Inversion of Cycle Index Sum Relations for
2- and 3- Connected Graphs

R. W. Robinson*
Computer Science Dept.
415 GSRC

University of Georgia

Athens, GA 30602
T. R. Walsh'

Départment de Mathématiques et d’Informatique
Université du Québec a Montréal

Case Postale 8888, Succursale “A”
Montréal, P.QQ. H3C 3P8

Abstract

Algebraic inversion of cycle index sum relations is employed to
derive new algorithms for counting unlabeled graphs which are (a) 2-
connected, (b) 2-connected and homeomorphically irreducible, and (c)
3-connected. The new algorithms are significantly more efficient than
earlier ones, both asymptotically and for modest values of the order.
Time- and space-complexity analyses of the algorithms are provided.
Tables of computed results are included for the number n of nodes
satisfying n < 26 in case (a) and n < 25 in cases (b) and (c). These
are totals over all values of the number ¢ of edges. Tables showing
the breakdown by number of edges are included for n < 16 in case (a)
and n < 18 in cases (b) and (c).
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1 Introduction

A graph is assumed to be finite and undirected, with neither loops nor
multiple edges. A graph with at least k + 1 nodes (k > 1) is defined to be
k-connected if it is connected and (for k > 2) cannot be disconnected by
removing fewer than k nodes and their incident edges. The k-connectedness
of smaller graphs can be defined arbitrarily, and we choose to define the
smallest 1- , 2- and 3-connected graphs to be the complete graphs on 1, 2

and 4 nodes, respectively.

For enumeration purposes, an unlabelled graph is an isomorphism class
of (labelled) graphs. Counting graphs with prescribed properties usually
involves decomposing a graph into a core and components. For unlabelled
graphs it also involves keeping track of the number of automorphisms of the
core with a given cycle decomposition by means of a cycle index [2, ch. 2.2].
In the case of counting all n-node graphs, the core is the complete graph on n
nodes, in which each edge is replaced by a component with 2 nodes and 0 or
1 edge to obtain the graphs to be counted; in the case of counting connected
graphs, the core is a set, in which each element is replaced by a component,
which is a connected graph, to obtain an arbitrary graph. In both cases,
the cycle structures of the automorphisms of the core are known. Thus one
can compute the sum of the cycle indices of the automorphism groups of
all possible cores (cycle index sum for cores) and then use Pdlya’s theorem,
which relates this cycle index sum and the counting series for components
and compositions [2, ch. 4.1 and 4.2]. When counting graphs with up to n
nodes on a computer, one stores only counting series and sums once




over a cycle index sum; thus the space-complexity is polynomial in n, and
the time-complexity is bounded by the number of terms in the cycle index
sum (which is p'(n), the number of partitions of all the numbers up to n)
multiplied by a polynomial in n for the computation done on the counting
series for each coefficient of the cycle index sum.

In the case of counting 2-connected graphs, the core is a set of rooted
2-connected graphs joined at the root; every other node has a rooted con-
nected graph attached to it, to obtain another rooted connected graph. The
unknown is now the cycle index sum for cores, from which the counting se-
ries can be obtained. However, this cycle index sum cannot be obtained
from the counting series for components and composition; thus it was nec-
essary to generalize Pdlya’s theorem to relate not counting series but cycle
index sums for components and compositions to those for cores [4 and 2,
ch. 8.6]. A straight-forward solution of such a relation involves storing and
computing with the coefficients of cycle index sums. In that fashion, the
space-complexity is bounded below by p/(n) and the time-complexity by a
power of p'(n).

In the case of counting 2-connected graphs with no vertices of degree
< 2, the core is just such a graph, in which each edge is replaced by a
series-parallel network to obtain an arbitrary 2-connected graph (except one
which becomes a series-parallel network if an edge is deleted and its ends
distinguished as poles). In the case of counting 3-connected graphs, the core
is a 3-connected graph (or a polygon or a set of > 3 parallel edges), in
which each edge is replaced by a more general 2-pole network (a 2-connected
graph with an edge removed) to obtain an arbitrary 2-connected graph. The
latter decomposition is not unique, so correction terms are required. In these
cases too, the unknown is the cycle index sum for cores. But now the cycle
index sums which would have to be stored for a straight-forward solution
contain not only node-cycles (necessary to compute the cycle index sum for
2-connected graphs) but also two types of edge-cycles: cycles which preserve
the orientation of the edge and thus fix the poles of the network which replaces
it, and cycles which reverse the orientation and thus exchange the poles [5].
The space and time requirements grow so explosively with n that it wasn’t
feasible to go much beyond 9 nodes with numerical computations.



An algebraic method of extracting counting series from systems of equa-
tions involving cycle index sums was presented in [1], where it was applied
to counting 2-edge-connected graphs. The present paper presents an appli-
cation of this method to counting 2-connected graphs (developed in 1978 by
the first author of this paper but not published), 2-connected graphs with-
out vertices of degree < 2, and 3-connected graphs. Once the equations have
been solved by hand, extracting the numbers by computer involves storing
only counting series and summing O(n) times over the coefficients of a cy-
cle index sum. The time- and space-complexity of such a computation is
essentially the same as for Pdlya’s theorem; so we were able to count the
above-mentioned classes of graphs with up to 18 nodes when the number of
edges is included as a parameter, and up to 25 or 26 nodes otherwise. Tables
of numbers are given at the end of this article.

The cycle index sums relevant to counting unlabeled 2- and 3- con-
nected graphs can be viewed as members of the commutative ring
Q[b1, 1,02, ¢a,...] [[a1,a2,...]], where @ is the rationals, a; is an indeter-
minate representing an i-cycle of nodes for ¢ = 1,2,3,..., b; represents an
orientation-preserving i-cycle of edges for : = 1,2,3, ..., and ¢; represents an
orientation-reversing ¢-cycle of edges for : = 1,2,3,.... The counting series
which are the ultimate objective to compute (up to some given order) lie in
the ring Z[y|[[x]] where Z is the integers, x represents a node and y represents
an edge.

If J is the cycle index sum for a class of graphs, then the counting series
for that class is obtained from J by substituting z* for a;,y’ for b;, and y°
for ¢;, for ¢ = 1,2,3,.... This set of substitutions defines a homomorphism
from the cycle index sum ring to the counting series ring. The image of J
under this homomorphism is denoted J[z,y,y]. More generally, the expres-
sion J[a(z,y), B(x,y),v(z,y)] will denote the result of substituting a(z’, y")
for a;, B(x',y') for b;, and ~v(z',y') for ¢;, for + = 1,2,3,.... In this way
the triple a(z,y), B(z,y),v(x,y) of series in Q[y][[x]] defines a more general
homomorphism from the cycle index sum ring to the counting series ring.

The defining relations for 2- and 3- connected unlabeled graphs are
expressed in terms of cycle index sums. These relations are transformed by



an appropriate choice of ring homomorphism so that one of them involves
the desired counting series. The fundamental algebraic facts upon which
this approach depends are that homomorphisms may be composed, and are
associative under composition. In [1] the essential principles of this method
are presented in a simpler case: only node cycles were represented in the
cycle index sums. The introductory material on pages 278-81 of that paper
may be found useful in supplementing this paper. We note here that only
node cycles are needed to count 2-connected graphs. The relevant relations
are presented and solved in greater generality here because this is needed
for the other enumerations. The reader wishing a primer may want to go
through Section 2 changing ¢; to b;, 3(z,y) and y(z,y) to y, and B(z*,y")
and y(z',y') to y'.

2 2-Connected Graphs

Let K, G, C and B denote the cycle index sums for the complete graphs,
all graphs, the connected graphs, and the 2-connected graphs, respectively.
The defining relations were derived in [4], and received a careful exposition
in [2, Chapter 8]. In listing these relations below, we have used ' to denote
8871. For any cycle index sum S, let S(;) denote the image of S under the
homomorphism defined by substituting a;; for a;, b;; for b; and ¢;; for ¢;,1 =
1,2,3,.... For this section, let [S] denote the homomorphism obtained by
substituting S(;) for the node-cycle variable a;,7 = 1,2,3,..., and leaving
the edge-cycle variables unchanged.

The relations which define K and determine GG, C, and B from K can
be expressed as follows:

K=Y Ao)] (1)

where o= (017027 v ')7 each o; > 07

A@) = T e TLom o e,

1< z



[, 7] is the least common multiple of ¢ and j, and (¢, 7) is the greatest common
divisor;

G =Kla; — a;, by — 1+ b;, ¢; — 1+ ¢; (2)
G =exp (¥ 7ailC)); (3)

a1C' = ay exp (Z %ai[B’[alC’]]) ; (4)

C = (a1 + B— a1 B')[a:C"]. (5)

The desired counting series is B[z, y, y]. Equation (5) contains Bla,C"],
in which each a; of B is replaced by (a;C")(;) instead of 2’ so we choose a
ring homomorphism which maps a;C’ onto x. Suppose that counting series
B(x,y) and vy(x,y) are given (for counting 2-connected graphs we can assume
that they are both y) and we wish to determine a third counting series a(x, y)
such that

(alcl)[a($7y)vﬁ(xvy)vv(xay)] =z (6)
To see that such a series exists, define the order of a term in a cycle index

sum to be the exponent of x resulting from the substitution a; « z’; then
a;C" = ay + aib+ (terms of higher order). Now (6) is equivalent to

a(‘z?y) =T - (alcl - Cll)[Oé(:E,y),ﬂ(l‘,y),’y(£,y)],

which can be seen to define a(x,y) iteratively in powers of . One has
a(0,y) = 0 to start; having found a(z,y) through powers of "', substitu-

?

tion in the right side gives a(x,y) correctly through the coefficient of 2.

The strategy now is to apply homomorphisms and simplify using as-
sociativity and the given relations in such a way that the only cycle index
sum remaining in the system of equations is K. Since K is known explicitly,
the need for computations within the cycle index sum ring will have been
obviated.

Applying (4) over the homomorphism [a(z,y), B(z,y),v(x,y)] and us-
ing (6), one has
1 . o o
a(a,y) = vexp(=)_ ~B'le", Bz, y'), (', y")]).
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Taking the natural logarithm and applying Mébius inversion [2, p.183], one
has

Ble, B(x.y).7 S S ANEIOIED
If we denote G[oz(w,y),ﬁ(x,y),’y(, ,y)] by f(;l:,y) then (3) can be solved in

the same way to obtain

Clad,y), Bz, y), z” Inf(z*, y").

One can then apply (5) over the homomorphism [a(z,y), B(z,y),v(z,y)] to
find

B[z, 8(z,y),7(z, —f+z 5 finf(at,4) — elufale®, 9)/ah)}
(7)

Finally, operating on (3) with ala gives
CllG =G alC'.

Composed over [a(z,y), B(x,y),v(x,y)], expressed in terms of K using (2),
and simplified using (6), this gives

(e K)[a(z,y), 1+ B(z,y), 1 +v(z,y)] = aK[a(z,y), 1+ B(z,y), L + (2, y)].

(8)
From (1) it is immediate that a; K’ can be directly calculated (add a factor
of o1 inside the sum). Thus (8) can be applied to calculate a(z, y) iteratively
to any desired order in z. Note that the right side of (8) is z f(z,y), so that
f(z,y)is determined at the same time. Then (7) completes the determination

of B[z, B(x,y),v(x,y)] with the help of formal logarithms.

For the sake of completeness, note that in general, if F(0,y) = 0 and
L(z,y) =In(14+ F(z,y)) then L(0,y) = 0 and differentiation with respect to
x gives

Flla,y) = L'(z,y) + L'(z,y)F(z,y).
For n > 1 a comparison of coeflicients of 2" 'y* then leads to

1n1k

Ln,k:Fn,k_T_ZZmL'rran m,k—1-

m=1 1=0
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The latter shows how to calculate the logarithms needed in (7); see [2, p.9]
for a fuller exposition of the general method.

The counting series for unlabeled 2-connected graphs in terms of nodes
and edges is B[z, y, y], so one can apply (7) and (8) with f(z,y) = y(z,y) =
y. The resulting equations were used to calculate the numbers through 16
nodes, with all the different numbers of edges (see Table IV). If only the total
by nodes is desired, the calculation is much faster. The equations obtained
from (7) and (8) by setting 8(z,y) = v(z,y) = 1 only require calculation in
the single variable using Q[[z]]. In this way the totals through 26 nodes were
computed (see Table I).

3 2-Connected Graphs without Nodes of De-
gree Two

Let B denote the cycle index sum for all 2-connected graphs (as in §2),
and let I denote the cycle index sum for those with no nodes of degree two
(homeomorphically irreducible) except for the single edge. Auxilliary cycle
index sums which will be needed to determine [ from B are as follows: R for
series-parallel graphs; Dt and D~ for all 2-pole series-parallel networks; ST
and S~ for series-union networks; P* and P~ for parallel-union networks,
including the single edge; and K*, K~ for all networks with non-adjacent
poles. Here the superscripts + and — represent pole-preserving and pole-
reversing automorphisms, respectively. The following relations were derived
in [5] in essentially this form, but with a few typographical errors corrected:

I, D*,D7] = B-R (9)
St = a; Dt Pt (10)
ST = P(‘;) (a1 + aaD™); (11)
, I .
Kt = exp (Z ES(‘;)) ; (12)
- 1 1 |
DY = (1+b)K* —1; (14)



D™ = (I14+4a)K™ -1 (15)
Pt = Dt — gt (16)
P~ = D -5 (17)
(RS R
R = —§G1P — Zal(P ) — ZCLQP(Q) (18)
1 ¢~ ¢(d)
+ 9 Z T(—ln(l - adP(Z)))
_ 1 _ 1 _ 1
-+ (1 — CLQP(—;)) IP(—;) <§G,1(LQP -+ ZCI,%(P )2 -+ ZCI,%GQP(—;))
1 1 1
+ §G§P+ + §GQP_ —_ Z(Cl% + G/Q)S(-;)

1

1
4G%S+(D+ —|— P+) — ZGQS_(D_ —|— P_),

where ¢(d) is the Euler totient function.

For this section and the next, [U, V, W] for cycle index sums U, V, W
denotes the ring homomorphism which maps a; to Uy, b; to V(;) and ¢; to W,
fore=1,2,3,.... The notation is used in equation (9). When u, v, and w are
counting series the corresponding notation [u(z,y),v(z,y),w(z,y)] denotes
the ring homomorphism which maps a; to u(z',y'), b; to v(z*,y'), and ¢; to
w(z',y') for i = 1,2,3,.... Notice the compatibility of these notations. In
particular, the “inflation” from U to U;) can be delayed in composing over
power series, because

Uipla,9), B, y), (2 9)] = Ula(@!, y7), (7, 7). 2 )]

This general fact, along with the associativity of composition for homomor-
phisms, is relied on frequently and without specific mention in performing
algebraic simplifications in what follows.

To extract I[z,y,y] from equation (9), which involves I[ay, D*, D],
let f(x,y) and v(x,y) denote for the remainder of this section power series
satisfying

D+[;E,ﬂ(;v,y),7($,y)]:y, (19)

D7 [z, Bz, y),v(x,y)] = y. (20)



To see that 8(x,y) and v(x,y) exist and are unique, note that
D+ :bl—l—albf—l—albf—l—---,

D™ =ci +aiby + arbyey + -+ .

where the remaining terms are of higher order in the node-cycle variables.
Thus the conditions to be satisfied can be expressed in the form

B(z,y) =y —af(z,y)* — xB(z,y)° F -,

Ve, y) =y —wB(@? y?) —eB(a? y*)y(e,y) F -
From these we have first
Bley)=yF -,
e, y)=yF -,
then substituting on the right side we have

Bl y)=y—z(y’+y°) F---,

e y) =y -2y +y°) F -
Each iteration increases by one the power of x to which the approximation
is correct. In this way one sees by induction simultaneously for 3(z,y) and

v(z,y) that existence and uniqueness are guaranteed through the terms in
" forn=0,1,2,....

We can now proceed to determine 8(x,y),v(x,y),and Rz, 8(z,y),v(z,y)]
by combining equations (10) through (20). To shorten the notation, let R
denote R[z,[(z,y),v(x,y)] and likewise for other cycle index sums. From
(10), (11), (19), and (20)

St = zyPtand S~ = (x + ;EQy)]S(‘;),
while from (16) and (17) with (19) and (20)
y=Pt4+Standy=P +5.

Combining, we have

y = pt —I—:cy]5+
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and so ) )
Pt =y(l +zy) tand ST = zy?*(1 + zy) "
In turn,
S™=(z+a) P (L+2%") " =2y’ (L +ay)(1+ 277",
P = Y — xy2(1 + zy)(1 + $2y2)_1 =y(l —zy)(1+ 3:2y2)_1.

Now

Sv-}— — Z(_l)i—lmiyi-}—l’
=1

o0 1 o o0 1 o0 Z Z Z
ZES(:) _ Z Z 1 ik, ik+k
k=1
i 1§: 2 2—}—1)
a =1 k=1
= Y (=) (=In(l —2'y™h)
=1
= > (=1)'n(1 —a'y™h),
=1
so from (12) we find
K = T = oy = (1= ay®) 7 (1 = a?®)(1 - 2y
1=1
= L0 =27 y?) (1 — 2Py,
7=1

Thus (14) can be solved explicitly for #(z,y);
Bla,y)=—1+ (1 +y) H ) (L - My T (21)
In much the same way, our explicit expressions for ST and S~ can be com-

bined with (13) and (15) to deduce that

o0 (1 . I4i—3y4i—2)(1 + x4i—1y4i)
y) =—1 14+ . . —
’7(%!/) + ( + y)g (1 + $42—2y42—1)(1 _ $42y42+1)

(22)

11



We are now in a position to evaluate each term on the right side of (18)
explicitly. There is considerable cancellation, and for simplifying the sum
containing FEuler’s totient function it is helpful to observe the identity

[k k of k s odd,
2= ¢(7) :{ 0 i; k is even.

ilk
The net result is
R=—2*y* +ay(z +ay(l —2))(1 —ay")~".
From (9), (19), and (20) we thus have
[z,y,y] = B+ a%y® —ay(z +ay(l —2))(1 — 2y~ (23)

This is the counting series for unlabeled homeomorphically irreducible 2-
connected graphs by number of nodes and edges. To complete the evaluation,
treat

B = B[x,ﬂ(x,y),v(x,y)]

as described in the previous section. That is, with f(z,y) and v(z,y) as
given in (21) and (22), apply (8) to determine corresponding series a(x,y)
and f(z,y) in iterative fashion. Then (7) can be used to calculate B from
a(z,y) and f(x,y). In this way homeomorphically irreducible 2-connected
graphs were counted by nodes and edges up to 18 nodes (see Table V) and

by nodes alone up to 25 nodes (see Table II).

4 3-Connected Graphs

Let F denote the cycle index sum for all 3-connected graphs, and (as
in previous sections) let B denote the cycle index sum for all 2-connected
graphs. Auxilliary cycle index sums needed to determine F' from B are the
following: Dt and D~ for all (nonempty) 2-pole networks; K+ and K~ for
2-pole networks with non-adjacent poles; Pt and P~ for parallel networks
(including the single edge); ST and S~ for series networks; Q1 and Q™ for
non-series networks; and H™T for h-networks (non-series and non-parallel).
As in the previous section the superscripts + and — refer to pole-preserving

12



and pole-reversing automorphisms, respectively. The following relations were

derived in [5]:
1 1

F[Gl,D+,D_] = B-(5G%P+—|—§CL2P_)
1 1
+ EG1Q+ + —G2Q(+2) (24)
1

+ —Z an—adQ+)

/1 1 _ 1
— Qh(1 —aQf)™ <2a1a2Q +7 ay(Q)" + Za:{azQa))
1 1
+ Z(af +a)S) + ZafD+(D+ +2HT)
1 1

+ §G2D_ (D_ - P_) - ZQQ(S_)Q;
, 1 |
Kt = exp ), E(D&) - P‘};)); (25)
s — 1 — ¢
K~ = exp { Z k(D( )+ E 4,;))} ; (26)

k odd keven
St = a DY (DT — §t); (27)
ST = (a1 + agD_)(DE;) — S(‘;)); (28)
Q- = D =57, (30)
H+ — Q+ _ P+’ (31)
DY = (1+b)K* —1; (32)
D™ = (I1+a)K™ —1; (33)
2 0B
Kt = =5 —; 34
. a2 9by (34)
2 0B

K~ = . 35
' a9 861 ( )

In order to invert (24) we will need counting series 8(x,y) and v(z,y)
satisfying
D[z, B(x,y),v(z,y)] =y, (36)

13



D7 [z, B(z,y),v(z,y)] = v. (37)
By (32), (33), (34) and (35), these are equivalent to

(14 8o, 0) S [, B p) 2 () = 14, (39)
(470w, 0) 552 e, Bl v) (v = 1+ (3)

To rewrite these relations in terms of the connected graph cycle index sum
C (and ultimately, the complete graph cycle index sum K), we use

oB, ac
a—bl[aiC;blacl] = a—bl’ (40)
oB. ac
8—61[&10,61,61] = 8—61 (41)

These latter can be seen directly from the decomposition of an edge-rooted
connected graph into an edge-rooted block along with node-rooted connected
branches at the nodes of the block (a block is a 2-connected graph). Alter-
natively, they can be derived from equations (4) and (5) of Section 2 by
appropriate differentiation and simplification.

In any case, a third power series a(z,y) is needed to proceed with the
inversion, such that

(alC/)[a($7y)7ﬁ($7y)vV(Iay)] =z (42)

Then (40) can be combined with (38) and (41) with (39), giving

(14 8 0) S o lale, ). ) Ao = Lby, (49
(14 2oy o0l ), B el = Ly, ()

Next, equations (2) and (3) can be differentiated to yield

alC’K[al, 1 + bl, 1 + Cl] = alK’[al, 1 + bl, 1 + Cl], (45)

14



aC oK
8—1)1[([&1,1+bl,1‘|‘cl] = a—bl[alal—l_blal—l_cl]? (46)

aC 0K
—I([a1,1+bl,1—|—61] = —[al,l—l—bl,l—l—cl]. (47)
861 aCl

Then (42) can be combined with (45), (43) with (46), and (44) with (47) to

deduce

eKla(z,y), 1+ B(z,y), L +7(2,y)] = (a1 K)[a(z, ), 1 + B(z,y), 1 +7(2, y)],

(18)
(149) K ale, y), 14B(x, ), 141z, 9)] = (%Z%) (aes9), 1482, y), 14+(,9)]
(19)
(14+9) K ale,y), 14+8(z, ), 14z, y)] = (zgi) oz, y), 14+, y), 1412, )]
(50)

To see how (48), (49) and (50) determine the three unknown counting
series uniquely, note that

1 1 1 1 1
K = 1+4+a+ TG%ZH + saqzer + —a:fb:f + —arazbyen + sasbs + -+

2 2 6 2 3
Clll(/ = Cl1—|—6l%bl—|—"',
oK
lea—bl = a%bl—l—a?bf—l—,
oK
20— = azc1 + arazciby + -
8c1

Thus, to start with a(z,y) =2+ -+, Blz,y) =1 +y+---, and y(z,y) =
14 y+---. Substitution into (48) gives the left side correctly through terms
of order 2%, and likewise on the right for all terms except for a(z,y) which
comes from the a; term of ay K. This allows us to solve for the order x? terms
of a(x,y). Similarly, substitution into (49) and (50) with attention to the
terms arising from a3b; and age; will show that the order x terms of 3(z,y)
and ~y(x,y) are also uniquely determined. Since K and its derivatives can
be computed term-wise rather than stored, the determination of the series
alz,y), B(z,y), and vy(x,y) can be carried out simultaneously in an iterative
fashion, with only the currently known initial terms of the series needing to
be kept in memory.

15



In the process of solving (48) - (50) for a(z,y) to order < n + 1 in
powers of x, and for #(x,y) and v(z,y) to order < n, it is no extra effort to
keep track of the series

fz,y) = Kla(z,y), 1+ B(z,y), 1 +7(z,y)]

which is determined to order < n as part of the computation. Then equation

(7) of Section 2 evaluates Bz, B(z,y),v(x,y)].

For any cycle index sum U let U(”L‘ y) = Ulz, B(z,y),v(z,y)]. Then
Dt =D =yby (36) and (37), so applying this homomorphism to
Flay, DY, D] yields F[xz,y,y], the counting series for 3-connected graphs.
Thus equation (24) can be seen as expressing the counting series F'(z,y) for
3-connected graphs in terms of B, P*, P~ Q%,Q~,St, 5™, and H*. We have
already observed that B can be calculated by equation (7), so the next step
is to determine the contributions of the other terms obtained from the right
side of equation (24).

From (32) and (25) we have
(1+D+ eXpZ D?)):l—{—bl.
Applying to this the homomorphism [z, 3(z,y),v(z,y)] we obtain
1 ~
(1+y)exp ) %(P(:) —y") =1+ B(z,y).

Since 1 +y = exp 3. 2(—1)"y* = exp 3~ +(y* — y**), the relation simplifies
to

exp Y 2Py —y™) = 14 Bla.y).

By Mobius inversion one then obtains

+Z zn1+6( yh)). (51)
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Similarly, from (33) and (26) we have

> llg(P(_ )+ Z D+))}:1‘|‘Cl-

k odd k even

(1 4+ D™ )exp {
Applying to this the homomorphism [z, 3(z,y),v(x,y)] we obtain

Z,lg( +E }—1+7(fy)

k odd k even

(1+y)eXp{

which simplifies to

exp {Z Ly -+ X L >} 14 a(ey),

k odd k even
and hence
1
Z - )+ Z y**) = In(1 + ~(z,y)).
odd k keven
Moébius inversion now gives
. /L 1, 5 =
P~ —I—E lnl—l—’y z',y") E Z %y% —P(zi)).
7 odd odd l k even

Using the identity

> ou) =

, 0 otherwise
2[j|lm

{ 1 if m =21 fore>0

the rightmost sum simplifies to

1,5 ~
—(y*m _ pt
m:22;+6 m(y (m))
so that
I 1 m D
P + In(L+(zy )+ X — ™" = Phy)
i odd 2ite 1M

17



From (27) it is immediate that

02
gr= 53
T+ oy (53)

This can be combined with (28) to find

G- $‘y2(1 + 37'!/)

_ W) 4
1+ 22y? (54)
From (29) and (30) one then has
= 55
o (59
5oyl —xy)
= . 56
Q 1_|_ ;172‘3/2 ( )
Using the identity
m 0 if m is even,
d|zm pd)(=1) = { —m if m is odd.
and the expression (55) for @, we find that
1 « ¢(d) d g5 3y
Finally, from (31) and (55) we have
=4 _p+ (58)

:1—|—3:y

Using Dt = D~ = y and equations (53) - (58), the image of the right side of
(24) under the homomorphism [z, 3(z,y),v(z,y)] can be expressed explicitly
in terms of B, Pt and P~. There is considerable cancellation of terms in the
process, which results in the formula

) (P a) + P (a)) + 2t~ L (50

F(:E7 y) = B(;E7 y) 1 _ :E4y4
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To summarize the algorithm for calculating F'(z,y); one starts with
(48) - (50) to find a(z,y), B(x,y),v(x,y), and f(z,y); then (7) is applied to
determine B(x,y); next ]5"'(.1 y) is found from (51); then p‘(m,y) can be
calculated from (52); finally, F'(z,y) is given very simply in (59) in terms
of B(.x Y), P+(.?7 y) and P (z,y). In this manner 3-connected graphs were
counted by nodes and edges up to 18 nodes (see Table VI) and by nodes
alone up to 25 nodes (see Table III).

5 Example and Complexity Analysis

To illustrate the method, we compute B[z, y,y] up to order 3. The two
sides of formula (8) are

ef(e,y) = eK[a(z,y), 14y, 1+y] = l’{l+a(l’7y)+%(a2(f€7y)(1+y)+a($2,y2)(1+y))

1
+6(0z3(:c, y)(1+3y+3y*+y”) +3a(z, y)a(a?, y*) (1+y+y +y°)+2a(a”, y°) (14+y°))+- -}

and

ark[a(z,y), 1 +y,1+y] = a(z,y) + o*(z,y)(1 + y)
1
+§(a3($, y)(1+3y + 3y +¢°) + a(z, y)e(z® v )L +y + v +¢°) + .

Equating coefficients of z° we find that a(z,y) has no term independent of
T. Equating coefficients of ! we find that a(z,y) = z + --- and f(z,y) =
1 + ---. Equating coefficients of z* we find that a(z,y) = = + 2*(—y) and

flz,y) = 1 +x + ---. Equating coefficients of z* we find that a(z,y) =
r—{—r( y)+ 23 (—y )andf(r y) =14z +az*+---. The coefficient of z* in

zf(z,y) turns out to be 1 too; so
fle,y)=1+a+a® +2°+- -

(the next term is not z*!),

1 1
lnf(x,y):x+§;c2+§;c3+...7

= u(k)
Eﬂ(k Inf(x )—I—{—OSCQ—{—O;CB_{_...'
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Returning to a(z,y), we have

)
alz,y)/z =14+ z(—y)+ 2*(=y®) + - - -,
(

1
In(ale,y)/e) = e(=y) +*(=5y" = y") + -,
p(k
>y %Z”(Of(fﬂk, y*)/2") = 2 (=y) + (=) + -
Thus by (7) Blz,y,y] = a*y + z°y® + ---, which is correct since the two
smallest 2-connected graphs are the single edge and the triangle.

The cost of computing B[z, y,y| up to order n is dominated by that
of computing a(x,y). For each ¢ up to n, one has to sum through all the
partitions of the numbers up to 7 and compute the coefficient of 2*=* in the
corresponding monomial

[(a(a?,y")/z")" = exp Y ajlog(ala’, y?)/z’).

i<k i<k
Since the necessary terms of log(a(z,y)/x) have already been computed and
stored, and can always be “inflated” by j, the cost of this computation is
dominated by that of evaluating exp which is O(r?) multiplications. We do
this at most n times for each partition of each number up to n; so the total
cost is O(n*p'(n)). An idea of the growth rate of p'(n) can be obtained from

the asymptotic formula for p(n), the number of partitions of n: p(n) ~ %,
where ¢ = ¢"V#/3 ~ 13.001954.. [3]; so p'(n) < np(n) = O(cV™).

If we are counting by nodes only and using fixed precision, each multi-
plication is an elementary operation and so O(n®p/(n)) is an accurate estimate
of the time-complexity. If we are counting by edges too, each coefficient is
a polynomial in y of degree O(n?). It takes O(n?) elementary operations to
multiply two such polynomials; so the complexity is O(rn"p/(n)). If we are
using multiple-precision arithmetic, the numbers are bounded by the number
of labelled n-vertex graphs, 2*"=1/2 which has O(n?) bits. Multiplying two
such numbers by brute force (in base 10000) takes O(n*) operations, which
increases the time-complexity to O(n"p'(n)) if one counts by nodes alone,
and to O(n''p'(n)) if one counts by edges too (in fact we used REAL*32 to
count by edges too, which guarantees the accuracy of the numbers up to 18
nodes).
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The space complexity is the cost of storing a constant number of count-
ing series: O(n) if we count by nodes alone in fixed precision, O(n?) if we
count by edges too in multiple precision, and O(r?) in the other two cases.

The analysis of the computation of I(z,y,y) and F(z,y,y) is similar
and gives the same time- and space-complexities to within a constant factor.

The enumeration of 2-connected graphs was done on the PDP-11/45 at
the University of Newcastle; the other calculations were done on the VAX-
11/780 at the University of Western Ontario. The authors wish to thank
Dr. Albert Nymeyer and Mr. Jorge Cuervo for their help in writing the
programs.

References

[1] P. Hanlon and R. W. Robinson, Counting bridgeless graphs, J. Combin.
Theory Ser. B 33 (1982), 276-305.

[2] F. Harary and E. M. Palmer, “Graphical Enumeration”, Academic
Press, New York, 1973.

[3] H. Rademacher, On the partition function p(n), Proc. London Math.
Soc. 43 (1937), 241-254.

[4] R. W. Robinson, Enumeration of non-separable graphs, J. Combin. The-
ory Ser. B9 (1970), 327-356.

[5] T. R. Walsh, Counting unlabeled three-connected and homemorphically
irreducible two-connected graphs, J. Combin. Theory Ser. B 32 (1982),
12-32.

21



