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Abstract

A Hilbert space embedding for probability mea-
sures has recently been proposed, with applications
including dimensionality reduction, homogeneity
testing and independence testing. This embedding
represents any probability measure as a mean ele-
ment in a reproducing kernel Hilbert space (RKHS).
The embedding function has been proven to be in-
jective when the reproducing kernel is universal.
In this case, the embedding induces a metric on the
space of probability distributions defined on com-
pact metric spaces.
In the present work, we consider more broadly the
problem of specifying characteristic kernels, de-
fined as kernels for which the RKHS embedding
of probability measures is injective. In particular,
characteristic kernels can include non-universal ker-
nels. We restrict ourselves to translation-invariant
kernels on Euclidean space, and define the asso-
ciated metric on probability measures in terms of
the Fourier spectrum of the kernel and characteris-
tic functions of these measures. The support of the
kernel spectrum is important in finding whether a
kernel is characteristic: in particular, the embed-
ding is injective if and only if the kernel spectrum
has the entire domain as its support. Characteristic
kernels may nonetheless have difficulty in distin-
guishing certain distributions on the basis of finite
samples, again due to the interaction of the ker-
nel spectrum and the characteristic functions of the
measures.

1 Introduction
The concept of distance between probability measures is a
fundamental one and has many applications in probability
theory and statistics. In probability theory, this notion is
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used to metrize the weak convergence (convergence in dis-
tribution) of probability measures defined on a metric space.
Formally, let S be the set of all Borel probability measures
defined on a metric measurable space (M, ρ,Mρ) and let γ
be its metric, i.e., (S, γ) is a metric space. Then Pn is said to
converge weakly to P if and only if γ(Pn, P ) n→∞−→ 0, where
P, {Pn}n≥1 ∈ S. When M is separable, examples for γ in-
clude the Lévy-Prohorov distance and the dual-bounded Lip-
schitz distance (Dudley metric) [Dud02, Chapter 11]. Other
popular examples for γ include the Monge-Wasserstein dis-
tance, total variation distance and the Hellinger distance,
which yield a stronger notion of convergence of probability
measures [Sho00, Chapter 19].

In statistics, the notion of distance between probability
measures is used in a variety of applications, including ho-
mogeneity tests (the two-sample problem), independence te-
sts, and goodness-of-fit tests. The two-sample problem in-
volves testing the null hypothesis H0 : P = Q versus the
alternative H1 : P 6= Q, using random samples {Xl}m

l=1
and {Yl}n

l=1 drawn i.i.d. from distributions P and Q on a
measurable space (M,M). If γ is a metric (or more gener-
ally a semi-metric1) on S, then γ(P, Q) can be used as a test
statistic to address the two-sample problem. This is because
γ(P,Q) takes the unique and distinctive value of zero only
when P = Q. Thus, the two-sample problem can be reduced
to testing H0 : γ(P,Q) = 0 versus H1 : γ(P, Q) > 0. The
problems of testing independence and goodness-of-fit can be
posed in an analogous form.

Several recent studies on kernel methods have focused on
applications in distribution comparison: the advantage being
that kernels represent a linear way of dealing with higher
order statistics. For instance, in homogeneity testing, dif-
ferences in higher order moments are encoded in mean dif-
ferences computed in the right reproducing kernel Hilbert
space (RKHS) [GBR+07]; in kernel ICA [BJ02, GHS+05],
general nonlinear dependencies show up as linear correla-
tions once they are computed in a suitable RKHS. Instru-
mental to these studies is the notion of a Hilbert space em-
bedding for probability measures [SGSS07], which involves
representing any probability measure as a mean element in
an RKHS (H, k), where k is the reproducing kernel [Aro50,

1Given a set M , a metric for M is a function ρ : M×M → R+

such that (i) ∀x, ρ(x, x) = 0, (ii) ∀x, y, ρ(x, y) = ρ(y, x), (iii)
∀x, y, z, ρ(x, z) ≤ ρ(x, y)+ρ(y, z), and (iv) ρ(x, y) = 0 ⇒ x =
y [Dud02, Chapter 2]. A semi-metric only satisfies (i), (ii) and (iv).



SS02]. For this reason, the RKHSs used have to be “suffi-
ciently large” to capture all nonlinearities that are relevant to
the problem at hand, so that differences in embeddings cor-
respond to differences of interest in the distributions. The
question of how to choose such RKHSs is the central focus
of the present paper.

Recently, Fukumizu et al. [FGSS08] introduced the con-
cept of a characteristic kernel, this being an RKHS kernel
for which the mapping Π : S → H from the space of Borel
probability measures S to the associated RKHS H is injec-
tive (H is denoted as a characteristic RKHS). Clearly, a char-
acteristic RKHS is sufficiently large in the sense we have de-
scribed: in this case γ(P, Q) = 0 implies P = Q, where γ is
the induced metric on S by Π, defined as the RKHS distance
between the mappings of P and Q. Under what conditions,
then, is Π injective? As discussed in [GBR+07, SGSS07],
when M is compact, the RKHS is characteristic when its ker-
nel is universal in the sense of Steinwart [Ste02, Definition
4]: the induced RKHS should be dense in the Banach space
of bounded continuous functions with respect to the supre-
mum norm (examples include the Gaussian and Laplacian
kernels). Fukumizu et al. [FGSS08, Lemma 1] considered
injectivity for non-compact M , and showed Π to be injective
if the direct sum of H and R is dense in the Banach space
of p-power (p ≥ 1) integrable functions (we denote RKHSs
satisfying this criterion as F-characteristic). In addition, for
M = Rd, Fukumizu et al. provide sufficient conditions on
the Fourier spectrum of a translation-invariant kernel for it
to be characteristic [FGSS08, Theorem 2]. Using this result,
popular kernels like Gaussian and Laplacian can be shown to
be characteristic on all of Rd.

In the present study, we provide an alternative means of
determining whether kernels are characteristic, for the case
of translation-invariant kernels on Rd. This addresses sev-
eral limitations of the previous work: in particular, it can
be difficult to verify the conditions that a universal or F-
characteristic kernel must satisfy; and universality is in any
case an overly restrictive condition because universal kernels
assume M to be compact. In other words, they induce a met-
ric only on the space of probability measures that are com-
pactly supported on M . In addition, there are compactly sup-
ported kernels which are not universal, e.g. B2n+1-splines,
which can be shown to be characteristic. We provide simple
verifiable rules in terms of the Fourier spectrum of the ker-
nel that characterize the injective behavior of Π, and derive a
relationship between the family of kernels and the family of
probability measures for which γ(P, Q) = 0 implies P = Q.
In particular, we show that a translation-invariant kernel on
Rd is characteristic if and only if its Fourier spectrum has the
entire domain as its support.

We begin our presentation in §2 with an overview of ter-
minology and notation. In §3, we briefly describe the ap-
proach of Hilbert space embedding of probability measures.
Assuming the kernel to be translation-invariant in Rd, in §4,
we deduce conditions on the kernel and the set of probabil-
ity measures for which the RKHS is characteristic. We show
that the support of the kernel spectrum is crucial: H is char-
acteristic if and only if the kernel spectrum has the entire do-
main as its support. We note, however, that even using such a
kernel does not guarantee that one can easily distinguish dis-

tributions based on finite samples. In particular, we provide
two illustrations in §5 where interactions between the kernel
spectrum and the characteristic functions of the probability
measures can result in an arbitrarily small γ(P, Q) = ε > 0
for non-trivial differences in distributions P 6= Q. Proofs of
the main theorems and related lemmas are provided in §6.
The results presented in this paper use tools from distribu-
tion theory and Fourier analysis: the related technical results
are collected in Appendix A.

2 Notation

For M ⊂ Rd and µ a Borel measure on M , Lp(M,µ) de-
notes the Banach space of p-power (p ≥ 1) µ-integrable
functions. We will also use Lp(M) for Lp(M,µ) and dx for
dµ(x) if µ is the Lebesgue measure on M . Cb(M) denotes
the space of all bounded, continuous functions on M . The
space of all q-continuously differentiable functions on M is
denoted by Cq(M), 0 ≤ q ≤ ∞. For x ∈ C, x represents
the complex conjugate of x. We denote as i the complex
number

√−1.
The set of all compactly supported functions in C∞(Rd)

is denoted by Dd and the space of rapidly decreasing func-
tions in Rd is denoted by Sd. For an open set U ⊂ Rd,
Dd(U) denotes the subspace of Dd consisting of the func-
tions with support contained in U . The space of linear con-
tinuous functionals on Dd (resp. Sd) is denoted by D ′

d (resp.
S ′

d) and an element of such a space is called as a distribu-
tion (resp. tempered distribution). md denotes the normal-
ized Lebesgue measure defined by dmd(x) = (2π)−

d
2 dx.

f̂ and f̌ represent the Fourier transform and inverse Fourier
transform of f respectively.

For a measurable function f and a signed measure P ,
Pf :=

∫
f dP =

∫
M

f(x) dP (x). δx represents the Dirac
measure at x. The symbol δ is overloaded to represent the
Dirac measure, the Dirac-delta function, and the Kronocker-
delta, which should be distinguishable from the context.

3 Maximum Mean Discrepancy

We briefly review the theory of RKHS embedding of prob-
ability measures proposed by Smola et al. [SGSS07]. We
lead to these embeddings by first introducing the maximum
mean discrepancy (MMD), which is based on the following
result [Dud02, Lemma 9.3.2], related to the weak conver-
gence of probability measures on metric spaces.

Lemma 1 ([Dud02]) Let (M,ρ) be a metric space with Borel
probability measures P and Q defined on M . Then P = Q
if and only if Pf = Qf, ∀ f ∈ Cb(M).

Originally, Gretton et al. [GBR+07] defined the maximum
mean discrepancy as follows.

Definition 2 (Maximum Mean Discrepancy) LetF = {f |
f : M → R} and let P, Q be Borel probability measures
defined on (M, ρ). Then the maximum mean discrepancy is
defined as

γF (P,Q) = sup
f∈F

|Pf −Qf | . (1)



With this definition, one can derive various metrics (men-
tioned in §1) that are used to define the weak convergence
of probability measures on metric spaces. To start with, it
is easy to verify that, independent of F , γF in Eq. (1) is a
pseudometric2 on S. Therefore, the choice of F determines
whether or not γF (P, Q) = 0 implies P = Q. In other
words, F determines the metric property of γF on S. By
Lemma 1, γF is a metric on S when F = Cb(M). When F
is the set of bounded, ρ-uniformly continuous functions on
M , by the Portmanteau theorem [Sho00, Chapter 19, The-
orem 1.1], γF is not only a metric on S but also metrizes
the weak topology on S. γF is a Dudley metric [Sho00,
Chapter 19, Definition 2.2] when F = {f : ‖f‖BL ≤ 1}
where ‖f‖BL = ‖f‖∞ + ‖f‖L with ‖f‖∞ := sup{|f(x)| :
x ∈ M} and ‖f‖L := sup{|f(x) − f(y)|/ρ(x, y) : x 6=
y in M}. ‖f‖L is called the Lipschitz seminorm of a real-
valued function f on M . By the Kantorovich-Rubinstein
theorem [Dud02, Theorem 11.8.2], when (M, ρ) is sepa-
rable, γF equals the Monge-Wasserstein distance for F =
{f : ‖f‖L ≤ 1}. γF is the total variation metric when
F = {f : ‖f‖∞ ≤ 1} while it is the Kolmogorov distance
when F = {1(−∞,t] : t ∈ Rd}. If F = {ei〈ω,.〉 : ω ∈
Rd}, then γF (P, Q) reduces to finding the maximal differ-
ence between the characteristic functions of P and Q. By
the uniqueness theorem for characteristic functions [Dud02,
Theorem 9.5.1], we have γF (P, Q) = 0 ⇔ φP = φQ ⇔
P = Q, where φP and φQ represent the characteristic func-
tions of P and Q, respectively.3 Therefore, the function class
F = {ei〈ω,.〉 : ω ∈ Rd} induces a metric on S. Gretton et
al. [GBR+07, Theorem 3] showed γF to be a metric on S
when F is chosen to be a unit ball in a universal RKHS H.
This choice of F yields an injective map, Π : S → H, as
proposed by Smola et al. [SGSS07]. A similar injective map
can also be obtained by choosing F to be a unit ball in an
RKHS induced by kernels satisfying the criteria in [FGSS08,
Lemma 1, Theorem 2] (which we denote F-characteristic
kernels).

We henceforth assume F to be a unit ball in an RKHS
(H, k) (not necessarily universal or F-characteristic) defined
on (M,M) with k : M × M → R, i.e., F = {f ∈ H :
‖f‖H ≤ 1}. The following result provides a different repre-
sentation for γF defined in Eq. (1) by exploiting the repro-
ducing property of H, and will be used later in deriving our
main results.

Theorem 3 Let F be a unit ball in an RKHS (H, k) defined
on a measurable space (M,M) with k measurable and bou-
nded. Then

γF (P,Q) = ‖Pk −Qk‖H, (2)

where ‖.‖H represents the RKHS norm.

Proof: Let TP : H → R be a linear functional defined as
TP [f ] :=

∫
M

f(x) dP (x) with ‖TP ‖ := supf∈H
|TP [f ]|
‖f‖H .

2A pseudometric only satisfies (i)-(iii) of the properties of a
metric (see footnote 1). Unlike a metric space (M, ρ), points in
a pseudometric space need not be distinguishable: one may have
ρ(x, y) = 0 for x 6= y [Dud02, Chapter 2].

3The characteristic function of a probability measure, P on Rd

is defined as φ(ω) :=
∫
Rd eiωT x dP (x), ∀ω ∈ Rd.

Consider

|TP [f ]| =
∣∣∣∣
∫

M

f(x) dP (x)
∣∣∣∣ ≤

∫

M

|f(x)| dP (x)

=
∫

M

|〈f, k(·, x)〉H| dP (x) ≤
√

C‖f‖H,

where we have exploited the reproducing property and bound-
edness of the kernel to show TP is a bounded linear func-
tional on H. Here, C > 0 is the bound on k, i.e., |k(x, y)| ≤
C < ∞, ∀x, y ∈ M . Therefore, by the Riesz representation
theorem [RS72, Theorem II.4], there exists a unique λP ∈ H
such that TP [f ] = 〈f, λP 〉H, ∀ f ∈ H. Let f = k(·, u) for
some u ∈ M . Then, TP [k(·, u)] = 〈k(·, u), λP 〉H = λP (u),
which implies λP = TP [k] = Pk =

∫
M

k(·, x) dP (x).
Therefore, with |Pf − Qf | = |〈f, λP − λQ〉H|, we have
γF (P, Q) = sup‖f‖H≤1 |Pf −Qf | = ‖λP − λQ‖H =
‖Pk −Qk‖H.

The representation of γF in Eq. (2) yields the embedding,
Π[P ] =

∫
M

k(·, x) dP (x) as proposed in [SGSS07, FGSS08],
which is injective when k is characteristic. While the repre-
sentation of γF in Eq. (2) holds irrespective of the charac-
teristic property of k , it need not be a metric on S, as Π is
not guaranteed to be injective. The obvious question to ask
is “For what class of kernels is Π injective?”. To understand
this in detail, we are interested in the following questions
which we address in this paper.

Q1. Let D ( S be a set of Borel probability measures de-
fined on (M,M). LetK be a family of positive definite
kernels defined on M . What are the conditions on D
and K for which Π : D → Hk, P 7→ ∫

M
k(·, x) dP (x)

is injective, i.e., γF (P,Q) = 0 ⇔ P = Q for P,Q ∈
D? Here, Hk represents the RKHS induced by k ∈ K.

Q2. What are the conditions on K so that Π is injective on
S?

Note that Q1 is a restriction of Q2 to D. The idea is that
the kernels that do not make γF as a metric on S may make
it as a metric on some restricted class of probability mea-
sures, D ( S. Our next step, therefore, is to characterize
the relationship between classes of kernels and probability
measures, which is addressed in the following section.

4 Characteristic Kernels & Main Theorems
In this section, we present main results related to the behav-
ior of MMD. We start with the following definition of char-
acteristic kernels, which was recently introduced by Fuku-
mizu et al. [FGSS08] in the context of measuring conditional
(in)dependence using positive definite kernels.

Definition 4 (Characteristic kernel) A positive definite ker-
nel k is characteristic to a set D of probability measures de-
fined on (M,M) if γF (P, Q) = 0 ⇔ P = Q for P, Q ∈ D.

Remark 5 Equivalently, k is said to be characteristic to D
if the map, Π : D → H, P 7→ ∫

M
k(·, x) dP (x), is in-

jective. When M = Rd, the notion of characteristic kernel
is a generalization of the characteristic function, φP (ω) =∫
Rd eiωT x dP (x), ∀ω ∈ Rd, which is the expectation of the



complex-valued positive definite kernel, k(ω, x) = eiωT x.
Thus, the definition of a characteristic kernel generalizes the
well-known property of the characteristic function that φP

uniquely determines a Borel probability measure P on Rd.
See [FGSS08] for more details.

It is obvious from Definition 4 that universal kernels defined
on a compact M and F-characteristic kernels on M are char-
acteristic to the family of all probability measures defined
on (M,M). The characteristic property of the kernel re-
lates the family of positive definite kernels and the family
of probability measures. We would like to characterize the
positive definite kernels that are characteristic to S. Among
the kernels that are not characteristic to S, we would like to
determine those kernels that are characteristic to some appro-
priately chosen subset D, of S. Intuitively, the smaller the
set D, larger is the family of kernels that are characteristic to
D. To this end, we make the following assumption.

Assumption 1 k(x, y) = ψ(x − y) where ψ is a bounded
continuous real-valued positive definite function4 on M =
Rd.

The above assumption means that k is translation-invariant
in Rd. A whole family of such kernels can be generated as
the Fourier transform of a finite non-negative Borel measure,
given by the following result due to Bochner, which we quote
from [Wen05, Theorem 6.6].

Theorem 6 (Bochner) A continuous function ψ : Rd → C
is positive definite if and only if it is the Fourier transform of
a finite nonnegative Borel measure Λ on Rd, i.e.

ψ(x) =
∫

Rd

e−ixT ω dΛ(ω), ∀x ∈ Rd. (3)

Since the translation-invariant kernels in Rd are character-
ized by the Bochner’s theorem, it is theoretically interesting
to ask which subset in the Fourier images gives characteristic
kernels. Before we describe such kernels k that are charac-
teristic to S, in the following example, we show that there
exist kernels that are not characteristic to S. Here, S repre-
sents the family of all Borel probability measures defined on
(Rd,B(Rd)), where B(Rd) represents the Borel σ-algebra
defined by open sets in Rd (see Assumption 1).

Example 1 (Trivial kernel) Let k(x, y) = ψ(x − y) = C,
∀x, y ∈ Rd with C > 0. It can be shown that ψ is the
Fourier transform of Λ = Cδ0 with support {0}.

Consider Pk =
∫
Rd k(·, x) dP (x) = C

∫
Rd dP (x) =

C. Since Pk = C irrespective of P ∈ S, the map Π is
not injective. In addition, γF (P,Q) = 0 for any P, Q ∈ S.
Therefore, the trivial kernel, k is not characteristic to S.

4.1 Main theorems
The following theorem characterizes all translation-invariant
kernels in Rd that are characteristic to S.

4Let M be a nonempty set. A function ψ : M → R is called
positive definite if and only if

∑n
j,l=1 cjclψ(xj − xl) ≥ 0, ∀xj ∈

M, ∀ cj ∈ R, ∀n ∈ N.

Theorem 7 Let F be a unit ball in an RKHS (H, k) defined
on Rd. Suppose k satisfies Assumption 1. Then k is a char-
acteristic kernel to the family, S, of all probability measures
defined on Rd if and only if supp(Λ) = Rd.

We provide a sketch of the proof of the above theorem, which
is proved in §6.2.1 using a number of intermediate lemmas.
The first step is to derive an alternate representation for γF in
Eq. (2) under Assumption 1. Lemma 13 provides the Fourier
representation of γF in terms of the kernel spectrum, Λ and
the characteristic functions of P and Q. The advantage of
this representation over the one in Eq. (2) is that it is easy to
obtain necessary and sufficient conditions for the existence
of P 6= Q, P, Q ∈ S such that γF (P, Q) = 0, which are
captured in Lemma 15. We then show that if supp(Λ) = Rd,
the conditions mentioned in Lemma 15 are violated, mean-
ing @P 6= Q such that γF (P, Q) = 0, thereby proving the
sufficient condition in Theorem 7. Proving the converse is
equivalent to proving that k is not characteristic to S when
supp(Λ) ( Rd. So, when supp(Λ) ( Rd, the result is proved
using Lemma 19, which shows the existence of P 6= Q such
that γF (P, Q) = 0.

Theorem 7 shows that the embedding function Π, asso-
ciated with a positive definite translation-invariant kernel in
Rd is injective if and only if the kernel spectrum has the en-
tire domain as its support. Therefore, this result provides
a simple verifiable rule for Π to be injective, unlike the re-
sults in [SGSS07, FGSS08] where the universality and F-
characteristic properties of a given kernel are not easy to ver-
ify. In addition, the universality and F-characteristic proper-
ties are sufficient conditions for a kernel to induce an injec-
tive map Π, whereas Theorem 7 provides supp(Λ) = Rd as
the necessary and sufficient condition. Therefore, we have
answered question Q2 posed in §3. Examples of kernels that
are characteristic to S include the Gaussian, Laplacian and
B2n+1-splines. In fact, the whole family of compactly sup-
ported translation-invariant kernels on Rd are characteristic
to S, as shown by the following corollary of Theorem 7.

Corollary 8 Let F be a unit ball in an RKHS (H, k) defined
on Rd. Suppose k satisfies Assumption 1 and supp(ψ) is
compact. Then k is a characteristic kernel to S.

Proof: Since supp(ψ) is compact in Rd, by Lemma 25,
which is a corollary of the Paley-Wiener theorem (see also
[GW99, Theorem 31.5.2, Proposition 31.5.4]), we deduce
that supp(Λ) = Rd. Therefore, the result follows from The-
orem 7.

The above result is interesting in practice because of the
computational advantage in dealing with compactly supported
kernels. By Theorem 7, it is clear that kernels with supp(Λ) (
Rd are not characteristic to S. However, they can be charac-
teristic to some D ( S (see Q1 in §3). The following result
addresses this setting.

Theorem 9 Let F be a unit ball in an RKHS (H, k) de-
fined on Rd. Let D be the set of all compactly supported
probability measures on Rd with characteristic functions in
L1(Rd) ∪ L2(Rd). Suppose k satisfies Assumption 1 and
supp(Λ) ( Rd has a non-empty interior. Then k is a char-
acteristic kernel to D.



ψ(x), Ω = supp(Λ) D Characteristic γF Reference

Ω = Rd S Yes Metric Theorem 7

supp(ψ) is compact S Yes Metric Corollary 8

Ω ( Rd has a {P : supp(P ) is compact,
non-empty interior φP ∈ L1(Rd) ∪ L2(Rd)} Yes Metric Theorem 9

Ω ( Rd S No Pseudometric Theorem 7

Table 1: k satisfies Assumption 1 and is the Fourier transform of a finite nonnegative Borel measure Λ on Rd. S is the set of all
probability measures defined on (Rd,B(Rd)). P represents a probability measure in Rd and φP is its characteristic function. If
k is characteristic to S, then (S, γF ) is a metric space, where F is a unit ball in an RKHS (H, k).

The proof is given in §6.2.2 and the strategy is similar to
that of Theorem 7, where the Fourier representation of γF
(see Lemma 13) is used to derive necessary and sufficient
conditions for the existence of P 6= Q, P, Q ∈ D such
that γF (P, Q) = 0 (see Lemma 17). We then show that
if supp(Λ) ( Rd has a non-empty interior, the conditions
mentioned in Lemma 17 are violated, which means @P 6=
Q, P,Q ∈ D such that γF (P,Q) = 0, thereby proving the
result.

Although, by Theorem 7, the kernels with supp(Λ) ( Rd

are not characteristic to S, Theorem 9 shows that there ex-
ists D ( S to which a subset of these kernels are charac-
teristic. This type of result is not available for the meth-
ods studied in [SGSS07, FGSS08]. An example of a kernel
that satisfies the conditions in Theorem 9 is the Sinc kernel,
ψ(x) = sin(σx)

x which has supp(Λ) = [−σ, σ]. The condi-
tion that supp(Λ) ( Rd has a non-empty interior is impor-
tant for Theorem 9 to hold. If supp(Λ) has an empty interior
(examples include periodic kernels), then one can construct
P 6= Q, P,Q ∈ D such that γF (P,Q) = 0. See §6.2.2 for
the related discussion and an example.

We have shown that the support of the Fourier spectrum
of a positive definite translation-invariant kernel in Rd char-
acterizes the injective or non-injective behavior of Π. In par-
ticular, supp(Λ) = Rd is the necessary and sufficient con-
dition for the map Π to be injective on S, which answers
question Q2 posed in §3. We also showed that kernels with
supp(Λ) ( Rd can be characteristic to some D ( S even
though they are not characteristic to S, which in turn an-
swers question Q1 in §3. A summary of these results is given
in Table 1.

4.2 A result on periodic kernels and discrete
probability measures

Proposition 10 Let F be a unit ball in an RKHS (H, k) de-
fined on Rd where k satisfies Assumption 1. Let D = {P :
P =

∑∞
n=1 βnδxn ,

∑∞
n=1 βn = 1, βn ≥ 0, ∀n} be the

set of probability measures defined on M ′ = {x1, x2 . . .}
( Rd. Then ∃P 6= Q, P, Q ∈ D such that γF (P,Q) = 0 if
the following conditions hold:

(i) ψ is τ -periodic5 in Rd, i.e., ψ(x) = ψ(x + η • τ), η ∈
Zd, τ ∈ Rd

+,

(ii) xs − xt = lst • τ, lst ∈ Zd, ∀ s, t,

where • represents the Hadamard multiplication.

Proof: Let ψ be τ -periodic in Rd and xs − xt = lst •
τ, lst ∈ Zd, ∀ s, t. Consider P, Q ∈ D given by P =∑∞

n=1 p̃nδxn and Q =
∑∞

n=1 q̃nδxn such that p̃n, q̃n ≥
0, ∀n;

∑∞
n=1 p̃n = 1,

∑∞
n=1 q̃n = 1. Then γF (P, Q) =

‖Pk−Qk‖H = ‖ ∫
Rd ψ(.−x) d(P−Q)(x)‖H = ‖∑∞

n=1(p̃n

−q̃n)ψ(. − xn)‖H = ‖∑∞
n=1(p̃n − q̃n)ψ(. − x1 − ln1 •

τ)‖H = ‖ψ(.− x1)
∑∞

n=1(p̃n − q̃n)‖H = 0. This holds for
any P,Q ∈ D.

The converse of Proposition 10, if true, would make the re-
sult more interesting. This is because any non-periodic trans-
lation invariant kernel on Rd would then be characteristic
to the set of discrete probability measures on Rd. In or-
der to prove the converse, we would need to show that (i)
and (ii) in Proposition 10 hold when γF (P,Q) = 0 for
P 6= Q, P,Q ∈ D. However, this is not true as the triv-
ial kernel yields γF (P, Q) = 0 for any P, Q ∈ S and not
just P,Q ∈ D.

Let us consider γF (P, Q) = 0 for P, Q ∈ D. This is
equivalent to ‖∑∞

n=1(p̃n − q̃n)ψ(.− xn)‖H = 0. Squaring
on both sides and using the reproducing property of k, we
get

∑∞
s,t=1 r̃tr̃sψ(xs − xt) = 0 where {r̃n = p̃n − q̃n}∞n=1

satisfy
∑∞

s=1 r̃s = 0 and {r̃s}∞s=1 ∈ [−1, 1]. So, to prove
the converse, we need to characterize all ψ, {r̃n}∞n=1 and
{xn}∞n=1 that satisfy R = {∑∞

s,t=1 r̃tr̃sψ(xs − xt) = 0 :∑∞
s=1 r̃s = 0, {r̃s}∞s=1 ∈ [−1, 1]}, which is not easy. How-

ever, choosing some ψ, {r̃n}∞n=1 and {xn}∞n=1 is easy, as
shown in Proposition 10. Suppose there exists a class, K
of positive definite translation-invariant kernels in Rd with
supp(Λ) ( Rd and a class, E ⊂ D of probability measures
that jointly violate R, then any k ∈ K is characteristic to E.

5A τ -periodic ψ in R is the Fourier transform of Λ =∑∞
n=−∞ αnδ 2πn

τ
, where δ 2πn

τ
is the Dirac measure at 2πn

τ
, n ∈ Z

with αn ≥ 0 and
∑∞

n=−∞ αn < ∞. Thus, supp(Λ) = { 2πn
τ

:

αn > 0, n ∈ Z} ( R. {αn}∞−∞ are called the Fourier series
coefficients of ψ.
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Figure 1: Behavior of the empirical estimate of γ2
F (P, Q) w.r.t. ν for the (a) B1-spline kernel and (b) Gaussian kernel. P is

constructed from Q as defined in Eq. (4). “Uniform” corresponds to Q = U [−1, 1] and “Gaussian” corresponds to Q = N (0, 2).
m = 1000 samples are generated from P and Q to estimate γ2

F (P, Q) through γ2
F,u(m,m). See Example 2 for details.

5 Dissimilar Distributions with Small Mean
Discrepancy

So far, we have studied the behavior of γF and have shown
that it depends on the support of the spectrum of the ker-
nel. As mentioned in §1, applications like homogeneity test-
ing exploit the metric property of γF to distinguish between
probability distributions. Since the metric nature of γF is
guaranteed only for kernels with supp(Λ) = Rd, tests based
on other kernels can fail to distinguish between different prob-
ability distributions. However, in the following, we show
that the characteristic kernels, while guaranteeing γF to be a
metric on S, may nonetheless have difficulty in distinguish-
ing certain distributions on the basis of finite samples. Be-
fore proving the result, we motivate it through the following
example.

Example 2 Let P be defined as

p(x) = q(x) + αq(x) sin(νπx), (4)

where q is a symmetric probability density function with α ∈
R, ν ∈ R\{0}. Consider a B1-spline kernel on R given by
k(x, y) = ψ(x− y) where

ψ(x) =
{

1− |x|, |x| ≤ 1
0, otherwise , (5)

with its Fourier transform given by Ψ(ω) = 2
√

2√
π

sin2 ω
2

ω2 (see
footnote 10 for the definition of Ψ). Since ψ is characteristic
to S, γF (P, Q) > 0 (see Theorem 7). However, it would be
of interest to study the behavior of γF (P,Q) as a function of
ν. We do this through an unbiased, consistent estimator6 of
γ2
F (P, Q) as proposed by Gretton et al. [GBR+07, Lemma

7].
6Starting from the expression for γF in Eq. (2), we get

γ2
F (P, Q) = EX,X′∼P k(X, X ′) − 2EX∼P,Y∼Qk(X, Y ) +
EY,Y ′∼Qk(Y, Y ′), where X, X ′ are independent random vari-
ables with distribution P and Y, Y ′ are independent random
variables with distribution Q. An unbiased empirical estimate
of γ2

F , denoted as γ2
F,u(m, m) is given by γ2

F,u(m, m) =
1

m(m−1)

∑m
l6=j h(Zl, Zj), which is a one-sample U -statistic with

h(Zl, Zj) := k(Xl, Xj) + k(Yl, Yj) − k(Xl, Yj) − k(Xj , Yl),
where Z1, . . . , Zm are m i.i.d. random variables with Zj :=
(Xj , Yj) (see [GBR+07, Lemma 7]).

Figure 1(a) shows the behavior of the empirical estimate
of γ2

F (P, Q) as a function of ν for q = U [−1, 1] and q =
N (0, 2) using the B1-spline kernel in Eq. (5). Since the
Gaussian kernel, k(x, y) = e−(x−y)2 is also a characteristic
kernel, its effect on the behavior of γ2

F,u(m,m) is shown in
Figure 1(b) in comparison to that of the B1-spline kernel.

From Figure 1, we observe two circumstances under whi-
ch the mean discrepancy may be small. First, γ2

F,u(m,m)
decays with increasing |ν|, and can be made as small as de-
sired by choosing a sufficiently large |ν|. Second, in Fig-
ure 1(a), γ2

F,u(m,m) has troughs at ν = ω0
π where ω0 =

{ω : Ψ(ω) = 0}. Since γ2
F,u(m,m) is a consistent esti-

mate of γ2
F (P, Q), one would expect similar behavior from

γ2
F (P, Q). This means that though the B1-spline kernel is

characteristic to S, in practice, it becomes harder to distin-
guish between P and Q with finite samples, when P is con-
structed as in Eq. (4) with ν = ω0

π . In fact, one can observe
from a straightforward spectral argument that the troughs in
γ2
F (P, Q) can be made arbitrarily deep by widening q, when

q is Gaussian.

For characteristic kernels, although γF (P, Q) > 0 when
P 6= Q, Example 2 demonstrates that one can construct
distributions such that γ2

F,u(m,m) is indistinguishable from
zero with high probability, for a given sample size m. Below,
in Theorem 12, we investigate the decay mode of MMD for
large |ν| (see Example 2) by explicitly constructing P 6= Q
such that |Pϕl−Qϕl| is large for some large l, but γF (P, Q)
is arbitrarily small, making it hard to detect a non-zero value
of the population MMD on the basis of a finite sample. Here,
ϕl ∈ L2(M) represents the bounded orthonormal eigenfunc-
tions of a positive definite integral operator7 associated with
k.

Consider the formulation of MMD in Eq. (1). The con-
struction of P for a given Q such that γF (P, Q) is small,
though not zero, can be intuitively seen by re-writing Eq. (1)
as

γF (P, Q) = sup
f∈H

|Pf −Qf |
‖f‖H . (6)

7See [SS02, Theorem 2.10] for definition of positive definite
integral operator and its corresponding eigenfunctions.



When P 6= Q, |Pf − Qf | can be large for some f ∈ H.
However, γF (P, Q) can be made small by selecting P such
that the maximization of |Pf−Qf |

‖f‖H over H requires an f with
large ‖f‖H. More specifically, higher order eigenfunctions
of the kernel (ϕl for large l) have large RKHS norms, and
so if they are prominent in P, Q (i.e., highly non-smooth
distributions), one can expect γF (P,Q) to be small even
when there exists an l for which |Pϕl − Qϕl| is large. To
this end, we need the following lemma, which we quote
from [GSB+04, Lemma 6].

Lemma 11 ([GSB+04]) Let F be a unit ball in an RKHS
(H, k) defined on compact M . Let ϕl ∈ L2(M) be or-
thonormal eigenfunctions (assumed to be absolutely bounded),
and λl be the corresponding eigenvalues (arranged in a de-
creasing order for increasing l) of a positive definite integral
operator associated with k. Assume λ−1

l increases superlin-
early with l. Then for f ∈ F where f(x) :=

∑∞
j=1 f̃jϕj(x),

we have {|f̃j |}∞j=1 ∈ `1 and for every ε > 0, ∃ l0 ∈ N such
that |f̃l| < ε if l > l0.

Theorem 12 (P 6= Q can give small MMD) Assume the con-
ditions in Lemma 11 hold. Then there exists a probability
distribution P 6= Q defined on M for which |Pϕl −Qϕl| >
β − ε for some non-trivial β and arbitrarily small ε > 0, yet
for which γF (P, Q) < η for an arbitrarily small η > 0.

Proof: Let us construct p(x) = q(x) + αle(x) + βϕl(x)
where e(x) = 1M (x). For P to be a probability distribution,
the following conditions need to be satisfied:

∫

M

[αle(x) + βϕl(x)] dx = 0, (7)

min
x∈M

[q(x) + αle(x) + βϕl(x)] ≥ 0. (8)

Expanding e(x) and f(x) in the orthonormal basis {ϕl}∞l=1,
we get e(x) =

∑∞
l=1 ẽlϕl(x) and f(x) =

∑∞
l=1 f̃lϕl(x),

where ẽl := 〈e, ϕl〉L2(M) and f̃l := 〈f, ϕl〉L2(M). There-
fore, Pf −Qf =

∫
M

f(x)[αle(x) + βϕl(x)] dx reduces to

Pf −Qf = αl

∞∑

j=1

ẽj f̃j + βf̃l, (9)

where we used the fact that8 〈ϕj , ϕt〉L2(M) = δjt. Rewriting
Eq. (7) and substituting for e(x) gives

∫
M

[αle(x)+βϕl(x)] dx

=
∫

M
e(x)[αle(x) + βϕl(x)] dx = αl

∑∞
j=1 ẽ2

j + βẽl = 0,
which implies

αl = − βẽl∑∞
j=1 ẽ2

j

. (10)

Now, let us consider Pϕt−Qϕt = αlẽt +βδtl. Substituting
for αl gives

Pϕt −Qϕt = βδtl − β
ẽtẽl∑∞
j=1 ẽ2

j

= βδtl − βτtl, (11)

where τtl := ẽtẽl∑∞
j=1 ẽ2

j
. By Lemma 11, {|ẽl|}∞l=1 ∈ `1 ⇒∑∞

j=1 ẽ2
j < ∞, and choosing large enough l gives |τtl| <

8Here δ is used in the Kronecker sense.

ε, ∀ t, for any arbitrary ε > 0. Therefore, |Pϕt − Qϕt| >
β− ε for t = l and |Pϕt−Qϕt| < ε for t 6= l. By appealing
to Lemma 1, we therefore establish that P 6= Q. In the
following we prove that γF (P, Q) can be arbitrarily small,
though non-zero.

Recall that γF (P, Q) = sup‖f‖H≤1 |Pf −Qf |. Substi-
tuting for αl in Eq. (9), we have

γF (P, Q) = sup



β

∞∑

j=1

νjlf̃j :
∞∑

j=1

f̃2
j

λj
≤ 1



 , (12)

where we used the definition of RKHS norm as ‖f‖H :=
∑∞

j=1

f̃2
j

λj
and νjl := δjl− τjl. Eq. (12) is a convex quadratic

program in {f̃j}∞j=1. Solving the Lagrangian yields f̃j =
νjlλj√∑∞
j=1 ν2

jlλj
. Therefore, γF (P, Q) = β

√∑∞
j=1 ν2

jlλj =

β
√

λl − 2τllλl +
∑∞

j=1 τ2
jlλj → 0 as l →∞ because

(i) by choosing sufficiently large l, |τjl| < ε, ∀ j, for any
arbitrary ε > 0,
(ii) λl → 0 as l →∞ [SS02, Theorem 2.10].

6 Proofs of the Main Theorems
In this section, we prove the main theorems in Section 4.

6.1 Preliminary lemmas
Using the Fourier characterization of ψ given by Eq. (3), un-
der Assumption 1, we derive the following result that pro-
vides the Fourier representation of MMD. This result re-
quires tools from distribution theory related to the Fourier
transforms of distributions.9 We refer the reader to [Rud91,
Chapters 6,7] for the detailed treatment of distribution the-
ory. Another good and basic reference on distribution theory
is [Str03].

Lemma 13 (Fourier representation of MMD) Let F be a
unit ball in an RKHS (H, k) defined on Rd with k satisfying
Assumption 1. Let φP and φQ be the characteristic functions
of probability measures P and Q defined on Rd. Then

γF (P,Q) = ‖[(φP − φQ)Λ]∨‖H, (13)

where − represents complex conjugation, ∨ represents the
inverse Fourier transform and Λ represents the finite non-
negative Borel measure on Rd as defined in Eq. (3). (φP −
φQ)Λ represents a finite Borel measure defined by Eq. (26).

Proof: From Theorem 3, we have γF (P, Q) = ‖Pk−Qk‖H.
Consider Pk =

∫
Rd k(·, x) dP (x) =

∫
Rd ψ(·−x) dP (x). By

Eq. (23),
∫
Rd ψ(·−x) dP (x) represents the convolution of ψ

and P , denoted as ψ∗P . By appealing to the convolution the-
orem (Theorem 22), we have (ψ∗P )∧ = P̂Λ, where P̂ (ω) =

9Here, the term distribution should not be confused with proba-
bility distributions. In short, distributions refer to generalized func-
tions which cannot be treated as functions in the Lebesgue sense.
Classical examples of distributions are the Dirac-delta function and
Heaviside’s function, for which derivatives and Fourier transforms
do not exist in the usual sense.



∫
Rd e−iωT x dP (x), ∀ω ∈ Rd (by Lemma 20). Note that

P̂ = φP . Therefore, γF (P, Q) = ‖ψ ∗ P − ψ ∗Q‖H =∥∥(φP Λ)∨ − (φQΛ)∨
∥∥
H. Using the linearity of the Fourier

inverse, we get the desired result.

Remark 14 (a) If Ψ is the distributional derivative10 of Λ,
then Eq. (13) can also be written as

γF (P, Q) = ‖[(φP − φQ)Ψ]∨‖H, (14)

where the term inside the RKHS norm is the Fourier inverse
of a tempered distribution.

(b) By Assumption 1, ψ is real-valued and symmetric in Rd.
Therefore, by (ii) in Lemma 20, Λ and Ψ are real-valued,
symmetric tempered distributions.

The representation of MMD in terms of the kernel spectrum
as in Eq. (13) will be central to deriving our main theorems.
It is easy to see that characteristic kernels can be described
indirectly by deriving conditions for the existence of P 6= Q
such that γF (P,Q) = 0. Using the Fourier representation
of γF , the following result provides necessary and sufficient
conditions for the existence of P 6= Q such that γF (P, Q) =
0.

Lemma 15 Let F be a unit ball in an RKHS (H, k) defined
on Rd, and let P,Q be probability distributions on Rd such
that P 6= Q. Suppose that k satisfies Assumption 1 and
supp(Λ) ⊂ Rd. Then γF (P, Q) = 0 if and only if there
exists θ ∈ S ′

d that satisfies the following conditions:

(i) p− q = θ̌,
(ii) θΛ = 0,

where p and q represent the distributional derivatives of P
and Q respectively, and θΛ represents a finite Borel measure
defined by Eq. (26).

Proof: The proof follows directly from the formulation of
γF in Eq. (13).

(⇒ ) Let θ ∈ S ′
d satisfy (i) and (ii). Since θ ∈ S ′

d, we have

θ = ˆ̌θ = (p − q)∧ = p̂ − q̂ = φP − φQ. Therefore, by (ii),
we have γF (P,Q) = ‖[(φP −φQ)Λ]∨‖H = ‖[θΛ]∨‖H = 0.

(⇐ ) Let γF (P, Q) = ‖[(φP − φQ)Λ]∨‖H = 0, which im-
plies [(φP−φQ)Λ]∨ = 0. Since (φP−φQ)Λ is a finite Borel
measure as defined by Eq. (26), it is therefore a tempered dis-
tribution and so (φP −φQ)Λ = [[(φP −φQ)Λ]∨]∧ = 0. Let
θ := φP − φQ. Clearly θ ∈ S ′

d as by Lemma 20, φP , φQ ∈
S ′

d. So, p− q = (φP )∨ − (φQ)∨ = (φP − φQ)∨ = θ̌.

θ = 0 trivially satisfies (ii) in Lemma 15. However, it vio-
lates our assumption of P 6= Q when it is used in condition

10If Λ is absolutely continuous w.r.t. the Lebesgue measure,
then Ψ represents the Radon-Nikodym derivative of Λ w.r.t. the
Lebesgue measure. In such a case, ψ is the Fourier transform of
Ψ in the usual sense; i.e., ψ(x) =

∫
Rd e−ixT ωΨ(ω) dmd(ω). On

the other hand, if Ψ is the distributional derivative of Λ, then Ψ is a
symbolic representation of the derivative of Λ and will make sense
only under the integral sign.

(i). If we relax this assumption, then the result is trivial as
P = Q ⇒ γF (P, Q) = 0. For the results we derive later,
it is important to understand the properties of θ, which we
present in the following proposition.

Proposition 16 (Properties of θ) θ in Lemma 15 satisfies the
following properties:

(a) θ is a conjugate symmetric, bounded and uniformly con-
tinuous function on Rd.

(b) θ(0) = 0.

(c) supp(θ) ⊂ Rd\Ω where Ω := supp(Λ). In addition, if
Ω = {a1, a2, . . .}, then θ(aj) = 0, ∀ aj ∈ Ω.

Proof: (a) From Lemma 15, we have θ = φP − φQ. There-
fore, the result in (a) follows from Lemma 20, which shows
that φP , φQ are conjugate symmetric, bounded, and uni-
formly continuous functions on Rd.

(b) By Lemma 20, φP (0) = φQ(0) = 1. Therefore, θ(0) =
φP (0)− φQ(0) = 0.

(c) Let W := {x ∈ Rd | θ(x) 6= 0}. It suffices to show
that W ⊂ Rd\Ω. Suppose W is not contained in Rd\Ω.
Then there is a non-empty open subset U such that U ⊂
W ∩ (Ω ∪ ∂Ω). Fix further a non-empty open subset V
with V ⊂ U . Since V ⊂ Ω, there is ϕ ∈ Dd(V ) with
Λ(ϕ) 6= 0. Take h ∈ Dd(U) such that h = 1 on V , and
define a continuous function % = hϕ

θ on Rd, which is well-
defined from supp(h) ⊂ U and θ 6= 0 on U . By (ii) of
Lemma 15, θΛ = 0, where θΛ is a finite Borel measure on
Rd as defined by Eq. (26). Therefore,

∫

Rd

%(x)θ(x) dΛ(x) = 0. (15)

The left hand side of Eq. (15) simplifies to
∫

Rd

%(x)θ(x) dΛ(x) =
∫

U

h(x)ϕ(x)
θ(x)

θ(x) dΛ(x)

=
∫

U

ϕ(x) dΛ(x) = Λ(ϕ) 6= 0,

resulting in a contradiction. So, supp(θ) ⊂ Rd\Ω.
If Ω = {a1, a2, . . .}, then Λ =

∑
aj∈Ω βjδaj , βj > 0

and
∑

j βj < ∞. θΛ = 0 implies
∫
Rd χ(x)θ(x) dΛ(x) =∑

j βjχ(aj)θ(aj) = 0 for any continuous function χ in Rd.
This implies θ(aj) = 0, ∀ aj ∈ Ω.

Lemma 15 provides conditions under which γF (P, Q) = 0
when P 6= Q. It shows that the kernel k cannot distinguish
between P and Q if P is related to Q by condition (i). Con-
dition (ii) in Lemma 15 says that θ has to be chosen such
that its support is disjoint with that of the kernel spectrum.
This is what is precisely captured by (c) in Proposition 16.
So, for a given Q, one can construct P such that P 6= Q and
γF (P, Q) = 0 by choosing θ that satisfies the properties in
Proposition 16. However, P should be a positive distribution
so that it corresponds to a positive measure.11 Therefore,

11A positive distribution is defined to be as the one that takes
nonnegative values on nonnegative test functions. So, D ∈ D ′

d(M)



θ should also be such that q + θ̌ is a positive distribution.
Imposing such a constraint on θ is not straightforward, and
therefore Lemma 15 does not provide a procedure to con-
struct P 6= Q given Q. However, by imposing some condi-
tions on P and Q, we obtain the following result wherein the
conditions on θ can be explicitly specified, yielding a proce-
dure to construct P 6= Q such that γF (P, Q) = 0.

Lemma 17 Let F be a unit ball in an RKHS (H, k) de-
fined on Rd. Let D be the set of probability measures on
Rd with characteristic functions either absolutely integrable
or square integrable, i.e., for any P ∈ D, φP ∈ L1(Rd) ∪
L2(Rd). Suppose that k satisfies Assumption 1 and supp(Λ) (
Rd. Then for any Q ∈ D, ∃P 6= Q, P ∈ D given by

p = q + θ̌ (16)

such that γF (P, Q) = 0 if and only if there exists a non-zero
function θ : Rd → C that satisfies the following conditions:

(i) θ ∈ (L1(Rd)∪L2(Rd))∩Cb(Rd) is conjugate symmet-
ric,

(ii) θ̌ ∈ L1(Rd) ∩ (L2(Rd) ∪ Cb(Rd)),

(iii) θΛ = 0,

(iv) θ(0) = 0,

(v) infx∈Rd{θ̌(x) + q(x)} ≥ 0.

Proof: (⇒ ) Suppose there exists a non-zero function θ sat-
isfying (i) – (v). We need to show that p = q + θ̌ is in D for
q ∈ D and γF (P, Q) = 0.

For any Q ∈ D, φQ ∈ (L1(Rd) ∪ L2(Rd)) ∩ Cb(Rd).
When φQ ∈ L1(Rd)∩Cb(Rd), the Riemann-Lebesgue lemma
(Lemma 23) implies that q = [φQ]∨ ∈ L1(Rd) ∩ Cb(Rd).
When φQ ∈ L2(Rd) ∩ Cb(Rd), the Fourier transform in the
L2 sense12 implies that q = [φQ]∨ ∈ L1(Rd) ∩ L2(Rd).
Therefore, q ∈ L1(Rd) ∩ (L2(Rd) ∪ Cb(Rd)). Define p :=
q+ θ̌. Clearly p ∈ L1(Rd)∩(L2(Rd)∪Cb(Rd)). In addition,
φP = p̂ = q̂ + ˆ̌θ = φQ + θ ∈ (L1(Rd)∪L2(Rd))∩Cb(Rd).
Since θ is conjugate symmetric, θ̌ is real valued and so is
p. Consider

∫
Rd p(x) dx =

∫
Rd q(x) dx +

∫
Rd θ̌(x) dx =

1+θ(0) = 1. (v) implies that p is non-negative. Therefore, P
represents a probability measure such that P 6= Q and P ∈
D. Since P, Q are probability measures, γF (P,Q) is com-
puted as γF (P,Q) = ‖[(φP −φQ)Λ]∨‖H = ‖[θΛ]∨‖H = 0.

(⇐ ) Suppose that P, Q ∈ D and p = q+θ̌ gives γF (P,Q) =
0. We need to show that θ satisfies (i) – (v).

is a positive distribution if D(ϕ) ≥ 0 for 0 ≤ ϕ ∈ Dd(M). If µ is
a positive measure that is locally finite, then Dµ(ϕ) =

∫
M

ϕ dµ de-
fines a positive distribution. Conversely, every positive distribution
comes from a locally finite positive measure [Str03, §6.4].

12If f ∈ L2(Rd), the Fourier transform z[f ] := f̂ of f is
defined to be the limit, in the L2-norm, of the sequence {f̂n} of
Fourier transforms of any sequence {fn} of functions belonging to
Sd, such that fn converges in the L2-norm to the given function
f ∈ L2(Rd), as n → ∞. The function f̂ is defined almost every-
where on Rd and belongs to L2(Rd). Thus, z is a linear operator,
mapping L2(Rd) into L2(Rd).

P, Q ∈ D implies φP , φQ ∈ (L1(Rd) ∪ L2(Rd)) ∩
Cb(Rd) and p, q ∈ L1(Rd) ∩ (L2(Rd) ∪ Cb(Rd)). There-
fore, θ = φP − φQ ∈ (L1(Rd) ∪ L2(Rd)) ∩ Cb(Rd) and
θ̌ = p− q ∈ L1(Rd) ∩ (L2(Rd) ∪ Cb(Rd)). By Lemma 20,
φP and φQ are conjugate symmetric and so is θ. Therefore
θ satisfies (i) and θ̌ satisfies (ii). θ satisfies (iv) as θ(0) =∫
Rd θ̌(x) dx =

∫
Rd(p(x)− q(x)) dx = 0. Non-negativity of

p yields (v). γF (P, Q) = 0 implies (iii), with a proof similar
to that of Lemma 15.

Remark 18 Conditions (iii) and (iv) in Lemma 17 are the
same as those of Proposition 16. Conditions (i) and (ii) are
required to satisfy our assumption P, Q ∈ D and Eq. (16).
Condition (v) ensures that P is a positive measure, which
was the condition difficult to impose in Lemma 15.

In the above result, we restricted ourselves to probability
measures P with characteristic functions φP in L1(Rd) ∪
L2(Rd). This ensures that the inverse Fourier transform of
φP exists in the L1 or L2 sense. Without this assumption, φP

is not guaranteed to have a Fourier transform in the L1 or L2

sense, and therefore has to be treated as a tempered distribu-
tion for the purpose of computing its Fourier transform. This
implies θ = φP−φQ has to be treated as a tempered distribu-
tion, which is the setting in Lemma 15. Since we wanted to
avoid dealing with distributions where the required positiv-
ity constraint is difficult to impose, we restricted ourselves to
D.13 Though this result explicitly captures the conditions on
θ, it is a very restricted result as it only deals with continuous
(a.e.) probability measures. However, we use this result in
Lemma 19 to construct P 6= Q such that γF (P,Q) = 0.

Lemmas 15 and 17 are the main results that provide con-
ditions for the existence of P 6= Q such that γF (P,Q) = 0.
This means that if there exists a θ satisfying these condi-
tions, then k cannot distinguish between P and Q where P
is defined as in Eq. (16). Thus, the existence (resp. non-
existence) of θ results in a non-injective (resp. injective)
map Π. It is clear from Lemmas 15 and 17 that the de-
pendence of γF on the kernel appears in the form of the
support of the kernel spectrum. Therefore, two scenarios
exist: (a) supp(Λ) = Rd and (b) supp(Λ) ( Rd. The
case of supp(Λ) = Rd is addressed by Theorem 7 while
that of supp(Λ) ( Rd is addressed by Theorem 9. Us-
ing Lemma 17, the following result proves the existence of
P 6= Q such that γF (P, Q) = 0 while using a kernel with
supp(Λ) ( Rd.

Lemma 19 Let F be a unit ball in an RKHS (H, k) de-
fined on Rd. Let D be the set of all non-compactly sup-
ported probability measures on Rd with characteristic func-
tions in L1(Rd)∪L2(Rd). Suppose k satisfies Assumption 1
and supp(Λ) ( Rd. Then ∃P 6= Q, P, Q ∈ D such that
γF (P, Q) = 0.

13Choosing D to be the set of all probability measures with char-
acteristic functions in L1(Rd)∪L2(Rd) is the best possible restric-
tion that avoids treating θ as a tempered distribution. The classi-
cal Fourier transforms on Rd are defined for functions in Lp(Rd),
1 < p ≤ 2. For p > 2, the only reasonable way to define Fourier
transforms on Lp(Rd) is through distribution theory.



Proof: We claim that there exists a non-zero function, θ sat-
isfying (i) – (v) in Lemma 17 which therefore proves the
result. Consider the following function, gβ,ω0 ∈ C∞(Rd)
supported in [ω0 − β, ω0 + β],

gβ,ω0(ω) =
d∏

j=1

1[−βj ,βj ](ωj −ω0,j) e
− β2

j

β2
j
−(ωj−ω0,j)2 , (17)

where ω = (ω1, . . . , ωd), ω0 = (ω0,1, . . . , ω0,d) and β =
(β1, . . . , βd). Since supp(Λ) ( Rd, there exists an open
set U ⊂ Rd on which Λ is null. So, there exists β and
ω0 6= 0 with ω0 > β such that [ω0 − β, ω0 + β] ⊂ U .
Choose θ = α(gβ,ω0 + gβ,−ω0), α ∈ R\{0}, which im-
plies supp(θ) = [−ω0 − β,−ω0 + β] ∪ [ω0 − β, ω0 + β]
is compact. Therefore, by the Paley-Wiener theorem (The-
orem 24), θ̌ is a rapidly decaying function, i.e., θ̌ ∈ Sd.
Since θ(0) = 0 (by construction), θ̌ will take negative val-
ues. However, θ̌ decays faster than some Q ∈ D of the
form q(x) ∝ ∏d

j=1
1

1+|xj |l+ε , ∀ l ∈ N, ε > 0 where x =
(x1, . . . , xd). It can be verified that θ satisfies conditions (i)
– (v) in Lemma 17. We conclude, there exists a non-zero θ
as claimed earlier, which completes the proof.

The above result shows that k with supp(Λ) ( Rd is not
characteristic to the class of non-compactly supported prob-
ability measures on Rd with characteristic functions in either
L1(Rd) or L2(Rd).

6.2 Main theorems: Proofs
We are now in a position to prove Theorems 7 and 9.

6.2.1 Proof of Theorem 7
(⇒ ) Let supp(Λ) = Rd. k is a characteristic kernel to S if
γF (P, Q) = 0 ⇔ P = Q for P, Q ∈ S. We only need to
show the implication γF (P, Q) = 0 ⇒ P = Q as the other
direction is trivial.

Assume that ∃P 6= Q such that γF (P,Q) = 0. Then
by Lemma 15, ∃ θ satisfying (i) and (ii) given in Lemma 15.
By Proposition 16, θΛ = 0 implies supp(θ) ⊂ Rd\supp(Λ).
Since supp(Λ) = Rd and θ is a uniformly continuous func-
tion in Rd, we have supp(θ) = ∅ which means θ = 0 a.e.
Therefore, by (i) of Theorem 15, we have P = Q, leading to
a contradiction. Thus, @P 6= Q such that γF (P, Q) = 0.

(⇐ ) Suppose k is characteristic to S. We then need to show
that supp(Λ) = Rd. This is equivalent to proving that k is not
characteristic to S when supp(Λ) ( Rd. Let supp(Λ) ( Rd.
Choose D ( S as the set of all non-compactly supported
probability measures on Rd with characteristic functions in
L1(Rd)∪L2(Rd). By Lemma 19, ∃P 6= Q, P, Q ∈ D ( S
such that γF (P,Q) = 0. Therefore, k is not characteristic to
S.

6.2.2 Proof of Theorem 9
Suppose ∃P 6= Q, P, Q ∈ D ( S such that γF (P, Q) = 0.
Then by Lemma 15, there exists a θ ∈ S ′

d such that θ̌ = p−q
where p and q are the distributional derivatives of P and Q,
respectively. Since P, Q ∈ D, we can apply Lemma 17 and
so θ is a non-zero function that satisfies conditions (i) – (v)
in Lemma 17. The condition θΛ = 0 implies supp(θ) ⊂

Rd\supp(Λ). Since supp(Λ) has a non-empty interior, we
have supp(θ) ( Rd. Thus, there exists an open set, U ⊂ Rd

such that θ(x) = 0, ∀x ∈ U . By Lemma 25, this means that
θ̌ is not compactly supported in Rd. Condition (iv) implies∫
Rd θ̌(x) dx = 0, which means that θ̌ takes negative values.

Since q is compactly supported in Rd, q(x) + θ̌(x) < 0
for some x ∈ Rd\supp(Q), which violates condition (v) in
Lemma 17. In other words, there does not exist a non-zero θ
that satisfies conditions (i) – (v) in Lemma 17, thereby lead-
ing to a contradiction.

As discussed in §4.1, the condition that supp(Λ) has a non-
empty interior is important for Theorem 9 to hold. This is be-
cause if supp(Λ) has an empty interior, then supp(θ) = Rd.
In principle, one can construct such a θ by selecting θ ∈ Sd

so that it satisfies conditions (i) – (iv) of Lemma 17 while sat-
isfying the decay conditions (Eq. (29) and Eq. (30)) given in
the Paley-Wiener theorem (see Theorem 24). Therefore, by
the Paley-Wiener theorem, θ̌ is a C∞ function with compact
support. If θ is chosen such that supp(θ̌) ⊂ supp(Q), then
condition (v) of Theorem 17 will be satisfied. Thus, one can
construct P 6= Q, P, Q ∈ D (D being defined in Theorem 9)
such that γF (P,Q) = 0. Note that conditions (i) and (ii) of
Lemma 17 are automatically satisfied (except for conjugate
symmetry) by choosing θ ∈ Sd. However, choosing θ such
that it is also an entire function (so that the Paley-Wiener the-
orem can be applied) is not straightforward. In the following,
we provide a simple example to show that P 6= Q, P, Q ∈ D
can be constructed such that γF (P, Q) = 0, where F corre-
sponds to a unit ball in an RKHS (H, k) induced by a pe-
riodic translation-invariant kernel for which supp(Λ) ( Rd

has an empty interior.

Example 3 Let Q be a uniform distribution on [−β, β] ⊂ R,
i.e., q(x) = 1

2β1[−β,β](x) with its characteristic function,

φQ(ω) = 1
β
√

2π

sin(βω)
ω in L2(R). Let ψ be the Dirichlet ker-

nel with period τ , where τ ≤ β, i.e., ψ(x) = sin
(2l+1)πx

τ

sin πx
τ

and

Ψ(ω) =
∑l

j=−l δ
(
ω − 2πj

τ

)
with supp(Ψ) = {2πj

τ , j ∈
{0,±1, . . . ,±l}}. Clearly, supp(Ψ) has an empty interior.
Let θ be

θ(ω) =
8
√

2α

i
√

π
sin

(ωτ

2

) sin2
(

ωτ
4

)

τω2
, (18)

with α ≤ 1
2β . It is easy to verify that θ ∈ L1(R) ∩ L2(R) ∩

Cb(R) and so θ satisfies (i) in Lemma 17. Since θ(ω) = 0 at
ω = 2πl

τ , l ∈ Z, θ also satisfies (iii) and (iv) in Lemma 17.
θ̌ is given by

θ̌(x) =





2α|x+ τ
2 |

τ − α, −τ ≤ x ≤ 0

α− 2α|x− τ
2 |

τ , 0 ≤ x ≤ τ
0, otherwise,

(19)

where θ̌ ∈ L1(R)∩L2(R)∩Cb(R) satisfies (ii) in Lemma 17.
Now, consider p = q + θ̌ which is given as

p(x) =





1
2β , x ∈ [−β,−τ ] ∪ [τ, β]

2α|x+ τ
2 |

τ + 1
2β − α, x ∈ [−τ, 0]

α + 1
2β −

2α|x− τ
2 |

τ , x ∈ [0, τ ]
0, otherwise.



Clearly, p(x) ≥ 0, ∀x and
∫
R p(x) dx = 1. φP = φQ +θ =

φQ + iθI where θI = Im[θ] and φP ∈ L2(R). We have
therefore constructed P 6= Q such that γF (P, Q) = 0, where
P and Q are compactly supported in R with characteristic
functions in L2(R).

The condition of the compact support for probability mea-
sures mentioned in Theorem 9 is also critical for the result to
hold. If this condition is relaxed, then k with supp(Λ) ( Rd

is no longer characteristic to D, as shown in Lemma 19.

7 Concluding Remarks
Previous works have studied the Hilbert space embedding for
probability measures using universal kernels, which form a
restricted family of positive definite kernels. These works
showed that if the kernel is universal, then the embedding
function from the space of probability measures to a repro-
ducing kernel Hilbert space is injective. In this paper, we
extended this approach to a larger family of kernels which
are translation-invariant on Rd. We showed that the support
of the Fourier spectrum of the kernel determines whether the
embedding is injective. In particular, the necessary and suf-
ficient condition for the embedding to be injective is that the
Fourier spectrum of the kernel should have the entire domain
as its support. Our study in this paper was limited to ker-
nels and probability measures that are defined on Rd, and
the results have been derived using Fourier analysis in Rd.
Since Fourier theory is available for more general groups
apart from Rd, one direction for future work is to extend the
analysis to positive definite kernels defined on other groups.

Appendix A Supplementary Results
We show five supplementary results used to prove the re-
sults in §4 and §6. The first two are basic, and deal with
the Fourier transform of a measure and the convolution the-
orem. The remaining three (the Riemann-Lebesgue lemma,
the Paley-Wiener theorem, and its corollary) are stated with-
out proof.

Lemma 20 (Fourier transform of a measure) Let µ be a fi-
nite Borel measure on Rd. The Fourier transform of µ is a
tempered distribution given by

µ̂(ω) =
∫

Rd

e−iωT x dµ(x), ∀ω ∈ Rd (20)

which is a bounded, uniformly continuous function on Rd. In
addition, µ̂ satisfies the following properties:

(i) µ̂(ω) = µ̂(−ω), ∀ω ∈ Rd,

(ii) µ̂(ω) = µ̂(−ω), ∀ω ∈ Rd if and only if Dµ(ϕ) =
Dµ(ϕ̃), ∀ϕ ∈ Sd where Dµ is the tempered distribu-
tion defined by µ and ϕ̃(x) := ϕ(−x), ∀x ∈ Rd.

Proof: Let Dµ denote a tempered distribution defined by µ.
For ϕ ∈ Sd, we have D̂µ(ϕ) = Dµ(ϕ̂) =

∫
Rd ϕ̂(ω) dµ(ω) =∫

Rd

∫
Rd e−iωT xϕ(x) dmd(x) dµ(ω). From Fubini’s theorem,

D̂µ(ϕ) =
∫

Rd

[∫

Rd

e−ixT ω dµ(ω)
]

ϕ(x) dmd(x), (21)

which proves Eq. (20). Clearly µ̂ is bounded as |µ̂(ω)| ≤ 1.
By Lebesgue’s dominated convergence theorem, µ̂ is uni-
formly continuous on Rd as limh→0 |µ̂(ω + h) − µ̂(ω)| ≤
limh→0

∫
Rd |e−jhT x − 1| dµ(x) = 0, for any ω ∈ Rd.

(i) µ̂(ω) =
∫
Rd eiωT x dµ(x) = µ̂(−ω).

(ii) (⇒ ) For ϕ ∈ Sd, D̂µ(ϕ) = Dµ(ϕ̂) =
∫
Rd ϕ̂(x) dµ(x) =∫

Rd µ̂(x)ϕ(x) dmd(x). Since ϕ̂ ∈ Sd and Dµ(ϕ) = Dµ(ϕ̃),
∀ϕ ∈ Sd, we have Dµ(ϕ̂) = Dµ( ˜̂ϕ) =

∫
Rd ϕ̂(−x) dµ(x).

Substituting for ϕ̂(−x), we get

Dµ(ϕ̂) =
∫

Rd

µ̂(−x)ϕ(x) dmd(x) =
∫

Rd

µ̂(x)ϕ(x) dmd(x),

for every ϕ ∈ Sd, which implies µ̂(x) = µ̂(−x), ∀x ∈ Rd.

(⇐ ) For ϕ ∈ Sd, we have Dµ(ϕ) = (D̂µ)∨(ϕ) = D̂µ(ϕ̌) =∫
Rd µ̂(x)ϕ̌(x) dmd(x) =

∫
Rd µ̂(−x)ϕ̌(x) dmd(x). Apply-

ing Fubini’s theorem after substituting for µ̂(−x) and ϕ̌(x)
gives

Dµ(ϕ) =
∫

Rd

∫

Rd

δ(y + ω)ϕ(y) dmd(y) dµ(ω)

=
∫

Rd

ϕ(−ω) dµ(ω) = Dµ(ϕ̃),

for every ϕ ∈ Sd.

Remark 21 (a) Property (i) in Lemma 20 shows that the
Fourier transform of a finite Borel measure on Rd is “conju-
gate symmetric”, which means that Re[µ̂] is an even function
and Im[µ̂] is an odd function.

(b) Property (ii) shows that real symmetric tempered distri-
butions have real symmetric Fourier transforms. This can be
easily understood when µ is absolutely continuous w.r.t. the
Lebesgue measure. Suppose dµ = Ψ dmd. Then property
(ii) implies that µ̂ is real and symmetric if and only if Ψ is
real and symmetric.

The following result is popularly known as the convolution
theorem. Before providing the result, we first define convo-
lution: if f and g are complex functions in Rd, their convo-
lution f ∗ g is

(f ∗ g)(x) =
∫

Rd

f(y)g(x− y) dy, (22)

provided that the integral exists for almost all x ∈ Rd, in the
Lebesgue sense. Let µ be a finite Borel measure on Rd and
f be a bounded measurable function on Rd. The convolution
of f and µ, f ∗ µ, which is a bounded measurable function,
is defined by

(f ∗ µ)(x) =
∫

Rd

f(x− y) dµ(y). (23)

Theorem 22 (Convolution Theorem) Let µ be a finite Borel
measure and f be a bounded function on Rd. Suppose f is
written as

f(x) =
∫

Rd

eixT ω dΛ(ω), (24)



with a finite Borel measure Λ on Rd. Then

(f ∗ µ)∧ = µ̂Λ, (25)

where the right hand side is a finite Borel measure14 and the
equality holds as a tempered distribution.

Proof: Since the Fourier and inverse Fourier transform give
one-to-one correspondence of S ′

d, it suffices to show

f ∗ µ = (µ̂Λ)∨. (27)

For an arbitrary ϕ ∈ Sd,

(µ̂Λ)∨(ϕ) = (µ̂Λ)(ϕ̌) =
∫

Rd

ϕ̌(x)µ̂(x) dΛ(x). (28)

Substituting for µ̂ in Eq. (28) and applying Fubini’s theorem,
we have (µ̂Λ)∨(ϕ) =

∫

Rd

∫

Rd

[∫

Rd

ei(ω−y)T x dΛ(x)
]

ϕ(ω) dmd(ω) dµ(y),

which reduces to
∫
Rd [

∫
Rd f(ω − y) dµ(y)]ϕ(ω) dmd(ω) =

(f ∗ µ)(ϕ) and therefore proves Eq. (27).

The following result, called the Riemann-Lebesgue lemma,
is quoted from [Rud91, Theorem 7.5].

Lemma 23 (Riemann-Lebesgue) If f ∈ L1(Rd), then f̂ ∈
Cb(Rd), and ‖f̂‖∞ ≤ ‖f‖1.

The following theorem is a version of the Paley-Wiener the-
orem for C∞ functions, and is proved in [Str03, Theorem
7.2.2].

Theorem 24 (Paley-Wiener) Let f be a C∞ function sup-
ported in [−β, β]. Then f̂(ω + iσ) is a entire function of
exponential type β, i.e., ∃C such that

∣∣∣f̂(ω + iσ)
∣∣∣ ≤ Ceβ|σ|, (29)

and f̂(ω) is rapidly decreasing, i.e., ∃ cn such that
∣∣∣f̂(ω)

∣∣∣ ≤ cn

(1 + |ω|)n
, ∀n ∈ N. (30)

Conversely, if F (ω + iσ) is an entire function of exponential
type β, and F (ω) is rapidly decaying, then F = f̂ for some
such function f .

The following lemma is a corollary of the Paley-Wiener the-
orem, and is proved in [Mal98, Theorem 2.6].

Lemma 25 ([Mal98]) If g 6= 0 has compact support, then
its Fourier transform ĝ cannot be zero on a whole interval.
Similarly, if ĝ 6= 0 has compact support, then g cannot be
zero on a whole interval.

14Let µ be a finite Borel measure and f be a bounded measurable
function on Rd. We then define a finite Borel measure fµ by

(fµ)(E) =

∫

Rd

IE(x)f(x) dµ(x), (26)

where E is an arbitrary Borel set and IE is its indicator function.
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