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ABSTRACT
The skyline query has proven to be an important tool in
multi-criteria decision making and search space pruning. A
skyline query returns the subset of points from a multi-
dimensional dataset that are not dominated by any other
point. Due to its wide applications, skyline query and its
variants have been extensively studied in the past. However,
skyline computation for incomplete domain, where points
have missing values for some dimensions, has not received
enough attention. The existing solutions for such incomplete
datasets use weak pareto dominance relation which is non-
transitive and cyclic. Hence, many of the desirable points
are not included in the skyline. Consequently, the skyline
no longer offers a reliable overview of the dataset. Moreover,
the skyline set returned by these methods is unordered and
has high cardinality. The end user does not have control
over the result size. Therefore, we have adapted the top-k
frequent skyline approach proposed for complete datasets to
find interesting points from incomplete datasets. The pro-
posed approach overcomes the above mentioned drawbacks
and returns top-k points ordered by their fractional skyline
frequency. Experimental results on both synthetic and real
world datasets demonstrate the ability of our approach to
find superior skyline points from incomplete datasets.

1. INTRODUCTION
Owing to its wide applications in multi-criteria decision

making and search space pruning, skyline queries have been
extensively studied in the last decade. Given a set of points
in d-dimensional space S, a skyline query returns all the
points that are not dominated by any other point in the set.
Here, a point p is said to dominate another point q, if p is
better than or equal to q in all dimensions and p is strictly
better than q in some dimension si of S. This dominance
relation is also known as pareto dominance in the literature.
Such non-dominated points returned by a skyline query are
called skyline points and the set of skyline points is known
as the skyline.
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Consider a customer looking for a mobile phone based
on features such as price, battery backup and screen size.
Now, take two phones p1 = ($100, 4hrs, 5in) and p2 =
($200, 4hrs, 4in). Here, p1 dominates p2 because each fea-
ture of p1 is at least as good as the corresponding feature of
p2. Such manual examination of all phones is not feasible
for large databases. Phones which are not worse than any
other phone with respect to all features, are worth consid-
ering for the user. Firing a skyline query for such scenario
will eliminate all undesirable phones and would present a
manageable set of attractive phones to the customer.

Skyline queries and its variants have been extensively stud-
ied in the literature. However, with the exception of [4, 13,
17,29], all skyline query processing approaches assume com-
pleteness of data, i.e., values corresponding to all dimensions
of data points are known beforehand. But this assumption
may not hold in many real world applications such as sensor
data, questionnaires and product/service rating websites. In
the mobile phone example, the price of certain phone may
not be available due to some reasons, making the data point
corresponding to that phone incomplete. A modified dom-
inance relation, which is called weak pareto dominance in
this paper, has been used in [4, 13] to compute skyline for
such incomplete datasets. In weak pareto dominance, while
comparing a pair of points, only the subset of dimensions
where values are known for both the points, are considered
(ignoring dimensions where value is missing for at least one
point). Due to the non-transitive and cyclic nature of this
dominance relation, many of the desirable points are not
returned in the skyline.

For example, consider points m1, m2 and m3 from the
sample movie-rating dataset shown in Table 1. Each entry
rij in the table corresponds to the rating given to movie i
by user j on a scale of 1-5. Now, based on weak pareto dom-
inance, m1 dominates m2, m2 dominates m3, but m1 does
not dominate m3. Instead, m3 dominates m1. Therefore,
we can see that, the dominance relation may become non-
transitive as well as cyclic. Here, none of the three points
belong to the skyline, since each one is dominated by at least
one other point. Observe that, m1 is a desirable point (due
to reasonably high ratings given by users) even though it is
not a skyline point.

One of the shortcomings of traditional skyline query is
the large size of the skyline when the dataset has many
dimensions. The reason is, for a pair of points p and q, if p is
preferred over q in some dimension si and q is preferred over
p in dimension sj ( 6= si), then p and q become incomparable
i.e., they do not dominate each other. This is the minimum



requirement for any pair of points to become incomparable.
While computing skyline for high-dimensional datasets, we
are more likely to find such dimensions si and sj . Thus,
a large number of points become incomparable with others
and belong to the skyline.

In the mobile phone example, in addition to above men-
tioned features, consider that memory, operating system and
camera resolution are also important for the customer. In
such a case, most of the phones may have to be included in
the skyline since there may not exist a single phone which is
better than other in all the features. However, phones which
are better than others in majority of the features may exist
but are indistinguishable in the skyline set. Thus, having
such a large skyline does not offer any interesting insights
into the dataset.

Consider another example of NBA1 dataset that has 17,791
records and 17 dimensions. Its skyline has 1,077 records.
Clearly, returning such a long unordered list of records is
hardly of any help to a user looking for best players in the
NBA league. It would be more appropriate if a manageable
set of records, ordered on some interestingness measure is
returned. Interestingness of a point is a subjective measure
and its several variants have been proposed in the past. The
most prominent of these are discussed in Section 3.2.

The skyline for incomplete datasets also suffers from the
curse of dimensionality. For example, the corresponding
20% incomplete NBA dataset has 300 records in the sky-
line, which is still quite large. Weak pareto dominance re-
lation needs just one common dimension with known values
to compare a pair of incomplete data points. Consequently,
points having poor values in common dimensions, will not
be included in the skyline. Thus, incomplete data points
having few bad values are penalized heavily in weak pareto
dominance. Therefore, finding manageable set of superior
skyline points from incomplete datasets is difficult and this
is the problem we are trying to address in this paper.

One possible way to address this problem is to rank skyline
points using some preference function [1, 14]. However, this
approach is not always applicable since users need to pro-
vide a scoring function i.e., weight assignments pertaining
to their preferences. Assigning weights for large number of
preferences is difficult and requires sufficient domain knowl-
edge which can not be expected from an average user. While
various approaches that return interesting points without
using any scoring function have been proposed for complete
datasets [7,18,26,28], to our knowledge, the problem of find-
ing and ranking interesting points from incomplete datasets
has not been addressed yet.

Skyline frequency [8] is one of the interestingness mea-
sures proposed for complete datasets. Given a d-dimensional
dataset, the skyline frequency of a point is the number of
times it appears in the skyline corresponding to each of the
2d − 1 non-empty subspaces possible. The intuition here
is that, points that are dominated in fewer combinations
of dimensions are interesting. This approach ranks points
according to their skyline frequency. Therefore, a top-k fre-
quent skyline query combines top-k and skyline query fea-
tures without needing weight assignments.

Skyline frequency is the most suitable interestingness met-
ric that can be adapted for incomplete datasets as it can
be used without weak pareto dominance relation. A näıve

1http://basketballreference.com

Point u1 u2 u3 u4

m1 2 3 4 -
m2 - 2 4 2
m3 3 - - 1
m4 1 2 4 2
m5 - - - 5

Table 1: Sample Movie-Rating Dataset

way of computing top-k frequent skyline points is to first
find skyline for each of the 2d − 1 subspaces using any of
the existing skyline computation approaches and then cal-
culate skyline frequency of each point by counting their oc-
currences. However, skyline computation is expensive and
number of subspaces is exponential in the number of dimen-
sions. Chan et al. [8] have proposed an efficient algorithm to
address this problem based on concept of dominating sub-
spaces. We have adopted this approach to rank incomplete
data points by fractional skyline frequency. We call our al-
gorithm as Incomplete Data Frequent Skyline (IDFS). IDFS
overcomes the drawback of weak pareto dominance relation
by replacing it with pareto dominance relation and succeeds
in finding superior skyline points from incomplete datasets.
In brief, the contributions of this paper are as follows:

• We identify the problem of finding superior skyline
points in the context of incomplete datasets and ex-
plain the need for a new solution to the same. To our
knowledge, there is no prior work on this problem.

• We introduce fractional skyline frequency metric based
on the concept of skyline frequency and explain why it
is the most suitable metric that can be used for ranking
incomplete data skyline points.

• We propose IDFS algorithm that returns superior sky-
line points from incomplete datasets ordered by their
fractional skyline frequency.

• We demonstrate the effectiveness and efficiency of our
approach using detailed experiments.

The rest of the paper is organized as follows. Section 2 ex-
plains the key concepts used in top-k frequent skyline points
computation. The related work is surveyed in Section 3. In
Section 4, we give a detailed description of IDFS algorithm.
The experimental results are discussed in Section 5 and fi-
nally Section 6 concludes the paper.

2. PRELIMINARIES
In this section, we formally define various concepts related

to IDFS. We would be using sample movie-rating dataset
given in Table 1 as our running example.

Consider an incomplete dataset D, defined on space S,
with dimensions S = {s1, s2, . . . , sd}. A point p ∈ D can be
represented as p = {p.s1, p.s2, . . . , p.sd} where p.si denotes
the value of point p on dimension si. Missing value for any
dimension of a point is represented as ’-’. Throughout this
paper, without loss of generality, we assume that greater
values are preferred over the smaller ones. There are at
most 2d − 1 distinct non-empty subsets of S. Hereafter,
each of them is referred to as a subspace.

http://basketballreference.com


A data point p ∈ D is said to be complete on subspace
S ′ defined by dimensions S′ if p has known values for all
dimensions in S′.

2.1 Subspace Skyline
Consider a pair of points p and q that are complete on

subspace S ′ ⊆ S defined by dimensions S′ ⊆ S. p is said to
dominate q if and only if ∀si ∈ S′, p.si ≥ q.si and ∃sj ∈ S′,
p.sj > q.sj .

In other words, we use pareto dominance to compare a
pair of points having known values for all dimensions in
subspace S ′. Points that are not complete on S ′ are not
considered for computing skyline of S ′. The reason for not
using weak pareto dominance relation here, is stated towards
the end of this section. Therefore, the skyline of subspace
S ′ is defined as a subset of points in D that are (1) complete
on S ′ and (2) not dominated by any other point on S ′.

In Table 1, while computing skyline of subspace S12 formed
by dimension sets {u1, u2}, we consider only points m1 and
m4, since they are complete on S12. Here, m4 is dominated
by m1 and thus, the skyline of S12 is {m1}.

2.2 Skyline Frequency
The skyline frequency of a point p, f(p), is the number of

unique subspaces S ′ ⊆ S in which p is a skyline point.
For example, by definition 2.1, point m2 from Table 1 is

a skyline point on subspaces formed by dimensions {u3},
{u2, u4}, {u3, u4} and {u2, u3, u4}. Thus, f(m2) = 4. Simi-
larly, f(m5) = 1.

Due to the definition of subspace skyline, data points with
a large number of missing values will have small skyline fre-
quency. Moreover, skyline frequency of points will not be
consistent across the dataset since data points often have
varying number of missing values. Therefore, we propose
fractional skyline frequency, denoted by f ′(p), as the skyline
frequency of a point divided by the total number of complete
subspaces for p. That is, f ′(p) = f(p)/(2k − 1), where k is
the number of known dimensions for point p. The useful-
ness of this metric follows from the fact that, a point with
k (<= d) known dimensions can be dominated in maximum
of 2k − 1 subspaces. Thus, f ′(m2) = 4/(23 − 1) = 4/7 and
f ′(m5) = 1/(21 − 1) = 1.

Intuitively, k points with highest fractional skyline fre-
quency in a dataset are called as top-k frequent skyline points.

2.3 Dominating Subspace
Given a data point p ∈ D, if ∃q ∈ D that dominates p

on a subspace S ′ ⊆ S, then S ′ is said to be a dominating
subspace for p.

In Table 1, subspace S1 defined by dimension {u1} is a
dominating subspace for m1 since point m3 dominates m1

on S1.

2.4 Dominating Frequency
The dominating frequency of a data point p ∈ D, d(p), is

the number of unique dominating subspaces for p.
Intuitively, skyline frequency and dominating frequency

are duals of each other. Hence, dominating frequency of the
point p can be described as: d(p) = 2d−1−f(p). Analogous
to the concept of fractional skyline frequency, we propose
fractional dominating frequency as d′(p). Therefore, d′(p) =
1− f ′(p) and we have, d′(m2) = 3/7 and d′(m5) = 0.

Thus, computing k points with smallest fractional domi-

nating frequencies in a dataset would be same as computing
top-k frequent skyline points. We will be using fractional
skyline/dominating frequency for computing top-k frequent
skyline points.

2.5 Dominating Subspace Set
The set of all subspaces on which a point q dominates

another point p is known as dominating subspaces of q over
p and is denoted by DS(q, p).

This set can be quite large and difficult to enumerate.
Hence, a pair of subspaces (U, V ) is used to describe it con-
cisely where, (a) U ⊆ S such that ∀si ∈ U , q.si > p.si
and (b) V ⊆ S such that ∀si ∈ V , q.si = p.si. Now, the
total number of subspaces covered by DS(q, p) is given by,

|DS(q, p)| = (2|U| − 1)2|V |.
Consider points m1 and m2 from Table 1. m1 dominates

m2 in subspaces S2 = {u2} and S23 = {u2, u3}. Thus,
DS(m1,m2) = {S2,S23} and can also be represented as
(U, V ) = ({u2}, {u3}).

A crucial lemma from [8] for defining Maximal Dominat-
ing Subspace Set is given below:

Lemma: Consider a pair of dominating subspace sets
DS(q, p) = (Uq, Vq) and DS(r, p) = (Ur, Vr), where Uq 6= ∅
and Ur 6= ∅. DS(q, p) covers DS(r, p) if and only if (a)
(Ur ∪ Vr) ⊆ (Uq ∪ Vq) and (b) Ur ⊆ Uq.

2.6 Maximal Dominating Subspace Set
Given a point p ∈ D, if @r ∈ D such that DS(r, p) covers

DS(q, p), then DS(q, p) is said to be a maximal dominating
subspace set (MDSS) for p. Therefore, dominating subspaces
of p is the union of dominating subspaces covered by all such
MDSSs for p. Hence, d(p) = |

⋃
Mi∈MMi|, where M =

{DS(q, p) | q ∈ D, DS(q, p) is a MDSS for p}.
From Table 1, let us calculate DS(q,m4) for each point

q ∈ D\{m4}. Then we have DS(m1,m4) = ({u1, u2}, {u3}),
DS(m2,m4) = ∅, DS(m3,m4) = ({u1}, ∅) and DS(m5,m4)
= ({u4}, ∅). Here, DS(m3,m4) is covered by DS(m1,m4)
and hence it is not a MDSS of m4. Whereas, DS(m1,m4)
and DS(m5,m4) do not cover each other. Thus, the set
of MDSSs, M = {DS(m1,m4), DS(m5,m4)}. We have
|DS(m1,m4)| = 6 and |DS(m5,m4)| = 1. Therefore, dom-
inating frequency of m4, d(m4) = 7 since there are no com-
mon dominating subspaces covered by both DS(m1,m4)
and DS(m5,m4). Thus, d′(m4) = 7/15 and similarly, we
have d′(m1) = 1/7, d′(m2) = 3/7, d′(m3) = 1/3 and d′(m5)
= 0. Hence, top-3 frequent skyline points from Table 1 are
m5, m1 and m3, which is fairly reasonable.

Now, consider pointm1 from Table 1. If weak pareto dom-
inance relation is used to compare the points, then d′(m1)
would be 4/7. The reason is, m3 dominates m1 in all sub-
spaces having dimension u1 i.e., {u1}, {u1, u2}, {u1, u3} and
{u1, u2, u3}. Though in reality m1 is dominated only in sub-
space {u1}, due to the nature of dominance relation used, it
appears to be dominated in the above mentioned four sub-
spaces. Thus, using weak pareto dominance relation is not
appropriate for computing subspace skyline of incomplete
datasets. In the proposed approach, d′(m1) = 1/7, which is
reasonable since m1 is dominated in only one subspace.

3. RELATED WORK
In this section, we discuss the existing work on traditional

skyline queries, its variants and skyline queries for incom-
plete domains.



3.1 Traditional Skyline Queries
Börzsönyi et al. [5] first introduced the Skyline operator

for relational databases and proposed BNL, D&C and an
algorithm using B-tree for skyline evaluation. Since then,
various skyline query processing algorithms, using different
approaches, have been proposed by the research commu-
nity. For instance, index structures are used in [15, 18, 22]
to progressively report the skyline. Whereas, SFS [9] and
SaLSa [3] algorithms sort input data using monotone sorting
function.

Skyline queries have been proposed for domains such as
partially-ordered [6], spatial [21], uncertain [19] and dis-
tributed databases [2]. Comprehensive surveys of skyline
query processing in highly distributed environments and un-
certain domains are presented in [10] and [24], respectively.
Unfortunately, all of the above mentioned skyline evaluation
approaches were proposed for complete data and can not be
easily adapted for incomplete data.

3.2 Variants of Skyline Queries
The traditional dominance relation is quite strict, result-

ing in large size of the skyline. In case of correlated datasets,
a point good in one dimension tends to be good in all other
dimensions as well. Consequently, few “good” points dom-
inate large number of points, resulting in small size of the
skyline. Hence, several variants of traditional skyline query
have been proposed to control the skyline size and to find
the interesting subset of the skyline. These variants employ
some interestingness metric to find superior points from the
dataset. The skyline returned by these approaches depend
on the dominance relation and interestingness metric used.
Some of the most prominent variants are discussed below:

Thick skyline [11] query allows users to increase the sky-
line size by including points within ε-distance of skyline
points. Papadias et al. [18] proposed top-k skyline that
ranks skyline points based on user defined monotone scor-
ing function. The authors also proposed k-skyband query
that returns points that are dominated by at most k other
points. This approach allows users to explore other non-
skyline points in case the traditional skyline is too small.
Zhang et al. [28] proposed the concept of δ-subspace to find
strong skyline points. A subspace whose skyline contains less
than δ points, is called δ-subspace and the union of all sky-
line points in such δ-subspace is called strong skyline points.
The k-dominant skyline query [7] relaxes the dominance re-
lation from considering all dimensions to any subset of size
k. Therefore, more points get dominated and a few high
quality points can be returned. The top-k representative
skyline points [16] (top-k RPS) finds the k points such that
the total number of unique data points dominated by them is
maximized. ε-skyline [25] enables user to increase/decrease
the skyline size by allowing points to dominate other if their
normalized values are within a constant of ε. This approach
allows users to assign weights and rank points using built-
in order. Distance based representation skyline [23] returns
the k most representative skyline points of the dataset i.e.,
k points that minimizes the maximum distance between a
non-representative skyline point and its closest representa-
tive.

Unfortunately, all the above variants were proposed in
the context of complete data. The dominance relation in all
these variants will not work if values corresponding to some
dimensions of data points are missing. Hence, any of these

approaches, if adapted for incomplete domain, would need
weak pareto dominance relation for comparing points. This
relation is not preferred since it may discard many desirable
points from the result set, as explained in Section 1.

3.3 Skyline Queries for Incomplete Data
Khalefa et al. [13] introduced the problem of skyline com-

putation for incomplete datasets. They defined a modified
dominance relation (weak pareto dominance) for compar-
ing incomplete data points and proposed three algorithms
namely, Replacement, Bucket and ISkyline for skyline com-
putation. Among these, ISkyline is incremental in nature
and the most efficient. Zhang et al. [29] proposed to convert
an incomplete dataset to corresponding complete dataset
by plugging in estimated values for the missing dimensional
values. Now, any of the existing skyline computation ap-
proaches can be applied to find the skyline over the complete
dataset. However, such substitution of values is only viable
when incompleteness percentage is small. This approach is
also not suitable for critical applications where false results
are not acceptable. The Sort-based Incomplete Data Sky-
line (SIDS) [4] algorithm outperforms ISkyline, but does not
support incremental addition of data points.

Since both ISkyline and SIDS algorithms use non-transitive
and cyclic weak pareto dominance relation, some of the in-
teresting points may not be included in the skyline. Miao et
al. [17] tried to address this problem by proposing k-skyband
queries for incomplete data. However, some desirable points
may still not be included in the skyline, since a point that is
dominated by k other points on a subspace can have better
values on other subspaces. Moreover, this approach returns
an unordered set of skyline points and the end user does not
have control over the size of the skyline. On the other hand,
the proposed approach returns exactly k points ordered by
their fractional skyline frequency.

4. PROPOSED APPROACH
As mentioned earlier, the näıve approach of computing

top-k frequent skyline points for incomplete datasets is to
first compute skyline for each of the 2d − 1 subspaces us-
ing any traditional skyline computation algorithm and then
determine the skyline frequency of each point by counting
the number of subspaces for which the point belongs to the
skyline. Though several efficient approaches have been pro-
posed to compute precise skyline for all subspaces, such a
computation is still very expensive (e.g., [20,27]).

Chan et al. [8] proposed the frequent skyline metric and an
efficient top-k frequent skyline algorithm, based on the con-
cept of MDSS. Their approach first finds the set of MDSSs
for a point and then computes the dominating frequency
for that point either precisely or approximately. However,
this approach was originally proposed for complete datasets.
We have adopted it for incomplete datasets to rank skyline
points by fractional skyline frequency and called it as Incom-
plete Data top-k Frequent Skyline (IDFS). In the following
sections, we explain in detail the working of IDFS.

4.1 Incomplete Data Frequent Skyline
This approach is based on the fact that each dominating

subspace of a point p is covered by at least one MDSS for p.
Therefore, dominating frequency of p, d(p), is the number
of unique subspaces covered by the set of MDSSs (M) for p.
Hence, after computingM and d(p) for each point, k points



Algorithm 1: IDFS(D,S, k)

Input : d-dimensional incomplete dataset D, k
Output: ResultSet, the set of top-k frequent skyline points

1 initialize fractional frequency threshold θ = 1
2 ResultSet = ∅
3 foreach p ∈ D do
4 initializeM = ∅
5 flag = ComputeSetOfMDSS (p, k, θ, |ResultSet|,M)
6 if flag then
7 d(p) = CountDS(M)

8 d′(p) = d(p)/(2dimCount(p) − 1)
9 if (|ResultSet| < k) or (d′(p) < θ) then

10 if |ResultSet| = k then
11 remove the point with highest fractional

dominating frequency in ResultSet
12 end
13 insert p into ResultSet
14 update θ to be the highest fractional dominating

frequency in ResultSet
15 end
16 end

17 end
18 return ResultSet

with lowest fractional dominating frequency are returned as
the top-k frequent skyline points.

The order of processing data points affects the pruning
capacity of a skyline algorithm. Thus, Chomicki et al. [9]
proposed to sort data points by some monotone sorting
function. One such function is to sort data points in non-
increasing order of sum of their dimension values. The intu-
ition here is that, points with higher sum are likely to have
higher skyline frequency and thereby help in early pruning
of other points. Therefore, we give pre-sorted data as input
to the IDFS algorithm.

The pseudo-code of our approach is given in Algorithm
1. The algorithm takes as input, a d-dimensional incom-
plete dataset D and the number of frequent skyline points
to return, k. To avoid explicitly sorting points by their frac-
tional dominating frequency, we initialize θ with threshold
of 1 (Step 1). θ keeps track of highest fractional dominat-
ing frequency in ResultSet. ResultSet is the set of top-k
frequent skyline points and is initialized in Step 2.

At the beginning of each iteration, M, the set of MDSSs
for a point p, is reset to ∅ (Step 4). The algorithm com-
putes the set M for point p in Step 5 by calling procedure
ComputeSetOfMDSS() (given in Algorithm 2). This pro-
cedure returns false if p can not be a top-k frequent skyline
point; and true otherwise. In case p is a potential top-k
point, M would be the set of MDSSs when Algorithm 2
terminates. For such cases, the dominating frequency, d(p),
is computed by calling CountDS(M) (Step 7). The frac-
tional dominating frequency of p, d′(p), is calculated in Step
8 by using dimCount(p), which is the number of known
dimensions for p. If ResultSet has k points and d′(p) is
smaller than θ, then the point with the highest fractional
dominating frequency is removed (Step 10-12) and p is in-
serted into ResultSet (Step 13). On the other hand, when
ResultSet has less than k points, point p is directly inserted
into ResultSet. The value of θ is updated in Step 14 to
the highest fractional dominating frequency in ResultSet.
Finally, the algorithm terminates when all points have been
processed and returns ResultSet as the set of top-k frequent
skyline points.

Algorithm 2: ComputeSetOfMDSS(p, k, θ, r,M)

Input : p, k, θ, r,M
Output: boolean value andM for point p is computed in

part or full
1 initialize chkPoint = 2
2 foreach q ∈ D\{p} do
3 let U ⊆ S such that ∀si ∈ U, q.si > p.si
4 let V ⊆ S such that ∀si ∈ V, q.si = p.si
5 if (r = k) and

((((2|U| − 1)2|V |)/(2dimCount(p) − 1)) > θ) then
6 return false
7 end
8 if (r = k) and (|M| = chkPoint) then
9 d(p) = CountDS(M)

10 d′(p) = d(p)/(2dimCount(p) − 1)
11 if (d′(p) > θ) then
12 return false
13 end
14 chkPoint = 2 * chkPoint
15 end
16 initialize isMaximal = true
17 foreach MDSS (P,Q) ∈M do
18 if (U ∪ V ⊆ P ∪Q) and (U ⊆ P ) then
19 isMaximal = false
20 break out of the loop

21 end
22 else if (P ∪Q ⊆ U ∪ V ) and (P ⊆ U) then
23 remove (P,Q) fromM
24 end

25 end
26 if isMaximal then
27 insert (U, V ) intoM
28 end

29 end
30 return true

4.2 Computing the set of MDSSs
The procedure ComputeSetOfMDSS() that computes M

for a point p is given in Algorithm 2. Apart from p, the
procedure takes k, θ and cardinality of ResultSet as input.
It returns false if p is determined not to be a top-k frequent
skyline point and true otherwise. The procedure compares p
with all other points q ∈ D one at a time and computes the
dominating subspaces of q over p, DS(q, p), as a subspace
pair (U, V ) described earlier. The pair (U, V ) is determined
by comparing points p and q across individual dimensions
(Step 3-4). Here, we note that, only the subset of dimensions
where values are known for both the points are considered.
Steps 5-15 list two optimizations which are explained later
in this section. Steps 17-25 check whether subspace (U, V )
is a MDSS or not. By lemma 1, if (U, V ) is covered by some
MDSS (P,Q) ∈ M, then (U, V ) is not a MDSS for p and
is ignored immediately (Step 18-21). Similarly, if (P,Q) is
covered by (U, V ) then it is not a MDSS and is thus removed
from M (Step 22-24). Finally, if (U, V ) is not covered by
any (P,Q) ∈ M then it is added to set M (Step 26-28).
The procedure terminates once p has been compared with
all other points unless terminated early because of optimiza-
tion.

Steps 5-15 list two optimizations performed in the algo-
rithm for early pruning of points. The idea here is to avoid
exact computation of set M when a point is determined
not to be a top-k frequent skyline point. Specifically, in the
first optimization, if ResultSet has k points and the frac-
tional dominating frequency of p, considering only DS(q, p),



exceeds θ (the highest fractional dominating frequency in
ResultSet), then point p can not be a top-k frequent skyline
point. Therefore, further computation of M is terminated
and false is returned to prune point p (Step 5-7).

We have also implemented check-point optimization as
proposed in [8] and it is explained below. This optimiza-
tion periodically checks whether a point p can be pruned
early. This can be achieved by checking if “ResultSet has
k points and d′(p) exceeds the threshold θ” (pruning test).
If it does, then the procedure terminates early and returns
false (Steps 8-15). In the first optimization, the pruning
test is applied only for a single MDSS DS(q, p). Data points
often have multiple MDSSs in M. It is possible that a sin-
gle DS(q, p) may not cover too many dominating subspaces
but the total number of unique subspaces covered by all
sets in M is large enough to pass the pruning test. Thus,
it would be beneficial to perform pruning test at regular
“checkpoints”. Once a check point is reached, procedure
CountDS() is invoked to count the unique dominating sub-
spaces covered by intermediate setM and then pruning test
is performed. We set check points when |M| = 2t, where
t = 1, 2, . . . , n.

4.3 Counting of Dominating Subspaces
Once M, the set of MDSSs for a point p, has been com-

puted, we need to determine d(p) (the number of unique
dominating subspaces for p). Data points usually have sev-
eral maximal dominating subspace sets (Mi) and thus some
of the subspaces covered by them overlap. Hence, each sub-
space in M needs to be checked for duplicates and should
be counted only once.

Chan et al. [8] proposed two approaches for counting the
number of dominating subspaces viz. (1) Exact Counting
and (2) Approximate Counting. Both of these approaches
take M as input and return d(p) as the answer. We have
adopted both of these approaches as they are. The de-
tailed description and pseudo-code of these approaches can
be found in [8] and are explained in brief below.

4.3.1 Exact Counting
This approach counts dominating subspaces by enumer-

ating all dominating subspaces covered by M. That is, for
each MDSS Mi ∈ M, the procedure enumerates all domi-
nating subspaces (P,Q) ∈Mi and checks if (P,Q) has been
covered by some Mj for 1 ≤ j < i. As the number of
subspaces is exponential in the number of dimensions, this
approach does not scale for high dimensions.

4.3.2 Approximate Counting
This approach is based on Monte-Carlo Counting Algo-

rithm [12]. The procedure takes two parameters viz δ and
ε, along withM as input. These two parameters determine
the number of samples (T ) to be generated and is given by
T = 2n ln(2/δ)/ε2. The idea here is to count unique dom-
inating subspaces found among T repeatable samples and
using that, approximate the total number of unique domi-
nating subspaces. The approximate answer returned by this
procedure has maximum error of ε with confidence of at least
1 - δ.

5. EXPERIMENTAL RESULTS
This section discusses the experimental results and set-

tings used for IDFS algorithm. We have implemented both

Exact Count (IDFS-EC) and Approximate Count (IDFS-
AC) variant of Incomplete Data Top-k Frequent Skyline
(IDFS) algorithm in C++. The Approximate Count With-
out Sorting (ACWS) and Approximate Count Without Check-
point (ACWC) variants were not implemented for IDFS
since they were reported to perform worse than AC for com-
plete data in [8]. Since this is the first attempt to find supe-
rior skyline points from incomplete datasets, we could not
compare the performance results with any of the existing
approaches for incomplete data skyline computation.

5.1 Experimental Settings
We have evaluated IDFS-AC and IDFS-EC algorithms on

both synthetic as well as real world datasets. Synthetic
datasets of varying data size, dimensions and distributions,
have been generated using synthetic data generator provided
by Börzsönyi et al. [5]. In particular, synthetic datasets hav-
ing correlated, independent or anti-correlated distribution
have been used for evaluation.

We have also evaluated our approach on real world NBA
dataset. This dataset has 17791 records about 17 basketball
skills of players during regular season in the period 1946-
2005. The dataset has multiple records for a single player
corresponding to each year he has played in the league. NBA
is a correlated dataset where all attribute values are posi-
tively correlated. Since NBA is a complete dataset, we have
explicitly removed values from it (in random fashion) to gen-
erate 20% incomplete dataset.

Unless specified otherwise, the default parameters for ex-
periments are: 20% incomplete 15-dimensional independent
synthetic dataset having 100K data points, ε = 0.2, δ = 0.05
and k = 10. All the experiments are performed on Intel
Quad-core 2.83GHz processor machine, having 4GB RAM
and running Ubuntu 12.04 LTS with kernel 3.5.0-34-generic.
We report performance based on execution time taken by al-
gorithms.

Note that, top-k frequent skyline points returned by both
Top-k Frequent Skyline Algorithm (EC) [8] and IDFS-EC
on any complete dataset are exactly same and follow the
same order.

5.2 Performance Results
The first three subsections deal with the synthetic datasets,

while the last one is about NBA dataset.

5.2.1 Tuning δ and ε

The AC variant of IDFS algorithm requires δ and ε as two
additional input parameters. These parameters determine
the number of samples to be drawn for approximate counting
of dominating frequency. In this section, we discuss their
effect on execution time and precision of the algorithm. Note
that, the default value of k is set to 30 for these experiments.

Figure 1 shows the execution time taken by IDFS-AC al-
gorithm as a function of ε, δ and k. The number of samples
in ApproxCountDS() procedure is calculated as, T = 2n
ln(2/δ)/ε2. Since T is inversely proportional to 1/ε2, the
execution time of the algorithm decreases steadily when ε is
varied from 0.1 to 0.4 (Fig. 1(a)). In contrast, when δ is var-
ied from 0.025 to 0.1, the value of T does not change much
since it is linearly related to ln(2/δ). Hence, the execution
time taken by the algorithm in Fig. 1(b), is stable. From
Fig. 1(c), the execution time of the algorithm increases al-
most linearly with k since more points are returned.
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Figure 1: Efficiency with respect to different parameters
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Figure 2: Precision with respect to different parameters

In Fig. 2, we study the precision of IDFS-AC algorithm
with respect to parameters ε, δ and k. Here, precision is
defined as the fraction of top-k frequent skyline points re-
turned by IDFS-AC variant compared to those returned by
IDFS-EC. As shown in the figure, IDFS-AC has precision
of at least 70% on all data distributions and parameter val-
ues. The precision of the algorithm is known to decrease
with higher value of ε because of less number of samples
drawn (Fig. 2(a)). However, the precision is very stable
with respect to parameters δ and k. In terms of data dis-
tributions, correlated datasets have highest precision that is
always close to 85%. Whereas precision on anti-correlated
datasets is least, and found to be a bit inconsistent. Datasets
with independent distribution have precision between that
of correlated and anti-correlated datasets.

From these experiments, we can see that IDFS-AC algo-
rithm has good enough execution time and precision when
ε = 0.2 and δ = 0.05. Therefore, we will be using these
parameter values in the rest of our experiments.

5.2.2 Scalability
This experiment compares the execution time of algo-

rithms when data size is varied from 50K to 300K. As shown
in Figure 3, the execution time taken by both algorithms
grows linearly with the data size. From Fig. 3(a), IDFS-
EC outperforms IDFS-AC when dataset is correlated (for
majority of the cases). This is because, top-k points in cor-
related datasets have small dominating frequencies. Hence,

the number of dominating subspaces enumerated by IDFS-
EC is far lesser than the number of samples required by
IDFS-AC. On the other hand, for independent and anti-
correlated datasets, IDFS-AC steadily outperforms IDFS-
EC.

5.2.3 Dimensionality
Fig. 4 shows the effect of varying the number of dimen-

sions, d, on execution time of algorithms. For this experi-
ment, d is varied from 10 to 25. When d = 10, algorithm
IDFS-EC outperforms IDFS-AC. The reason is, on lesser
dimensions, the total number of dominating subspaces (in-
cluding duplicates) covered by set of MDSSs (M) is far less
than the number of samples required for approximate count-
ing. On the other hand, for large dimensions, the number of
samples needed is much less than the number of dominating
subspaces enumerated for precise counting. Hence, for high-
dimensional datasets, execution time of IDFS-AC is far less
than that of IDFS-EC.

Observe that, in Fig. 4(c), the execution time required by
IDFS-AC for processing the 20-dimensional anti-correlated
dataset is slightly lower than that of 15-dimensional dataset.
The reason is, compared to 15-dimensional dataset, more
points get pruned early in 20-dimensional dataset. Note
that, some of the bars corresponding to IDFS-EC algorithm
in Fig. 4 are truncated to the maximum value plotted in
the graph because of their very large values. For instance,
in Fig. 4(b), IDFS-EC takes around 25,500 seconds for com-
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Table 2: Top-10 Frequent Skyline for (a) Complete NBA Dataset (b) 20% Incomplete NBA Dataset. (c) Effect of varying
incompleteness percentage of datasets on match count.

(a)

Player Name Season

Wilt Chamberlain 1961
Michael Jordan 1986
Michael Jordan 1987
George Mcginnis 1974
Michael Jordan 1988
Bob Mcadoo 1974
Julius Erving 1975
Charles Barkley 1987
Kobe Bryant 2002
Kareem Abdul-Jabbar 1975

(b)

Player Name Season

Wilt Chamberlain 1961
Bob Mcadoo 1974
Julius Erving 1975
Jerry Stackhouse 2000
George Mcginnis 1974
Kobe Bryant 2002
Michael Jordan 1987
Michael Jordan 1989
Michael Jordan 1986
Charles Barkley 1985

(c)

Incomplete
Percentage

Match Count

NBA Corr Indep Anti

10 8 6 5 3

20 7 6 2 2

30 7 5 1 3

40 4 2 2 1

50 4 2 1 0

puting top-10 frequent skyline points on 25-dimensional in-
dependent synthetic dataset. The effect of dimensionality
is approximately the same for all the data distributions.
However, anti-correlated datasets (Fig. 4(c)) have higher
execution time than others.

5.2.4 NBA Dataset
On 20% incomplete NBA dataset, IDFS-AC algorithm

takes 1.08 seconds against 1.54 seconds taken by IDFS-EC.

We do not report scalability and dimensionality results for
NBA dataset since its characteristics are very similar to cor-
related synthetic datasets.

5.3 Quality of top-k points
In this section we discuss the ability of our approach in

finding truly interesting points from an incomplete dataset.
Tables 2(a) shows the top-10 records returned by IDFS-

EC algorithm on complete NBA dataset. People who follow



basketball will agree that these are some of the best NBA
players. Thus, skyline frequency metric indeed gives most
interesting points from the dataset. For the correspond-
ing 20% incomplete NBA dataset, the skyline returned by
ISkyline [13] and SIDS [4] algorithms has 300 records. The
kISB [17] algorithm allows to further increase the skyline
size by increasing k. Sine these approaches use weak pareto
dominance relation, many non-desirable points are included
in the skyline and its difficult to isolate the interesting points
among them. On the other hand, for the same 20% in-
complete NBA dataset, IDFS-AC algorithm returns top-10
records ranked by their fractional skyline frequency (Table
2(b)). Rows with bold text font denote matching records
between Table 2(a) and 2(b). As can be seen from the ta-
bles, same 7 records are returned in top-10 (neglecting the
order) even when data is 20% incomplete.

Table 2(c) summarizes the match count, i.e. the number
of top-10 frequent skyline points for an incomplete dataset
(using IDFS-AC) matching with that of corresponding com-
plete dataset (using IDFS-EC). Here, incompleteness per-
centage of datasets is varied from 10 to 50%. The match
count is highest for correlated datasets (both NBA and syn-
thetic) and least for anti-correlated ones. The number of
such matching records drops gradually with the increase in
incompleteness percentage for all the datasets. From this
experiment, we can see that, the proposed approach returns
reasonable matching records even though the dataset has
up to 50% missing values. Therefore, we conclude that, our
approach can return high-quality points from an incomplete
dataset.

6. CONCLUSION
In this paper, we introduced an efficient algorithm, called

Incomplete Data Frequent Skyline (IDFS), to find superior
skyline points from incomplete datasets. To the best of our
knowledge, ours is the first attempt to address this prob-
lem. There is a need for such an approach, since all existing
approaches for skyline computation over incomplete data
use weak pareto dominance relation, and may discard many
interesting points. We have adapted the skyline frequency
interestingness measure for incomplete data and proposed
fractional skyline frequency. Our approach returns k points
ordered by their fractional skyline frequency. Experimental
results demonstrate the superior quality of our skyline points
over the ones given by any of the existing approaches for in-
complete data skyline computation. In the future, we intend
to improve the efficiency of our algorithm by exploring al-
ternative techniques that can reduce the examined space for
determining frequent skyline points.
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