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ABSTRACT

Dimension Reduction is one popular approach to tackle large
and redundant feature spaces as seen in most practical prob-
lems, either by selecting a subset of features or by projecting
the features onto a smaller space. Most of these approaches
suffer from the drawback that the dimensionality reduction
objective and the objective for classifier training are decou-
pled. Recently, there have been some efforts to address the
two tasks in a combined manner by attempting to solve an
upper-bound to a single objective function. But the main
drawback of these methods is that they are all parametric,
in the sense that the number of reduced dimensions needs
to be provided as an input to the system. Here we propose
an integrated non-parametric learning approach to super-
vised dimension reduction by exploring a search space of
all possible disjunctions of features and discovering a sparse
subset of (interpretable) disjunctions that minimise a regu-
larised loss function. Here, in order to discover good disjunc-
tive features, we employ algorithms from hierarchical kernel
learning to simultaneously achieve efficient feature selection
and optimal classifier training in a maximum margin frame-
work and demonstrate the effectiveness of our approach on
benchmark datasets.

1. INTRODUCTION

In building machine learning models using features, it can
so happen that several features might be either irrelevant or
contain redundant information, which could befuddle the
model learner or lead to over-fitting and consequently, a less
effective model. Therefore, a small set of relevant and non-
redundant features that effectively discern classes is desired.
Identifying the best feature subspace for classification comes
under the broad area of dimensionality reduction (DR) tech-
niques, which can be divided into methods for feature sub-
set selection and methods for feature extraction. Here we
pose dimensionality reduction as discovering a small set of
interpretable disjunctions of basic features as reduced di-
mension in a supervised setting and propose an integrated
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non-parametric learning approach that minimize a regular-
ized loss function to solve the objective

Feature subset selection (F'SS) is the process of selecting a
subset of features that embodies relevant and non-redundant
information for use in model construction. Some approaches
like Relief, FOCUS and wrapper methods [14] (often greed-
ily) select the subset of features based on some local rel-
evance criteria such as information gain, chi-squared test,
etc., or some global objective such as the £1 norm regular-
ization in an SVM classifier.

On the other hand, feature extraction approaches attempt
to discover a lower-dimensional embedding of the feature
space that will approximately retain the statistical relation
between the instances and the class label as in the origi-
nal space. Any approach for dimensionality reduction can
be adjudged parametric or non-parametric respectively de-
pending on whether the number of reduced dimensions of the
embedding is considered as an input parameter or whether it
is estimated within the approach. Further, each line of work
can be classified as supervised, weakly-supervised or unsu-
pervised. Unsupervised parametric methods include pro-
jective methods like Principal Component Analysis (PCA),
Kernel PCA and its variants, manifold methods like Multi-
Dimensional Scaling, Laplacian EigenMaps, discriminant anal-
ysis techniques such as Linear Discriminant Analysis, Kernel
Discriminant Analysis, Hybrid Discriminant Analysis [29]
(a combination of Principal Component Analysis and Lin-
ear Discriminant Analysis which is claimed to lead to more
robust models), and Continuous Latent Variable methods
like Latent Semantic Indexing, Probabilistic Latent Seman-
tic Indexing, Latent Dirichlet Allocation etc.

There has been considerable amount of work on adapt-
ing dimension reduction methods in supervised or weakly-
supervised settings, for example, supervised latent variable
models like supervised latent dirichlet allocation (sLDA) [7],
hierarchical supervised LDA (HsLDA) [22] which extends
sLDA to the case of hierarchical supervision, labeled-LDA [24]
which focuses on multi-labeled supervision for multi-labeled
collections.

There have also been a few attempts at building discrim-
inative frameworks for supervised dimensionality reduction,
for example discLDA [15] motivated by the observation that
the parameter estimates obtained in the generative counter-
parts by maximum likelihood or as Bayesian posterior do
not necessarily lead to optimum models for predictive tasks.
Some of these methods make assumptions that may not be
appropriate in reality. For example sLDA assumes a nor-
mal distribution for the response variable and further as-



sumes it to be linearly dependent on its empirical mixture
proportions. On the other hand, discLDA assumes that
the mixture proportions of each class after a linear trans-
formation should be close to each other. This assumption
seems very restrictive and also appears to go directly against
classification requisites. The approach generally adopted
for dimensionality reduction in nonparametric settings is to
employ stochastic processes instead of distributions, which
are flexible in the sense of accommodating infinite number
of variables and hence able to estimate the number of re-
duced dimensions implicitly. Two such stochastic variants
of the unsupervised approaches are Hierarchical Dirichlet
Processes (HDP) [26] and hierarchical LDA [6]. Other than
this, there have been some approaches on determining the
size of learned ontologies, in the area of topic-modeling, by
studying the change in average cosine distances between top-
ics with respect to the increase in number of topics. Arun
et. al [3] additionally consider information from the topic-
document matrix and propose a measure for the estimation
of the ‘correct’ number of topics based on Kullback-Leibler
divergence of the singular value distributions of these ma-
trices.

The above methods that treat dimensionality reduction
as an isolated problem, allow for the use of any classifica-
tion or regression model building on the discovered sub-
space. However, since the dimensionality reduction and
classifier training are decoupled from each other, these ap-
proaches cannot generally guarantee optimality of feature
selection with respect to the classifier objective. There have
been some attempts [18] to develop models that integrate
dimensionality reduction with model building, and which
have shown the ablility to discover predictive topic repre-
sentations that are more suitable for supervised prediction
tasks. Maximum Entropy Discrimination Latent Dirichlet
Allocation (medLDA) [30] is a maximum margin variant
of maximum-entropy discrimination LDA which integrates
maximum margin criterion with LDA by optimizing a sin-
gle objective function with a set of expected margin con-
straints. A more recent approach, Multi-Modal Probabilis-
tic Latent Semantic Analysis (MMpLSA) [28], that evolved
along the same lines, has integrated PLSA (in place of its
Bayesian version of LDA) with maximum margin criterion
and has shown to perform better than its predecessors [7,
15, 30]. Further, these studies have shown that building
another classifier using the induced dimensions does not in-
troduce much performance gain. The main limitation of
these methods is that they are parametric — they need the
number of reduced dimensions as input and have no intrinsic
mechanism for estimating this number within the system.

Parallely there has been work aimed at feature selection
embedded within a max-margin classifier, popularly SVM.
[27] uses zero normed regularizer in the SVM objective,
where approximate minimization of the zero-norm leads to
sparse feature selection. But their feature selection is para-
metric, since the desired number of features to be selected
explicitly given as input, and its value is decided by cross-
validation. Empirically they show the model performance
does not degrade as much as the baseline SVM as desired
number of features given as input gets smaller, but there
is no way to determine the optimum number of features
without actually enumerating. On the other hand, [21] pro-
poses a convex energy-based framework to jointly perform
feature selection and SVM parameter learning for linear and

non-linear kernels. Theoretically they have shown a tight
connection of their formulation with that of L; norm regu-
larized SVM and empirically their classification accuracies
are found to be comparable to vanilla Ly norm SVM and
show some reduction in number of features selected over
this non-sparse variant of SVM.

There has not been much discussion on the optimality of
the models built subsequently from the reduced set of fea-
tures produced by dimensionality reduction techniques. Gal
Chechik [9] solves the maximum margin objective in the dual
but does not guarantee optimality, while medLDA [30] and
MMpLSA [28] have both solved a tight bound approxima-
tion of the original objective in the interest of tractability.

1.1 Our Contribution

Our work falls in the league of integrated maximum mar-
gin linear dimensionality reduction approaches for model
building in a supervised classification setting' setting. For
simplicity, we assume that all our basic features (attributes
themselves) are boolean. For example, presence or absence
of a word in the dictionary can be a basic boolean feature.
Neverthless, our approach can be applied to settings with
nominal features by booleanizing nominal or numerical fea-
tures. We intend to learn fewer features that capture the
redundant information present in basic features by group-
ing them and representing each group as a single disjunctive
feature. In the case of text classification, the disjunction of
(nearly) synonymous or strongly correlated words can be
treated as a single feature. For example, words such as
beautiful and gorgeous could convey similar sense about an
entity and therefore a single feature that is a disjunction
of these could be sufficient. The preferred disjunctive fea-
tures should be maximum in the sense that we try to include
as many synonymous basic features as possible and exclude
any non-synonymous basic feature in a disjunction. For ex-
ample, ugly is not a synonym of beautiful and therefore we
would generally not expect ugly and beautiful to co-occur
in the same disjunctive feature. Our objective is to con-
struct an optimal set of relevant and non-redundant features
for classification, by minimizing the hinge loss. As noted
above, any approach with the dimensionality reduction ap-
proach decoupled from the classifier training has limitations
in finding optimum models. In this paper, we propose an
integrated supervised approach for dimensionality reduction
in a maximum margin framework. Since the dimensions are
disjunctions of basic features, the induced features can be
expected to be interpretable.

To the best of our knowledge, there has not been any ap-

proach in discriminative learning that integrates non-parametric

dimensionality reduction with optimal model building for
classification. There has been some work on employing max-
imum margin based nonparametric dimensionality reduction
in a multi-task setting [2] and in the area of learning under-
lying shared structures amongst classes [1] in a multi-class
setting. Although these methods solve their objectives op-
timally, they are not directly comparable to our work, since
in the case of binary classification or 1-task case, their di-
mensionality reduction approach reduces to a trivial feature
selection using 1-norm regularization. Our main contribu-
tion in this paper is an integrated optimal and efficient clas-

1While our approach can be very naturally extended to the regression
setting by changing the loss function, we have not empirically studied
supervised dimensionality reduction for regression in this work.



sifier learning and dimensionality reduction technique based
on the Hierarchical Kernel Learning (HKL) setting [4]. We
conclude this section by briefly introducing the hierarchical
kernel learning framework.

Hierarchical kernel learning (HKL) [4] approaches have
gained interest recently due to their ability to learn ker-
nels in a large kernel space [4]. Bach, 2009 has introduced
HKL framework that efficiently explores an exponential ker-
nel space where individual kernels can be decomposed into
base kernels [4]. This approach selects kernels from the space
of all possible kernels embedded in a directed acyclic graph
using a graph based sparsity inducing norm. The complexity
of HKL is polynomial in the number of selected kernels. The
employed regularizer discourages complex kernels, thereby
encouraging a small set of simple kernels to be selected. In
this paper, we leverage the HKL framework to simultane-
ously perform dimensionality reduction and classifier train-
ing. We prune away irrelevant features and group redundant
features in the form of logical disjunctions. The sparsity in-
ducing hierarchical regularizer used in HKL selects a sparse
set of disjunctions. We evaluate our approach on standard
datasets and compare with other approaches. From our ex-
periments, we observe that the disjunctions discovered by
our method are more fine-grained than the topics identi-
fied by competing methods, while also yielding significant
improvements in test accuracies.

The rest of our paper is organized as follows. In Sec-
tion 2, we discuss the proposed approach and algorithm for
learning disjunctions for dimensionality reduction in a hier-
archical kernel learning setting. Section 3 is dedicated to
experiments and empirical observations. We conclude our
paper in Section 4.

2. OPTIMAL NON-PARAMETRIC MAX MAR-

GIN DIMENSIONALITY REDUCTION

We now formally define our problem of simultaneously
performing dimensionality reduction and classifier training
and present an efficient polynomial time algorithm to solve
the objective optimally. We consider features that do not
discern classes as irrelevant and therefore can be discarded.
For example, in sentiment classification, a set of similar-
meaning words such as method, algorithm, etc. might not
help in discerning classes and can be omitted. On the other
hand, multiple features capturing the same information (syn-
onyms) are redundant and might result in an ineffective clas-
sifier. For example, words such as beautiful, erquisite, gor-
geous, charming, etc. capture similar information about the
entity being discussed and should probably be clubbed to-
gether in the same dimension. For effectively capturing the
meaning of a group of synonymous basic features without re-
dundancy, we explore the space of disjunctive features that
are disjunctions (V) of basic features. For instance, in doc-
ument classification, synonymous words beautiful, exquisite,
and gorgeous can be used to construct a disjunctive feature
and the feature is instantiated when any one or more of the
component features are active. We refer to such features as
DisjunctProjs (Disjunctive Projections).The space of all
possible DisjunctProjs can be visualized as a lattice, with a
structure similar to the subset lattice, where the top node
is the empty node, the nodes at the next level are the in-
dividual basic features and so on. The bottom node in the
lattice is the disjunction of all the basic features. Upward

and downward refinements of a node can be defined in terms
of deletion or addition of a basic feature from or to the node
respectively.

We aim at automatically selecting good maximal Dis-
junctProjs from the ordering. A good DisjunctProj is a
disjunction which does not contain any statistically differ-
ent feature. A maximal DisjunctProj is a disjunction of
maximum number of basic features capturing (statistically)
similar information about the classes being discriminated
against each other. Therefore, a good and maximal Dis-
junctProj corresponds to a disjunction of synonymous basic
features in which no more basic features can be added with-
out affecting its meaning. With this understanding, if a Dis-
junctProj is not effective for classification, we assume that
the feature will not become more effective by the addition
of a new basic feature to the disjunction. For example, if
beautiful V ugly is not good, then beautiful V ugly V gorgeous
may not be good in general. Therefore, in the ordering, if a
node is not selected, we expect that none of its descendants
be selected either. Now let us assume that we have a good
DisjunctProj in the form of beautiful V exquisite V gorgeous.
This is maximal if adding a new word to the disjunction re-
sults in a bad DisjunctProj for classification. Therefore, if
ugly is added, in the new DisjunctProj formed by this ad-
dition, ugly can be considered as noise. Next, we formally
define our problem.

2.1 Formal Specification of the Problem

We pose our requirement as a maximum margin optimiza-
tion problem which is expected to select a sparse set of good
DisjunctProjs from the ordering and learn their optimal fea-
ture weights simultaneously. Let each elements of the vector
1) correspond to a node in the disjunction lattice and w the
corresponding weights. )V is the set of indices to nodes in
the lattice. A node 9, (.) in the ordering is a disjunction of
a set of basic features and can be represented as Viey ¥5(.),
where ¢ stands for a basic feature present in v.

To select a sparse set of DisjunctProjs from the exponen-
tial feature space, we employ a hierarchical regularizer on
the exponential feature space and present the SVM formu-
lation for binary classification as,

min %(Z O || WD) llp )2 +C1'¢ (1)
vEY

s.t. Vi : yi(Z(wv,¢u(Xi)> —b) >1-6,££2>20

veV

where wp(,) is the vector of feature weights correspond-
ing to the elements in the descendant nodes D(v) of node
v including the node v itself, p € (1,2], §, is the prior pa-
rameter that can be interpreted as the usefulness of node v,
C' is the regularization parameter, §; is the slackness in the
margin for " example, x; is the input vector of dimension
n (where n is the number of basic features) corresponding
to the i*" example, y; € {0, 1} is the predicted output value
for the " example, b is the bias term, w, is the feature
weight corresponding to v node and 1, (x;) is the truth
value of the v node for the i** training example. To dis-
courage very large and potentially ineffective DisjunctProjs,
we define &, as 8*!7*, where 8 and k are some parameter-
ized constants and |v] is the size of the node v. Many of
| Wo(v |lp are expected to be zero due to the 1-norm which
will force wy, Yu € D(v), to reduce to zeros. This effectively



discourages selection of large number of DisjunctProjs. Ad-
ditionally, as illustrated by Szafranski et al. [25], p-norm,
where p € (1, 2], induces further sparsity among the nodes.
Therefore, for | wp() ||p that are not reduced to zero by
1-norm, the p-norm forces many of the descendants of node
v to zero and thus encourages a sparse solution.

The kernel for a node v can be defined as, K, (x;,x;) =
(460 (:), 0 (57)) = (1=TTye, ¥0(x:))(1—TTye, Po(x;)). This
enables the sum of the kernels over a sub-lattice V to be com-
puted efficiently. For instance, the sum of kernels over the
entire lattice is,

ZK (xi,x;) =2" +H 1—&—1/); X 1/)1 X;))

veEV =1
n

[T+ %)),
=1

This is consistent with the requirement of polynomial time
summability of descendant kernels in HKL [4] and thus the
active set algorithm can be employed to iteratively select a
sparse set of features, since the optimality condition check
(which has been discussed afterwards) in it culminates into a
more efficient computation with the exponential number of
summations being reduced to polynomial number of prod-
ucts.

We now discuss the solution to the problem defined in
equation (1).The solution to equation (1) is expected to yield
a sparse set of features with non-zero weights. Therefore, as
illustrated in [4], the solution to equation (1) when solved
with the entire set of features is the same when solved with
the optimum set of features.

As the latter has lesser computational complexity, an ac-
tive set algorithm can be employed, which starts with a small
subset of DisjunctProjs and iteratively adds nodes that vio-
late a sufficiency condition. The primal optimization prob-
lem with an active set of features A (restricted primal) can
be represented as

H 1+1/Jl Xz
=1
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where
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and 7(y,C) ={a e R" |0<a<C, Y yi s = 0}
The final dual of equation (1) is derived as,

min  g(n) (8)
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where

g(n) =

max 1 a_*(ZCv
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The solution to the final dual, with V restricted to the
active set A gives the solution to the restricted primal prob-
lem. To solve the problem efficiently, we employ an active
set algorithm.

The active set algorithm [4] starts with an initial set of
features and at every iteration, solves the dual problem with
the current active features, checks a sufficiency condition on
the nodes that are sources of the complement set of current
active set (sources(A°) = {w € A°|Ancestor(w)(A° =
{w}}, where A° is the complement of 4 in V) and adds the
violating nodes to the active set. The process is continued
until no new node violates the sufficiency condition. A mir-
ror descent algorithm [5] is employed to solve the dual.We
now derive the sufficiency condition that determines whether
a given active set of features will yield an optimal model.

The sufficiency condition for the solution to the primal,
is essentially obtained by restricting the duality gap by a
threshold € and is specified below. The duality gap is given
by

max_ min min Gy, \ )

. . . A Ap€EA|p(y)].5VVEV
To efficiently solve, we apply the variational characteriza- Q€T(Y,C)YEAY|,1 AvEA|D(v)],pTVE

tion proposed in lemma 26 of [20] on the regularization term — min

W min maz G(v, A, &)
and represent equation (1) as YEA|1 M EA|ID(w)], pVUEVaef(y )
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where Aq, = {0 € R? [0 >0, 7, 07 =1}, YEAY| 1 iq,eA\D(v)LﬁvaVl;/ B ’ >

o t(v,A) = DA %’2’% as defined in the lemma 26
of [20] and A(u) denotes ancestors of u which includes the
node u itself. By applying the representer theorem [23] on
the variation characterization of the regularizer term, we can
derive the partial dual of the above primal form with respect

to w, b, € alone as,

Taking the Lagrange dual and applying the Lemma 26 of
[20] we derive the final form of the sufficiency condition from
the upper bound of the duality gap as,

min max
YEA V|1 Az;€A|D( )‘ pVVEV acT(y,C)

aiQas< (3o lwow ) +

veEA

G, A @) (6)

ue s:our(‘ee(.AC



Input: Training data D, Maximum tolerance ¢

1. Initialize Active set A = Top node in the lattice

2. Compute 7, a by solving (8)

3. while sufficiency condition is not satisfied, do

4. Add nodes from the set sources(.A) violating suffi-
ciency condition to A

5. Recompute 7, a by solving (8)

6. end while

7. Output: active-set A, 7,

Figure 1: Active set algorithm
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We now discuss the mirror descent approach to solving
equation (8). For a given 7, let & be the solution to (9).
Then the v*" sub-gradient of g(n) can be obtained as

gt =" (S cumiaTuar)
uey
( > Cu(n)p(c‘vTKua)ﬁ)
u€D(v)

The updated m is then used to solve (9) in an sequential
minimal optimization (SMO) style till convergence. The
active set algorithm thus returns a sparse set of Disjunct-
Projs and their optimal weights. For settings where some
background knowledge is available, the feature space can be
explored more efficiently. We discuss this next.

2.1.1 Incorporating Background Knowledge

In domains such as sentiment classification, where some
background knowledge about the features is available, it is
possible to control the number of nodes to be considered
for inclusion in each iteration of the active set algorithm
and thus speed up the learning process. For instance, in
sentiment classification, the background information is often
derived from user-preferences on terms by modifying the
Dirichlet prior or by adding some prior knowledge of word
sentiments as available in SentiWordNet, HowNet etc. [13,
17, 19]. This helps to explore lexical properties of words.
For example, words in a synonymous wordset are likely to
possess similar polarities.

Since words representing similar meanings are likely to
have the same part-of-speech, we can restrict our space of
DisjunctProjs to disjunctions of words belonging to the same
part-of-speech. This reduces the number of potential fea-
tures to explore which in turn effectively speeds up the learn-

ing process. Prior information about the polarity of words
can be embedded in the prior parameter 4, of node v, in
our integrated dimensionality reduction approach. This ef-
fectively helps the system to select features that are strongly
related to the classification task.

To incorporate the sentiment prior of a node v, we can
heuristically set d, to the product of the absolute sentiment
score of the individual words in the disjunction correspond-
ing to that node. i.e. §, = H SS(0) where SS(v) € [0,1] is

DEV
the absolute sentiment score of the word o, measured as
|positive sentiment score - negative sentiment score|, and
where the sentiment score can be obtained from the Sen-
tiWordNet.

The parameter d, encourages selection of the more strongly
polar features over the weaker ones. The motivation behind
taking absolute score is that when biasing the system to-
wards selecting sronger features, the polarity of the features
need not be considered. On this account, the Q(u);; term
in the sufficiency condition for optimality is modified as,

- 1
| ( 0+ 5 5smp)
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While we have presented the feasibility of incorporating
background knowledge in our dimensionality reduction ap-
proach, we leave experimental validation of this idea (e.g.,
on sentiment datasets) as future work.

3. RESULTS AND DISCUSSION

In this section, we discuss our experimental setup and
compare our results with the state-of-the-art methods for
dimensionality reduction. Our approach is implemented in
Java and we performed our experiments on a 12-core (2.66
GHz) 64 bit AMD machine with 8 GB RAM and running
Ubuntu 11.04. We report our results on two publicly avail-
able datasets, (i) a subset of datasets from the UCI data
repository [11] and (ii) the 20 Newsgroups dataset [16].

UCI data

We performed our first set of experiments on the follow-
ing data-sets: Breast-cancer, Winconsin breast-cancer, Hep-
atitis, Monk-1, Monk-2, Monk-3, Transfusion, Tic-Tac-Toe
and Vote, from the UCI repository. Each of these datasets
corresponds either to a binary or a multi-class classification
problem. We performed experiments on each of the above
datasets with all the wrapper-based dimensionality reduc-
tion approaches available in weka [12], a machine learning
toolbox. Out of all the wrapper methods provided by weka,



Wilcoxon Signed Rank Test(Level of Significance) ]
Subset Search LoSVM £1SVM
Evaluator Method

BestFirst Significant(0.05) Significant(0.01)
‘.,\o“ GreedyStep Significant(0.05) Significant(0.01)
@“’ LinearFwd Significant (0.05) Significant (0.01)
o Rank Significant(0.05) Significant(0.01)
SubsetSize Significant (0.05) Significant(0.01)
« BestFirst Not Significant Significant(0.01)
‘?f‘ GreedyStep Significant(0.05) Significant(0.01)
& LinearFwd Significant(0.05) Significant(0.01)
o Rank Significant(0.05) Significant(0.01)
SubsetSize Significant(0.05) Significant(0.01)
BestFirst Not Significant Significant(0.01)
e GreedyStep Not Significant Significant(0.01)
_\x.e’\ LinearFwd Not Significant Significant(0.01)
<> Rank Significant(0.05) Significant(0.01)
SubsetSize Not Significant Significant(0.01)
Baseline Lo Significant(0.05) Significant(0.005)
Baseline £ Significant(0.05) Significant(0.005)

Table 2: Wilcoxon Signed Rank Test (with level of
significance) to indicate whether IntegratedDim.Red.
is significantly better than Weka’s Feature Subset
Selection Wrapper Methods

Approach Accuracy

£L—18VM 93.14%
£L—28VM 91.38%
MMpLSA 84.7%
DiscLDA 83~0%
HedLDA 73.12%"
Integ. Dim. Red. 9455%

Table 3: Comparison of accuracies of different ap-
proaches on 20 Newsgroups dataset.

only those which give comparable results are reported. For
each dataset, and for each choice of the wrapper, we con-
sidered two choices for the classifier: 1) a 2-norm SVM (L3)
[8] and 2) a l-norm SVM (£;) [10]. The comparison of
the aforementioned methods with our dimension reduction
approach is provided in Table 1.

Among the approaches that we compare against, we re-
port the accuracies of only those (namely, Correlated Subset
Evaluator, Consistency Subset Evaluator and Filtered Sub-
set Evaluator) which perform comparably or better. For
each of the subset selection approaches, various search strate-
gies such as, BestFirst, GreedyStep, LinearFwd, Rank and
SubsetSizeF'wd have been employed and the results reported.

Further all accuracies (except for Monk-1, Monk-2 and
Monk-3), are presented as averages over 4-fold cross valida-
tion. For Monk-1, Monk-2 and Monk-3, the train and test
splits provided in the UCI repository have been used.

We observe that our approach (Integrated Dim. Red.)

performs consistently better than most of the other approaches

we compared against. On each dataset, our results are com-
parable with the best results among all the approaches and
better in many cases, as shown by the Wilcoxon Signed Rank
Test. This significance test was performed in order to com-
pare each of the Feature Selection wrappers provided by
Weka, when LibSVM (2-norm regularized SVM L3) and Li-
bLinear (1-norm regularized SVM L) are used for model
building, the results of the same reported in Table 2. The
results show that our approach is significantly better, at 0.01
level of significance, than each of the 15 Feature Subset Se-

lection methods provided by Weka, when LibLinear is used
as a model builder Correspondingly when LibSVM is used
for model building, our model is found to be signifcantly
better, at 0.05 level of significance, than a majority (i.e. 10
out of the 15) Feature Subset Selection methods, while for
the remaining methods, our approach is found to have com-
parable performance. This indicates that our approach can
leverage feature selection and model learning better than
2-norm SVM as well as 1-norm SVM, and with minimum
over-fitting. Some wrappers that use ChiSquare, GainRatio,
InfoGain, LSA-based, PCA-based or Relief-based attribute
evaluator showed significantly worse performance and are
not included in the table.

20 Newsgroups data

In order to compare against the current state-of-the-art su-

pervised dimensionality reduction-cum-classification techniques,

we evaluated our approach on the 20 Newsgroups dataset
that contains postings to Usenet newsgroups. We apply
our approach on the binary classification problem of dis-
tinguishing postings from two newsgroups alt.atheism and
talk.religion.misc, which is considered to be a hard task,
owing to the content similarity between them.In Table 3, we
present a comparison of accuracy achieved by our approach
with the best values reported by the existing approaches
such as DiscLDA, MedLDA and MMpLSA on this dataset
and in Table 1, the comparison has been reported on the
feature selection wrappers provided by Weka.

We note that the proposed integrated dimensionality re-
duction approach outperforms other approaches. The num-
ber of disjunctions discovered (automatically) by our ap-
proach is 170. Some of the disjunctions reported are as
follows:

{religion, sandvik, benedikt}
{religion, kent, benedikt}
{biblical, islam}

{atheism, historical}
{reading, writes}
{faz,run, mode}

{data, mode, graphics}
{version, order, directory}
{version, works, help, mail}
{use, interested, need}
{book, bill}

{images, mode}

{mode, algorithm}

{works, run}

{god, belicfs}

{book, edu}

MedLDA [30] is reported to have a best improvement ratio
of 0.2 at 20 topics, over its baseline which is a two-step LDA
+ SVM approach as well as the baseline used in [28] which is
a two-step pLSA + SVM approach. Whereas MMpLSA [28],
which gives best accuracy of 84.7% at 3 topics, shows a 0.39
relative improvement ratio over its baseline i.e. pLSA +
SVM and a 2% relative improvement over DiscLDA and
claims to perform better than MedLDA consistently. Dis-
cLDA itself has the best accuracy of 83.0% which is achieved

'MedLDA accuracy is not exactly reported in [30] and therefore, it
has been calculated from the relative improvement ratios reported
in [28]. The results of the competitor approaches are the best ones
obtained by the authors by crossvalidating on the parameter, number
of topics.



Breast-cancer Wisconsin Hepatitis Transfusion Vote Monk-1 Monk-2 Monk-3 Tic-Tac-Toe 20NewsGroups
z::z;or :Z::;’ LoSVML £L1SVNI LoSVM £1SVNI £5SVM £1SVM L5SVM £1SVM L5SVNI £1SVM L£oSVM £1SVM LoSVM £1SVNM LoSVM £1SVM L5SVML £1SVM LoSVNI £1SVM

BestFirst 74.64 70.65 93.84 94.72 95.0 93.75 91.04 91.04 96.28 96.28 69.37 74.94 63.34 59.63 97.22 97.22 80.88 73.88 93.67 89.10

,{_\O‘\ GreedyStep 74.64 67.75 93.84 94.72 95.0 93.75 91.04 91.04 96.28 96.28 69.37 74.94 63.34 59.63 97.22 97.22 80.88 73.88 93.76 89.10

‘@\o LinearFwd 74.64 67.75 93.84 94.72 95.0 93.75 91.04 91.04 96.28 96.28 69.37 74.94 63.34 59.63 97.22 97.22 80.88 73.88 92.09 89.98

o Rank 74.64 | 70.65 | 93.84 | 94.72 | 94.15 | 93.75 | 91.04 | 91.04 | 96.28 | 96.28 | 69.37 | 74.94 | 63.34 | 59.63 | 97.22 | 97.22 | 80.88 | 73.88 | 92.26 | 91.38

SubsetSize | 74.64 | 70.65 | 93.84 | 94.72 | 94.15 | 93.75 | 91.04 | 91.04 | 96.28 | 96.28 | 69.37 | 74.94 | 63.34 | 59.63 | 97.22 | 97.22 | 80.88 | 73.88 | 92.09 | 89.98

BestFirst 67.39 72.46 95.31 95.89 88.75 86.25 92.37 90.78 95.26 96.28 100.0 83.29 93.27 59.63 93.03 97.22 100.0 76.49 89.98 92.97

GreedyStep 70.29 67.75 95.75 95.01 87.0 86.25 91.18 71.92 94.40 93.10 100.0 74.94 87.93 59.63 93.5 97.22 99.58 98.33 89.98 92.97

LinearFwd 70.65 71.01 94.72 94.43 88.75 87.5 91.44 90.78 97.41 95.69 100.0 83.3 93.27 59.63 97.22 97.22 99.68 75.44 87.34 89.28

Rank 68.48 68.48 94.57 92.08 92.5 91.25 91.57 89.84 94.6 93.1 100.0 74.94 91.87 59.63 93.27 97.22 99.68 80.45 93.67 91.91

SubsetSize | 70.65 | 71.01 | 94.72 | 94.43 | 88.75 | 88.75 | 91.04 | 91.04 | 96.28 | 96.28 | 83.3 66.59 | 93.27 | 59.63 | 97.22 | 97.22 | 99.68 | 75.44 | 87.34 | 89.28

BestFirst 77.54 70.29 94.43 94.14 91.25 91.25 90.1 90.1 96.28 96.28 74.94 74.94 62.41 59.63 97.22 97.22 70.01 70.01 93.14 91.56

,e/b GreedyStep 77.54 70.29 94.43 94.14 91.25 91.25 90.1 90.1 96.28 96.28 74.94 74.94 62.41 59.63 97.22 97.22 70.01 70.01 93.14 91.56

»\“0‘ LinearFwd 77.54 70.29 94.43 94.14 91.25 91.25 90.1 90.1 96.28 96.28 74.94 74.94 62.41 59.63 97.22 97.22 70.01 70.01 90.51 87.34

<> Rank 77.14 70.29 94.43 94.14 88.75 92.50 91.04 91.04 96.28 96.28 74.94 74.94 62.41 59.63 97.22 97.22 70.01 70.01 84.88 85.86

SubsetSize | 77.89 | 70.29 | 94.43 | 94.14 | 91.25 | 91.25 | 90.1 90.1 96.28 | 96.28 | 74.94 | 74.94 | 62.41 | 59.63 | 97.22 | 97.22 | 70.01 | 70.01 | 90.51 | 87.34

Integrated Dim. Red. 75.36+£0.49 96.3410.19 91.25+0.29 91.0440.30 96.28+0.17 100.0+0.0 85.1540.38 97.2240.16 100.0+0.0 94.55+0.23
Baseline Lo 71.01 95.89 87.50 91.17 94.40 100.0 87.93 93.50 99.58 91.38
Baseline L1 70.65 96.04 86.25 89.57 93.10 74.94 61.25 97.21 98.32 93.14

Table 1: Comparison of accuracies (in percentage) of different dimensionality reduction approaches on the
UCI dataset and the 20Newsgroups alt.atheism vs. talk.religion.misc problem.

at 60 topics.

In addition to the improvement in performance, unlike
other approaches that require the number of topics to be
learned as an input, our approach automatically learns the
number of disjunctive features. Since other methods do not
discover the number of topics, they often have to resort to
enumerating the classifier model’s performance for different
values of this parameter and have to report the number of
topics that leads to the best performance in classification.
Moreover, parametric approaches to determine the number
of topics may not yield an optimum result, especially if there
is no integrated learning of the topic detection parameters
and the classification parameters.As a result, inappropriate
number of topics may be used by such systems and thus can
result in over-fitting, as hypothesized by the authors of [28].
We overcome this limitation by our nonparametric approach
and learn an optimum number of disjunctive projections.
On the other hand, since our model assimilates topic selec-
tion within the classifier and handles over-fitting by regu-
larization in a unified manner, our approach guarantees an
optimum model that performs efficient dimension reduction
without compromising on the classifier performance.

We now compare our method with the other state-of-
the-art embedded feature selection methods, namely the
Zero-Norm SVM based method in [27] and Weighted SVM
method in [21], both of which tackle the problem of feature
selection in an integrated manner during classifier training.
In order to do this comparion, four datasets are used, namely
the Ionosphere and Wisconsin Dataset from UCI reposi-
tory [11] which have been used in [21] and the two-class Mi-
croArray datasets on Colon Cancer and B-Cell Lymphoma
detection that have been used in [27]. These datasets have
numerical features (except for Wisconsin dataset which has
nominal features) and have been consequently booleanized
to serve our purpose.

The Tables 4 and 5 comparing our method with Zero
Norm SVM and Weighted SVM respectively, shows that our
method is comparable in classifier performance with these
previous approaches but in our case the same classifier per-
formance is achieved by selecting much lesser number of fea-
tures. In the tables 4 and 5 F'raction of Features Selected
is the fraction of the features out of the entire set that is
chosen parametrically or selected non-parametrically by the

algorithm. The Zero-Norm based SVM has a parameterized
method for feature selection, with the number of features
selection directly being the parameter, and the experiment
results on each dataset are tabulated against a range of val-
ues for this parameter. their main observation is that un-
like other SVM-based feature selection methods where the
performance degrades, their classifier performance actually
improves as the parameter value signifying the number of
features is decreased till a limit, after which again increases,
as indicated in the table.Whereas, in our method the value
for the optimal number of features (or more appropriately
disjunctions) to be selected, is obtained as a by-product of
the classification algorithm which essentially allows better
leveraging between feature selection and classifier training
as seen in Table 4.

Similar trend is seen in Table 5 where the comparison is
made against a Weighted Sparse version of SVM which also
performs non-parametric feature selection integrated with
model building. On both the datasets presented, the classi-
fier performance is very similar but the notable difference is
that our method again achieves comparable performance by
selecting significantly lesser number of features (where each
feature is disjunction of any number of basic features). The
primary difference between our method and all of the pre-
vious works discussed here is the kind of feature space that
is explored in the algorithm, namely the exponential-sized
space of disjunctive features in the former as compared to
the simple space of basic features in the latter.

4. CONCLUSION

Most existing approaches to dimensionality reduction for
classification decouple the dimensionality reduction and clas-
sification phases. Some approaches are greedy while some
others are parameterized, imposing a restriction on the learn-
ing system. In this paper we pose the requirement of optimal
dimensionality reduction as an integrated non-parametric
supervised max-margin optimization problem. We project
the original features into the space of disjunctions and present
algorithms inspired by the hierarchical kernel learning ap-
proach to select a sparse set of important disjunctions. We
have shown analytically and empirically that our integrated
approach learns optimal features in the form of interpretable



Approach Fraction Colon- Fraction B-

of Fea- | Cancer of Fea-

tures tures

Selected Selected

1.0 86.11% | 1.0 92.13%

0.5 85.83% || 0.49 92.13%

0.25 85.83% 0.124 93.24%
Zero-Norm- | 0.125 86.39% || 0.0621 93.89%
SVM

0.0625 88.06% 0.0248 94.07%

0.03125 88.89% || 0.0124 93.24%

0.015625 85.83% || 0.006 92.13%
Integrated | 0.007 88.71% || 0.0065 92.71
Dim. %
Red.

Table 4: Comparison of Feature Selection and Clas-
sifier Accuracies of Zero-Norm SVM and Integrated
Dim.Red on Binary class microArray Datasets.

Approach | Fraction TonosphereFraction Wisconsin
of Fea- of Fea- | Breast
tures tures Cancer
Selected Selected

Weighted | 0.7333 88.5% 1.0 96.31%

SVM

Integrated 0.6323 88.6% || 0.7 96.04%

Dim.

Red.

Table 5: Comparison of Feature Selection and Clas-
sifier Accuracies of Weighted SVM and Integrated
Dim. Red on UCI datasets

disjunctions of features capturing similar discriminative in-
formation for classification and leads to accurate models.

S.
1]

Lymphoma 2]
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