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Abstract 14 

We have studied acrylamide-based polymers of varying hydrophobicity (acrylamide, AA; N-15 

hydroxymethylacrylamide, NHMA; N-isopropylacrylamide, NiPAm) for their capability of 16 

imprinting protein. Rebinding capacities (Q) from spectroscopic studies were highest for 17 

bovine haemoglobin (BHb) MIPs based on AA, Q = 4.8 ± 0.21 < NHMA, Q = 4.3 ± 0.32 < 18 

NiPAm, Q = 3.6 ± 0.45, while also demonstrating low selectivities for non-template proteins 19 

(<30 ± 5%), with the exception of bovine serum albumin (BSA, >76 ± 0.5%). When applied 20 

to the QCM sensor as thin-film MIPs, NHMA MIPs were found to exhibit best discrimination 21 

between MIP and non-imprinted control polymer (NIP) in the order of NiPAm < AA < 22 

mailto:s.reddy@surrey.ac.uk
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NHMA. The extent of template removal and rebinding, using both crystal impedance and 23 

frequency measurements, demonstrated that 10% (w/v):10% (v/v) sodium dodecyl 24 

sulphate:acetic acid (pH 2.8) was efficient at eluting template BHb (with 80 ± 10% removal). 25 

Selectivity studies of NHMA BHb-MIPs revealed higher adsorption and selective recognition 26 

properties to BHb (64.5 kDa) when compared to non-cognate BSA (66 kDa), myoglobin 27 

(Mb, 17.5 kDa), lysozyme (Lyz, 14.7 kDa) thaumatin (Thau, 22 kDa) and trypsin (Tryp, 22.3 28 

kDa). The QCM gave frequency shifts of ∼1500 ± 50 Hz for template BHb rebinding in both 29 

AA and NHMA MIPs, whereas AA-based MIPs exhibited an interference signal of ∼2200 ± 30 

50 Hz for non-cognate BSA in comparison to a ∼500 ± 50 Hz shift with NHMA MIPs. Our 31 

results show that NHMA-based hydrogel MIP are superior to AA and NIPAM.. 32 

 33 

Keywords: Molecular imprinted polymer (MIP); Hydrogel; Protein; Biosensor; QCM  34 
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1. Introduction 35 

1. Introduction 36 

In recent years, molecularly imprinted polymers (MIPs) have allowed selective extractions 37 

that rival immunoaffinity-based separations, and have shown clear advantages over real 38 

antibodies for sensor applications: they are easy to fabricate, intrinsically stable, robust, and 39 

are able to operate in extreme environments [1], [2] and [3]. MIPs could provide an 40 

alternative, inexpensive, fast, and efficient diagnostic method for highly sensitive analytical 41 

procedures within the pharmaceutical area [3]. 42 

 43 

When imprinting complex bio-macromolecules some of the most significant drawbacks in 44 

MIP technology are the unprecedented degree of influence that the variation in pH [4], ionic 45 

strength and local matrix effects all have on the gel properties [5], [6], [7] and [8]. This can 46 

affect the three dimensional shape and chemical characteristics of the template molecule 47 

during polymerisation. This is particularly true when imprinting large bio-macromolecules 48 

such as proteins. Proteins are relatively labile, and have variable conformations which are 49 

sensitive to solvent environments, pH and temperature, all of which present a variety of 50 

challenges [5]. It has been thought that low imprinting capacities associated with bio-51 

macromolecules could be caused by the use of charged functional monomers causing non-52 

specific electrostatic interactions [5]. Moreover, as with antibodies, MIPs have also shown a 53 

degree of cross-selectivity, in that they can bind molecules similar to the native template and 54 

cause non-specific binding. It is thought that this is due in part to an excess of functional 55 

monomer molecules being randomly distributed and frozen within the imprinted cavity 56 

during polymerisation that have an affinity for non-template molecules [3] and [9]. Thus, 57 

more sophisticated monomers capable of forming better, stronger and more stable 58 
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interactions that offer better positioning and complementary functionality are widely being 59 

sought. Once these parameters are optimised, application to biosensors and analysis of actual 60 

biological samples would be more realistic [6], [10], [11] and [12]. 61 

 62 

Biosensors for proteins are currently expensive to develop because they require the use of 63 

expensive antibodies [3] and [13]. However, as MIPs are becoming more and more promising 64 

as viable alternatives to natural receptors new MIP-based sensor strategies are being 65 

developed [3]. The main advantage of biosensors is the ability to sample outside the 66 

laboratory environment with minimal user input. One important part of bio-sensing is 67 

transducers, which monitor the reaction between bio-selector and analyte. Among various 68 

physical transducers (electrochemical, peizoelectric, etc.), mass sensitive devices such as 69 

surface acoustic wave (SAW), surface plasmon resonance (SPR) and quartz crystal 70 

microbalance (QCM) have become popular for sensing applications [14], [15], [16] and [17]. 71 

 72 

Following the thorough analysis of QCM systems for use in fluids over the past 2 decades, 73 

this has allowed for more esoteric applications including bio-sensing [16]. In most cases 74 

quartz resonators are integrated to oscillator circuits to form a QCM for micro weighing 75 

applications. Normally, an equivalent circuit model is fitted to the impedance curve, and the 76 

obtained parameters can be used for calculating the resonant frequency and dissipation (D) of 77 

the quartz crystal i.e. mass and viscoelastic properties of the deposited layers [15] and [16]. 78 

Determining the impedance curve has many advantages; first and foremost it has expanded 79 

the range of measurable parameters from rigid thin films, to biologically relevant films of 80 

“soft” viscoelastic material. These QCM couplings have been widely used for biomaterials 81 

and biosensor studies [10], [12], [16], [18] and [19], where surface confined bio-molecular 82 
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interactions have provided an insight into dissolution of polymer coatings, DNA 83 

hybridisation, cell response to pharmacological substances, molecular interactions of drugs 84 

and their delivery. The QCM has also been utilised as an immunosensor, where analytes are 85 

recognised by antibodies, which are immobilised on a thin layer deposed on a crystal surface. 86 

Resulting mass changes are transformed into an electronically measurable quantity. The 87 

objective behind the majority of QCM research is to use sensor technology to develop a rapid 88 

method for the measurement of bio-molecular affinity reactions, and an in-depth analysis of 89 

electrochemical deposition, adsorption and reaction mechanisms of polymers coated on 90 

electrodes as ‘thin films’ [10], [12], [18], [19] and [20]. 91 

 92 

The focus of this paper is the tailoring of QCM electrode surface chemistry (i.e. specialised 93 

polymer coatings), with a view that these devices can discriminate proteins for bio-sensing 94 

and basic surface-molecular interaction studies. In this work, we demonstrate the application 95 

of the QCM technique to distinguish between the behaviour of MIPs and NIPs in the 96 

presence of cognate and non-cognate proteins. Bovine haemoglobin (BHb, 64.5 kDa) was 97 

chosen as a model protein for its well-known function in the vascular system as a carrier of 98 

oxygen, also in aiding the transport of carbon dioxide and regulating blood pH [3] and [13]. 99 

Bovine serum albumin (BSA, 66 kDa), a non metalloprotein of similar molecular weight to 100 

BHb, served to test the selectivity of the BHb-MIP to BSA compared to template BHb, and 101 

was compared across a family of acrylamide-based polymer hydrogels. 102 

 103 

2. Experimental 104 

2.1. Materials 105 
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 106 

Acrylamide (AA), N-hydroxymethylacrylamide (NHMA), N-iso-propylacrylamide (NiPAm), 107 

N,N′-methylenebisacrylamide (bis-AA), ammonium persulphate (APS), N,N,N′,N′-108 

tetramethylethylenediamine (TEMED), sodium dodecyl-sulphate (SDS), glacial acetic acid 109 

(AcOH), bovine haemoglobin (BHb), bovine serum albumin (BSA), hen egg-white lysozyme 110 

(Lyz), thaumatin from Thaumatococcus danielii (Thau), bovine pancreatic trypsin (Tryp) and 111 

equine heart myoglobin (Mb) were all purchased from Sigma–Aldrich, Poole, Dorset, UK. 112 

Sieves (75 μm) were purchased from Endecotts Ltd. and Inoxia Ltd., UK. AT-cut quartz 113 

crystal pieces (9 MHz fundamental resonance) with gold-on-chrome electrodes were supplied 114 

by Nihon Dempa Kogyo Company Ltd. (Tokyo, Japan). 115 

 116 

2.2. HydroMIP preparations 117 

 118 

Hydrogel MIPs were synthesised by separately dissolving AA (54 mg), NHMA (77 mg), 119 

NiPAm (85.6 mg) and bis-AA as cross-linker (6 mg), (8.5 mg) and (9.5 mg), respectively 120 

along with template protein (12 mg) in 960 μL of MilliQ water. The solutions were purged 121 

with nitrogen for 5 min, followed by an addition of 20 μL of a 10% (w/v) APS solution and 122 

20 μL of a 5% (v/v) TEMED solution. Polymerisation occurred at room temperature (RT, 22 123 

± 2 °C) giving total gel densities (%T) of 6%T, AA/bis-AA (w/v); 8.5%T, NHMA/bis-AA 124 

(w/v); 9.5%T, NiPAm/bis-AA (w/v), and final crosslinking densities (%C) of 10%C (9:1, 125 

w/w) for all hydrogels. 126 

 127 
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For every MIP created a non-imprinted control polymer (NIP) was prepared in an identical 128 

manner but in the absence of protein. After polymerisation, the gels were granulated 129 

separately using a 75 μm sieve. Of the resulting gels, 500 mg were transferred into 1.5 mL 130 

centrifuge Eppendorf tubes and conditioned by washing with five 1 mL volumes of MilliQ 131 

water followed by five 1 mL volumes of 10% (w/v):10% (v/v) SDS:AcOH (pH 2.8) and 132 

another five 1 mL volume washes of MilliQ water to remove any residual 10% (w/v):10% 133 

(v/v) SDS:AcOH eluent and equilibrated the gels. Each wash step was followed by a 134 

centrifugation, whereby the gels were centrifuged using an Eppendorf mini-spin plus 135 

centrifuge for 3 min at 6000 rpm (RCF: 2419 × g). All supernatants were collected for 136 

analysis by spectrophotometry to verify the extent of template removal. It should be noted 137 

that the last water wash and eluent fractions were not observed to contain any protein. 138 

Therefore we are confident that any remaining template protein within the MIPs did not 139 

continue to leach out during the rebinding studies. 140 

 141 

2.3. Rebinding studies 142 

 143 

Once the gels (500 mg) were equilibrated, a 1 mL template protein solution prepared in 144 

MilliQ water containing 3 mg of protein was added to the target MIPs and NIP controls and 145 

was allowed to associate at RT (22 ± 2 °C) for 20 min. Selectivity studies were also 146 

conducted to assess the relative imprinting factor of the original protein template. This was 147 

achieved by loading non-cognate proteins on a BHb imprinted gel. Gels were then washed 148 

with four 1 mL volumes of MilliQ water. Each reload and wash step for all MIPs and NIP 149 

controls was followed by centrifugation at 6000 rpm (RCF: 2419 × g) for 3 min. All 150 

supernatants were collected for analysis by spectrophotometry. 151 
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 152 

2.4. Spectrophotometric analysis 153 

 154 

Calibration curves in MilliQ water and 10% (w/v):10% (v/v) SDS:AcOH were prepared for 155 

BHb, BSA, Lyz, Tryp and Mb. Spectral scans revealed peak wavelengths for BHb in MilliQ 156 

water and 10% (w/v):10% (v/v) SDS:AcOH to be 405 nm and 395 nm, respectively. Peak 157 

wavelengths for BSA in MilliQ water and 10% (w/v):10% (v/v) SDS:AcOH were found to be 158 

288 nm and 290 nm respectively. Peak wavelengths for Lyz in MilliQ water and 10% 159 

AcOH:SDS were found to be 291 nm and 296 nm respectively. Peak wavelengths for Tryp in 160 

MilliQ water and 10% (w/v):10% (v/v) SDS:AcOH were found to be 293 nm. Peak 161 

wavelengths for Mb in MilliQ water, 10% (w/v):10% (v/v) SDS:AcOH were found to be 410 162 

nm, and 396 nm respectively. Analysis and subsequent determination of protein 163 

concentration in appropriate media was performed at specific peak wavelengths using a UV 164 

mini-1240 CE spectrophotometer (Shimadzu Europa, Milton Keynes, UK). 165 

 166 

2.5. Quartz crystal microbalance (QCM) analysis of thin film MIPs 167 

 168 

QCM crystals were sealed and air capped (single-sided) with PVC glue in-order to prevent 169 

short circuiting when the QCM was submerged in solution [10]. Poly AA, NHMA and 170 

NiPAm gels for BHb were synthesised using the hydrogel production procedures outlined in 171 

Section 2.2. Before polymerisation, MIPs and NIPs were deposited as thin films onto the 172 

capped QCM crystals. Thin-films were achieved by beading and compressing 10 μL of the 173 

polymerising solutions directly onto the crystals. QCM frequency and impedance 174 
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measurements were taken using an Agilent 4194A Impedance Analyser. An in-house written 175 

QBasic programme was used to drive the analyser and collect series resonance frequency and 176 

impedance data in real time. 177 

 178 

2.5.1. Elution and rebinding studies 179 

 180 

MIP and NIP polyAA thin-film capped crystals were firstly immersed in MilliQ water, 181 

followed by 10% (w/v):10% (v/v) SDS:AcOH in order to remove imprinted protein primarily 182 

from the surface of the polymer. This was followed by another submersion in MilliQ water to 183 

remove any residual surfactant and to re-condition the hydrogel. After subsequent 184 

stabilisation of the QCM response, template protein was reloaded by immersing the QCM in 185 

a 3 mg/mL BHb solution and the response trace was recorded at RT (22 ± 2 °C). 186 

 187 

2.5.2. Selectivity studies 188 

 189 

Continuous real-time scans were conducted in-order to assess characteristic impedance 190 

changes of the gels during surface exposure to wash, elute and protein rebinding conditions. 191 

During a typical run, the MIP thin-film capped crystals were submerged sequentially in 192 

various solutions such as 10% (w/v):10% (v/v) SDS:AcOH, MilliQ water or 3 mg/mL protein 193 

solutions (cognate BHb and non-cognate BSA, Thau, Lyz and Tryp) for a set time of 5 min 194 

each, and crystal impedance and frequency responses were recorded at RT (22 ± 2 °C). The 195 

latter procedure was followed for AA, NiPAm and NHMA based MIP hydrogels for BHb. 196 
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 197 

3. Results and discussion 198 

3.1. MIP selectivity 199 

The molecular imprinting effect is characterised by the rebinding capacity (Q) of protein to 200 

the gel polymer (mg/g) exhibited by the protein-specific MIP and the control NIP, and is 201 

calculated using Eq. (1), where Ci and Cr are the initial protein and the recovered protein 202 

concentrations (mg/mL) respectively (which specifies the specific protein bound within the 203 

gel), V is the volume of the initial solution (mL), and g is the mass of the gel polymers (g). 204 

 205 

 (1) 206 

 207 

Fig. 1A shows the rebinding capacities and imprinting factors of polyacrylamide (polyAA) 208 

MIP and NIPs for several different proteins. The internal measure of the imprinting factor 209 

between MIP and NIP serves to demonstrate that the MIP possesses selective cavities for the 210 

rebinding of template molecule compared to NIP controls. It can clearly be seen that there is 211 

a distinctive rebinding capacity variation for each imprinted protein template within a 212 

polyAA MIP. This has previously been attributed to protein size, cross-linking density, and 213 

the initial degree of association within the polymer matrix [4]. 214 

Gels based on N-hydroxymethylacrylamide (NHMA) exhibited similar rebinding trends, 215 

whereas poly-N-isopropylacrylamide gels (polyNiPAm) demonstrated lower rebinding 216 

capacities. Thus, bulk gel characterisation revealed the highest rebinding capacities for BHb 217 

MIPs based on polyAA (Q = 4.8 ± 0.21), followed by polyNHMA (Q = 4.3 ± 0.32), 218 
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polyNiPAm (Q = 3.6 ± 0.45). These gel imprinting trends are in agreement with those 219 

previously published [4], [9] and [10]. 220 

 221 

Selectivity studies were also conducted to confirm a BHb specific imprinting effect and to 222 

assess the relative imprinting factor of cross-selective binding profiles. The cross-reactivity of 223 

the BHb-imprinted MIPs for non-cognate proteins was quantified using relative imprinting 224 

factors (k), Eq. (2), where IFBHb is the imprinting factor for BHb, and is calculated by IF = 225 

[Ci − Cr]MIP/[Ci − Cr]NIP, and IFx is the imprinting factor of the cross-reacting non-226 

cognate proteins on a BHb MIP. For the template BHb k = 1, and for non-cognate proteins 227 

that are less-specific for the BHb MIP, k < 1. 228 

 229 

𝑘𝑘 = IF𝐵𝐵𝐵𝐵𝐵𝐵
IF𝑥𝑥

                                (2) 230 

The data (Fig. 1B) suggests that both non-cognate trypsin (Tryp) and lysozyme (Lyz) proteins 231 

have relatively low affinities for the BHb-specific MIP, k ≈0.2 ± 0.05. However, bovine 232 

serum albumin (BSA), which is a similar size to BHb, exhibited a high degree of interference 233 

binding (cross selectivity) resulting in high k values of 0.65 ± 0.05. Myoglobin (Mb) also 234 

exhibited some degree of cross-selectivity; this can be attributed to the size of Mb, which is a 235 

quarter that of BHb (17.5 kDa), and its similarity to a single BHb sub-unit [4]. Interestingly 236 

though, when reversed, a polyAA BSA-MIP exposed to non-target BHb protein had 237 

relatively low affinity. It would appear that BSA has a high ability to bind non-specifically to 238 

a BHb MIP, whereas BHb does not exhibit the same ability within a BSA MIP. 239 

 240 
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Competitive binding studies using a 50:50 mixture of BHb:BSA (3 mg/mL total) on a MIP-241 

BHb were also conducted (Fig. 1B). The addition of BSA caused an obvious capacity 242 

decrease of BHb binding on the BHb-MIP, suggesting that the rebinding of BHb was 243 

displaced by the competing BSA or by protein-protein interactions [21]. As the size, 244 

structure, and specificity of the imprinted cavities should be in favour of the BHb template, it 245 

is rational that the addition of BSA as a competing protein would not bind to the BHb-246 

specific imprinted cavities. Gai et al. previously demonstrated that BSA does not bind 247 

specifically to a BHb MIP, but rather displaces the non-specific recognition sites of cavities 248 

and the nonspecific binding of BHb to BHb-MIP [21]. Moreover, although BSA and BHb 249 

share similar sizes (66 kDa and 64.5 kDa, respectively), it should be noted that BSA has a pI 250 

of 4.6 and BHb a pI of (6.8–7.0). Since competitive binding was performed under MilliQ 251 

water (pH 5.4), conditions are in favour of BSA [21] and [22]. Above its pI, BSA becomes 252 

negatively charged and the groups exist as single bondNH2 and single bondCOO−, this 253 

overall negative net charge induces more favourable and complementary hydrogen bonding 254 

interactions, resulting in increased specific as well as non-specific binding [4]. 255 

 256 

3.2. QCM sensor application of MIPs 257 

Thin film BHb MIPs were prepared on the surface of a QCM chip and the sensor was 258 

exposed sequentially to MilliQ water, 10% (w/v):10% (v/v) SDS:AcOH and 3 mg/mL protein 259 

solutions at RT (22 ± 2 °C). We have previously published on the thickness of the thin films 260 

on sensor chips with an average thickness of 138 ± 9 nm [6]. Given that for a 9 MHz crystal 261 

the shear wave decay length is 250 nm at RT [23], we are within the sensing region of the 262 

QCM to measure both bulk and surface effects within the MIP film. 263 

 264 
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Fig. 2A and B shows the QCM impedance and frequency responses following immersion in a 265 

solution of 10% (w/v):10% (v/v) SDS:AcOH in order to remove imprinted protein from the 266 

surface of the polymer. Previous investigations have shown that optimum conditions for 267 

protein removal of up to 80% have been achieved using 10% (w/v):10% (v/v) SDS:AcOH 268 

[9]. Using this acid/surfactant combination the positively charged protein attaches to the 269 

negatively charged surface of SDS micelles and disrupts the hydrophobic bonds. Since there 270 

is a significant shift in both resonance frequency and impedance it can be assumed that some 271 

of the BHb imprinted template has been successfully removed from the MIP. 272 

It is worth noting the two distinct differences in the impedance response when compared with 273 

the frequency response. Firstly, the impedance response has much reduced noise in the signal 274 

in contrast to the frequency response. Secondly, there are significant additional transitions 275 

(e.g. at 350 and 650 s) in the signal which are being observed in the Z response, but not in the 276 

frequency response. It has been suggested that whereas the frequency response predominately 277 

demonstrates the QCM mass response only within an adlayer, the electrical impedance gives 278 

a combination response of the mass effect as well as subsequent changes in the viscoelasticity 279 

of the adlayer possibly due to molecular relaxations within the adsorbed layer over a longer 280 

timescale following initial immersion [23], [24] and [25]. 281 

 282 

After subsequent stabilisation of the QCM response, the template BHb was then reloaded by 283 

immersing the QCM in a 3 mg/mL BHb solution and the response trace recorded. Fig. 2C and 284 

D compares the final QCM impedance and frequency responses to template BHb exposure of 285 

each MIP and its corresponding NIP. It can be seen that upon addition of a 3 mg/mL BHb 286 

solution to the BHb MIP caused significant QCM responses compared with NIP thin-film 287 

hydrogels. This suggests that MIP thin-film gels are affected by specific binding of target 288 
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BHb. This distinct difference between responses exhibited by MIP and the NIP control 289 

strongly supports that binding and elution of target protein gave rise to distinct impedance 290 

transitions. The 200 ± 50 Hz frequency shift observable by both MIP and NIP during the 291 

initial loading step (Fig. 2D) is suggestive of a solution viscosity effect. 292 

 293 

Real time impedance response following sequential immersion in solutions of BHb, 10% 294 

(w/v):10% (v/v) SDS:AcOH and BSA were also measured. Three distinct types of responses 295 

were observed depending on the acrylamide-based monomer used. The key difference 296 

between the polymers is their hydrophilicity dictated by the hydrophilic hydroxyl group in 297 

NHMA and the hydrophobic isopropyl group in NiPAm. AA sits between the two in degree 298 

of hydrophilicity (polyNHMA > polyAA > polyNiPAm), which agrees with the order of best 299 

performance of the polymers as BHb MIPs in previous QCM studies [10]. Fig. 3 compares 300 

the final QCM response to cognate and non-cognate protein exposure of each MIP with its 301 

corresponding NIP. Interestingly, the NiPAm MIP and NIP both show a near zero frequency 302 

response to template BHb and non-cognate BSA, indicating that NiPAm is equally 303 

unselective for both proteins as is the control non-imprinted polymer. The non-response of 304 

NiPAm to either BHb or BSA suggests that there is a resistance to either protein to bind to 305 

the polymer. The striking difference in selectivities between cognate and non-cognate 306 

proteins for NHMA and AA suggests that the hydroxyl group in NHMA plays a significant 307 

role in the selective binding of BHb and the lack of binding of BSA. 308 

Moreover, variations of the series resonance frequency demonstrated to be highly dependent 309 

on the test solution used (Fig. 4A). The impedance data is presented here because in 310 

comparison to the frequency response, there is much reduced noise in the signal following 311 

each solution phase immersion. It can be seen that MIP thin-films exposed to a 10%:10% 312 
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(v/v) SDS:AcOH solution exhibited an immediate significant decrease in impedance (500 ± 313 

100 Ω); this is possibly due to the increase in the viscosity of the solution caused by the 314 

presence of SDS micelles in the solution. Moreover, it can clearly be seen that the 315 

introduction of non-template BSA also exhibits an impedance response within the poly AA 316 

MIP, suggesting some non-specific binding within the BHb-HydroMIP. Thus, there is a high 317 

degree of cross-selectivity present for our AA-based MIPs (>70%), and this interference is 318 

absent when NHMA-based MIPs are used (<20%) as seen in Fig. 3. 319 

To further test the BHb-MIP selectivity, we investigated the rebinding of template BHb after 320 

exposing the MIP with non-target BSA. The resulting quantified imprinting effect of BHb for 321 

polyAA MIP thin-film gels can be seen in the impedance responses (Fig. 4B). The 322 

comparison demonstrates that both HydroMIP and HydroNIP films act differently under 323 

water wash, elution and load (solution immersion) treatments following BSA loading. It can 324 

be seen that when non-target BSA is loaded first, the QCM impedance response is now 325 

negligible. Interestingly, impedance responses are also almost negligible when BHb is 326 

introduced after prior exposure to BSA. Although the loaded BSA did not associate 327 

specifically with the BHb-MIP thin-film surface, an interesting and lasting effect inhibits 328 

BHb from easily binding to recognition sites. Indeed, BSA is similar to the template BHb in 329 

size, but the spatial arrangement of the effective groups on its exterior are different from 330 

BHb, and the recognition sites in the BHb-MIP cavities are not complementary in shape to 331 

BSA [22]. Therefore, little to no selectivity of BSA on BHb-MIPs should be expected. 332 

Therefore, in the case of AA-based MIPs, the inhibition effect is most likely due to the ability 333 

of BSA to exhibit protein binding on the MIP surface but not within cavities. Formation of a 334 

BSA biolayer above (but not within) the cavities would block subsequent cavity-selective 335 

MIP binding for its cognate protein [22]. This is further indication that BHb-MIPs distinguish 336 

proteins not only based on molecular size, but also on the synergistic effect of shape memory, 337 
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and multiple weak hydrogen bonding interactions specific to template protein in 338 

macromolecular recognition [21], [22] and [26]. 339 

 340 

Moreover, further studies to interrogate the recognition capabilities of MIPs were carried out 341 

using a range of non-metalloproteins chosen for their different sizes and functionalities 342 

compared to BHb, BSA and Mb. Of these proteins: lysozyme (Lyz), a glycoside hydrolase 343 

enzyme (14.7 kDa) that is part of the innate immune system, and exists as a natural form of 344 

protection from pathogens like Salmonella, E. coli, and Pseudomonas [9], [10] and [27]. 345 

Thaumatin (Thau), a sweetener or flavour modifier (22 kDa) often used in crystallisation 346 

studies due to its ease of use and crystal formation [27]. Trypsin (Tryp), a serine protease 347 

enzyme or proteinase ‘digestive enzyme’ (23.8 kDa) commonly imprinted within MIPs [9], 348 

[10] and [27]. Fig. 5 shows that the BHb-MIPs based on all three polymers (AA, NHMA, and 349 

NiPAm) are essentially non-responsive to the addition of the three smaller proteins Thau, Lyz 350 

and Tryp respectively. An average NIP response was calculated based on all three polymers 351 

and used as an illustration to demonstrate the negligible responses exhibited by the MIP 352 

properties. The negligible responses exhibited by the QCM sensor concur with the qualitative 353 

data and confirm that these small proteins exhibit no selective specific/non-specific binding 354 

characteristics to a BHb-imprinted MIP. 355 

 356 

4. Conclusions 357 

A family of acrylamide-based MIPs have been characterised for their imprint efficiency using 358 

spectrophotometric and QCM sensor techniques for biosensor development. Varied rebinding 359 

capacities and relative imprinting factors have been achieved using bulk characterisation. We 360 
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have demonstrated that MIP selectivity is a function of the hydrophilicity of the acrylamide 361 

monomer used to form the MIP. Three distinct types of QCM responses were observed 362 

depending on the acrylamide used (polyNHMA > polyAA > polyNiPAm), which agrees with 363 

the order of best performance of the polymers in previously published QCM studies. The 364 

selectivity of BHb-MIP for BHb and BSA was also compared via QCM, along with several 365 

other proteins. Results demonstrated BHb-MIP to have better selective adsorption and 366 

recognition properties to BHb than BSA when using the hydrophilic NHMA as a MIP 367 

polymer matrix. Therefore, the QCM sensor was able to indicate MIP surface activity and 368 

provide physical interpretation in terms of hydrophilicity of the polymer matrix that forms the 369 

MIP and protein selectivity. Our QCM sensor also has the ability to assess the extent of 370 

specific protein binding by sensing surface-specific bound cognate protein to MIPs compared 371 

to non-imprint NIP controls. We expect, once fully developed, that the benefits of sensitivity, 372 

specificity and stability of MIPs coupled with discriminatory techniques, such as QCM, will 373 

be crucial to the future impact of portable diagnostics for personal healthcare and use by 374 

health professionals. The technology also presents major potential benefits to environmental 375 

and food monitoring. 376 
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Fig. 1.  465 

(A) Rebinding capacities (Q) and imprinting factors of MIPpolyAA and NIPpolyAA hydrogels for several 466 
proteins in MilliQ water media: bovine haemoglobin (BHb), bovine serum albumin (BSA), myoglobin 467 
(Mb), lysozyme (Lyz), trypsin (Tryp); (B) relative imprinting factors (k) for a range of BHb-468 
MIPpolyAA cross-reactants in MilliQ water media. Results illustrate higher MIP selectivities for cognate 469 
BHb and the degree of cross-selectivity for other non-template analytes. Data represents 470 
mean ± S.E.M., n = 3. 471 
 472 

 473 

Fig. 2.  474 
QCM response to the immersion of polyAA-BHb hydrogel thin-film MIP in 10% (w/v):10% (v/v) 475 
SDS:AcOH in order to follow protein elution (arrow indicates time of MIP immersion): (A) impedance 476 
(ΔZ), (B) frequency (Δf); QCM responses to BHb (3 mg/mL) loading onto a BHb imprinted polyAA 477 
hydrogel thin-film (arrow indicates time of immersion in protein solution): (C) impedance (ΔZ) and (D) 478 
frequency (Δf). 479 
 480 
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 481 

 482 

Fig. 3.  483 
QCM frequency shift responses of NiPAm, AA and NHMA polymer MIPs and NIPs to cognate BHb 484 
and non-cognate BSA loading (3 mg/mL) after 5 min of exposure. Data represents 485 
mean ± S.E.M., n = 3. 486 
 487 
 488 

 489 

Fig. 4.  490 
Real time QCM impedance responses: (A) direct BHb rebinding and BSA cross-selectivity on a BHb-491 
MIPpolyAA; (B) BSA cross-selectivity on a BHb-MIPpolyAA followed by BHb rebinding. 492 
 493 
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 494 

 495 

Fig. 5.  496 
QCM response of functionalised acrylamide BHb MIPs to non-cognate proteins thaumatin (Thau), 497 
lysozyme (Lyz), and trypsin (Tryp) after H2O washes and an SDS:AcOH elute. 498 
 499 
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