
Information Lifecycle Management

in Evolving Healthcare Databases

 Nitin Chandra Badam

+
 Aradhna Kumari Jagannathan Srinivasan

IIT Guwahati Sarada Research Labs Oracle Corporation

 Assam, India Bangalore, India Nashua, NH, USA
chandra.nitin@iitg.ernet.in aradhna.kumari@saradaresearchlabs.org jagannathan.srinivasan@oracle.com

Abstract

Information Lifecycle Management is a must for

ever growing healthcare databases. In practice,

this problem is further compounded due to the

evolving nature of these databases, where the

schema itself evolves over time. In this paper, we

describe PRLM (Patient Record Lifecycle

Management), a tool developed to manage

lifecycle of patient visit records of Ramakrishna

Mission Sevashrama Hospitals at Vrindaban, and

Kankhal. The key features of the PRLM tool are:

i) a customizable scheme for information

lifecycle management of healthcare databases ii)

tool works on evolving databases, and iii) incurs

minimal downtime by leveraging underlying

RDBMS utilities for data movement.

1. Introduction

Information Lifecycle Management (ILM) is an active
area of research covering processes and technologies that
help manage information to meet the needs of an
enterprise and to comply with legal and regulatory
mandates regarding data accessibility and retention (such
as Sarbanes-Oxley Act [1], Health Insurance Portability
and Accountability Act (HIPAA) [2]). Both hardware ILM
solutions (IBM [3], and Symantec [5]) as well as software
ILM solutions (Oracle ILM Assistant [6], and SAP ILM
[7]) have been developed.

In this paper, we consider the problem of lifecycle
management of patient visit records. Specifically, we have
deployed a database-centric web application, Patient
Services Accounting System (PSAS) [4], at Ramakrishna
Sevashrama Hospitals (RKMS) at Kankhal, Uttarakhand
[16] and Vrindaban, Uttar Pradesh [17] to manage both
OPD and IPD patient visit records. The complete visit

information including patient registration, service
registrations, discharge, billing, payment, and clinical
information (such as lab test results, operations, etc.) is
maintained. The visit data resides on a server accessible by
clients over the hospital campus LAN.

To reduce the total cost of ownership, we use the free
Oracle Database 10gR2 Express Edition (Oracle XE [8])
and at clients only a web browser is needed. However,
Oracle 10gR2 XE limits the size of the database to 4GB
and utilizes a single CPU of the machine for execution. As
the number of patient visit records grows, we face two
problems:

 The performance of complex reports degrades, and

 Eventually we will reach the database size limit

imposed by Oracle XE.

To circumvent these problems, we have developed a

Patient Record Lifecycle Management (PRLM) tool,

which can be used to control the number of patient visit

records that are retained on server by pushing data beyond

a chosen cut-off point to an archive database. We provide

read-only access to archive data, which is also held in an

Oracle database residing on a separate server on the same

LAN (Figure 1). In addition, for very old data, we provide

the option of altogether purging the patient visit records.

Figure 1: Deployment at RKMS Hospitals

Thus, the tool primarily supports purge and archive

operations. In addition, the tool allows supports a merge

archives operation to merge the successive archives

generated by the PRLM tool thereby allowing a single

archive server to host the archive database.

Challenging aspects in development of the tool are:

 Underlying database is continuously evolving so that

... Current

DB Server

Archive

DB Server

Client Client

... Client Client

+
This work was done as part of a summer internship at Sarada

Research Labs, Bangalore.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advantage

and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

The 19th International Conference on Management of Data
(COMAD), 19th-21st Dec, 2013 at Ahmedabad, India.

Copyright 2013 Computer Society of India (CSI).

subsequent PRLM operations, which usually occur

after six to nine months, should work on the evolved

database. The evolution typically includes addition of

new tables owing to automation of new departments,

or modification to existing tables such as addition of

columns or changing of column data types.

 The PRLM tool should work on hospital databases

managed by the PSAS software at two different

hospitals, which has similar yet different data and

growth characteristics.

 For the archive operation, we need a quiet point so

the hospital database is brought down. Thus, the

archive operation needs to be performed with

minimal time to reduce the downtime.

 The total cost of ownership must be kept low as the

hospitals managed are charitable hospitals.

Taking these aspects into account we have developed

the PRLM tool whose key characteristics are: i) supports a

customizable scheme for information lifecycle

management of healthcare databases ii) works on

evolving databases, and iii) incurs minimal downtime by

leveraging RDBMS utilities for data movement.

The PRLM tool was developed as a web application

using Oracle Application Express (APEX) [9], a rapid

application development tool, using Oracle XE Database.

We have successfully applied the PRLM tool to

perform archive and merge archive operations on two

hospital databases of RKMS Hospitals at Vrindaban and

Kankhal. Also, to illustrate its working we present an

experimental study by applying PRLM tool on real

hospital data that shows the effectiveness of archiving

algorithm as well as benefits of archiving/purging.

The key contributions of this work are:

 A simple and customizable schema-aware archiving

and purging scheme for patient visit records,

 A scheme for allowing merging of archives generated

by successive PRLM operations,

 Support for archive, purge, and merge archive on

evolving hospital databases, and

 An experimental evaluation using real hospital data.

The rest of the paper is organized as follows. Section 2

presents the key concepts. Section 3 covers the design and

implementation. Section 4 gives a tour of dashboard-style

PRLM tool. Section 5 reports the experimental study.

Section 6 covers the related work and Section 7 concludes

the paper and outlines the future work.

2. Key Concepts

This section discusses the key concepts and presents

the basic scheme for PRLM operations.

2.1 The Basic Model

Each record of a table represents a unit of information

that has a value when it comes into existence, which

typically decreases with time. Child records (connected

by referential constraint), typically inherit the value from

the parent (or ancestor) record. In some cases, child

records may have intrinsic value independent of the

parent, in which case the maximum of the two has to be

considered as the value of that information.

The PRLM strategy partitions the records containing

information into current and archive based on a value

threshold. Archive data is stored on archive server as a

read-only database where as current data is retained in the

server as a read-write database (Figure 1).

2.2 Unit of Information

In our case, all information pertaining to a single patient

visit (either OPD or IPD) forms a unit of information,

whose life cycle needs to be managed (Figure 2). A visit

entry of a patient can be viewed as birth of a visit record.

From visit_start_date to visit_end_date, the record will be

in active state. After visit_end_date, record keeps on

aging. Finally after sometime, the record is no longer

needed and hence it can be purged (death of the record).

Figure 2: Patient Visit Record Life Cycle

2.3 PRLM Operations

Figure 3 gives an overview of the PRLM operations.

Figure 3: PRLM operations and types of data

Specifically there are four key operations:

1. Archive only: the visit data is partitioned into two

parts, active data and archive data. The data after

archive point is the current (active) data and the data

before archive point is archived.

2. Purge only: the visit data gets partitioned into two

parts active and purge data. The data after purge point

is current (active) data and the data before purge point

is purged (deleted).

3. Purge and archive: When the tool does both archive

and purge simultaneously, the visit data gets

partitioned into three parts, active data, archive data

and purge data. The data after archive point is active

data, between archive and purge point is archived, and

the data before purge point is purged (Figure 3).

 Birth Active Aging Death

Archive Pt.

Archive Pt.

 Archive Data
Active Data

 Active Data

Purge Pt.

 Purge Data
Active Data

 Active Data

Purge Pt.

 Purge Data
Active Data

 Active Data Archive Data

4. Size Estimator: Prior to performing the operation, for

a given cut-off point, the tool estimates the expected

reduction in size. This is useful in choosing the

PRLM retention, archive, and purge policies.

Additionally, the PRLM tool supports Merge Archives

operation, to merge archives generated from two

successive PRLM archive operations (Figure 4). Thus,

archive data can be hosted in a single archive database.

Figure 4: Merging of Successive Archives

2.4 Visit atomicity

It means that the entire visit should belong either to

archive partition or to current partition. This works fine

for visit, which entirely falls before (v1) or after archive

point (v4). However, for a visit which partially falls in

both regions (v2, v3), we use the following criterion for

deciding where it belongs. For visit start date before

archive point, but the visit is active (that is, patient is still

taking treatment: v3), the visit record cannot be archived,

since archived records go into read-only state. But a

patient with visit entry date before archive point and is

currently discharged (v2) can be archived since his

record is frozen and needs no more modification.

Figure 5: Partitioning of Patient Visits

For purge point, the visit record partitioning follows

the same semantics as for archive point above, if the

purge is being done on current data. However, if purge

operation is done on archive data, which is by definition

devoid of active visits (such as v3, v4), we simply

partition by visit_start_date. However, in this case, since

the purged data would be lost forever, a conservative

strategy of partitoning by visit_end_date could also be

considered.

3. Design

This section discusses the basic scheme for the purge,

archive, and archive merge operations.

3.1 Table Categorization for PRLM

The tables in the database have been divided into three

categories to facilitate PRLM operations:

1. Archive truly: The tables contain only active data and

the archive data is moved to archive DB. Tables with

historical data and which show significant growth in their

data are classified as archive-truly e.g. VISITS table of

PSAS database, which holds visit information. If a table is

classified as archive-truly, then its child tables should

either be archived or truncated, else the foreign key of the

child table may refer to a non-existing primary key of the

parent table. Since we do not want to lose any data, we

archive the child tables rather than truncating them and

thus they are classified as archive truly tables.

2. Archive and retain completely: The tables, for which

the complete data is retained in current DB and a copy of

that is also maintained in archive DB. Tables, whose data

is always active is classified as archive and retained

completely, for example. DOCTORS, and PATIENTS tables

of PSAS database. Tables in this category are typically

the metadata tables and they should be present in both

current and archive DB completely and be kept up-to-

date. Deleting any record from such tables can create

orphan records in the database. Thus instead of delete, we

mark the status of that particular record as inactive.

3. Pseudo-Archive and retain completely: The tables,

which although belonging to archive truly category are

treated as archive and retain completely to reduce the

amount of individual table data movement. It is assumed

that these are not fast growing tables. Tables in this

category do not have referential constraints explicitly

asserted, which gives us the flexibility of having them

present without parent records as well.

This classification among the tables is used by the

PRLM tool to complete the purge or archive operation

with minimum amount of individual table data movement.

These tables are archived or purged, based on the cut-off

date specified and the existing parent-child relationships

among these tables (see Figure 6).

From PRLM point of view the task is to partition

archive truly tables only. Thus, data is selectively

removed from archive truly tables, that is, each visit

record along with all descendent records will be co-

located with it to preserve the atomicity of the visit

information. The rest of the tables are fully present at

both current and archive DB.

The structure of the archive-truly tables set might

evolve with time i.e. new tables might be added or new

columns can be added to some existing table. Hence

whenever an archive DB is present, the database upgrade

scripts consisting of DDL changes are applied to both the

current DB as well as the archive DB to keep their

structures up to date.

Archive Pt.

v2: Patient Discharged

v3: Still taking Treatment

v4

v1

Archive Pt. 1

Active Data I Archive Data I

Archive Pt. 2

Active Data II Archive Data II

Merged Archive

Archive Data I Archive Data II Active Data II

3.2 PRLM Archive and Purge Operations

The purge operation is implemented using Purge

primitive with mode purge_before, whereas the archive

operation is implemented as a logical combination of two

Purge operations one with mode purge_before and other

with mode purge_after. We first describe Purge operation

and next cover Archive operation.

Algorithm 1: Purge(Before/After) primitive

Input : cut-off date, database schema name, mode
Output : reduced PSAS database and datapump file
containing the reduced data of the archive-truly tables
 purge_primitive (cutoff_date, schema_name, mode)
 -- mode: purge_before / purge_after
1. create_ST (schema_name)
 -- creates ST (Staging tables) for archive-truly tables
2. copy2ST (cutoff_date, schema_name, mode)
 -- determine and copy the filtered records to ST
 if(mode = = ‘purge_before’) then

 Get root (visit) records after cutoff_date;
 else

 Get root (visit) records before cutoff_date;
 end if;
 current_level visit_record;
 for i in 1..num_levels loop
 --num_levels: levels in the visit record hierarchy
 Copy current level records to ST;

 Determine the next level descendant archive-truly
tables based on the ‘parent present in ST’;

 increment current_level;
 end loop;
3. disable_C_TRIG (schema_name)
 -- disable constraints and triggers among all tables
4. truncate_T (schema_name)
 -- truncates all the archive-truly tables
5. copy_ST2T (schema_name)
 -- copy all the data from ST  archive-truly tables
6. enable_C_TRIG (schema name);
 -- enable all the constraints and triggers among all tables
7. drop_ST
 -- drop all the ST tables
8. create_datapump_dump (schema_name);
 -- create the datapump export file of the latest
 archive-truly tables

Purge Operation: For Purge primitive invoked with

mode purge_before, in the step 2 of the algorithm, the

copying of data into the ST is done by traversing the tree

(Figure 6) in a top-down fashion. After the root (visit)

records are determined, they are first copied into the ST

tables. Then we go to the next level (descendants) to

determine the records to be copied by using the parent

records present in the corresponding ST tables. This

determination of the records to be copied depends only on

the immediate parent (from the tree) present in the ST i.e.

it is implemented by using those parent records from the

ST tables which were populated in the previous level.

After the completion of the purge-before primitive

operation, database present in the server is the current

reduced database (with the data before cutoff purged).

Note that although data may be simply distinguished
table-wise independently, we preserve visit atomicity, that
is, all the child records of a particular parent record should
remain together or be archived together if the referential
constraint is explicitly asserted. In the copy2ST procedure

we start with the VISIT table where the records are
selected based on the visit_end_date in case of IPD visits
and pseudo_visit_end _date for the OPD visits. The need
for pseudo_visit_end_date arises for OPD records as the
visit_end_date is not definite for an OPD visit. By
definition, OPD visit is expected to end same day, but in
practice, patient may visit next day to complete a test or
make payment and collect test results. Thus, the last
activity is used to determine the pseudo_visit_end_date,
which is important to prevent sending an active OPD visit
to archive.

Figure 6: (Part of) Visit tree involving archive-truly tables

Only if the visit_end_date of a record is after the cut-

off, that visit record is inserted into the corresponding ST.

Once all the visit records are filtered, the remaining tables

are dealt recursively based on the parent-child relations (as

discussed in the previous paragraph) among the archive-

truly tables, thereby maintaining the visit atomicity.

Remaining tables (pseudo and regular Archive and retain

completely) are left untouched and hence are retained

completely by this scheme. Thus, we achieve the archive

with individual table data movement of archive truly tables

only. Furthermore, the table movement is performed by

use of table level truncate and bulk-insert operation, which

make it very efficient.

Archive Operation: The DB activity is stopped and

export dump (copy of original DB) is taken. First on a

copy of the original DB, the purge primitive is invoked

with mode purge_berfore as described to generate the

current reduced DB. Next, on another copy of the original

DB, the purge primitive is called with the mode

purge_after to generate the archive DB. All the steps

followed for purging are also used for archiving. Instead of

moving the data after the cut-off (from the archive-truly

tables) to ST tables, for archive operation, we move the

data before the cut-off point to the ST tables starting from

root visit records, which is recursively followed as before.

All the subsequent steps are identical to purge operation.

Since the same idea of ‘purge’ operation is used for

archiving, archive process is also known as ‘purge-after’

operation (that is, the current data is purged, leaving

behind the data that needs to be archived). After the

completion of purge-after operation (archive), the resulting

database becomes the latest archive database which will

eventually be merged with the previous archive data (if

any) as described in Section 3.3.

3.3 PRLM Merge Archives Operation

Each time the data is archived, the latest archive shall

be merged with the previous archive which resides on a

single server. Algorithm 2 shows the basic steps

implemented in the archive merge process.

Algorithm 2: Merging of archives

Input: schema name of PSAS database, list of archive-truly
tables, all the required dump-files
Output: complete archive database (merged)

1. import (schema_name, original(latest) DB dump-file)
2. import_replace (schema_name, old_archive datapump,

arch_truly_tables)
 -- inherits archive-truly tables data from the old archive
 for i in 1..arch_truly_tables.COUNT loop
 impdp(arch_truly_tables[i],TAB_ACTION=replace);
 end loop;
3. disable_C_TRIG (schema_name)
 -- disable the constraints and triggers among all tables
4. import_append (schema_name, new_archive datapump,

arch_truly_tables)
 for i in 1..arch_truly_tables.COUNT loop
 impdp (arch_truly_tables[i],TAB_ACTION=append);
 end loop;
 -- new set of archive data appended
5. Enable_C_TRIG (schema_name)
 -- enable constraints and triggers among all tables

Firstly, the original DB, i.e., the latest current database

is imported into the server ensuring that all the non-

archive-truly tables have the up-to-date data in the archive

server. Then all the archive-truly tables are replaced with

the data from the previous archive datapump. In step 3 of

the algorithm, all the constraints and triggers among the

archive-truly tables are disabled temporarily and this

prevents ‘foreign key constraint violated’ error during the

import_append subroutine. Once the latest archive data is

appended the constraints and triggers are enabled again.

After the completion of archive-merge operation, database

present in the server is the complete archive database.

Figure 7 shows how the merging process works for

different tables in the database. All the tables other than

the archive-truly tables are simply copied from the current

running database and hence will be having the latest data

of those tables. The tables represented in black border are

obtained when the current-running database is imported

into the server. These tables are first replaced by the those

from the old-archive database (shown in blue). Note that

the table data represented in grey denote the removed

data. After which the appending of the latest archive data

(shown in red) is done to all the corresponding archive-

truly tables.

 Archive-truly tables from old archive database

 Archive-truly tables from newly cut archive database

 Archive-truly tables from current-running database

 Remaining tables other than archive-truly

Figure 7: The effect of Merge Archive Operation

The case pertaining to the evolved database is potrayed

in the right three archive-truly tables of Figure 7. For such

case, we won’t have any data from the old-archive

database as at that time the new tables were not yet

introduced. Thus, it contains only those records which

were archived from the current-running database.

The Figure 8 shows the different types of referential

constraints among the tables.

Figure 8: The relationships between various types of tables

The arrow with a solid line denotes an explicitly

asserted referential constraint from child to parent table

and this requires the child to be co-located with its parent.

When the reference is between two archive-truly tables

(for example, T2 references T3), if the parent record is

moved from the database, the child record(s) also move

with it. However, when a archive-truly table (T2)

references a non-archive truly table, the constraint is

implicitly met as the parent records of non-archive truly

table are present in both archive and current DB as they

are retained and archived completely.
The arrow with dotted line denotes a referential

constraint that is not asserted for tables. When the
reference to another archive-truly table is not asserted (for
example, T1 to T2), the parent table can be placed
separately from child records. This is used when the
information contained in child has intrinsic worth

(independent of parent). For example, T_BLOOD_BAG table

is child of T_SUBVISIT. Although a blood bag record
comes into existence as part of subvisit but it should be
kept in active database till it is issued. This case is handled
by not explicitly asserting the constraint and hence it is
archived independently based on its activity. Lastly, there
could be referential constraints among non-archive truly
tables which are automatically satisifed as those tables are
co-located in both current and archive DB.

3.4 PRLM Design Challenges

PRLM is developed to function properly in event of

data-entry errors, which could occur due to high volume

(over 800 patients per day registered during 5 working

hours) of OPD patients. For example, sometimes a new

OPD visit record is not created for a patient even though

he revisits the hospital after a substantial gap. Such cases

are dealt in the following way. By default, OPD records

do not have an actual end date for the visit i.e. a patient

might revisit the hospital multiple times for the same

problem under a single visit and may complete the

payment for the diagnosis later, hence that particular visit

record is assigned a pseudo_visit_end_date based on the

last activity. The pseudo_visit_end_date is used to decide

the placement of that visit record.

3.5 Handling the Database Schema Evolution

The successive PRLM operations typically occur after

a gap of six to nine months and during this time the

schema can evolve. Table I summarizes the types of

evolution and the need for PRLM tool modification. The

archive DB is kept up to date as and when the schema

evolves by running the corresponding database upgrade

scripts so PRLM tool operates on the same database

structure in both the archive and current DB.

For the case, when a column in an existing table is

added or modified it works without any changes.

Normally the usage of ‘SELECT *’ usage is avoided as it

might lead to selection of unwanted data (when new

columns are added). But in the case of PRLM scripts, it is

used specifically so as to handle the evolving nature of a

database table.

Regarding adding new archive-truly tables, they are

typically added for recording clinical information and

they come under the level 3, i.e., under the T_SERVICES

as a child table (in Figure 6). Since the visit descendent

tree is modified, the traversal during the movement of

data detects new tables in the leaf position, and the

records of newly added tables also get archived.

Similarly, if multiple new archive-truly tables comprising

of a parent-child clinical relationships are added, they

become an additional branch in existing visit descendent

tree, and thus records of those tables will also get

archived. Note that addition of other (non-archive-truly

tables) does not require changes to the PRLM tool.

Table I Impact of DB Schema Evolution

Type of Schema Evolution Occurs PRLM Tool

modification

needed?

Addition/Modification of Column Yes No

Deletion of Column No N/A

Adding Archive-Truly Table Yes Yes

Adding non-Archive-Truly Table Yes No

Deletion of Tables No N/A

Change in Table Classification Yes Yes

The categorization of the tables can also change, for

example a pseudo archive and retain completely table

may be classified as archive-truly in the next application

of the PRLM. In such cases the table is added to archive-

truly list, its content is truncated, and then the merging of

archives process is applied.

3.6 Correctness of the PRLM Operations

 The data is partitioned in a way that the visit atomicity of

the records is preserved; this is ensured by the fact that all

the records pertaining to a particular visit are connected

by referential constraints. Thus, as long as the tables are

properly classified into the categories mentioned in

section 3.1 and the parent-child relationships among the

tables are properly asserted, the mechanism should work

fine. Scope of an error is only when the data is wrongly

entered or incomplete, and some of those cases are also

tackled (as discussed in section 3.4). In addition, as a

precaution, after each PRLM operation a validation check

is done module-wise which normally takes up to an hour

and then only the database is made live.

3.7 Discussion

We reduce only the top growing tables as limiting the

database size is the primary goal. This ensures faster

processing of the movement of records. Once the data is

generated, the use of Oracle’s Data Pump utility to apply

the change on production DB to create current reduced

DB ensures that the downtime is kept to minimal.

The tool works for hospital databases of two different

sites, which differ in data and growth characteristics. In

general, the scheme can be applied to other domains also

as it doesn’t rely on the specific domain knowledge of the

tables but only their connectivity in term of referential

constraints and the classification of the tables into

archive-truly, archive and retain completely, and pseudo-

archive and retain completely.

4. A Tour of PRLM Tool and Usage

This section describes the features and functioning of

PRLM Patient Record Lifecycle Management tool.

Figure 9: PRLM Setup

4.1 PRLM Setup

PRLM Setup is used to specify directory where

archived data is to be saved and grant all the required

privileges. This is done by executing the script generated

in the ‘PRLM Setup’ page as shown in Figure 9.

4.2 DB Characteristics and Size Reduction Estimates

The database characteristics such as total size of

database, size of all large tables ordered by size, latest and

the earliest service activity date, visit_start_date, and

visit_end_date, subvisit_start_date, and subvisit_end_date

are shown.

In order to know the percentage of size reduction

before actual archive or purge or archive and purge, we

have developed the method of estimation of size reduction

of database. Here in this page, application will show the

estimated size of rapidly growing tables before and after

the process.

We are estimating on the basis of two criteria 1) If only

archive or only purge point will be selected the estimation

will be according to archive or purge point. 2) If both are

selected simultaneously then estimation will be done

according to archive point because the data left out in the

database after the process will be essentially data after the

archive point.

4.3 PRLM Dashboard

This page contains the main processes i.e. ‘Archive’,

‘Purge’ (Figure 10-a). User can estimate the size

reduction or actually carry out the operation after

selecting archive or purge points, for example Figure 10-b

shows estimation analysis after selecting a purge point

and Figure 10-c shows purge operation which is in

progress after selecting a purge point (Figure 10-c).

Figure 10: a) PRLM Dashboard, b) Purge Estimated Size Reduction, and c) Purge Operation in progress

a)

c) b)

Figure 11: PRLM Merge Archives Operation

After the archive operation is done the actual reduction

can be seen as a separate report. Similarly Figure 11

shows the scripts generated for PRLM Merge Archive

operation, which takes as input previously generated two

successive archive database dumps.

Figure 12: PRLM Usage on Production Databases

4.4 PRLM Usage at Vrindaban & Kankhal Hospitals

Electronic medical records have been maintained at

Kankhal and Vrindaban hospitals since July 19, 2008 and

July 24, 2010 respectively using our PSAS application. At

these sites, the PRLM has been applied twice for

Vrindaban and once for Kankhal hospital to create the

reduced and the archive DBs. Figure 12 shows the cut-off

dates chosen whereas Figure 13 shows the original,

reduced, and archive DB sizes. The reduced size was

53%, 54%, and 66% of the original DB for the three cases

respectively. The archive DB sizes for Vrindaban-1 and

Kankhal-1 are the first archive size, whereas for

Vrindaban-2 the archive DB was obtained by merging it

with the previous archive (performed on 05/07/2013).

Note that each hospital chose cut-off dates independently.

Since the three PRLM operations were performed at three

different times (Vrindaban on 22/08/2012, and

12/06/2013, and Kankhal on 26/01/2013) the PRLM tool

had to operate on an evolved database each time.

Figure 13: PRLM Usage DB Sizes

The data and growth characteristics were quite

different at the two database sites (see details in Section

5.6). The PRLM operations at site completed within 15

minutes. However, for each PRLM usage, an additional

hour was taken to do verification on the reduced final

databases prior to making it available for use.

Apart from using the PRLM tool for production

databases, we have also used it internally for creating

reduced versions of the databases (typically containing

one month of data) for testing and development purposes.

A side benefit of using the PRLM tool is that it forces us

to validate the consistency of visit data almost every six

months.

Kankhal Cutoff-1

Starting point: 19/07/2008 31/03/2011 Present

Vrindaban Cutoff-1 Cutoff-2

Starting point: 24/07/2010 31/12/2011 31/03/13

Present

5. PRLM Experiments

This section deals with the experimental study that

evaluates the PRLM tool. All the experiments were

performed on a system with Intel Core i5-2410M CPU @

2.30 GHz, 4GB RAM, 750 GB disk space, Windows 7

OS, using Oracle Database 10gR2 Express Edition [8],

and Oracle Application Express (APEX) [9] generated

database applications. The key DB parameters are:
sga_max_size=768 MB, database buffer

size=504 MB and pga_aggregate_target=256 MB.

For experiments on Vrindaban database, we have used

cutoff-1 as 31/12/2012 and cutoff-2 as 31/03/2013.

Similarly for the Kankhal database, 31/12/2012 has been

used as the cut-off date. For experiments in Section 5.1,

5.3, 5.4, and 5.5, only Vrindaban database is used.

However, for experiments in Section 5.2 and 5.6 that

involving comparison between the two hospital sites, both

Vrindaban and Kankhal database are used.

5.1 PRLM Operation Time Observations

The PRLM operation was repeated 5 times and the

time taken for each operation has been recorded. The

Table II shows the time taken for the operations (purge,

archive and merge) on the 2 databases original and

reduced-1, five readings for each operation have been

taken. The mean value and the standard deviation (σ) for

the time taken by each operation have been calculated.

Table II PRLM Operation Time

 Time (in sec)

Cutoff-31/12/12; ORIGINAL DB (size- 86.7 MB)

Purge 1 2 3 4 5 AVG

50.8 53.1 52.8 49.9 52.1 51.74

σ=1.36

Archive1 71.4 67.8 70.4 76.4 74.2 72.04

σ=3.34

Cutoff-31/03/13 REDUCED1DB (size- 42.3 MB)

Purge2 28.1 27.4 28.7 28.3 28.7 28.24

σ =0.54

Archive2 25.4 25.1 24.9 25.9 25.8 25.42

σ =0.43

Merging

Archive1&

Archive2

43.8 40.1 36.9 40.5 37.2 39.7

σ =2.82

 ON ORIGINAL DATABASE : 24/07/2010 – 12/06/2013 (size-86.7 MB)
 ON CURRENT REDUCED-1: 31/12/2012 – 12/06/2013 (size-42.3 MB)

Note that merging of archives is different from archive

and purge operations, so merge time cannot be compared

with these operations.

5.2 Analysing PRLM time taken –purge and archive

operations

Figure 14 shows the bar charts for time taken for the

two operations. It is clear that as the size of the database

on which PRLM is performed decreases, the PRLM time

for purging or archiving decreases. The majority of the

time in either of the operations is consumed by copying of

data from archive-truly tables (‘INSERT AS SELECT’

operations). Thus, if the size of resulting archive truly

tables is high, the amount of data to be inserted increases

and hence the time consumed by the insert operation rises.

Similarly, the select operation takes some time to acquire

the filtered data which depends on the initial size of

archive truly tables. Other operations like ‘TRUNCATE

tables’ or ‘Enable/Disable Triggers and

Constraints’ do not contribute much to the running

time of the tool for purge/archive.

Figure 14: PRLM Purge/Archive Time

Note that both purge and archive operations show

similar characteristics as is seen in Figure 15. In this

Figure, we plot the time taken (in sec) with respect to

result DB size (in MB) and as expected the slope is

similar for purge as well as archive operations. Also, the

times for databases are from two different sites

(Vrindaban and Kankhal), the line graph between final

result DB size and PRLM time taken are almost parallel

to each other. In spite of different growth characteristics

among the archive-truly tables of the two databases (see

Section 5.6), this similarity is due to INSERT (as append

operation) time, which primarily depends on size of the

data being inserted into staging table and back.

Figure 15: PRLM Purge/Archive Time vs. Result DB Size

Figure 16: A patient visit history consisting of three visits

5.3 Comparing different stages of the PSAS database

while applying PRLM

The archive-truly tables are generally the fast growing

tables, and using the PRLM tool the data in these tables

shall be classified into current (active) or archive based on

the age of the visit and parent/child relations among the

records in these tables as discussed in Section 3.1.

Figure 17: PRLM Purge/Archive Databases

Figure 17 shows all the 6 database sizes for Vrindaban

as stacked bar charts with archive-truly tables shaded in

red and the remaining tables shaded in blue. Initially only

the original database was hosted and then when the

performance degraded, the database was transformed into

reduced1 and archive1.

Next, the tool was applied again with the cut-off date

i.e. 31/03/13, which resulted in archive2 and reduced 2

DBs. Thus, three servers were maintained to host

archive1, archive2 and reduced 2 DBs, which forms the

previous configuration (shown in dotted box above). Once

the merge archive method was developed, the two

archives were merged and the configuration reduced2 and

merged archive, was released (shown in the red box).

The size on non-archive truly tables is dominated by

the ‘T_PATIENTS’, which constitutes about half of the

non-archive truly tables (approx. 10 MB). This we have to

maintain in the archive and retain completely category as

old patients can potentially visit any time (even after a

long gap).

5.4 Analysing the VISIT history processing time of the

PSAS database

As the size of the database increases, the performance

of complex reports that access information about the

patient visit degrades. To study this we considered PSAS

visit history report (Figure 16), which shows the complete

visit history, including visit dates, wards the patient

stayed, and discharge dates. Note that the individual visit

details are available in the Patient Account hyperlink. In

Figure 16, the last visit is still active as the patient is

admitted but not yet discharged. The query used in

fetching the visit history records in the PSAS was used to

measure the time to process the data of a patient in

different databases.

A patient with id ‘10-010296’ was selected such that

the service records of this patient are present in the either

side of both the cut-off dates. Table III shows the number

of service registration records retrieved in each database

for this particular patient.

Table III Visit History Processing Time

Database Service

Count

Visit History

Processing Time

Original 28 0.161 s

Reduced 1 16 0.053 s

Archive1 12 0.109 s

Archive2 9 0.025 s

Reduced 2 7 0.029 s

Merged Archive 21 0.135 s

 The time taken vs. DB size was plotted in a line graph

shown in Figure 18. Note that the average times used

were based on the warm run. Here the red dots indicate

the original and the reduced databases and the black ones

indicates both the archives and also the merged archive.

In this experiment, the number of service records

correlated with the size of the database. We got an almost

linear graph indicating that the visit history processing

time is directly proportional to the size of the database.

Figure 18: Visit History Time vs. DB Size

As expected, the performance degrades as database size

increases, which can be restored by performing a PRLM

operation. The same behavior was exhibhited by other

complex reports used in PSAS such as daily collection

report, individual patient account reports, etc.

5.5 Degree of replication

The non-archive truly tables are fully retained in

current and reduced databases during a PRLM operation.

Hence the combined size of the archive and the reduced

or current databases will be greater than the original

database (Figure 19).

Figure 19: The actual replication of data

The actual replication is about 20 MB (i.e. approx. 25%

degree of replication with respect to the original

database). But essentially only 10 MB data is replicated

(i.e. approx. 12% degree of replication of the original

database), if we exclude T_PATIENTS and

T_GUARDIAN_DETAILS tables which are needed in both

archive and current databases (Figure 20). Thus, our

strategy of performing PRLM on fast growing archive-

truly tables keeps the scheme simple and quick and at the

same time the degree of replication is acceptable.

Figure 20: The essential replication of data

5.6 Table growth characteristics at different sites

In this experiment, we compare the top 5 growing

tables of the reduced databases from Kankhal and

Vrindaban.

 KANKHAL CURRENT-1 : 31/12/2012 – 10/07/2013 (size-52.0 MB)
 VRINDABAN CURRENT-1: 31/12/2012 – 12/06/2013 (size-42.3 MB)

Figure 21: Table Growth Characteristics

Figure 21 shows that the growth characteristics of the

same tables at different databases can differ due to

hospital site specific usage. For example, T_RESULTS

table, which is the 3
rd

 largest tables in the Vrindaban

database is not even present among the top 5 tables of the

Kankhal database. Similarly, the T_PAYMENT2SERVICES

table which is 4
th

 largest in Vrindaban database, is the 3
rd

largest is the Kankhal database.

The PRLM tool is versatile in that it works with

multiple hospital sites data, each have different data and

growth characteristics. Furthermore, the basic scheme of

PRLM, although designed for healthcare domain, can be

adapted to work on other application domains as well.

The PRLM scheme primarily relies on understanding the

implicit and explicit referential constraints among tables,

and categorizing tables into archive-truly and rest as

discussed in Section 3.1.

 T_PATIENTS T_SERVICES T_RESULTS T_ADVANCE T_DEL_SERVICES

 T_PAYMENT2SERVICES

TOP GROWING TABLES

6. Related Work

Information Lifecycle Management (ILM) has been an

active area of research and development. The basic idea of

ILM have been formalized and presented using definitions

of information, its value, information class, and storage

class [12]. Our scheme uses the same ideas, but in

addition, introduces the notion of a child record’s

information value being inherited from its parent record.

This extension is needed as a single unit of information is

typically stored in multiple tables in a normalized schema.

A framework clarifying the relationship between value-at-

risk and total cost of ownership is presented to enhance

ILM [15].

Both storage oriented ILM solutions [3, 5, 11] as well as

software [6,7] have been developed. Storage-solutions

have evolved from traditional hierarchical (multi-tier)

storage solutions to a more comprehensive policy based

information management [11]. The software solutions

offered by database vendors [6,7] are typically domain

agnostic in that they provide generic solution applicable to

any data requiring data retention, archiving, and purging.

Specifically, they provide starter packages to simplify the

task of developing the complete ILM solution.

Our work falls in the category of ILM software targeted

for healthcare domain. For healthcare domain, companies

offer generic solutions involving tiered network storage

both for medical records and medical images (such as from

EMC
2

[14]). We have built a customizable schema-aware

solution for patient record lifecycle management that

primarily relies on parent-child relationships and

classification of tables. Also, rather than integrating with a

tiered storage, we take the approach of sharding [10], the

data across multiple servers. This is somewhat similar to

the approach of network-aware placement of online social

community data on shards, which is shown to improve

system performance [13].

7. Conclusions and Future Work

The paper presented a Patient Record Lifecycle

Management (PRLM) tool developed to supplement an

already deployed Patient Services Accounting System

(PSAS) in hospitals with support for purging, archiving,

and data retention. It provides a schema-aware approach to

ILM, by taking into account the referential constraints

present between tables. The tool works even as the

database schema evolves between successive PRLM

operations.
The tool has been successfully applied at Ramakrishna

Mission Sevashrama Hospitals, at Kankhal, and Vrindaban
to manage their patient records. The experimental study
conducted with the real data obtained from them further
illustrates the benefits and tradeoffs involved.

In future, we plan to extend the tool to handle archiving
of medical images as well, by using a hybrid approach
involving sharding and tiered storage.

Acknowledgments: We thank Swamijis of Ramakrishna

Mission Sevashrama Hospital, Kankhal and Vrindaban for

providing the data for experimentation. We thank the

members of Sarada Research Labs, Dehradun, and

Bangalore for their help in verification while applying

PRLM on production databases. We thank Saravana J

(past SRL member), and past summer interns from IIT

Guwahati (Swathi Karri, Snehlata, Kiranmayi Kasarapu,

and Komal Agarwal) for their contribution to the

development of the PRLM tool.

References

[1] Sarbanes-Oxley Act 2002,
http://www.soxlaw.com/index.htm

[2] HIPAA, www.hhs.gov › OCR Home › Health
Information Privacy.

[3] ILM Library: Information Lifecycle Management
Best Practices Guide,
http://www.redbooks.ibm.com/abstracts/sg247251.ht
ml

[4] Patient Services Accounting System (PSAS), Sarada
Research Labs, http://www.saradaresearchlabs.org

[5] Symantec Global Services Datasheet,
http://eval.symantec.com/mktginfo/enterprise/fact_sh
eets/ent-datasheet_symantec_storage_services_02-
2008.en-us.pdf

[6] Implementing ILM using Oracle Database 11g,
http://www.oracle.com/technetwork/database/focus-
areas/storage/ilm-on-oracle11g-1-129053.pdf

[7] Information Lifecycle Management (SAP),
http://www.sdn.sap.com/irj/sdn/ilm

[8] Oracle Database Express Edition 11g Release 2,
www.oracle.com/technetwork/database/express-
edition

[9] Oracle Application Express,
www.oracle.com/technetwork/developer-tools/apex

[10] R. Cattell: Scalable SQL and NoSQL data stores.
SIGMOD Record 39(4): 12-27 (2010).

[11] M. Beigi, M. V. Devarakonda, R. Jain, M. Kaplan, D.
Pease, J. Rubas, U. Sharma, A. Verma: Policy-Based
Information Lifecycle Management in a Large-Scale
File System. POLICY 2005: 139-148.

[12] L. A.Turczyk, O. Heckmann, R. Berbner,
R.Steinmetz, R. (2006). A formal approach to
Information Lifecycle Management. Proceedings of
17th Annual IRMA Int’l Conf., Washington DC.

[13] Q. Duong, S. Goel, J. M. Hofman, S. Vassilvitskii:
Sharding social networks. WSDM 2013: 223-232.

[14] R. A. Katz, Applying Information Lifecycle
Management Strategies Enables Healthcare Providers
to Accelerate Clinical Workflow,
http://www.emc.com/collateral/hardware/white-
papers/h1435-ilm-health.pdf

[15] P. P. Tallon, R. Scannell: Information life cycle
management. Commun. ACM 50(11): 65-69 (2007)

[16] Ramakrishna Mission Sevashrama (A Charitable
Hospital founded in 1901), Kankhal, Haridwar,
http://www.rkmkankhal.org

[17] Ramakrishna Mission Sevashrama (A Charitable
Hospital founded in 1907), Vrindaban,
http://www.rkmsvrind.org/hospital.html

