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ABSTRACT
Compared to relational databases, multidimensional database
systems enhance data presentation and navigation through
intuitive spreadsheet like views and increase performance
through aggregated data. In this paper, we present a frame-
work for automating multidimensional database schema de-
sign. We successfully used the framework to revolve the well
known TPC-H benchmark to become a multidimensional
benchmark -TPC-H*d benchmark, and translated into MDX
language (MultiDimensional eXpressions) the TPC-H work-
load. In order to assess the effectiveness and the efficiency
of our proposal, we benchmark the open source Mondrian
ROLAP server and its OLAP4j driver with TPC-H*d bench-
mark.

1. INTRODUCTION
Decision Support Systems (DSS) are designed to empower

the user with the ability to make effective decisions regard-
ing both the current and future activities of an organiza-
tion. One of the most powerful and prominent technologies
for knowledge discovery in DSS environments are Business
Intelligence (BI) Suites and particularly On-line Analytical
Processing (OLAP) technologies [1, 8]. OLAP relies heavily
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upon a data model known as the multidimensional databases
(MDB) [26]. Compared to relational databases, MDB in-
crease performance by storing aggregated data and enhance
data presentation. Indeed, MDB systems, offer the following
three advantages [1],

• Presentation: MDB enhance data presentation and
navigation by intuitive spread-sheet like views that are
difficult to generate using SQL technologies,

• Ease of maintenance: Multidimensional databases are
very easy to maintain, because data is stored in the
same way as it is viewed, that is according to its funda-
mental attributes, no additional computational over-
head is required for queries’ processing.

• Performance: MDB systems increase performance. In-
deed, through OLAP operations (e.g. slice, dice, drill
down, roll up, and pivot), MDB systems allow intu-
itively the analyst to navigate through the database
and screen very fast for a particular subset of the data.

The BI market continues growing and information ana-
lysts embrace OLAP concepts and technologies. Accord-
ing to research from market watchers, such as Pringle &
Company and Gartner, the market for Business Intelligence
platforms will remain one of the fastest growing software
markets in most regions [13, 18]. Despite the BI booming
market, there are hurdles around dealing with the volume
and variety of data, and there are also equally big chal-
lenges related to the conceptual design of multidimensional
databases. Also, regarding benchmarks, DSS technologies
should be evaluated with appropriate OLAP benchmarks.
Practically, most BI project managers focus on the following
milestones for implementing a DSS (refer to [10] for details):

• Architecture sketch milestone: It consists in captur-
ing the technologies to use, designing the data ware-
house data model and business logic for extractions
and transformations,

• System usage milestone: It consists in delivering a BI
solution which meets end-users business requirements,

• GUI ergonomics milestone: It consists in implementing
user-friendly interfaces of OLAP clients.

The MDB design milestone is very often neglected. Con-
sequently, OLAP cubes are defined in a haphazard way,
without worrying about the performance of running queries
against data cubes and the costs of the maintenance the
cubes. BI developers questions are, How to define cubes?
will there be a single cube or multiple cubes? Which opti-
mizations are the most suitable for running the workload?
This is very complex if we consider a broad range of DSS



workloads with conflicting recommendations. Indeed, TPC-
H benchmark [25] enumerates 22 business queries, while
its successor TPC-DS [24] enumerates a hundred business
queries.
The outline of this paper is as follows: Section 2 presents

related work and highlights our contribution. Section 3 pro-
poses a framework automating multidimensional database
design. Section 4 presents the multidimensional TPC-H*d
benchmark. The latter is obtained by application of the pro-
posed framework to the well known TPC-H benchmark. Sec-
tion 5 presents a performance evaluation of OLAP4j driver
embedding in its core the open source ROLAP server Mon-
drian using TPC-H*d benchmark. Finally, we conclude the
paper and open new work perspectives.

2. RELATED WORK
Hereafter, we present related work for both the MDBs’

design based on requirements and DSS benchmarks.

2.1 Multidimensional Database and OLAP Data
Cube Design

In the related literature there are a number of papers that
have pointed out the necessity of OLAP cube design. Next,
we overview the most relevant to our work, following the
chronology of their publication,
Niemi et al. present a technique that automates cube

design given the data warehouse, functional dependency in-
formation, and sample OLAP queries [14]. The user can
accept the proposed OLAP cube or improve it by giving
more queries.
Cheung et al. [9] demonstrate that data cube schema de-

sign problem is NP-hard. Their work aims to find OLAP
cubes maximizing query performance and minimizing main-
tenance cost by cube merging. They propose approximate
Greedy algorithms for optimal finding of a data cube schema
of an OLAP system with limited memory. They evaluated
the efficiency of their algorithms via an empirical study us-
ing TPC-D benchmark.
Romero et al. [19] present a method into 11 steps to vali-

date user multidimensional requirements expressed in terms
of SQL queries. In [20], Romero et al. overviewed and com-
pared multidimensional design methodologies.
Nair et al. [12], propose a framework which analyses the

user requirements and formalizes the business related needs
in the form of a graph.
Malinowski et al. [11] propose a temporal extension of

the multidimensional model inspired by temporal databases.
The proposed model provides temporal support for levels,
attributes, hierarchies, and measures.
Overviewed requirement-based methologies for MDB de-

sign introduced by Niemi et al. [14], Romero et al. [19],
Nair et al. [12], Malinowski et al. [11], Thanisch et al. [22]
were not generalized and applied to any of the existing DSS
benchmark and no empirical study was conducted.
Open source and commercial OLAP technologies (such

Pentaho BI suite, MS Analysis Services, . . . ), provide ETL
tools (Integration services) for different data sources inte-
gration, visual tools for the design of a multidimensional
databases, and different OLAP engines (such as ROLAP,
HOLAP or MOLAP). Nevertheless, they do not implement
an advisor for supporting analysts in the design of the mul-
tidimensional database schema.

2.2 DSS Benchmarks
To our knowledge, there are few decision-support bench-

marks out of the TPC benchmarks. The only open-source
benchmarks for decision support systems are APB-1 [15],
DWEB [6] and TPC Benchmarks [25, 24]. Hereafter, we
briefly describe existing DSS benchmarks.

2.2.1 NonTPC Benchmarks
APB-1 has been released in 1998 by the OLAP council -a

now inactive organization. APB-1 warehouse dimensional
schema is structured around five fixed size dimensions and
its workload is composed of 10 queries. Along Thomsen
et al. [7], APB-1 is quite simple and is proved limited to
evaluate the specificities of various activities.

Data Warehouse Engineering Benchmark (DWEB) pro-
posed by Darmont et al. [6], helps in generating various
ad-hoc synthetic data warehouses. DWEB is fully param-
eterized to fulfill data warehouse design needs and may be
considered as a benchmark generator.

2.2.2 TPC Benchmarks
The Transaction Processing Performance Council (TPC)

has issued several decision-support benchmarks, including
TPC-H benchmark [25]. The latter is the most prominent
benchmark for evaluating decision support systems. The
TPC-H benchmark exploits a classical product-order-supplier
model. It consists of a suite of business oriented adhoc
queries and concurrent data modifications. The workload is
composed of (i) twenty-two parameterized decision-support
SQL queries with a high degree of complexity and (ii) two
refresh functions, namely RF-1 new sales (new inserts of or-
ders and related lineitems) and RF-2 old sales (deletes of
orders and related lineitems). Scale factors used for TPC-H
database test must be chosen from the set of fixed scale fac-
tors defined as follows: 1, 10, . . . 100,000; resulting raw data
volumes are respectively 1GB, 10GB,. . . , 100TB. Fig. 1 il-
lustrates the relational database schema and shows the num-
ber of tuples of each table in function of the scale factor
(SF).

2.2.3 Variants of TPCH Benchmark
Hereafter, we present and discuss two variants of TPC-H,

namely La Brie et al. [27] who conducted MDX performance
evaluation and the Star Schema Benchmark by O’Neil et al.
[16].

La Brie et al. [27] work aims to examine the differences be-
tween the optimization techniques that database designers
need to consider when developing relational versus multidi-
mensional data warehouses. La Brie et al. demonstrate, by
performance measurement, the capabilities of MS Analysis
Services performances, compared to MS SQL Server with
indexes usage. They conclude that database designers must
shift from the index paradigm for relational databases to the
aggregate paradigm for dimensional databases. La Brie et
al. propose the design of one OLAP cube for the 4th query
of TPC-H benchmark (Q4), and report good performance
results showing outperformance of MDX compared to SQL
on MS Analysis Services.

O’Neil et al. [16] propose the Star Schema Benchmark
(SSB), which is a variation of TPC-H benchmark leading to
a truly star-schema database design. The main changes to
the TPC-H database schema are,

• De-normalization through combination of TPC-H re-



Figure 1: Relational Database Schema of TPC-H Benchmark.

lations. De-normalization renders many joins unneces-
sary and consequently improves performances. Thus,

– LINEITEM and ORDERS tables are combined into
SALES fact table,

– CUSTOMER, NATION and REGION are combined
into CUSTOMER table,

– SUPPLIER, NATION and REGION are combined
into SUPPLIER table.

• Drop of PARTSUPP table, arguing it should belong to
a different data mart.

• Deletion of useless attributes which are either never
invoked in the workload (such as l comment) or con-
sidered uninteresting for a decision workload (such as
o comment invoked in Q13 and l shipinstr invoked in
Q19). These changes reduce space requirements and
improve performances.

• Creation of the DATE dimension table, as is standard
for a warehouse and time series analysis.

Obviously, changes of the relational schema of the data ware-
house imply changes to the workload. Some business queries
are dropped since they involve no anymore existing tables
or attributes. We think that the star schema benchmark fo-
cuses on the transformation of TPC-H database schema into
a star schema warehouse, dropping all snowflake dimensions
through de-normalization. Added to that, they reduced the
TPC-H benchmark workload by half. Indeed, SSB workload
is composed of 12 SQL queries.

2.3 Contribution
It is commonly claimed that for complex queries, OLAP

cubes allow fast data retrieval. The most important mech-
anism in OLAP which allow to achieve such performance
is the use of aggregations as well as approximation meth-
ods (e.g., [2, 4]). Aggregations are built from the fact table
by changing the granularity on specific dimensions and ag-
gregating up data along these dimensions [21]. In this pa-
per, we propose a framework for MDB design. In order to
prove the effectiveness and the reliability of our proposal,
we tested the framework over TPC-H benchmark. The lat-
ter is the most prominent DSS benchmark. Our framework,

along the experience of turning the TPC-H benchmark into
a multidimensional benchmark, resolves design issues which
were not raised in related work [14, 9, 19, 12, 11, 22]. We
succeed in (i) revolving TPC-H benchmark into a multidi-
mensional benchmark TPC-H*d [23], and (ii) assessing the
capacities of the ROLAP server Mondrian[17] with TPC-
H*d benchmark. The new benchmark TPC-H*d can be
used to compare a vast number of OLAP servers’ imple-
mentations. Indeed, the proposed cubes could also be built
using a MOLAP server.

3. MULTIDIMENSIONAL DESIGN
The term On-line Analytical Processing (OLAP) is intro-

duced in 1993 by E. Codd. This model constitutes a decision
support system framework which affords the ability to calcu-
late, consolidate, view, and analyze data according to mul-
tiple dimensions. OLAP relies heavily upon a data model
known as themultidimensional databases (MDB) [26]. Com-
pared to relational databases, MDB increase performance by
storing aggregated data and enhance data presentation. In
this Section, we first recall principles of multidimensional
design. Then, we present our framework.

3.1 Principles of Multidimensional Design
Next, we first recall the structure of an OLAP cube. Then,

we briefly introduceOLAP operations andMultiDimensional
eXpressions language.

3.1.1 OLAP Cube
An MDB schema contains a logical model consisting of

OLAP cubes. An OLAP Cube is characterized by a fact
table (facts), a set of dimensions and a set of measures.
Next, we briefly define these concepts.

• Facts: a fact table consists of facts of a business pro-
cess. For example, for a company which sells products
to customers. Every sale is a fact that happens, and
the fact table is used to record these facts.

• Measures: Eachmeasure quantifies items such as costs,
revenues or units of service, that are counted, summa-
rized or aggregated. For this purpose, measures use



appropriate aggregate functions such as: sum, aver-
age, count, count-distinct, and so on.

• Dimensions: Dimensions are variables by which mea-
sures are summarized. Each dimension is composed
of levels. The levels of a dimension are organized as a
hierarchy, i.e. a set of parent-child relationships, typi-
cally where a parent member summarizes its children.
For instance, a time dimension could include the fol-
lowing levels: Year, Quarter, Month, Week, and Day.
Each level may contain properties. For example, con-
sidering the geographic dimension of sales being Re-
gion, Country, City, Store. The Country level might
be described by properties such as area, currency, pop-
ulation and time zone of the country.

3.1.2 OLAP Operations
Along Codd et al., [1] an OLAP query enables a BI analyst

to easily and selectively extract and view data from different
points of view (refer to E. Codd seminal paper [1] for OLAP
explanation). OLAP tools enable users to analyze multi-
dimensional data interactively from multiple perspectives.
OLAP consists of five basic analytical operations, namely
roll-up, drill-down, slice, dice and pivot.

• Roll-up operation involves the aggregation of data that
can be accumulated and computed in one or more di-
mensions. For instance, a roll-up shows average sales’
revenue per country instead of average sales’ revenue
using the hiearchy of the customer geographic dimen-
sion: country > city > store.

• Drill-down operation allows users to navigate through
the details. For instance it shows average sales’ rev-
enue using the hiearchy of the customer geographic di-
mension: country > city > store instead of average
sales’ revenue per country.

• Slice operation allows picking a rectangular subset of
a cube by choosing a single value for one of its di-
mensions, creating a new cube with one fewer dimen-
sion. For instance, if the cube calculates average sales’
revenue per country per year-quarter per category of
product, a slice shows average sales’ revenue per year-
quarter per product category for a given country.

• Dice operation produces a subcube by allowing the
analyst to pick specific values of multiple dimensions.
For example, if the cube calculates average sales’ rev-
enue per country per year-quarter per product category,
a dice shows average sales’ revenue per month per cat-
egory of product for a given country and a given year.

• Pivot operation allows an analyst to rotate the cube
in space. For instance, a dimension switches from hor-
izontal to vertical axis, to see another perspective on
the data.

Microsoft proposed the query language MultiDimensional
eXpressions (MDX). The latter provides functionality for
creating and querying OLAP cubes. MDX is now a non-
proprietary standard and is the most widely supported query
language for querying multidimensional database systems.
It is supported by many OLAP technologies namely, Mi-
crosoft Analysis Services, Hyperion Essbase, Mondrian OLAP
server, Palo and IBM Infosphere Warehouse Cubing Services
et cetera.

3.2 Proposed Framework
We propose automating MDB conceptual design. First,

an initial schema is formed. The initial schema consists of
all the cubes required to efficiently answer the user queries.
Additional steps aim at tuning the workload and consist
in creation and refresh of derived data (i.e., aggregate ta-
bles, derived attributes, OLAP indexes) or creation of vir-
tual cubes.

We devise the initial schema as follows: each input busi-
ness query -presented in its SQL statement template, is ana-
lyzed in order to infer relevant multidimensional knowledge.
Thus, measures, facts, dimensions are identified. Our frame-
work consists of three main steps for initial MDB schema
design. Next, we detail the three steps:
Step 1 -Measures Identification: Measures use aggregate
functions such count, count-distinct, maximum, minimum,
sum, average, median, variance. Measures appear in the
SELECT clause.
Step 2 -Fact Table Identification: The fact table is the table
containing all attributes invoked in measures. Consequently,
if a measure involves attributes from different tables, the fact
table is the combination of these tables. Notice that tables
are combined using referential constraints. Moreover, a fact
table could be filtered along a set of non-parameterized pred-
icates which appear in the WHERE clause.
Step 3 -Dimensions’ Composition: First, we extract (i) all
attributes from the SELECT clause not invoked in measures,
(ii) all attributes in the WHERE clause not used for joining
tables and not used for pair-columns comparisons and (iii)
all attributes in the GROUP-BY clause. Second, attributes
are split into groups along their source tables. Within the
same group, we distinguish levels from properties using func-
tional dependencies. Indeed, all properties are in functional
dependency with a unique level attribute. Third, we consoli-
date dimensions’ hierarchies using hierarchical relationships
(i.e. parent-child relationships). Hence, the groups of iden-
tified levels are considered to belong to the same dimension’s
hierarchy such that the attribute from the parent table pre-
cedes the attribute from the child table in the dimension
hierarchy.

Having multiple and small cubes results in faster query
performance than one big cube. Nevertheless, it induces
additional storage cost and CPU computing if the work-
load is run against OLAP cubes having same fact table and
shared dimensions. A virtual cube represents a subset of a
physical cube. Virtual Cubes are recommended for minimal
maintenance cost of OLAP cubes. They allow finding out
shared and relevant materialized pre-computed multidimen-
sional cubes. The pairwise-comparisons of N OLAP cubes

results into N×(N−1)
2

comparisons. In order to automate
OLAP cubes comparisons, we implemented AutoMDB [23].
AutoMDB parses an XML description of TPC-H*d OLAP
cubes. Then, builds matrices, which show the similarities
and the differences for each pair of OLAP cubes. Similari-
ties and differences are based on comparing fact tables, and
counting (i) the number of shared dimensions, (ii) the num-
ber of different dimensions, (iii) the number of possibly co-
alescable dimensions, (iv) the number of shared measures,
(v) the number of different measures, and (vi) the number
of possibly derivated measures.

4. TPCH*D: THE MULTIDIMENSIONAL
TPCH BENCHMARK

In this Section, we first present the relational schema



of TPC-H*d benchmark (§4.1), then we present the mul-
tidimensional schema consisting of TPC-H*d OLAP cubes
(§4.2). Optimizations based on derived data are investigated
in §4.3 and examples of virtual cubes are presented in §4.4.
The proposed benchmark is available for download [23].

4.1 TPCH*d Relational Schema
Bill Inmon defined a data warehouse as a collection of

subject-oriented, integrated, non-volatile, and time variant
data to support management decisions. Time dimension is
very important for time series analysis. Consequently, it
is necessary to store computed values such year, semester,
quarter, month, week, day, week-end, holiday, . . . instead of
ordinal date formats. The database schema of TPC-H*d
benchmark is illustrated in Fig.2. The few changes to the
original TPC-H database schema committed are listed be-
low,

• Create TIME table, for capturing the time dimension.
The required levels are defined with respect to TPC-H
workload, and are year, quarter, month and full date.

• Add c countrycode attribute to CUSTOMER table. This
attribute is required by Q22 -the 22nd business query
of TPC-H benchmark workload. The attribute values
are extracted from c phone attribute,

• Alter LINEITEM and ORDERS tables. First, we create
four attributes, respectively one replacing o orderdate
and three replacing l commitdate, l shipdate, l receipt-
date, in respectively ORDERS and LINEITEM tables,
Then, we set the attributes’ values to corresponding
time keys from TIME dimension table. Finally, refer-
encial constraints on these attributes are enabled.

4.2 TPCH*d Multidimensional Schema
Each business query is mapped to a minimal number of

OLAP cubes. We design each OLAP cube with the relevant
fact table, dimensions and measures. This leads to the defi-
nition of multiple and small cubes. Hereafter, we detail the
process leading to the definition of each cube.

4.2.1 Measure Definition
Measures use aggregate functions such as count, count-

distinct, maximum, minimum, sum, average, median, vari-
ance. We distinguish three types of measures,

• A Simple Measure is defined over a single attribute,
• AMeasure Expression is defined over multiple attributes,
• A Calculated Member combines multiple measures.

Figure 3: SQL Statement of Business Query Q1.

Example 1. Business query Q1 -Pricing Summary Report
Query provides a summary pricing report for all lineitems
shipped as of a given date, and grouped by line return flag

and line status. The SQL statement of Q1 is illustrated
in Fig.3 and measure expressions are framed in blue. The
extracted measures are listed below,

• Simple measure sum qty defined as sum(l quantity),
• Simple measure sum base price defined as

sum(l extendedprice),
• Measure expression sum disc price defined as

sum(l extendedprice ∗ (1− l discount)),
• Measure expression sum charge defined as

sum(l extendedprice ∗ (1− l discount) ∗ (1 + l tax)),
• Simple measure count order defined as count(∗);
• Calculated Member avg qty defined as the quotient

sum qty
count order

,
• Calculated Member avg price defined as the quotient

sum base price
count order

,
• Simple measure sum disc defined as sum(l discount).

Notice that this measure is not required by the busi-
ness query, and might be declared not visible to the
business analyst. sum and count measures are manda-
tory for performing OLAP operations (i.e., drill-down,
roll-up, slice and dice) and average measures.

• Calculated Member avg disc defined as the quotient
sum disc

count order
,

4.2.2 Fact Table Definition
The fact table is the table containing all attributes invoked

in measures. For instance, the fact table of OLAP cube C1,
which SQL statement is illustrated in Fig.3, is LINEITEM

table. However, the study of TPC-H workload revealed two
exception cases. The first case relates to the definition of a
fact table from multiple tables and is explained in Example
2. The second case relates to the definition of a fact table
taking into account the query’s predicates and is explained
in Example 3.
Example 2. Business query Q9 -Product Type Profit Mea-
sure Query, determines how much profit is made on a given
line of parts, broken out by supplier nation and year. The
measure expression sum profit, extracted from Q9 SQL
statement (illustrated in Fig.4), is defined as:
sum(l extprice× (1− l disc)− ps suppcost× l qty).
Notice that sum profit involves attributes from two differ-
ent tables, namely (i) attributes l extprice, l disc and l -
qty which belong to LINEITEM table (highlighted in yel-
low); and (ii) ps suppcost which belongs to PARTSUPP ta-
ble (highlighted in blue). Thus, the fact table of Cube C9
should combine both LINEITEM and PARTSUPP tables. It
also selects only required attributes, those invoked in mea-
sures and those required for performing joins with dimension
tables. The algebraic expression of the fact table for OLAP
cube C9 is the following:

∏
{l partkey,l ext.price,
l disc,l qty,l orderkey,
l suppkey,ps suppcost}

lineitem ◃▹
l suppkey=ps suppkey

and l partkey=ps partkey

partsupp

Example 3. Business query Q16 -Parts/Supplier Relation-
ship Query counts the number of suppliers who can supply
parts that satisfy a particular customer’s requirements. In
Fig.5, the measure supplier cnt -defined as,
count(distinct ps suppkey) and table PARTSUPP (source of
ps suppkey attribute) are highlighted in blue. Notice that,
the business query retreives parts not from a supplier who
has had complaints registered at the Better Business Bu-



Figure 2: Relational Database Schema of TPC-H*d Benchmark.

Figure 4: SQL Statement of Business Query Q9.

reau. The predicate shown in a blue box in Fig.5 is used
to filter facts from PARTSUPP table and allows selection of
suppliers who has not had complaints. Thus, the algebraic
expression of the fact table for OLAP cube C16 is the fol-
lowing:

σ
ps suppkey not in

(select s suppkey from supplier where
s comment like ’%customer%complaints%’)

partsupp

Figure 5: SQL Statement of Business Query Q16.

4.2.3 Dimension Definition
Next, we apply our proposed framework’s rules on busi-

ness query Q10, and describe an exception processing case
related to a dimension defined from a view.
Example 4. The OLAP cube C10 is defined as a trans-
form of Q10 -Returned Item Reporting Query, into an OLAP
cube. The SQL statement of Q10 is illustrated in Fig.6.
Q10 identifies customers who might be having problems with
the parts that are shipped to them, and who have returned
parts. The query considers only parts that were ordered
in a specified quarter of a year. The OLAP cube com-
putes the measure all lost revenues per customer (customer
details and customer nation name:n name) and per order
date. The measure expression Revenue is defined as follows
sum(l extentedprice×(1−l discount)). It is calculated over
LINEITEM facts satisfying l returnflag = ’R’. Notice that,
for OLAP cube C10, Line Return Flag can be considered as
a dimension, and in this case the fact table is LINEITEM. A
more refined solution consists in filtering LINEITEM table
along the predicate l returnflag = ’R’. Then, the algebraic
expression of the fact table corresponding to OLAP cube
C10 is the following,

σ
l returnflag = ’R’

lineitem

Notice that OLAP cube C10 aggregates lost revenue by
customer: its nation (n name) and its details (c custkey,
c name, c acctbal, c address, c phone and c comment), as
well as by order date. Next, we detail the process leading to
the definition of both Order Date dimension and Customer
dimension. First of all, in Fig.6, non selected attributes are
striped in red, and the rest of attributes are highlighted in
different colors along their source table.

• TheOrder Date dimension hierarchy derives from TIME

table. The latter is a snowflake dimension table reached
through ORDERS table (see Fig.2: LINEITEM >> OR-

DERS >> TIME). The Order Date dimension hierar-
chy is composed of two levels which are order year
(typical values are 1992, 1993, .., 1998) and order quar-
ter (typical values are Q1, Q2, Q3 and Q4). Predicates
used to derive required time dimension hierarchy levels
are highlighted in blue in Fig.6.



• The Customer dimension is composed as follows: the
attribute c custkey is a level within customer dimen-
sion hierarchy, and has properties: c name, c acctbal,
c address, c phone and c comment. These attributes
are in functional dependency with c custkey. Indeed,
{c custkey}−→ {c name, c acctbal, c address, c phone,
c comment}. Since, it exists a hiearchical relation-
ship between CUSTOMER table and NATION table,
Customer Nation is a snowflake dimension and n -
name is a level within customer dimension hierarchy.
Also, within customer dimension hierarchy Customer
nation level -n name, is prior to Customer key level
-c custkey, because NATION is a parent table of CUS-

TOMER table. In Fig.6, Customer nation level de-
rives from text highlighted in green, while Customer
key level and its properties namely: c name, c acctbal,
c address, c phone and c comment derive from text
highlighted in yellow.

Figure 6: SQL Statement of Business Query Q10.

Example 5. Multidimensional data retrieval mode is not
intended for comparing columns to each other, or to exists/
not exists usage. Hence, such predicates are included in
views. The views are used as data sources for facts (as shown
in Example 3 ), as well as for dimensions (as shown in this
example). Business query Q12 (illustrated in Fig.7), counts
the number of urgent and high priorities orders (i.e. high -
line count measure), and the number of not urgent and not
high priorities orders (i.e. low line count measure) per line
ship mode for a given line receipt year. Thus, the fact table
is ORDERS and dimensions are line ship mode and line -
receipt year. Notice that Q12 counts distinct orders which
related lines verify (l commitdate < l receiptdate AND l -
shipdate <l commitdate). Consequently, both dimensions
are defined from a subset of LINEITEM table as follows:

σ
l commitdate <l receiptdate
and l shipdate <l commitdate

lineitem

4.3 Optimizations based on Derived Data
Design, implementation and optimizations should be de-

veloped based upon business needs. Thus, an understand-
ing of the business workload is necessary for performance
tuning. Derived data, namely (i) aggregate tables (a.k.a.
materialized views), (ii) calculated attributes, (iii) Indexes
and (iv) data synopsis are well known techniques for perfor-
mance tuning. In this paper, we do not discuss indexes and
data synopsis usage. We propose the classification of OLAP
business queries, along two variables, namely dimensional-
ity (whether the cube size is scale factor dependent or not?)

Figure 7: SQL Statement of Business Query Q12.

and sparsity (whether the cube is very sparse or not?). Each
variable has two categorical values, and this results into four
types of OLAP business queries. The workload taxonomy
will motivate the choice of appropriate derived data type
among aggregate tables and calculated attributes.

4.3.1 OLAP Cube Characteristics
Next, we present two OLAP cube characteristics, namely

dimensionality and sparsity,
Dimensionality : The OLAP cube size is calculated using
both (i) cardinalities of dimensions and (iii) number of mea-
sures. Dimensionality is either data warehouse scale factor
dependent or not, i.e., when the data warehouse becomes
larger, does dimensionality of OLAP cubes becomes larger
or is the same? Below, we give two examples of queries,
Example 6. Business query Q4 –The Order Priority Check-
ing Query, counts the number of orders placed in a given
quarter of a given year in which at least one lineitem was
received by the customer later than its committed date. The
query lists the count of such orders for each order priority.
The OLAP cube has two dimensions, namely (i) the order
date dimension, which hierarchy is bi-level and composed
of: order year level and order quarter level and (ii) order
priority dimension, which hierarchy is mono-level. C4 size
is TPC-H scale factor independent and always equal to 135
(♯ order priorities:5 × ♯ order years:7 × ♯ quarters/year:4).
Example 7. Business query Q15 –The Top Supplier Query,
finds suppliers who contributed the most to the overall rev-
enue for parts shipped for a given quarter of a given year.
In case of a tie, the query lists all suppliers whose contri-
bution was equal to the maximum. The cube processing
includes the calculus of total revenue for each supplier,

∑
l -

extendedprice × (1-l discount) per shipping year and ship-
ping quarter, as well as the maximum revenue recorded per
year/quarter period of time. C15 size is SF×28,000 (line -
ship year :7 × ♯ quarters/year :4 × ♯ suppliers: SF×10,000).
Notice that the size of C15 is TPC-H scale factor depen-
dent.
Sparsity : In OLAP cube, cross products of dimensional
members form the intersections for measure data. But in
reality, most of the intersections will not have data. This
leads to compute the sparsity (or inversely the density) of
the multidimensional OLAP cube. We propose two categor-
ical values, namely very sparse and acceptable sparsity.
Example 8. Business query Q18 –The Large Volume Cus-
tomer Query, finds a list of customers who have ever placed
large quantity orders (i.e.,

∑
l quantity ≥ 300). The size of

C18 is the ♯ orders: SF × 1,500,000. Nevertheless, 3.8ppm



(parts per million) of orders are big orders. Thus, we con-
sider OLAP cube C18 as very sparse.
Example 9. Business query Q2 –The Minimum Cost Sup-
plier Query finds, in a given region, for each part of a certain
type and size, suppliers who can supply it at minimum cost,
with a preference to suppliers having highest account bal-
ances. The cross product of dimensions part type, part size
and supplier region does not present empty for more than
98% of combinations.

4.3.2 Recommendations
Hereafter, we briefly recall definitions of aggregate tables

and derived attributes, and motivate their usage for each
type of business query of TPC-H workload.
Aggregate Tables:(a.k.a, materialized view), an aggregate
table summarizes large number of detail rows into infor-
mation that has a coarser granularity. As the data is pre-
computed, an aggregate table allows faster cube processing.
We recommend aggregate tables for business queries hav-
ing a dimensionality, which is scale factor independent (i.e.
fixed number of rows as Q4), and also for business queries
having very sparse cubes (i.e. return few rows and most di-
mensions’ combinations are empty as Q18).
Derived Attributes: (a.k.a. calculated fields), Derived at-
tributes are calculated from other attributes. We recom-
mend derived attributes for OLAP cubes which dimensional-
ity is scale factor dependent, as Q10. Indeed, for this type of
business queries, derived attributes are much less space con-
suming than aggregate tables. Q10 identifies customers who
might be having problems with the parts that are shipped to
them, and have returned them, for so, it calculates the lost
revenue for each customer for a given quarter of a year. In
order to improve the response time of Q10, we propose the
following alternatives, (1) Either add 28 derived attributes
c sumLostRev /year/quarter to CUSTOMER relation, or (2)
add one attribute o sumLostRev to ORDERS relation. No-
tice that, the second alternative is better than the first with
respect to both storage overhead and cost of refresh of stale
derived attributes. Indeed, following inserts or deletes of or-
ders (respectively TPC-H refresh functions RF1 and RF2),
the 28 derived attributes are stale, while refreshes do not
render stale the attribute o sumLostRev. As a consequence
of derived attributes, the schema of OLAP cube C10 is the
following: henceforth, the measure is sum(o sumLostRev),
the fact table is ORDERS and dimensions are customer di-
mension and order date dimension as defined in Example
4. The gain in performance results from not performing the
join of LINEITEM and ORDERS tables.
We conducted a numerical study over TPC-H benchmark

workload. We were interested in computing the maximal
number of rows returned and the OLAP cube size. We con-
cluded that TPC-H business queries fall into three categories
(see Table 1), for which different sound recommendations are
proposed. Notice that, derived data, i.e., aggregate tables
and derived attributes, could be stale following the execution
of warehouse refresh functions. Refreshes are implemented
at the business logic using stored procedures.

4.4 Virtual Cubes
Virtual Cubes are recommended for minimal maintenance

cost of OLAP cubes. They allow finding out shared and
relevant materialized pre-computed multidimensional cubes.
We implementedAutoMDB for recommending merge of OLAP

cubes based on maximum shared properties and minimum
different properties [23]. For instance, AutoMDB detects
that, (i) OLAP cubes C5 and C7 have the same fact table
LINEITEM. Moreover, (ii) both cubes calculate the same
measure sum(l extendedprice × (1 − l discount)), and (iii)
two dimensions of OLAP cube C7 could be collapsed within
dimensions of OLAP cube C5. Hereafter, we describe both
dimensions sets of OLAP cubes C5 and C7,
OLAP cube C5 dimensions are the following,

• DC5,1 customer geography: customer region > cus-
tomer nation,

• DC5,2 supplier geography: supplier region > supplier -
nation,

• DC5,3 order date: order year.
OLAP cube C7 dimensions are:

• DC7,1 customer geography: customer nation,
• DC7,2 supplier geography: supplier nation,
• DC7,3 item ship date: ship year.

AutoMDB recommends building a physical cube which en-
globes C5’s dimensions namely: DC5,1, DC5,2, DC5,3, C7’s
dimension DC7,3 and C5’s measure. Consequently, C5 and
C7 are defined as virtual cubes.

5. PERFORMANCE ANALYSIS
Next, we first describe system implementation. Then, we

present performance results.

5.1 System Implementation
We revolved TPC-H benchmark into a multidimensional

benchmark, and we translated the SQL workload into MDX
workload. For each business query, we propose an MDX
statement for the query and an MDX statement for the
cube. For test, we used MySQL as a relational DBMS, and
Mondrian ROLAP server [17]. Mondrian is an open source
ROLAP server of Pentaho BI suite. It executes queries writ-
ten in the MDX language, by reading data from a relational
database (RDBMS), and presents the results in a multidi-
mensional format (a.k.a. pivot table) via JPivot. For in-
stance, business query Q10 of TPC-H benchmark -Returned
Item Reporting Query -which SQL statement template is il-
lustrated in Fig.6, identifies customers who might be having
problems with the parts that are shipped to them, and who
have returned parts. The query considers only parts that
were ordered in a specified quarter of a year. The OLAP
cube computes all lost revenues per customer dimension and
per order date dimension. The user interacts with the pivot
table (via an OLAP dice operation) shown in Fig. 8, in or-
der to retrieve lost revenues for French customers during first
quarter of 1992. Fig. 8 shows excerpts of MDX statements
corresponding respectively to Cube C10 and Query Q10.

Fig. 9 shows the system architecture under test. We make
use of the following software: (i) Schema Workbench to gen-
erate the multidimensional database schema in XML, (ii)
Mondrian as ROLAP Server, (iii) Apache Tomcat as JSP
Container, (iv) JPivot as OLAP Client, and MySQL5 as
DBMS back-end.

5.2 Performance Results
The hardware system configuration used for performance

measurements are Adonis/ Edel nodes located at Grenoble
site of GRID5000. Each node has 24 GB of memory, its
CPUs are Intel Xeon E5520, 2.27 GHz, with 2 CPUs per
node and 4 cores per CPU, and run Lenny Debian Operating



Type Dimensionality Sparsity TPC-H Business Queries Recommendation
A SF dependent very sparse Q15, Q18 Aggregate Tables
B SF dependent dense enough Q2, Q9, Q10, Q11, Q20, Q21 Derived Attributes
C SF independent very sparse — Aggregate Tables
D SF independent dense enough Q1, Q3, Q4, Q5, Q6, Q7, Q8, Q12,

Q13, Q14, Q16, Q17, Q19, Q22
Aggregate Tables

Table 1: TPC-H Workload Taxonomy.

SELECT [Order Date].members ON COLUMNS,

[Customer].Members ON ROWS

FROM [Cube10]

SELECT {[Order Date].[1992].[1]} ON COLUMNS,

{[Customer].[FRANCE]} ON ROWS

FROM [Cube10]

Figure 8: Screenshots of Pivot Tables of C10 and Q10 and corresponding MDX statements.

Figure 9: System under test.

System.
For experiments, the client sends a stream of MDX queries

in a random order to the database tier, and measures per-
formance of MDX queries for two different workloads. The
first workload stream is a Query workload. It is composed
of TPC-H queries translated into MDX ((i.e., Qi, Qj, . . . )),
while the second is a Cube-then-Query workload. It is com-
posed of TPC-H*d cubes’ MDX statements followed by Queries’

MDX statements (i.e., Ci-Qi, Cj-Qj, . . . ). Second workload
type should allow query result retrieval from built cubes and
consequently, it is expected to lead to better performance
results. Table 2 and Table 3 show respectively detailed per-
formance results for SF=1 and SF=10. Response times are
measured over 3 runs, and the variance is negligible.

Experiments show that,

• Cube building is memory consuming, run exceptions
are, either related to memory leaks (OutOfMemoryEr-
ror) or Mondrian limits (Size of CrossJoin result ex-
ceeded limit 2,147,483,647).

• SQL outperforms MDX, except for queries retreiving
responses from built cubes (cube-then-query workload
type), for which, data is aggregated and measures are
pre-computed and are in-memory.

• For some queries, cube building is not improving per-
formances such Q2. These MDX queries include new
members calculus (i.e., measures or named sets), and
perform filtering on levels’ properties (readers could
check MDX statements available on-line [23]).

• For SF=1, most cubes allow fast data retrieval after
their deployment. Elapsed times fo running follow-
ing business queries are better compared to SQL after
cube building as Q1, Q4-Q8, Q14, Q16, Q17, Q19 and
Q21. For Q3, Q9-Q11, Q13, Q15, Q18 and Q22, their
respective response times were improved compared to
query workload execution, but are still not compet-
ing with SQL. Overall, for SF=1, improvements vary



SQL MDX Workload (sec) Enhanced MDX Workload (sec)
Workload Query

Workload
Cube-then-Query
Workload

Query
Workload

Cube-then-Query
Workload

(sec) Cube Query Cube Query
Q1 7.36 54.90 85.25 0.16 0.56 0.68 0.19
Q2 0.26 36.07 26.48 34.88 255.18 n/a∗1 -
Q3 1.77 79.94 976.17 37.20 59.75 934.84 31.17
Q4 1.72 14.27 114.53 0.33 0.07 0.06 0.05
Q5 47.42 8.42 157.68 0.38 0.09 0.66 0.04
Q6 1.03 15.78 18.22 0.27 0.39 0.62 0.31
Q7 1.81 5.24 11.88 0.04 0.08 0.88 0.05
Q8 1.65 5.04 45.16 0.61 0.31 3.27 0.23
Q9 3.16 305.83 1195.62 56.98 431.80 1,007.25 54.16
Q10 1.86 109.14 288.51 2.95 35.38 120.03 2.29
Q11 1.01 55.18 55.89 31.33 54.53 56.58 31.04
Q12 1.50 16.52 40.23 8.82 0.06 0.10 0.05
Q13 4.05 203.15 882.80 16.79 0.12 0.35 0.03
Q14 1.20 1.77 24.89 0.04 0.05 0.06 0.05
Q15 2.87 369.05 18,829.68 369.17 0.01 - -
Q16 0.63 14.28 35.69 0.91 1.71 5.05 0.60
Q17 1.30 3.42 34.07 0.18 0.06 0.13 0.05
Q18 3.52 3,515.31 3,340.55 2,167.40 0.01 - -
Q19 1.98 48.23 50.45 1.43 2.27 4.55 0.22
Q20 2.13 127.36 n/a∗1 - 47.48 n/a∗1 -
Q21 4.75 9.62 99.42 0.05 0.29 3.44 0.08
Q22 0.43 5.63 32.46 2.63 4.33 20.78 1.12

• n/a∗1: java.lang.OutOfMemoryError: GC overhead limit exceeded.

Table 2: Performance results for SF = 1.

from 81.37% to 99.71%, for Q1, Q4-Q8, Q12, Q13,
Q14, Q16-Q19 and Q21.

• For SF=10, most cubes allow fast data retrieval after
their deployment. Elapsed times fo running follow-
ing business queries are better compared to SQL after
cube building as Q1, Q4-Q8, Q12, Q14, Q16, Q17 and
Q21. Also, the system under test was unable to build
cubes related to business queries: Q3, Q9, Q10, Q13,
Q18, and Q20. For Q11, Q15, Q19 and Q22, their
respective response times were improved compared to
query workload execution, but are still not compet-
ing with SQL. Overall, for SF=10, improvements vary
from 42.78% to 100%, for Q1, Q4, Q5, Q6, Q7, Q8,
Q12, Q13, Q14, Q16, Q17, Q19 and Q21.

• Business queries, for which aggregate tables were built,
namely (Q1, Q3-Q8, Q12, Q13, Q14, Q15, Q16, Q17,
Q18), were improved. Aggregate tables allow very fast
building of cubes, in some cases very close to query
response times, and this allows fast navigation within
the muldimensional structure.

• Since, adding derived attributes changes the cube schema
and saves join operations processing, the results illus-
trated in Table 4 show good improvements, except for
Q2. For the latter, the response time of the SQL
statement rewritten using the ps isminimum derived
attributes reduces the response time to less than 1sec.
Notice that C2 is a very dense cube with a very high
dimensionality.

• Ideally, the system under test maintains same perfor-
mance results for any SF. Experiments show that the
ratio of SF=10 performance results to SF=1 perfor-
mance results even for SQL is higher than 10 for most
business queries of TPC-H workload. Indeed the av-
erage SQL SF=10 - SQL SF=1 ratio is equal to 135
. With MDX, the average MDX SF=10 - MDX SF=1
ratio is 70 for query workload with no optimizations,

and 36.36 for cube workload with no optimizations.
Since, the ROLAP server translates MDX statements
into SQL statements, obtained results show that the
OLAP engine is bad performing. With derived data,
and especially with aggregate tables having same size
for both SF=1 and SF=10, as for business queries:
Q1, Q4, Q5, Q6, Q7, Q8, Q12, Q13, Q14,Q15, Q16,
Q17 and Q19 (see Table 5), the average ratio becomes
almost 1.8 for query workload, and it is 1.4 for cube
workload. For business query Q10, the derived at-
tribute o lostrevenue decreases the ratio from 65.06 to
9.3 for query workload. Ditto, for business query Q21,
the derived attribute s nbrwaitingorders decreases the
ratio from 60.06 to 7.86 for query workload. Some de-
rived attributes allow the system to become sub-linear,
while with aggregate tables, the system under test is
ideal.

The cost of derived data is threefold (i) storage overhead,
(ii) computing overhead and (iii) refresh overhead. Aggre-
gate tables were proposed for business queries which related
OLAP cubes have a dimensionality independent of scale fac-
tor or are very sparse cubes. Elapsed times for aggregate
tables creation vary along the business query complexity.

For aggregate tables, which can be refreshed incremen-
tally, we load RF-1 stream new sales and RF-2 stream old
sales, into temporary tables, create delta-aggregate tables.
Then, run PL/SQL code in order to refresh the aggregate ta-
bles. RF-1 new sales is composed of 4,500 × SF new orders
and their related new item lines (17,981 × SF lines), while
RF-2 old sales is composed of 4,500 × SF orders and their
related lines for delete. Complete refresh is selected either
when it is not possible to refresh incrementally or when it
is better performing than incremental refresh. Performance
results are reported in Table 5 and Table 6.

Storage requirements for derived attributes are linear to
the scale factor. The creation and refresh of derived at-



SQL MDX Workload (sec) Enhanced MDX Workload (sec)
Workload Query

Workload
Cube-then-Query
Workload

Query
Workload

Cube-then-Query
Workload

(sec) Cube Query Cube Query
Q1 211.94 2,147.33 2,778.49 0.29 1.10 1.39 0.21
Q2 459.18 1,598.54 346.92 1,565.51 n/a∗1 n/a∗1 -
Q3 56.75 n/a∗1 n/a∗1 - n/a∗2 n/a∗1 -
Q4 11.22 1,657.60 7,956.45 5.33 0.11 0.12 0.05
Q5 19.10 54.53 3,200.64 0.46 0.08 1.01 0.48
Q6 38.63 282.11 371.80 0.53 0.49 0.85 0.31
Q7 133.92 260.23 617.20 0.06 0.13 1.39 0.06
Q8 37.18 50.63 2,071.00 4.61 0.46 2.83 0.23
Q9 645.86 n/a∗1 n/a∗1 - n/a∗1 n/a∗1 -
Q10 191.69 7,100.24 n/a∗2 - 329.01 n/a∗1 -
Q11 4.00 2,558.21 3,020.27 1,604.10 2,738.46 2,723.85 1,585.81
Q12 144.36 456.81 735.67 123.43 0.06 0.07 0.05
Q13 38.68 n/a∗2 n/a∗2 - 0.08 0.38 0.06
Q14 122.11 391.06 946.16 0.06 0.10 0.11 0.05
Q15 90.97 13,005.27 32,064.90 12,413.74 0.07 - -
Q16 47.92 414.82 461.90 4.62 1.36 4.7 0.68
Q17 4.22 1,131.37 5,711.14 2.03 0.06 0.25 0.05
Q18 905.16 n/a∗2 n/a∗1 - 0.30 - -
Q19 1.56 598.9 727.72 37.57 4.61 4.30 0.16
Q20 1.55 14,662.53 n/a∗3 - 2,802.65 n/a∗4 -
Q21 511.54 578.09 855.46 0.15 2.28 27.38 0.78
Q22 2.40 68.74 402.16 39.33 69.93 282.18 30.68

• n/a∗1: java.lang.OutOfMemoryError: GC overhead limit exceeded,

• n/a∗2: java.lang.OutOfMemoryError: Java heap space,

• n/a∗3: Mondrian Error:Size of CrossJoin result (200,052,100,026) exceeded limit (2,147,483,647),

• n/a∗4: Mondrian Error:Size of CrossJoin result (200,050,000,000) exceeded limit (2,147,483,647).

Table 3: Performance results for SF = 10.

Impacts for SF=1 Impacts for SF=10
Query (%) Cube (%) Query (%) Cube (%)

Q2 -ps isminimum -514.00 n/a n/a n/a
Q9 -l profit 26.68 48.34 n/a n/a
Q10 -o sumlostrevenue 72.75 68.76 95.36 n/a
Q11 -n stockvalue 13.23 10.94 -7.50 9.80
Q17 -p sumqty, p countlines 52.57 34.11 99.99 99.99
Q20 -ps excess YYYY 66.97 n/a 80.88 n/a
Q21 -s nbrwaitingorders 96.98 96.54 99.60 96.80

Table 4: Impacts of Derived Attributes on Performance Results.

tributes vary along complexity to compute them. The space
overhead caused by derived attributes is calculated with re-
spect to the original database volume, respectively 1.3GB
for SF=1 and 11.95GB for SF=10.

6. CONCLUSIONS AND FUTURE WORK
Starting from limitations of actual relational database man-

agement systems, in this paper we have provided a frame-
work for automating multidimensional database schema de-
sign, which embeds several points of research innovation. In
order to prove the effectiveness and the reliability of our pro-
posal, we tested it over the well-known TPC-H benchmark
as to make it a kind of multidimensional benchmark, TPC-
H*d, along with the transformation of the classical TPC-
H workload into suitable MDX queries. The experimental
evaluation has been conducted by benchmarking the pop-
ular ROLAP server Mondrian and its driver OLAP4j via
TPC-H*d.
Future work is mainly oriented towards two different di-

rections. First, we aim at dealing with the related-context
represented by streaming multidimensional data (e.g., [3]).

Second, we pursue the idea of adpating our framework to the
novel and exciting research context represented by so-called
Big Data (e.g., [5]).
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