = dms one can use a similar reduction from SAT: satisfiability of φ is equivalent
to ` �> r using the same level-mapping as before, but where now ` = h(x1 ∨ x1, . . . , xn ∨



12.6. Certification Algorithms 141

xn, s(C
′
1), . . . , s(C

′
m)), r = g(x1, x1, . . . , xn, xn), and � is defined as the polynomial in-

terpretation Pol where Pol(s(x)) = 1 + x and Pol(x ∨ y) = x + y. Here, each C ′i is a
representation of clause Ci as disjunction.

12.6. Certification Algorithms

For the certification of existing proofs using RPO and SCNP reduction pairs there are in
principle two possibilities, which we will explain using RPO.

The first solution for certifying s �grpo t is to use a shallow embedding. In this approach,
some untrusted tool figures out how the inference rules of RPO have to be applied and
generates a proof script that can then be checked by the proof assistant. This solution
cannot be used in our case, since CeTA is obtained from IsaFoR via code generation.

The second solution is to use a deep embedding where an algorithm for deciding RPO
is developed within the proof assistant in combination with a soundness proof. Then this
algorithm is amenable for code generation, and such an algorithm is also used in related
certifiers [13,21] where it is accessible via reflection. Hence, we had to develop a function
for deciding RPO constraints within Isabelle. In our case, we have written a function
grpoτ> for RPO, which is parametrized by a precedence > and a status τ . It takes two
terms s and t as input and returns the pair (s �grpo t, s %grpo t). In fact, we even defined
RPO via grpoτ> and only later on derived the inference rules that have been presented in
Sec. 12.4.

Since we proved several properties of RPO directly via grpoτ> (theory RPO), we im-
plemented grpoτ> in a straightforward way as recursive function. As a result, grpoτ> has
exponential runtime, since no sharing of identical subcalls is performed. To this end, we
developed a second function for RPO, that has been proved to be equivalent to grpoτ>,
but where memoization is integrated—a well known technique where intermediate results
are stored to avoid duplicate computations. In principle, this is an easy programming
task, but since we use a deep embedding, we had to formally prove correctness of this
optimization.

To stay as general as possible, the memoized function was implemented independent
of the actual data structure used as memory. The interface we use for a memory is as
follows. We call a memory valid w.r.t. to a function f if all entries in the memory are
results of f . Moreover we require functionality for looking up a result in the memory and
for storing a new result with the obvious soundness properties: storing a correct entry in
a valid memory yields a valid memory and looking up an entry in a valid memory returns
a correct result, i.e., the same result that would have been computed by f .

Assuming we have such a memory at our disposal the idea of memoizing is straightfor-
ward: before computing a result we do a lookup in the memory and if an entry is found
we return it and leave the memory unchanged. Otherwise we compute as usual, store the
result in the memory and return both.

The main difficulty was that all recursive calls of grpoτ> are indirect via higher-order
functions like the computation of the multiset- and lexicographic extension of a relation.
Consequently results of recursive calls to RPO are not available directly, but only in these
higher-order functions. Thus, they have to take care of storing results in the memory and
of passing it on to the next RPO call. Hence, new memoizing versions of all these higher-
order functions had to be implemented and their soundness had to be proved. Soundness
meaning that, when given equivalent functions as arguments, they compute the same
results as their counterparts without memory handling, and that given a valid memory as



142 Chapter 12. Formalization of Termination Techniques Based on Multiset Orderings

input they return a valid memory in addition to their result. For further details we refer
to theory Efficient-RPO.

Concerning the required decision procedures for gms and dms which have to find suit-
able splittings, we used a branch-and-bound approach.

We tested our certification algorithms by rerunning all experiments that have been
performed in [20]. Here, AProVE tries to prove termination of 1,381 TRSs from the
termination problem database (TPDB version 7.0) using 20 different strategies where in
12 cases SCNP reduction pairs are used and full size-change termination is tried 4 times.
Here, in 16 strategies RPO or weaker orderings have been tried. As in [20] we used a
timeout of 60 seconds and although we used a different computer than in [20], on the
20 × 1, 381 termination problems, there are only 8 differences in both experiments—all
due to a timeout.

By performing the experiments we were able to detect a bug in the proof output of
AProVE—the usable rules have not been computed correctly. After a corresponding fix
indeed all 9,025 generated proofs could be certified by CeTA (version 2.2).

The experiments contain 432 proofs where the usage of �gms and %gms was essential,
i.e., where the constraints could not be oriented by �ms and �ms. If one allows equality
modulo the equivalence relation induced by the ordering, then still 39 proofs require �gms

and %gms .
Regarding the time required for certification, although it is NP-complete, in our exper-

iments, certification is much faster than proof search. The reason is that our certification
algorithms are only exponential in the arity of the function symbols, and in the exper-
iments the maximal arity was 7. In numbers: AProVE required more than 31 hours (≈
4 seconds per example) whereas CeTA was done in below 6 minutes (≈ 0.04 seconds per
example).

The experiments also show that proofs using SCNP reduction pairs can indeed be
certified faster than proofs using full size-change termination. In average, the latter proofs
require 50 % more time for certification than the former.

All details of our experiments are available at http://cl-informatik.uibk.ac.at/

software/ceta/experiments/multisets/.

12.7. Summary

We have studied the generalization of the multiset ordering which is generated by two or-
derings: a strict one and a compatible non-strict one. Indeed this generalization preserves
most properties of the standard multiset ordering, where we only detected one difference:
the decision problem becomes NP-complete.

Concerning termination techniques that depend on multiset orderings, we formalized
and corrected an extended variant of RPO that is used within AProVE, and we formalized
and corrected SCNP reduction pairs. Certification of both techniques is NP-hard.

Acknowledgments

We thank Carsten Fuhs for helpful discussions and his support in the experiments, and
we thank the anonymous referees for their helpful comments.

http://cl-informatik.uibk.ac.at/software/ceta/experiments/multisets/
http://cl-informatik.uibk.ac.at/software/ceta/experiments/multisets/


13. Certification of Nontermination
Proofs

Publication details

Christian Sternagel and René Thiemann. Certification of Nontermination Proofs. In
Proceedings of the 3rd International Conference on Interactive Theorem Proving, volume
7406 of LNCS, pages 266–282. Springer, 2012.

Abstract

Automatic tools for proving (non)termination of term rewrite systems, if successful, de-
liver proofs as justification. In this work, we focus on how to certify nontermination
proofs. Besides some techniques that allow to reduce the number of rules, the main way
of showing nontermination is to find a loop, a finite derivation of a special shape that
implies nontermination. For standard termination, certifying loops is easy. However, it is
not at all trivial to certify whether a given loop also implies innermost nontermination.
To this end, a complex decision procedure has been developed in [103]. We formalized this
decision procedure in Isabelle/HOL and were able to simplify some parts considerably.
Furthermore, from our formalized proofs it is easy to obtain a low complexity bound.
Along the way of presenting our formalization, we report on generally applicable ideas
that allow to reduce the formalization effort and improve the efficiency of our certifier.

13.1. Introduction

In program verification the focus is on proving that a function satisfies some property,
e.g., termination. However, in presence of a bug it is more important to find a coun-
terexample indicating the problem. In this way, we can save a lot of time by abandoning
a verification attempt as soon as a counterexample is found. In term rewriting, a well
known counterexample for termination is a loop, essentially giving some “input” on which
a “program” does not terminate. As soon as specific evaluation strategies are considered
it might not be easy to verify whether a given loop constitutes a proper counterexam-
ple. However, since many programming languages employ an eager evaluation strategy,
methods for proving innermost nontermination are important. What is more, some very
natural functions are not even expressible without evaluation strategy. Take for example
equality on terms. There is no (finite) term rewrite system (TRS) that encodes equality on
arbitrary terms (the problem is the case where the two given terms are different). Using
innermost rewriting, encoding equality is possible by the following four rules, as shown
by Daron Vroon (personal communication; he used this encoding to properly model the
built-in equality of ACL2).



144 Chapter 13. Certification of Nontermination Proofs

x == y → chk(eq(x, y)) (1)

eq(x, x)→ true (2)

chk(true)→ true (3)

chk(eq(x, y))→ false (4)

Current techniques for proving innermost nontermination of TRSs consist of prepro-
cessing techniques (narrowing the search space by removing rules) followed by finding a
loop, for which the complex decision procedure of [103] allows to decide whether it implies
innermost nontermination. We formalized this decision procedure as part of our Isabelle
Formalization of Rewriting (IsaFoR). The corresponding certifier CeTA can be obtained
by Isabelle/HOL’s code generator [49, 104]. Both IsaFoR and CeTA are freely available
at http://cl-informatik.uibk.ac.at/software/ceta/ (the relevant theories for this
paper are Innermost_Loops and Nontermination, together with their respective imple-
mentation theories, indicated by the suffix _Impl).

During our formalization we were able to simplify some parts of the decision procedure
considerably. Mostly, due to a new proof which, in contrast to the original proof, does
not depend on Kruskal’s tree theorem. As a result, we can replace the most complicated
algorithm of [103] by a single line. Moreover, we report on how we managed to obtain
efficient versions of other algorithms from [103] within Isabelle/HOL [84].

The remainder is structured as follows. In Sect. 13.2 we give preliminaries. Then,
in Sect. 13.3, we describe the preprocessing techniques (narrowing the search space for
finding a loop) that are supported by our certifier. Afterwards, we present details on
loops w.r.t. the innermost strategy in Sect. 13.4. The main part of this paper is on
our formalization of the decision procedure for innermost loops in Sect. 13.5, before we
conclude in Sect. 13.6.

13.2. Preliminaries

We assume basic familiarity with term rewriting [5]. Nevertheless, we shortly recapitulate
what is used later on. A term t (`, r, s, u, v) is either a variable x (y, z) from the set V , or a
function symbol f (g) from the disjoint set F applied to some argument terms f(t1, . . . , tn).
The root of a term is defined by root(x) = x and root(f(t1, . . . , tn)) = f . The set args(t)
of arguments of t is defined by the equations args(x) = ∅ and args(f(t1, . . . , tn)) =
{t1, . . . , tn}. The set of variables occurring in a term t is denoted by V(t). A context C
(D) is a term containing exactly one occurrence of the special hole symbol 2. Replacing
the hole in a context C by a term t is written C[t]. The term t is a (proper) subterm of
the term s, written (s B t) s D t, iff there is a (non-hole) context C such that s = C[t],
iff there is a (non-empty) position p such that s|p = t. We write s DF t iff s D t and
t /∈ V . A substitution σ (µ) is a mapping from variables to terms whose domain dom(σ) =
{x | σ(x) 6= x} is finite. The range of a substitution is ran(σ) = {σ(x) | x ∈ dom(σ)}.
We represent concrete substitutions using the notation {x1/t1, . . . , xn/tn}. We use σ
interchangeably with its homomorphic extension to terms, writing, e.g., tσ to denote the
application of the substitution σ to the term t. A (rewrite) rule is a pair of terms `→ r
and a term rewrite system (TRS) R is a set of such rules. The rewrite relation (induced
by R) →R is defined by s →R t iff there is a context C, a rewrite rule ` → r ∈ R, and
a substitution σ such that s = C[`σ] and t = C[rσ]. Here, we call `σ a redex (short for
reducible expression) and sometimes write s →R,`σ t to make it explicit. A normal form
is a term that does not contain any redexes. When a rewrite step s→R,`σ t additionally
satisfies that all arguments of `σ are normal forms, it is called an innermost (rewrite)

http://cl-informatik.uibk.ac.at/software/ceta/


13.3. A Framework for Certifying Nontermination 145

step, written s
i→R t. We freely drop R from s→R t if it is clear from the context.

A term t is (innermost) nonterminating w.r.t. R, iff there is an infinite (innermost)
rewrite sequence starting at t, i.e., a derivation of the form

t = t1
(i)→R t2

(i)→R t3
(i)→R · · ·

A TRS R is (innermost) nonterminating iff there is a term t that is (innermost) nonter-
minating w.r.t. R.

13.3. A Framework for Certifying Nontermination

As for termination, there are several techniques that may be combined in order to prove
nontermination. On the one hand, there are basic techniques, i.e., those that immediately
prove nontermination; and on the other hand, there are transformations, i.e., mappings
that turn a given TRS R into a transformed TRS R′ (for which, proving nontermination
is hopefully easier). Such transformations are complete iff (innermost) nontermination of
R′ implies (innermost) nontermination of R. In order to prove nontermination, arbitrary
complete transformations can be applied, before finishing the proof by a basic technique.

In our development we formalized the following basic techniques and complete transfor-
mations. Except for innermost loops and string reversal, none of these techniques posed
any difficulties in the formalization.

Well-Formedness Check. A TRS R is (weakly) well-formed iff no left-hand side is a
variable and all (applicable) rules ` → r satisfy V(r) ⊆ V(`). Where a rule is applicable
iff the arguments of its left-hand side are normal forms (otherwise the rule could never be
used in the innermost case).

Lemma 13.1. If R is not (weakly) well-formed, it is (innermost) nonterminating.

Thus a basic technique is to check whether a TRS is (weakly) well-formed and conclude
(innermost) nontermination, if it is not.

Finding Loops. The second basic technique is to find a loop and it is treated in more
detail in Sect. 13.4.

Rule Removal. One way to narrow the search space when trying to prove nontermina-
tion, is to get rid of rules that cannot contribute to any infinite derivation. This can be
done by employing the same techniques that are already known from termination, namely
monotone reduction pairs [9, 73].

String Reversal. A special variant of TRSs are string rewrite systems, where all function
symbols are fixed to be unary. For this special case, string reversal (see, e.g., [111] and
[97] for its formalization) can be applied.

Dependency Pair Transformation. As for termination, also for nontermination, it is
possible to switch from TRSs to dependency pair problems (DPPs) [3]. This is done by
the so called dependency pair transformation, which intuitively, identifies the mutually



146 Chapter 13. Certification of Nontermination Proofs

recursive dependencies of rewrite rules and makes them explicit in a second set of rewrite
rules, the dependency pairs.

For nontermination of (innermost) DPPs, we support the following techniques:

Finding Loops. For DPPs (P ,R) the search space for finding loops is further restricted
by the fact that pairs from P are only applied at the root position.

Rule Removal. Also for DPPs it is possible to narrow the search space by employing
reduction pairs to remove pairs and rules that do not contribute to any infinite derivation.
Note that for nontermination analysis, also the dependency graph processor and the usable
rules processor do just remove pairs and rules.

Note. Since R is (innermost) nonterminating (by the well-formedness check) whenever
R contains a rule x→ r for some x ∈ V , we only consider TRSs where all left-hand sides
of rules are not variables in the remainder.

13.4. Loops

Loops are derivations of the shape t→+
R C[tµ]. They always imply nontermination where

the corresponding infinite reduction is

t→+
R C[tµ]→+

R C[Cµ[tµ2]]→+
R C[Cµ[Cµ2[tµ3]]]→+

R · · · (5)

A TRS which admits a loop is called looping.
Note that for innermost rewriting, loopingness does not necessarily imply nontermina-

tion, since the innermost rewrite relation is not closed under substitutions. More precisely,
it is not enough to have an “innermost loop” of the form t

i→+
R C[tµ], since this does not

necessarily imply an infinite sequence (5) when restricting to innermost rewriting. There-
fore, in [103], the notion of an innermost loop was introduced. To facilitate the certification
of innermost loops (i.e., to decide for a given loop, whether it is innermost or not), we
need its constituting steps, i.e., a derivation of length m > 0 with redexes `iσi:

t = t1 →R,`1σ1 t2 →R,`2σ2 · · · →R,`mσm tm+1 = C[tµ] (6)

Definition 13.2 (Innermost Loops). A loop (6) is an innermost loop iff for all 1 6 i 6 m
and n ∈ N, the term `iσiµ

n is an innermost redex.

That is, no matter how often µ is applied, all steps should be innermost.

Lemma 13.3. A loop (6) is an innermost loop iff (5) is an innermost derivation.

Corollary 13.4. An innermost loop implies innermost nontermination.

Note that for every loop (6) and all n ∈ N, the term `iσiµ
n is a redex. Hence, to make

sure that those redexes are innermost, it suffices to check whether all arguments of `iσiµ
n

are normal forms for all n ∈ N. Since `iσi is not a variable (we ruled out variables as
left-hand sides of R) this is equivalent to checking that for all arguments t of `iσi, the
term tµn is a normal form for all n ∈ N. Thus, to decide whether a loop is innermost, we
can use the following characterization.



13.5. Formalization 147

Lemma 13.5. Let R be a TRS, (6) a loop, and A =
⋃

16i6m args(`iσi) the set of argu-
ments of redexes in (6). Then, (6) is an innermost loop, iff for all t ∈ A and n ∈ N the
term tµn is a normal form, iff for all t ∈ A and `→ r ∈ R the term tµn does not contain
a redex `σ for any n ∈ N and σ.

Hence, we can easily check, whether a loop is innermost, whenever for two terms t and
`, and a substitution µ, we can solve the problem whether there exist n and σ, such that
tµn contains a redex `σ. Such problems are called redex problems and a large part of [103]
is devoted to develop a corresponding decision procedure.

Example 13.6. Consider a loop t→+ C[tµ] for a TRS R containing rules (1)-(4), where
µ = {x/cons(z, y), y/cons(z, x), z/0}. Let D[chk(eq(x, y))] → D[false] be a step of the
loop. Then, for an innermost loop we must ensure that the term eq(x, y)µn does not
contain a redex w.r.t. R, especially not w.r.t. rule (2).

The above decision procedure works in three phases: first, redex problems are simplified
into a set of matching problems. Then, a modified matching algorithm is employed, where
in the end identity problems have to be solved. Finally, a decision procedure for identity
problems is applied.

In the remainder, let µ be an arbitrary but fixed substitution (usually originating from
some loop t→+

R C[tµ]).

Definition 13.7 (Redex, Matching, and Identity Problems). Let s, t, and ` be terms.
Then a redex problem is a pair t |m `, a generalized matching problem is a set of pairs
{t1 m `1, . . . , tk m `k} (we call a generalized matching problem having only one pair, a
matching problem, and drop the surrounding braces), and an identity problem is a pair
s u t.

A redex problem t |m ` is solvable iff there is a context C, a substitution σ, and an
n ∈ N such that tµn = C[`σ]. A (generalized) matching problem is solvable iff there is a
substitution σ and an n ∈ N such that tiµ

n = `iσ for all pairs ti m `i. An identity problem
is solvable iff there is an n ∈ N such that sµn = tµn. In those respective cases, we call
(C, σ, n), (σ, n), and n, the solution.

13.5. Formalization

In [109] a straightforward certification algorithm for loops is described which does nothing
else than checking rewrite steps. We extend this result significantly by also formalizing the
necessary machinery to decide whether a loop is innermost. In the following, we discuss
the three phases of the decision procedure from [103].

From Redex Problems to Matching Problems. A redex problem t |m ` with ` ∈ V is
trivially solvable using the solution (2, {`/t}, 0). Thus, in the following we assume that
` /∈ V . Then, solvability of t |m ` is equivalent to the existence of a non-variable subterm
s of tµn such that s = `σ (i.e., ` matches s). In order to simplify redex problems, we
represent these subterms in a finite way and consequently generate only finitely many
matching problems.

Either, s starts inside t, so s = uµn for some u EF t, or s is completely inside µn. But
then, it must be of the form uµn for some u EF xµ and x in W(t) =

⋃
n V(tµn), where

W(t) collects all variables which can possibly occur in a term of the form tµn. In both



148 Chapter 13. Certification of Nontermination Proofs

cases, the equality s = `σ can be reformulated to uµn = `σ, i.e., solvability of the matching
problem u m `. In total, the redex problem is solvable iff one of the matching problems
u m ` is solvable for some u ∈ U(t), where U(t) = {u | t DF u or xµ DF u ∧ x ∈ W(t)}.

The following theorem (whose formalization was straightforward), corresponds to [103,
Theorem 10].

Theorem 13.8. Let t |m ` be a redex problem. Let

Minit(t, `) = if ` ∈ V then {t m `} else {u m ` | u ∈ U(t)}

be the set of initial matching problems. Then t |m ` is solvable iff one of the matching
problems in Minit(t, `) is solvable.

Example 13.9. Continuing with Example 13.6, from each redex problem eq(x, y) |m `
we obtain the matching problems eq(x, y) m `, cons(z, y) m `, cons(z, x) m `, and 0 m `
where ` is an arbitrary left-hand side of the TRS.

Theorem 13.8 shows a way to convert redex problems into matching problems. However,
for certification, it remains to develop an algorithm that actually computesMinit . To this
end, we need to compute U(t), which in turn requires to enumerate all subterms of a term
and to compute W(t). Whereas the former is straightforward, computing W(t) is a bit
more difficult: its original definition contains an infinite union.

Note that W(t) is only finite since we restrict to substitutions of finite domain and can
be computed by a fixpoint algorithm: iteratively compute V(t), V(tµ), V(tµ2), . . . , until
some V(tµk) is reached where no new variables are detected. In principle, it is possible
to formalize this algorithm directly, but we expect such a formalization to require tedious
manual termination and soundness proofs. Thus instead, we characterize W(t) by the
following reflexive transitive closure.

Lemma 13.10. Let R = {(x, y) | x 6= y, x ∈ V , y ∈ V(xµ)}. Then W(t) = {y | ∃x ∈
V(t), (x, y) ∈ R∗}.

Note that R in Lemma 13.10 can easily be computed since whenever (x, y) ∈ R then x ∈
dom(µ). Moreover, R is finite since we only consider substitutions of finite domain. Hence,
the above characterization allows us to compute W by the algorithm of [98] (generating
the reflexive transitive closure of finite relations).

Note that W(t) can also be defined inductively as the least set such that V(t) ⊆ W(t)
and x ∈ W(t) =⇒ V(xµ) ⊆ W(t). And whenever a finite set S is defined inductively,
instead of implementing an executable algorithm for S manually, it might be easier to
characterize S via reflexive transitive closures and afterwards execute it via the algorithm
of [98]. This approach is not restricted to W : it has been applied in the next paragraph
and also in other parts of IsaFoR.

An alternative might be Isabelle/HOL’s predicate compiler [10]. It can be used to
obtain executable functions for inductively defined predicates and sets. However, without
manual tuning we were not able to obtain appropriate equations for the code generator.
Furthermore, additional tuning is required to ensure termination of the resulting code in
the target language. Ultimately, the current version of the predicate compiler provides
a fixed execution model for predicates and sets (goal-oriented depth-first search) which
might not yield the best performance for the desired application. Thus, for the time
being we use our proposed solution via reflexive transitive closures, but perhaps in future
versions of Isabelle/HOL, the predicate compiler will be a more convenient alternative.



13.5. Formalization 149

From Matching Problems to Identity Problems. To decide solvability of a (general-
ized) matching problem {t1 m `1, . . . , tk m `k}, in [103], a variant of a standard matching
algorithm is used which simplifies (generalized) matching problems until they are in solved
form, i.e., all right-hand sides `i are variables (or ⊥ is obtained which represents a match-
ing problem without solution).

Definition 13.11 (Transformation of Matching Problems). In [103] the following trans-
formation⇒ on general matching problems is defined. IfM is a general matching problem
with M = {t m `} ]M′ where ` /∈ V, then

(i) M⇒ {t1 m `1, . . . , tk m `k} ∪M′, if t = f(t1, . . . , tk) and ` = f(`1, . . . , `k)

(ii) M⇒⊥, if t = f(. . .), ` = g(. . .), and f 6= g

(iii) M⇒⊥, if t ∈ V \ Vincr

(iv) M⇒ {t′µ m `′ | t′ m `′ ∈M}, if t ∈ Vincr

The first two rules are the standard decomposition and clash rules. Moreover, there
are two special rules to handle the case where t is a variable. Here, the set of increasing
variables Vincr = {x | ∃n. xµn /∈ V} plays a crucial role. It collects all those variables for
which µ, if applied often enough, introduces a non-variable term. In other words, xµn

will always be a variable for x /∈ Vincr.
In our development, instead of using the above relation, we formalized the rules directly

as a function simplify-mp applying the transformation rules deterministically (thereby
avoiding the need for a confluence proof, as was required in [103]). As input it takes
two generalized matching problems (represented by lists) where the second problem is
assumed to be in solved form. Here, [] and · are the list constructors, and @ denotes list
concatenation. The possibility of failure is encoded using Isabelle/HOL’s option type,
which is either None, in case of an error, or Some r for the result r. In contrast to
Definition 13.11 of [103], our algorithm also returns an integer i which provides a lower
bound on how often µ has to be applied to get a solution. The function is given by the
following equations (where for brevity do-notation in the option-monad is used):

simplify-mp [] s = return (s, 0)
simplify-mp ((t, x) ·mp) s = simplify-mp mp ((t, x) · s)
simplify-mp ((f(ss), g(ts)) ·mp) s = do { guard (f = g); ps ← zip-option ss ts ;

simplify-mp (ps@mp) s }

simplify-mp ((x, g(ts)) ·mp) s = do { guard (x ∈ Vincr);
(mp ′, i)← simplify-mp
(map-µ ((x, g(ts)) ·mp)) (map-µ s);
return (mp ′, i+ 1) }

where, map-µ = map (λ(t, `).(tµ, `)) using the standard map function for lists, zip-option
combines two lists of equal length into Some list of pairs and yields None otherwise, and
guard aborts with None if the given predicate is not satisfied.

Example 13.12. For ` = eq(x, x), only one of the redex problems of Example 13.9
remains (all others are simplified to None), namely eq(x, y) m eq(x, x), for which we
obtain the simplified matching problem {x m x, y m x}.



150 Chapter 13. Certification of Nontermination Proofs

In our formalization we show all relevant properties of simplify-mp, i.e., termination,
preservation of solvability, and that simplify-mp mp [], if successful, is in solved form.
Moreover, we prove the computed lower bound to be sound.

Theorem 13.13. The function simplify-mp satisfies the following properties:

• It is terminating.

• It is complete, i.e., if (n, σ) is a solution for mp then there are mp ′ and i such that
simplify-mp mp [] = Some (mp ′, i), i 6 n, and (n− i, σ) is a solution for mp ′;

• It is sound, i.e., if (n, σ) is a solution for mp ′ and simplify-mp mp [] = Some (mp ′, i)
then (n+ i, σ) is a solution for mp;

• If simplify-mp mp [] = Some (mp ′, i) then mp ′ is in solved form.

Proof. For termination of simplify-mp mp s , where mp = [(t1, `1), . . . , (tk, `k)], we use the
lexicographic combination of the following two measures: first, we measure the sum of the
sizes of the `i; and second, we measure the sum of the distances of the ti before turning
into non-variables. Here, the distance of some term ti before turning into a non-variable
is 0 if ti ∈ V \ Vincr and the least number d such that tiµ

d /∈ V , otherwise.
For this lexicographic measure, we get a decrease in the first component for the first and

the second recursive call, and a decrease in the second component for the third recursive
call.

Proving soundness and completeness is done via the following property which is proven
by induction on the call structure of simplify-mp.

Whenever simplify-mp mp s = r then

• if r = None then mp ∪ s is not solvable,

• if r = Some (mp ′, i), there is no solution (n, σ) for mp ∪ s where n < i, and (n, σ)
is a solution for mp ′ iff (n+ i, σ) is a solution for mp ∪ s .

Finally, the fact that simplify-mp mp [] is in solved form is shown by an easy induc-
tion proof on the call structure of simplify-mp, where [] is generalized to an arbitrary
generalized matching problem that is in solved form.

Although simplify-mp is defined as a recursive function, it cannot directly be used as a
certification algorithm, due to the following two problems:

The first problem is that Vincr is not executable, since it contains an existential statement
(remember that we had a similar problem for W earlier). Again, Vincr could be computed
via a fixpoint computation accompanied by a tedious manual termination proof. Instead,
we once more employ reflexive transitive closures to characterize Vincr, which allows us to
use the algorithm of [98] to compute it.

Lemma 13.14. Let R = {(x, y) | x 6= y, x = yµ, x ∈ V , y ∈ V}. Then Vincr = {y | ∃x ∈
V , xµ /∈ V , (x, y) ∈ R∗}.

The second problem is the usage of implicit parameters. Recall that at the end of
Sect. 13.4 we just fixed some substitution µ (which corresponds to what we did in our for-
malization using Isabelle/HOL’s locale mechanism). Obviously, both Vincr and simplify-mp



13.5. Formalization 151

depend on µ. Hence, we have to pass µ as argument to both. As a result, the modified
version of the last equation of simplify-mp looks as follows:

simplify-mp µ ((x, g(ts)) ·mp) s = do {guard (x ∈ Vincr(µ));
(mp ′, i)← simplify-mp µ (map-µ ((x, g(ts)) ·mp)) (map-µ s);
return (mp ′, i+ 1) }

(7)

The problem of equation (7) is its inefficiency: In every recursive call, the set of increasing
variables Vincr(µ) is newly computed. Therefore, the obvious idea is to compute Vincr(µ)
once and for all and pass it as an additional argument V .

simplify-mp µ V ((x, g(ts)) ·mp) s = do {guard (x ∈ V );
(mp ′, i)← simplify-mp µ V (map-µ ((x, g(ts)) ·mp)) (map-µ s);
return (mp ′, i+ 1) }

(8)

This version does not have the problem of recomputing Vincr(µ) and we just have to replace
the initial call simplify-mp µ mp [] by simplify-mp µ Vincr(µ) mp [].

Although, this looks straightforward and maybe not even worth mentioning, we stress
that this solution does not work properly. The problem is that by introducing V ,
we can call simplify-mp using some V 6= Vincr(µ), which can cause nontermination.
Take for example µ as the empty substitution and V = {x}, then the function call
simplify-mp µ V [(x, g(ts))] [] directly leads to exactly the same function call via (8).
Hence, termination of simplify-mp defined by (8) cannot be proven. Therefore, the func-
tion package of Isabelle/HOL [69] weakens equality (8) by the assumption that simplify-mp
has to be terminating on the arguments µ, V , ((x, g(ts)) ·mp), and s .

Of course, we can instantiate (8) by V = Vincr(µ). Then we can get rid of the additional
assumption. But still, the corresponding unconditional equation is not suitable for code
generation, since Vincr on the left-hand side is not a constructor.

Our final solution is to use the recent partial-function [70] command of Isabelle/HOL
which generates unconditional equations even for nonterminating functions, provided that
some syntactic restrictions are met (only one defining equation and the function must
either return an option type or be tail-recursive).

Since simplify-mp already returns an option type, we just had to merge all equations
into a single case statement. (If the result is not of option type, we can just wrap the
original return type into an option type). Afterwards the partial-function command is
applicable and we obtain an equation similar to (8) which can be processed by the code
generator and efficiently computes simplify-mp without recomputing Vincr(µ). Moreover,
since we have already shown termination of the inefficient version of simplify-mp, we know
that also the efficient version does terminate whenever it is called with V = Vincr(µ). In
our formalization we actually have two versions of simplify-mp: an abstract version which
is unsuitable for code generation (and also inefficient) and a concrete version. All the
above properties are proven on the abstract version neglecting any efficiency problems.
Afterwards it is shown that the concrete version computes the same results as the abstract
one (which is relatively easy since the call-structure is the same). In this way, we get the
best of two worlds: abstraction and ease of reasoning from the abstract version (using sets,
existential statements, and the induction rules from the function package), and efficiency
from the concrete version (using lists and concrete functions to obtain witnesses).

The above mentioned problem is not restricted to simplify-mp. Whenever the termi-
nation of a function relies on the correct initialization of some precomputed values, a
similar problem arises. Currently, this can be solved by writing a second function via the



152 Chapter 13. Certification of Nontermination Proofs

partial-function command, as shown above. Although the second definition is mainly a
copy of the original one, we can currently not recommend to use it as a replacement, since
the function package provides much more convenience for standard definitions than when
using the partial-function command. If the functionality of partial functions is extended,
the situation might change (and we would welcome any effort in that direction).

Continuing with deciding matching problems, we are in the situation, that by using
simplify-mp we can either directly detect that a matching problem is unsolvable or obtain
an equivalent generalized matching problem in solved form M = {t1 m x1, . . . , tk m xk}.
In principle, M has the solution (n, σ) where n is arbitrary and σ(xi) = tiµ

n. However,
this definition of σ is not always well-defined if there are i and j such that xi = xj and
i 6= j. To decide whether it is possible to adapt the proposed solution, we must know
whether tiµ

n = tjµ
n for some n, i.e., we must solve the identify problem ti u tj.

The following result of [103, Theorem 14 (iv)] is easily formalized and also poses no
challenges for certification. Afterwards it remains to decide identity problems.

Theorem 13.15. Let M = {t1 m x1, . . . , tk m xk} be a generalized matching problem in
solved form. Define Iinit = {ti u tj | 1 6 i < j 6 k, xi = xj}. Then M is solvable iff all
identity problems in Iinit are solvable.

To prove this theorem, the key observation is that we can always combine several
solutions of identity problems: Whenever nij are solutions to the identity problems ti u tj,
respectively, then the maximum n of all nij is a solution to all identity problems ti u tj.
And then also (n, σ) is a solution to M where σ(xi) = tiµ

n is guaranteed to be well-
defined.

Example 13.16. For the remaining matching problem of Example 13.12 we generate one
identity problem: x u y.

Deciding Identity Problems. In [103, Section 3.4] a complicated algorithm is presented
to decide solvability of an identity problem s u t. The main idea is to iteratively generate
(s, t), (sµ, tµ), (sµ2, tµ2), . . . until either some (sµi, tµi) with sµi = tµi is generated,
or it can be detected that no solution exists. For the latter, some easy conditions for
unsolvability are identified, e.g., sµi = C[f(ss)] and tµi = C[x] where x /∈ Vincr. However,
these conditions do not suffice to detect all unsolvable identity problems. Therefore, in
each iteration conflicts (indicating which subterms have to become equal after applying
µ several times, to obtain overall equality), are stored in a set S, and two sufficient
conditions on pairs of conflicts from S are presented that allow to conclude unsolvability.

For the overall algorithm, soundness is rather easy to establish, completeness is more
challenging, and the termination proof is the most difficult part. To be more precise, it
is shown that nontermination of the algorithm allows to construct an infinite sequence
of terms where no two terms are embedded into each other (which is not possible due
to Kruskal’s tree theorem). Hence, the formalization would require a formalization of
the tree theorem. Moreover, the implicit complexity bound on the number of required
iterations is quite high.

The reason for using Kruskal’s tree theorem is that in [103] the conflicts in S consist of
a variable, a position, and a term which is not bounded in its size. So, there is no a priori
bound on S. We were able to simplify the decision procedure for s u t considerably since
we only store conflicts whose constituting terms are in the set of conflict terms

CT (s, t) = {u | v D u, v ∈ {s, t} ∪ ran(µ)}.



13.5. Formalization 153

To be more precise, all conflicts are of the form (u, v,m) where (u, v) is contained in the
finite set S = (CT (s, t)∩V)×CT (s, t). Whenever we see a conflict (u, v, ) for the second
time, the algorithm stops. Thus, we get a decision procedure which needs at most |S|
iterations and whose termination proof is easy. In contrast to [103], our procedure does
neither require any preprocessing on µ nor unification.

The key idea to get an a priory bound on the set of conflicts, is to consider identity
problems of a generalized form s u tµn which can be represented by the triple (s, t, n).
Then applying substitutions can be done by increasing n, and all terms that are generated
during an execution of the algorithm are terms from CT (s, t).

Before presenting the main algorithm for deciding identity problems s u tµn, we require
an auxiliary algorithm conflicts (s, t, n) that computes the set of conflicts for an identity
problem, i.e., subterms of s and tµn with different roots.

conflicts (s, y, n+ 1) = conflicts (s, µ(y), n)
conflicts (x, y, 0) = if x = y then ∅ else {(x, y, 0)}
conflicts (f(ss), y, 0) = {(y, f(ss), 0)}
conflicts (x, g(ts), n) = {(x, g(ts), n)}
conflicts (f(ss), g(ts), n) = if f = g ∧ |ss| = |ts|

then
⋃

(si,ti)∈zip ss ts conflicts (si, ti, n)

else {(f(ss), g(ts), n)}

We identified and formalized the following properties of conflicts and CT .

Lemma 13.17. • sσ = tµnσ iff ∀(u, v,m) ∈ conflicts (s, t, n). uσ = vµmσ.

• if (u, v,m) ∈ conflicts (s, t, n) then

– root(u) 6= root(v)

– v ∈ V implies m = 0 ∧ u ∈ V
– ∃k p. n = m+ k ∧ ((s|p, tµk|p) = (u, v) ∨ ((s|p, tµk|p) = (v, u) ∧m = 0))

– {u, v} ⊆ CT (s, t)

• {u, v} ⊆ CT (s, t) implies CT (u, v) ⊆ CT (s, t)

• CT (u, v) ⊆ CT (uµ, v) whenever u ∈ V

Using conflicts we can now formulate the algorithm ident-solve which decides identity
problem s u t if invoked with ident-solve ∅ (s, t, 0).

ident-solve S idp =
let C = conflicts idp in
if (f(us), , ) ∈ C ∨ ((u, v, ) ∈ C ∧ (u, v, ) ∈ S) then None else do {

ns ← map-option (λ(u, v,m). ident-solve ({(u, v,m)} ∪ S) (uµ, v,m+ 1)) C;
return (max {n+ 1 | n ∈ ns}) }

where map-option is a variant of the map function on lists whose overall result is None if
the supplied function returns None for any element of the given list.

Example 13.18. We continue Example 13.16 by invoking ident-solve ∅ (x, y, 0). This
leads to the conflict (x, y, 0). Afterwards, ident-solve {(x, y, 0)} (cons(z, y), y, 1) is invoked
which results in the conflict (y, x, 0). Finally, the conflict (x, y, 0) is generated again when
calling ident-solve {(x, y, 0), (y, x, 0)} (cons(z, x), x, 1) and the result None is obtained.



154 Chapter 13. Certification of Nontermination Proofs

We formalized termination, soundness, and completeness of ident-solve.

Lemma 13.19 (Termination). ident-solve is terminating.

Proof. Take the measure function λS (s , t , ). |(CT (s, t)∩V)×CT (s, t)\{(a, b) | (a, b, ) ∈
S}|. Then the actual termination proof boils down to showing

L := (CT (s, t) ∩ V)× CT (s, t) \ {(a, b) | (a, b, ) ∈ S}
⊃ (CT (uµ, v) ∩ V)× CT (uµ, v) \ {(a, b) | (a, b, ) ∈ {(u, v,m)} ∪ S} =: R

whenever ident-solve S (s, t, n) leads to a call ident-solve ({(u, v,m)} ∪ S) (uµ, v,m+ 1),
i.e., whenever (u, v,m) ∈ conflicts (s, t, n), (u, v, ) /∈ S, and u ∈ V . By Lemma 13.17 we
obtain {u, v} ⊆ CT (s, t) and CT (uµ, v) ⊆ CT (u, v) ⊆ CT (s, t). Hence, L ⊇ R and since
(u, v) ∈ L \R we even have L ⊃ R.

Lemma 13.20 (Soundness). If ident-solve S (s, t, n) = Some i then sµi = tµnµi.

Proof. We perform induction on the call-structure of ident-solve. So, assume ident-solve S
(s, t, n) = Some i. By definition of ident-solve, for all (u, v,m) ∈ conflicts (s, t, n) there
is some j such that ident-solve ({(u, v,m)} ∪ S) (uµ, v,m + 1) = Some j and i is the
maximum of all j + 1. Using the induction hypothesis, we conclude uµj+1 = uµµj =
vµm+1µj = vµmµj+1 for all (u, v,m) ∈ conflicts (s, t, n), and since i ≥ j + 1 we also
achieve uµi = vµmµi. But this is equivalent to sµi = tµnµi by Lemma 13.17 (where
σ = µi).

Lemma 13.21 (Completeness). Whenever the identity problem s u t is solvable then
ident-solve ∅ (s, t, 0) 6= None.

Proof. If s u t is solvable then there is some N such that sµN = tµN . Our actual
proof shows the following property (?) for all S, s′, t′, n, n′, and p where (a, b)

↔
= (c, d)

abbreviates (a, b) = (c, d) ∨ (a, b) = (d, c).1

(sµn|p, tµn|p)
↔
= (s′, t′µn

′
) (9)

−→ (∀(u, v,m) ∈ S. (m = 0 ∨ v /∈ V) ∧ root(u) 6= root(v) ∧ (10)

(∃q1 q2 n1. p = q1q2 ∧ n1 < n ∧ (sµn1|q1 , tµn1|q1)
↔
= (u, vµm)))

−→ ident-solve S (s′, t′, n′) 6= None (11)

Once (?) is established, the lemma immediately follows from (?) which is instantiated by
S = ∅, s′ = s, t′ = t, n′ = n = 0, and p = ε (the empty position).

To prove (?), we perform induction on the call-structure of ident-solve. So, we assume
(9) and (10), and have to show (11). By sµN = tµN we conclude sµn|pµN = sµNµn|p =
tµNµn|p = tµn|pµN , and thus s′µN = t′µn

′
µN by (9). By Lemma 13.17 this shows uµN =

vµmµN for all (u, v,m) ∈ conflicts (s′, t′, n′) =: C. In a similar way we prove uµN = vµmµN

for all (u, v,m) ∈ S using (10).
Next we consider an arbitrary (u, v,m) ∈ C. By Lemma 13.17 we have root(u) 6=

root(v), m = 0∨ v /∈ V , and there are q1 and k such that n′ = m+ k and (s′|q1 , t′µk|q1) =
(u, v) ∨ ((s′|q1 , t′µk|q1) = (v, u) ∧ m = 0). In particular, this implies (s′|q1 , t′µk|q1µm)

↔
=

(u, vµm). Moreover, we know uµN = vµmµN .

1In the formalization, (?) looks even more complicated, since here we dropped all parts that restrict p
and q1 to valid positions.



13.5. Formalization 155

First, we show that u ∈ V , and hence the condition (f(us), , ) ∈ C is not satisfied. The
reason is that u /∈ V also implies v /∈ V by Lemma 13.17 which implies the contradiction
root(u) = root(uµN) = root(vµmµN) = root(v) 6= root(u).

Second, ident-solve ({(u, v,m)}∪S) (uµ, v,m+1) 6= None. To show this, we just apply
the induction hypothesis where it remains to show that (9) and (10) are satisfied (where
the values of S, s′ ,t′ ,n, n′, p are {(u, v,m)}∪S, uµ, v, n+1, m+1, and pq1, respectively).
To this end, we derive the following equality.

(sµn|pq1 , tµn|pq1) = (sµn|p|q1 , tµn|p|q1)
↔
= (s′|q1 , t′µn

′ |q1)
= (s′|q1 , t′µk|q1µm)

↔
= (u, vµm).

(12)

Using (12), root(u) 6= root(v), and m = 0 ∨ v /∈ V , we conclude that (10) is satisfied for
the new conflict (u, v,m). Moreover, (10) is trivially satisfied for all (old) conflicts in S,
by using (10) (for the old inputs (s′, t′, n′), . . .). Finally, by applying µ on all terms in
(12) we obtain (sµn+1|pq1 , tµn+1|pq1)

↔
= (uµ, vµm+1) which is exactly the required (9).

The last potential reason for ident-solve S (s′, t′, n′) to be None, is that there is some
m′ such that (u, v,m′) ∈ S. We assume that such an m′ exists and eventually show a
contradiction (the most difficult part of this proof). By (10) we conclude that m′ = 0∨v /∈
V and there are p1, q3, and n2 where p = p1q3, n2 < n, and (sµn2|p1 , tµn2 |p1)

↔
= (u, vµm

′
).

Since n2 < n there is some k1 with n = n2 + k1 and k1 > 0. Starting from (12) we derive

(u, vµm)
↔
= (sµn|pq1 , tµn|pq1)

= (sµn2+k1 |p1q3q1 , tµn2+k1 |p1q3q1) = (sµn2|p1σ|q, tµn2|p1σ|q)
↔
= (uσ|q, vµm

′
σ|q)

(13)

where σ and q are abbreviations for µk1 and q3q1, respectively. Using (13) it is possible
to derive a contradiction via a case analysis.

If m′ = m then (13) yields both uσσ|qq = u and vµmσσ|qq = vµm. Thus, u(σσ)i|(qq)i = u
and vµm(σσ)i|(qq)i = vµm for all i. For m′ = m we can further show u 6= vµm and hence,
u(σσ)i|(qq)i 6= vµm(σσ)i|(qq)i for all i. This leads to the desired contradiction since we know
that uµN = vµmµN , and hence u(σσ)N = uµ2k1N = uµNµ(2k1−1)N = vµmµNµ(2k1−1)N =
vµmµ2k1N = vµm(σσ)N , which shows that for i = N the previous inequality does not
hold.

Otherwise m 6= m′. Hence, m 6= 0 ∨m′ 6= 0 and in combination with m = 0 ∨ v /∈ V
and m′ = 0 ∨ v /∈ V we conclude v /∈ V . Thus, u ∈ V by Lemma 13.17 as (u, v,m) ∈
conflicts (s′, t′, n′). Then by a case analysis on (13) we can show that there are i and
j such that uµi B uµj. Moreover, from uµN = vµmµN and uµN = vµm

′
µN we obtain

uµN+m = uµN+m′ . In combination with m 6= m′ and uµi B uµj this leads to the desired
contradiction.

Putting all lemmas on ident-solve together, we can even give a decision procedure for
identity problems which does not require ident-solve at all, and shows an explicit bound
on a solution.

Theorem 13.22. An identity problem s u t is solvable iff sµn = tµn where n = |CT (s, t)∩
V| · |CT (s, t)|.

Proof. If an identity problem is solvable, then the result of ident-solve ∅ (s, t, 0) = Some i
for some i by Lemma 13.21. From the termination proof in Lemma 13.19 we know that
i 6 |CT (s, t)∩V|·|CT (s, t)| = n (unfortunately, in Isabelle/HOL we could not extract this
knowledge from the termination proof and had to formalize this simple result separately).
And by Lemma 13.20 we infer that sµi = tµi. But then also sµn = tµn.



156 Chapter 13. Certification of Nontermination Proofs

Note that |CT (s, t)| 6 |s| + |t| + |µ| where |µ| is the size of all terms in the range
of µ. Hence, the value of n in Theorem 13.22 is quadratic in the size of the input
problem. We conjecture that even a linear bound exists, although some proof attempts
failed. As an example, we tried to replace the condition (u, v, ) ∈ C ∧ (u, v, ) ∈ S by
(u, , ) ∈ C ∧ (u, , ) ∈ S in ident-solve to get a linear number of iterations. However,
then ident-solve is not complete anymore.

13.6. Conclusions

We have formalized several techniques to certify compositional (innermost) nontermina-
tion proofs, where the hardest part was the decision procedure of [103], which decides
whether a loop is an innermost loop. In our formalization, we were able to simplify the
algorithm and the proofs for identity problems considerably: a complex algorithm can be
replaced by a single line due to Theorem 13.22.

With this result we can also show (but have not formalized) that all considered decision
problems of this paper are in P.

Theorem 13.23. Deciding whether an identity problem, a matching problem, or a redex
problem is solvable is in P. Moreover, deciding whether a loop is an innermost loop is in
P.

Proof. We start with identity problems. By Theorem 13.22 we just have to check sµn =
tµn for n = |CT (s, t)∩V|·|CT (s, t)|. When using DAG compressed terms we can represent
sµn and tµn in polynomial space and in turn use the algorithms of [19,91] to check equality
in polynomial time. Note that even if the input (s, t, µ) is already DAG compressed, the
problem is still in P. The reason is that |CT (s, t)| 6 |s|+ |t|+ |µ| also holds when sizes of
terms are measured according to their DAG representation.

For matching problems t m `, we first observe that simplify-mp [(t, `)] [] requires at most
|Vincr| · |`| many iterations, and when using DAG compression, the resulting simplified
matching problem can be represented in polynomial space. Hence, the resulting identity
problems can all be solved in polynomial time.

Using the result for matching problems, by Theorem 13.8 it follows that redex problems
t |m ` are decidable in P: The number of matching problems in Minit as well as the size
of each element of Minit is linear in the sizes of t, `, and µ.

Finally, since redex problems can be decided in P, by Lemma 13.5 this also holds for
the question, whether a loop is an innermost loop.

We have also shown how reflexive transitive closures can be used to avoid termination
proofs, and how partial functions help to develop efficient algorithms.

We tested our algorithms within our certifier CeTA (version 2.3) in combination with the
termination analyzer AProVE [39], which is (as far as we know) currently the only tool, that
can prove innermost nontermination of term rewrite systems. Through our experiments,
a major soundness bug in AProVE was revealed: one of the two loop-finding methods
completely ignored the strategy. After this bug was fixed, all generated nontermination
proofs could be certified. Since the overhead for certification is negligible (AProVE required
151 minutes to generate all proofs, whereas CeTA required 4 seconds to certify them),
we encourage termination tool users to always certify their proofs. For more details
on the experiments, we refer to http://cl-informatik.uibk.ac.at/software/ceta/

experiments/nonterm/.

http://cl-informatik.uibk.ac.at/software/ceta/experiments/nonterm/
http://cl-informatik.uibk.ac.at/software/ceta/experiments/nonterm/


13.6. Conclusions 157

Future work consists of integrating further techniques for which completeness is not
obvious into our framework. Examples are innermost narrowing [3] and the switch from
innermost termination to termination for TRSs and DPPs.

Acknowledgments

We thank Lukas Bulwahn for helpful information on Isabelle/HOL’s predicate compiler.





Bibliography

[1] E. Albert, P. Arenas, S. Genaim, M. Gómez-Zamalloa, G. Puebla, D. V. Ramı́rez-
Deantes, G. Román, and D. Zanardini. Termination and cost analysis with COSTA
and its user interfaces. ENTCS, 258(1):109–121, 2009.

[2] T. Aoto, T. Yoshida, and J. Toyama. Proving confluence of term rewriting systems
automatically. In Proc. of the 20th International Conference on Rewriting Tech-
niques and Applications (RTA 2009), volume 5595 of LNCS, pages 93–102, 2009.

[3] T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. Theor.
Comput. Sci., 236(1-2):133–178, 2000.

[4] M. Avanzini, G. Moser, and A. Schnabl. Automated implicit computational com-
plexity analysis (system description). In Proc. of the 4th International Joint Confer-
ence on Automated Reasoning (IJCAR 2008), volume 5195 of LNAI, pages 132–138,
2008.

[5] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

[6] G. Barthe, J. Forest, D. Pichardie, and V. Rusu. Defining and reasoning about
recursive functions: a practical tool for the Coq proof assistant. In Proc. of the 8th
International Symposium on Functional and Logic Programming (FLOPS 2006),
volume 3945 of LNCS, pages 114–129, 2006.

[7] A. M. Ben-Amram and M. Codish. A SAT-based approach to size change termina-
tion with global ranking functions. In Proc. of the 16th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2008),
volume 4963 of LNCS, pages 218–232, 2008.

[8] A. M. Ben-Amram and C. S. Lee. Program termination analysis in polynomial time.
ACM Trans. Program. Lang. Syst., 29(1), 2007.

[9] A. Ben Cherifa and P. Lescanne. Termination of rewriting systems by polynomial in-
terpretations and its implementation. Science of Computer Programming, 9(2):137–
159, 1987.

[10] S. Berghofer, L. Bulwahn, and F. Haftmann. Turning inductive into equational
specifications. In Proc. of the 22nd International Conference on Theorem Proving
in Higher Order Logics (TPHOLs 2009), volume 5674 of LNCS, pages 131–146,
2009.

[11] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Development;
Coq’Art: The Calculus of Inductive Constructions. TCS Texts. Springer, 2004.



160 Bibliography

[12] F. Blanqui, W. Delobel, S. Coupet-Grimal, S. Hinderer, and A. Koprowski. CoLoR, a
Coq library on rewriting and termination. In Proc. of the 8th International Workshop
on Termination (WST 2006), pages 69–73, 2006.

[13] F. Blanqui and A. Koprowski. CoLoR: a Coq library on well-founded rewrite rela-
tions and its application to the automated verification of termination certificates.
Mathematical Structures in Computer Science, 21(4):827–859, 2011.

[14] R. S. Boyer and J. S. Moore. A Computational Logic. Academic Press, 1980.

[15] M. Brockschmidt, R. Musiol, C. Otto, and J. Giesl. Automated termination proofs
for Java programs with cyclic data. In Proc. of the 24th International Conference
on Computer Aided Verification (CAV 2012), volume 7358 of LNCS, pages 105–122,
2012.

[16] M. Brockschmidt, C. Otto, C. von Essen, and J. Giesl. Termination graphs for
Java bytecode. In Verification, Induction, Termination Analysis - Festschrift for
Christoph Walther on the Occasion of His 60th Birthday, volume 6463 of LNCS,
pages 17–37, 2010.

[17] W. Buchholz. Proof-theoretic analysis of termination proofs. Ann. Pure Appl. Logic,
75(1-2):57–65, 1995.

[18] L. Bulwahn, A. Krauss, and T. Nipkow. Finding lexicographic orders for termination
proofs in Isabelle/HOL. In Proc. of the 20th International Conference on Theorem
Proving in Higher Order Logics (TPHOLs 2007), volume 4732 of LNCS, pages 38–
53, 2007.

[19] G. Busatto, M. Lohrey, and S. Maneth. Efficient memory representation of XML
documents. In Proc. of the 10th International Symposium on Database Programming
Languages (DBPL 2005), volume 3774 of LNCS, pages 199–216, 2005.

[20] M. Codish, C. Fuhs, J. Giesl, and P. Schneider-Kamp. Lazy abstraction for size-
change termination. In Proc. of the 17th International Conference on Logic for
Programming, Artificial Intelligence and Reasoning (LPAR 2010), volume 6397 of
LNCS, pages 217–232, 2010.

[21] E. Contejean, P. Courtieu, J. Forest, O. Pons, and X. Urbain. Certification of
automated termination proofs. In Proc. of the 6th International Symposium on
Frontiers of Combining Systems (FroCoS 2007), volume 4720 of LNAI, pages 148–
162, 2007.

[22] E. Contejean, C. Marché, B. Monate, and X. Urbain. CiME. http://cime.lri.fr.

[23] É. Contejean, A. Paskevich, X. Urbain, P. Courtieu, O. Pons, and J. Forest. A3PAT,
an approach for certified automated termination proofs. In Proc. of the ACM SIG-
PLAN Workshop on Partial Evaluation and Program Manipulation (PEPM 2010),
pages 63–72, 2010.

[24] B. Cook, A. Podelski, and A. Rybalchenko. Termination proofs for systems code.
In Proc. of the ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI 2006), pages 415–426, 2006.

http://cime.lri.fr


Bibliography 161

[25] P. Courtieu, J. Forest, and X. Urbain. Certifying a termination criterion based on
graphs, without graphs. In Proc. of the 21st International Conference on Theorem
Proving in Higher Order Logics (TPHOLs 2008), volume 5170 of LNCS, pages 183–
198, 2008.

[26] N. Dershowitz. Orderings for term-rewriting systems. Theor. Comput. Sci., 17:279–
301, 1982.

[27] N. Dershowitz. Termination of rewriting. J. Symb. Comp., 3(1-2):69–116, 1987.

[28] N. Dershowitz. Termination dependencies. In Proc. of the 6th International Work-
shop on Termination (WST 2003), pages 27–30, 2003.

[29] N. Dershowitz and Z. Manna. Proving termination with multiset orderings. Comm.
of the ACM, 22(8):465–476, 1979.

[30] F. Emmes, T. Enger, and J. Giesl. Proving non-looping non-termination automat-
ically. In Proc. of the 6th International Joint Conference on Automated Reasoning
(IJCAR 2012), volume 7364 of LNAI, pages 225–240, 2012.

[31] J. Endrullis. Jambox. Available from http://joerg.endrullis.de.

[32] J. Endrullis, J. Waldmann, and H. Zantema. Matrix interpretations for proving
termination of term rewriting. Journal of Automated Reasoning, 40(2-3):195–220,
2008.

[33] C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, and H. Zankl.
Maximal termination. In Proc. of the 19th International Conference on Rewriting
Techniques and Applications (RTA 2008), volume 5117 of LNCS, pages 110–125,
2008.

[34] A. L. Galdino and M. Ayala-Rincón. A PVS theory for term rewriting systems.
ENTCS, 247:67–83, 2009.

[35] A. L. Galdino and M. Ayala-Rincón. A formalization of the Knuth-Bendix(-Huet)
critical pair theorem. Journal of Automated Reasoning, 45(3):301–325, 2010.

[36] A. Geser, D. Hofbauer, J. Waldmann, and H. Zantema. On tree automata that
certify termination of left-linear term rewriting systems. Information and Compu-
tation, 205(4):512–534, 2007.

[37] J. Giesl and T. Arts. Verification of Erlang processes by dependency pairs. Appl.
Alg. Eng. Comm. Comput., 12(1,2):39–72, 2001.

[38] J. Giesl, M. Raffelsieper, P. Schneider-Kamp, S. Swiderski, and R. Thiemann. Au-
tomated termination proofs for Haskell by term rewriting. ACM Transactions on
Programming Languages and Systems, 33(2):7:1–7:39, 2011.

[39] J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic termination
proofs in the dependency pair framework. In Proc. of the 3rd International Joint
Conference on Automated Reasoning (IJCAR 2006), volume 4130 of LNAI, pages
281–286, 2006.

http://joerg.endrullis.de


162 Bibliography

[40] J. Giesl, R. Thiemann, and P. Schneider-Kamp. The dependency pair framework:
Combining techniques for automated termination proofs. In Proc. of the 11th Inter-
national Conference on Logic for Programming, Artificial Intelligence and Reasoning
(LPAR 2004), volume 3452 of LNAI, pages 301–331, 2005.

[41] J. Giesl, R. Thiemann, and P. Schneider-Kamp. Proving and disproving termination
of higher-order functions. In Proc. of the 5th International Symposium on Frontiers
of Combining Systems (FroCoS 2005), volume 3717 of LNAI, pages 216–231, 2005.

[42] J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and improv-
ing dependency pairs. Journal of Automated Reasoning, 37(3):155–203, 2006.

[43] M. Gordon. From LCF to HOL: a short history. In Proof, Language, and Interaction,
Essays In Honour of Robin Milner, pages 169–186. MIT Press, 2000.

[44] M. Gordon. From LCF to HOL: A short history. In Proof, Language, and Interac-
tion, pages 169–185. MIT Press, 2000.

[45] M. J. C. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh LCF, volume 78 of
LNCS. Springer, 1979.

[46] B. Gramlich. Abstract relations between restricted termination and confluence prop-
erties of rewrite systems. Fundamenta Informaticae, 24:3–23, 1995.

[47] S. Gulwani, K. Mehra, and T. Chilimbi. SPEED: precise and efficient static estima-
tion of program computational complexity. In Proc. of the 36th ACM Symposium
on Principles of Programming Languages (POPL 2009), pages 127–139, 2009.

[48] F. Haftmann. Code generation from Isabelle/HOL theories, Apr. 2009. http://

isabelle.in.tum.de/doc/codegen.pdf.

[49] F. Haftmann and T. Nipkow. Code generation via higher-order rewrite systems. In
Proc. of the 10th International Symposium on Functional and Logic Programming
(FLOPS 2010), volume 6009 of LNCS, pages 103–117, 2010.

[50] N. Hirokawa and A. Middeldorp. Automating the dependency pair method. Infor-
mation and Computation, 199(1-2):172–199, 2005.

[51] N. Hirokawa and A. Middeldorp. Tyrolean Termination Tool: Techniques and fea-
tures. Information and Computation, 205(4):474–511, 2007.

[52] N. Hirokawa and A. Middeldorp. Decreasing diagrams and relative termination.
Journal of Automated Reasoning, 47(4):481–501, 2011.

[53] N. Hirokawa, A. Middeldorp, and H. Zankl. Uncurrying for termination. In Proc. of
the 15th International Conference on Logic for Programming, Artificial Intelligence
and Reasoning (LPAR 2008), volume 5330 of LNAI, pages 667–681, 2008.

[54] D. Hofbauer and J. Waldmann. Match-bounds for relative termination. In Proc. of
the 11th International Workshop on Termination (WST 2010), 2010.

[55] J. Hoffmann, K. Aehlig, and M. Hofmann. Resource aware ML. In Proc. of the 24th
International Conference on Computer Aided Verification (CAV 2012), volume 7358
of LNCS, pages 781–786, 2012.

http://isabelle.in.tum.de/doc/codegen.pdf
http://isabelle.in.tum.de/doc/codegen.pdf


Bibliography 163

[56] H. Hong and D. Jakuš. Testing positiveness of polynomials. Journal of Automated
Reasoning, 21(1):23–38, 1998.

[57] J.-P. Jouannaud and A. Rubio. The higher-order recursive path ordering. In Proc.
of the 14.th Annual IEEE Symposium on Logic in Computer Science (LICS 1999),
pages 402–411. IEEE Computer Society Press, 1999.

[58] S. Kamin and J. J. Lévy. Two generalizations of the recursive path ordering. Un-
published manuscript, University of Illinois, 1980.

[59] R. Kennaway, J. W. Klop, R. Sleep, and F.-J. de Vries. Comparing curried and
uncurried rewriting. Journal of Symbolic Computation, 21(1):15–39, 1996.

[60] G. Klein, J. Andronick, K. Elphinstone, G. Heiser, D. Cock, P. Derrin, D. Elkaduwe,
K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. seL4:
formal verification of an operating-system kernel. Comm. of the ACM, 53(6):107–
115, 2010.

[61] G. Klein and T. Nipkow. A machine-checked model for a Java-like language, vir-
tual machine, and compiler. ACM Transactions on Programming Languages and
Systems, 28(4):619–695, 2006.

[62] A. Koprowski. TPA: Termination proved automatically. In Proc. of the 17th Inter-
national Conference on Rewriting Techniques and Applications (RTA 2006), volume
4098 of LNCS, pages 257–266, 2006.

[63] A. Koprowski. Coq formalization of the higher-order recursive path ordering. Appl.
Alg. Eng. Comm. Comput., 20(5-6):379–425, 2009.

[64] A. Koprowski and J. Waldmann. Arctic termination . . . below zero. In Proc. of
the 19th International Conference on Rewriting Techniques and Applications (RTA
2008), volume 5117 of LNCS, pages 202–216, 2008.

[65] K. Korovin and A. Voronkov. Orienting rewrite rules with the Knuth-Bendix order.
Information and Computation, 183(2):165–186, 2003.

[66] M. Korp and A. Middeldorp. Match-bounds revisited. Information and Computa-
tion, 207(11):1259–1283, 2009.

[67] M. Korp, C. Sternagel, H. Zankl, and A. Middeldorp. Tyrolean Termination Tool 2.
In Proc. of the 20th International Conference on Rewriting Techniques and Appli-
cations (RTA 2009), volume 5595 of LNCS, pages 295–304, 2009.

[68] A. Krauss. Certified size-change termination. In Proc. of the 21st International
Conference on Automated Deduction (CADE 2007), volume 4603 of LNCS, pages
460–475, 2007.

[69] A. Krauss. Partial and nested recursive function definitions in higher-order logic.
Journal of Automated Reasoning, 44(4):303–336, 2010.

[70] A. Krauss. Recursive definitions of monadic functions. In Proc. of the Workshop on
Partiality and Recursion in Interactive Theorem Proving (PAR 2010), volume 43 of
EPTCS, pages 1–13, 2010.



164 Bibliography

[71] M. S. Krishnamoorthy and P. Narendran. On recursive path ordering. Theor.
Comput. Sci., 40:323–328, 1985.

[72] J. B. Kruskal. Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjecture.
Transactions of the American Mathematical Society, 95(2):210–225, 1960.

[73] D. Lankford. On proving term rewrite systems are noetherian. Technical Report
MTP-3, Louisiana Technical University, Ruston, LA, USA, 1979.

[74] C. S. Lee, N. D. Jones, and A. M. Ben-Amram. The size-change principle for
program termination. In Proc. of the 28th ACM Symposium on Principles of Pro-
gramming Languages (POPL 2001), pages 81–92, 2001.

[75] A. Lochbihler. Verifying a compiler for Java threads. In Proc. of the 19th European
Symposium on Programming (ESOP 2010), volume 6012 of LNCS, pages 427–447,
2010.

[76] S. Lucas. Polynomials over the reals in proofs of termination: From theory to
practice. RAIRO Theor. Inf. Appl., 39(3):547–586, 2005.

[77] M. Marchiori. Logic programs as term rewriting systems. In Proc. of the 4th
International Conference on Algebraic and Logic Programming (ALP 1994), volume
850 of LNCS, pages 223–241, 1994.

[78] A. Martelli and U. Montanari. An efficient unification algorithm. ACM Transactions
on Programming Languages and Systems, 4(2):258–282, 1982.

[79] A. Middeldorp. Modular Properties of Term Rewriting Systems. PhD thesis, Vrije
Universiteit, Amsterdam, 1990.

[80] M. O. Myreen and J. Davis. A verified runtime for a verified theorem prover. In
Proc. of the 2nd International Conference on Interactive Theorem Proving (ITP
2011), volume 6898 of LNCS, pages 265–280, 2011.

[81] F. Neurauter, H. Zankl, and A. Middeldorp. Revisiting matrix interpretations for
polynomial derivational complexity of term rewriting. In Proc. of the 17th Interna-
tional Conference on Logic for Programming, Artificial Intelligence and Reasoning
(LPAR 2010), volume 6397 of LNCS, pages 550–564, 2010.

[82] M. Nguyen, D. D. Schreye, J. Giesl, and P. Schneider-Kamp. Polytool: Polynomial
interpretations as a basis for termination analysis of logic programs. Theory and
Practice of Logic Programming, 11(1):33–63, 2011.

[83] T. Nipkow. An inductive proof of the wellfoundedness of the multiset order, 1998.
Available at http://www4.in.tum.de/~nipkow/misc/multiset.ps.

[84] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL – A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[85] E. Ohlebusch. A simple proof of sufficient conditions for the termination of the
disjoint union of term rewriting systems. Bulletin of the EATCS, 50:223–228, 1993.

[86] E. Ohlebusch. Termination of logic programs: Transformational methods revisited.
Appl. Alg. Eng. Comm. Comput., 12(1-2):73–116, 2001.

http://www4.in.tum.de/~nipkow/misc/multiset.ps


Bibliography 165

[87] C. Otto, M. Brockschmidt, C. von Essen, and J. Giesl. Automated termination
analysis of Java bytecode by term rewriting. In Proc. of the 21st International
Conference on Rewriting Techniques and Applications (RTA 2010), volume 6 of
LIPIcs, pages 259–276, 2010.

[88] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification system. In
Proc. of the 11th International Conference on Automated Deduction (CADE 1992),
volume 607 of LNAI, pages 748–752, 1992.

[89] L. C. Paulson. Logic and Computation: Interactive Proof with Cambridge LCF.
Cambridge University Press, 1987.

[90] S. Peyton Jones et al. The Haskell 98 language and libraries: The revised report.
Journal of Functional Programming, 13(1):0–255, Jan 2003.

[91] M. Schmidt-Schauß. Polynomial equality testing for terms with shared substruc-
tures. Frank report 21, Institut für Informatik. FB Informatik und Mathematik.
J.W. Goethe-Universität, Frankfurt am Main, 2005.

[92] P. Schneider-Kamp, R. Thiemann, E. Annov, M. Codish, and J. Giesl. Proving
termination using recursive path orders and SAT solving. In Proc. of the 6th In-
ternational Symposium on Frontiers of Combining Systems (FroCoS 2007), volume
4720 of LNAI, pages 267–282, 2007.

[93] F. Spoto, F. Mesnard, and É. Payet. A termination analyzer for Java bytecode
based on path-length. ACM Transactions on Programming Languages and Systems,
32(3), 2010.

[94] C. Sternagel. Automatic Certification of Termination Proofs. PhD thesis, Institut
für Informatik, Universität Innsbruck, Austria, 2010.

[95] C. Sternagel and A. Middeldorp. Root-Labeling. In Proc. of the 19th International
Conference on Rewriting Techniques and Applications (RTA 2008), volume 5117 of
LNCS, pages 336–350, 2008.

[96] C. Sternagel and R. Thiemann. Certified subterm criterion and certified usable
rules. In Proc. of the 21st International Conference on Rewriting Techniques and
Applications (RTA 2010), volume 6 of LIPIcs, pages 325–340, 2010.

[97] C. Sternagel and R. Thiemann. Signature extensions preserve termination. In Proc.
of the 19th Annual Conference of the EACSL on Computer Science Logic (CSL
2010), volume 6247 of LNCS, pages 514–528, 2010.

[98] C. Sternagel and R. Thiemann. Executable Transitive Closures of Finite
Relations. In The Archive of Formal Proofs. http://afp.sf.net/entries/

Transitive-Closure.shtml, 2011. Formalization.

[99] T. Sternagel and H. Zankl. KBCV - Knuth-Bendix completion visualizer. In Proc.
of the 6th International Joint Conference on Automated Reasoning (IJCAR 2012),
volume 7364 of LNAI, pages 530–536, 2012.

[100] Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 2003.

http://afp.sf.net/entries/Transitive-Closure.shtml
http://afp.sf.net/entries/Transitive-Closure.shtml


166

[101] R. Thiemann. The DP Framework for Proving Termination of Term Rewriting.
PhD thesis, RWTH Aachen, 2007. Available as technical report AIB-2007-17.

[102] R. Thiemann and J. Giesl. The size-change principle and dependency pairs for
termination of term rewriting. Appl. Alg. Eng. Comm. Comput., 16(4):229–270,
2005.

[103] R. Thiemann, J. Giesl, and P. Schneider-Kamp. Deciding innermost loops. In
Proc. of the 19th International Conference on Rewriting Techniques and Applica-
tions (RTA 2008), volume 5117 of LNCS, pages 366–380, 2008.

[104] R. Thiemann and C. Sternagel. Certification of termination proofs using CeTA. In
Proc. of the 22nd International Conference on Theorem Proving in Higher Order
Logics (TPHOLs 2009), volume 5674 of LNCS, pages 452–468, 2009.

[105] X. Urbain. Modular & incremental automated termination proofs. Journal of Au-
tomated Reasoning, 32(4):315–355, 2004.

[106] J. Waldmann. Matchbox: A tool for match-bounded string rewriting. In Proc. of
the 15th International Conference on Rewriting Techniques and Applications (RTA
2004), volume 3091 of LNCS, pages 85–94, 2004.

[107] S. Winkler, H. Sato, A. Middeldorp, and M. Kurihara. Optimizing mkbTT (system
description). In Proc. of the 21st International Conference on Rewriting Techniques
and Applications (RTA 2010), volume 6 of LIPIcs, pages 373–384, 2010.

[108] H. Zankl, B. Felgenhauer, and A. Middeldorp. CSI – A confluence tool. In Proc. of
the 23rd International Conference on Automated Deduction (CADE 2011), LNAI,
2011.

[109] H. Zankl, C. Sternagel, D. Hofbauer, and A. Middeldorp. Finding and certifying
loops. In Proc. of the 36th International Conference on Current Trends in Theory
and Practice of Computer Science (SOFSEM 2010), volume 5901 of LNCS, pages
755–766, 2009.

[110] H. Zantema. Termination of term rewriting by semantic labelling. Fund. Inform.,
24(1-2):89–105, 1995.

[111] H. Zantema. Termination of string rewriting proved automatically. Journal of
Automated Reasoning, 34(2):105–139, 2005.


	Preface
	Introduction
	Major Problems
	Related Work
	Contributions
	Certification of Termination Proofs using CeTA (Chapter 6)
	Certified Subterm Criterion and Certified Usable Rules (Chapter 7)
	Signature Extensions Preserve Termination – An Alternative Proof via Dependency Pairs (Chapter 8)
	Modular and Certified Semantic Labeling and Unlabeling (Chapter 9)
	Termination of Isabelle Functions via Termination of Rewriting (Chapter 10)
	Generalized and Formalized Uncurrying (Chapter 11)
	On the Formalization of Termination Techniques Based on Multiset Orderings (Chapter 12)
	Certification of Nontermination Proofs (Chapter 13)
	Further Contributions
	Summary of Contributions

	Future Research

	Selected Papers
	Certification of Termination Proofs using CeTA
	Introduction
	Formalizing Term Rewriting
	Certifying Dependency Pairs
	Certifying the Dependency Graph Processor
	Certifying Graph Decompositions
	Certifying Dependency Graph Estimations
	Certifying Dependency Graph Decomposition

	Certifying the Reduction Pair Processor
	Certifying the Whole Proof Tree
	Error Messages
	Experiments and Conclusion

	Certified Subterm Criterion and Certified Usable Rules
	Introduction
	Preliminaries
	The Subterm Criterion
	Usable Rules
	Experiments
	Conclusion

	Signature Extensions Preserve Termination
	Introduction
	Preliminaries
	Dependency Pairs
	Main Results
	Applications 
	Conclusion

	Modular and Certified Semantic Labeling and Unlabeling
	Introduction
	Preliminaries
	Term Rewriting
	Semantic Labeling

	Modular Semantic Labeling and Unlabeling
	Dependency Pair Framework
	Problems in Certification
	Experiments
	Conclusion

	Termination of Isabelle Functions via Termination of Rewriting
	Introduction
	Preliminaries
	Higher-Order Logic
	Supported Fragment
	Function Definitions by Well-Founded Recursion
	IsaFoR - Term Rewriting Formalized in Isabelle/HOL
	Terminology and Notation

	The Reduction to Rewriting
	Encoding Expressions and Defining Equations
	Embedding Functions
	Rewrite Lemmas
	The Simulation Property
	Reduction of Termination Goals
	Proof of the Simulation Property

	Examples
	Extensions
	Conclusion

	Generalized and Formalized Uncurrying
	Introduction
	Preliminaries
	Applicative Rewriting and Uncurrying
	Uncurrying in the Dependency Pair Framework
	Heuristics and Experiments
	Conclusions

	Formalization of Termination Techniques Based on Multiset Orderings
	Introduction
	Preliminaries
	Formalization of the Generalized Multiset Ordering
	Multiset and Recursive Path Ordering
	SCNP Reduction Pairs
	Certification Algorithms
	Summary

	Certification of Nontermination Proofs
	Introduction
	Preliminaries
	A Framework for Certifying Nontermination
	Loops
	Formalization
	Conclusions

	Bibliography


