Efficient and scalable processing of frequent SPARQL
queries

Rajasekhar Velamuri
Dept. of Computer Science and Engineering
Indian Institute of Technology Madras
Chennai, India

rajasekhar.velamuri@gmail.com

ABSTRACT

A large amount of data is being published today in the
RDF [6] framework using semantic mark-up. The number
of triples currently published on the web is approximately
62 billion from 870 datasets [4]. We need frameworks that
can query RDF data efficiently when the data sizes scale
up. Incremental addition of data and computing resources
is a fundamental aspect of cloud computing. We propose a
framework which can run on the scale of billions of triples
and answers the frequent SPARQL [7] queries in a reasonable
amount of time. We integrate RDF-3X [12] (an exhaustively
indexed triple store) with Hadoop [1] (a distributed data
processing framework). RDF-3X has a powerful engine with
a capability to pull the data fast and Hadoop gives us fea-
tures such as scalability, high availability, fault tolerance and
parallelism. We analyze the existing frameworks and then
propose a new framework for executing the frequent queries
which gives us better results.

1. INTRODUCTION

The vision of Sir Tim Berners Lee, of a world where ma-
chines could interpret the data as we humans do, gave rise
to the Semantic web. In order to achieve this, Resource
Description Framework (RDF) came into existence. Data
in RDF is written in the (Subject Predicate Object) form
popularly known as the triple format. In order to query the
triple store a query language called SPARQL was standard-
ized. A SPARQL query is made up of one or more triple
patterns. A triple pattern might contain a variable or lit-
eral in the subject, predicate or object position. A query
in SPARQL matches a subgraph(s) in the whole data graph.
An example of this approach is given in Figure 1.

Amongst all triple stores, RDF-3X is the current state-
of-the-art store. It indexes every combination of subject,
predicate and object using clustered B™-tree indexes. It im-
plements query optimization techniques for fast query exe-
cution. Thus RDF-3X is 1-2 orders of magnitude faster than
existing triple stores.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

The 19th International Conference on Management of Data (COMAD),
19th-21st Dec, 2013 at Ahmedabad, India.

Copyright (©)2013 Computer Society of India (CSI).

P Sreenivasa Kumar
Dept. of Computer Science and Engineering
Indian Institute of Technology Madras
Chennai, India

psk@iitm.ac.in

- predicate -)
hasFriend A triple pattern.

A sub-graph matching
the triple pattern.

Figure 1: SPARQL Example

Massive amount of data on the semantic web gives rise to
distributed repositories. The distributed, parallel data pro-
cessing framework Hadoop has the capability of scalability,
high availability and fault tolerance. It uses the map-reduce
style of data processing. A possible integration of RDF-3X
and Hadoop can give us best of both the worlds, namely
efficiency and parallelism.

In a query log there are always some frequent triple pat-
terns. Frequent triple pattern(s) can be pre-computed so
that when the frequent triple patterns are posed again we
can answer the query fast. We can cache the results of these
frequent triple patterns. Thus we can avoid joins which are
done as part of the hadoop job in case of any query. The
joins in this case are still done by RDF-3X database locally
on each node. Data gets accumulated over time and the fre-
quent triple pattern(s) can change. Thus we also provide an
update algorithm which can update our frequent databases
when either more data gets added or frequent triple patterns
change. In our approach we perform better than Tao Yang
et al.[8] as we avoid the unnecessary shuffle and reduce phase
of a hadoop job and also avoid considering the triples which
do not contribute to the frequent triple pattern(s) result.

The contributions of our work are summarized below:
e A triple reconstruction based partitioning algorithm.
e A seperate partition for frequent queries data.
e A data update algorithm.

In Section 2 we discuss the work related to querying and
frequent triple pattern(s) querying. In Section 3 we discuss

architecture of the proposed system. In Section 4 we dis-
cuss the proposed data partitioning approach. In Section 5
we give the experimental results of the proposed approach
as compared to Tao Yang et al. In Section 6 we give the
conclusion and future work.

2. RELATED WORK

In this section we discuss the existing methods for data
partitioning and querying. Bhavani Thuraisingham et al.
[11] propose a heuristic based approach for SPARQL query-
ing in the cloud. Since there are no indexes in HDFS [2] they
suggest a predicate and predicate_object split based parti-
tioning technique. Another approach is the one suggested
by Abadi et al. [10] and later by Tao Yang et al. which is the
one we adapted for our work. The framework we use is suit-
able for querying giant graphs due to the the fault-tolerance
and scalability. As stated earlier querying can be made ef-
ficient when complemented by an efficient data partitioning
mechanism.

Abadi et al. propose data partitioning approaches called
hash partitioning and graph partitioning. Hash partition-
ing, has the disadvantage that it partitions according to the
vertices and not according to the graph topology. Graph
partitioning takes care of the above loophole and does the
partitioning according to the graph topology such that the
neighbouring nodes are present on the same partition. The
2-hop approach proposed by Abadi et al. works well for the
LUBM [13] benchmark as the maximum number of joins re-
quired by any query in the LUBM benchmark are covered
within 2-hops. This approach fails if there are more number
of joins.

Tao Yang et al. suggest an approach where they select
the frequent triple patterns from a query log and distribute
the sub-graphs of these frequent triple patterns across the
hadoop cluster where they are stored on the local RDF-3X
database. The user query is run on all the nodes. We follow
the approach taken by Tao Yang et al. We present in Table
1 the approximate amount of data contributed by the result
sets of the frequent triple patterns as compared to the whole
data for 0.001, 0.01, 0.1 and 1 billion triples.

Table 1: Data contributed by the frequent triple patterns.

No. of Triples | Total data | Frequent triple patterns data
1 billion 225GB 500MB
0.1 billion 25GB 50MB
0.01 billion 2.5GB 5.5MB
0.001 billion 250MB 550KB

3. ARCHITECTURE

We define some terms before describing our architecture.
Frequent query (FQ): A query in the query log consisting
of frequent triple pattern(s).

Infrequent query (IFQ): A query which is not frequent is
an infrequent query.

Frequent Query Answer Tuple (FQAT): A tuple which
appears in the result set of the frequent queries.

Frequent Query Database (FQDB): A database which
consists of triples contributing to the frequent query answer.

Infrequent Query Database (IFQDB): A database which
answers infrequent queries.

Frequent Query Result Set (FQRS): A result set ob-
tained by executing any of the frequent queries is a FQRS.

The architecture consists of a data partitioner, a data loader
and a query processor. The (in)frequent triple pattern(s)
data is present in the (I)FQDB. The input dataset is loaded
into a single instance of RDF-3X. Each frequent query is ex-
ecuted on this database to generate FQRS. The data loader
gathers all the FQRS and runs the data placement algorithm
suggested by Tao Yang et al. The datasets generated are
loaded into FQDB. The same input dataset is partitioned
into a number equal to the number of nodes in the cluster
and loaded into the IFQDB. The query with non-frequent
triple patterns is executed on these IFQDB using the algo-
rithm proposed by Bhavani et al.

The query processor checks whether a query is a frequent
query (FQ) or not. In the case of frequent queries, we bypass
the hadoop framework and the query is executed on the
nodes locally using JSCH [3] middleware. We aggregate the
data after all the queries have been executed. The JSCH
middleware can be made fault tolerant by giving the list of
the nodes where the replica of the data is present. Thus we
can also ensure the availability of data.

Below is a pictorial representation of our system architec-
ture.

Query
SRR ‘ :
. ! Master

: JSCH Library 1 g No
| & :<1* - -
: Middleware : Name Node
R B

1 Query FQDB

g N

I |

! : Query IFQDB

\Y \Y \Y

Data Node 1 Data Node 2

G{DF?;X FQDB) G{DF:}X FQDBD ooo || RDF3X FQDB
G{DF?;X IFQD}a G{DFSX IFQD@ RDF3X IFQDB

i i i
: L IFQDB outpuﬁ‘ IFQDB output : J
\ i

Data Node N

FQDB output + FQDB output

Query Result

Figure 2: Architecture diagram

4. DATA PARTITIONING

Before the start of the data partitioning mechanism we
would like to introduce a few terms for the convenience of
the discussion.
query: A FQ which is also a SPARQL query.
queryList: List of all the FQ.

tuple: A subgraph contributing to the Result Set.
resultSet: The result of a FQ executed on a FQDB
triplePattern: A triple pattern in a FQ.

We first load the whole dataset on a single instance of RDF-
3X. For every query in queryList we execute the query on
the RDF-3X database and generate the resultSet. Each tu-
ple in the resultSet is used to construct the triples which
have contributed to the formation of this tuple. All these
triples belong to the first node in the cluster. Triples gen-
erated from the next tuple belong to the second node. The
above process is repeated till all the tuples in the resultSet
are distributed in a round-robin fashion. Round-robin par-
titioning gives balanced partitions on which we run the data
placement algorithm suggested by Tao Yang et al. All the
partitions for a particular node are aggregated and loaded
into the FQDB for that node. We present an example below
for the convinience of the discussion. Consider a frequent
query (FQ) generating resultSet which consists of 2 tuples.

SELECT 7X 7Y 7Z
WHERE { ?7X hasBrother ?Y. ?X hasFather ?Z }

<John> <Nick> <Mike> , <Ron> <Harry> <Adam>

The triples generated by the Data-Partition algorithm for
the first(second) tuple belong to the first(second) nodes.

<John> <hasBrother> <Nick> , <John> <hasFather> <Mike>
<Ron> <hasBrother> <Harry> , <Ron> <hasFather> <Adam>

Thus, for every tuple we do the distribution of triples in
a round-robin fashion. This process is repeated for all the
queries. Thus for the frequent queries we search only for the
limited triples which contribute to the frequent query lead-
ing to small query execution times.

DATA-PARTITION(dataSet, queryList, partitionCount)

1 load dataSet into RDF-3X database
2 for query in queryList
resultSet = run query on RDF-3X
for tuple in resultSet
partition = round-robin(partitionCount)
for triplePattern in query
build triple from tuple, triplePattern
place triple into partition.next()

0O Uk W

The DATA-PARTITION algorithm above is for a single node.
According to Bhavani Thuraisingham et al., when the num-
ber of triples beyond 1 billion were loaded into the RDF-3X
database, it failed to answer few queries with many joins
from the LUBM benchmark. Hence we can use the map-
reduce [9] based distributed data partitioning algorithm for
large datasets. In the map-reduce version of the algorithm,
the input dataset is split and randomly loaded into all the
nodes. It uses the iterative map-reduce based algorithm
proposed by J Myung et al.[14].

S. DATA UPDATION

We would like to introduce a few terms which are used in
the DATA-UPDATE algorithm.

NQueries: Frequent triple patterns in the new query log.

OQueries: Frequent triple patterns in the old query log.

CommonQueries: Frequent triple pattern(s) common to
both the new query log and the old query log.

NewlInfreqQueries: Frequent triple pattern(s) from the
old query log which are no more frequent.

NewFreqQueries: The frequent triple pattern(s) present
in the new query log and absent in the old query log.

Below we propose the DATA-UPDATE algorithm. Data gets
accumulated over time and new frequent triple patterns are
found. Thus we have 3 scenarios. 1. New data and new
frequent triple patterns. 2. New data and old frequent triple
patterns. 3. Old data and new frequent triple patterns.

DATA-UPDATE(Data, N Queries, OQueries, PCount)

1 split Data into N partitions

2 load N partitions into N IFQDB

3 CommonQueries = NQueries N OQueries

4 NewlInfreqQueries = OQueries \ CommonQueries
5 NewFreqQueries = NQueries \ CommonQueries

6 if CommonQueries.size ==0

7 delete FrequentDB

8 for query in NewlnfreqQueries

9 for TriplePatl in query

10 convert literals in TriplePatl into variables
11 for TriplePat2 in CommonQueries

12 if TriplePatl # TriplePat2

13 delete triples from FQDB
14 for query in NewFreqQueries

15 resultSet = run query on IFQDB*
16 for tuple in resultSet

17 partition = round-robin(partitionCount)
18 for triplePattern in query
19 build triple from tuple, triplePattern
20 place triple into partition. next()

“Using iterative map-reduce algo by Myung et al.[14]

In the first case either we find a few new FQs or all FQs are
replaced, in which case all FQDBs become invalid and all the
triples from the FQDBs are deleted. The new dataset is par-
titioned into N parts where N is the number of nodes. We
then randomly load these datasets into the existing IFQDB.
We make a basic assumption that the new FQs are different
from the existing FQs. Let us assume that there are m new
FQs where m < M and M is the set of FQs present earlier.
We delete the data for the M-m NewlnfreqQueries queries.
For each of the queries which are getting replaced from the
frequent queries list, we check the triple patterns present in
a query and compare it with each of the triple patterns of the
queries which are still on the frequent queries list. A match
means the triples corresponding to that triple pattern are
retained else the triples are deleted. This process essentially
deletes all the data for the NewlnfreqQueries. Since we keep
the FQDB isolated from the IFQDB, updation of triples hap-
pens to the FQDB while the insertion of new data happens to
the IFQDB. We now run the map-reduce job which gives us
the result set for the current query. We repeat this process
for all the queries to generate m datasets. We run a mod-
ified version of the DATA-PARTITION algorithm which gives
us Nxm datasets. We apply the LNS (Largest Neighbour-
hood Search) based approximation algorithm proposed by
Tao Yang et al. which generates Nxm datasets which have
minimum overlap. We generate the original triples from

this result set and add them in a round-robin fashion to the
FQDBs. Thus the current FQDBs is according to the current
list of FQs. In the last case the data from FQDBs is deleted
and the above steps are repeated without any addition to
IFQDB.

6. EXPERIMENTAL ANALYSIS

Node configuration: We use a cluster of 4 nodes. Each
node runs an Intel i5 processor with a 512 GB hard disk, 4
GB RAM and 3.0 Ghz clock speed. The data partitioning is
done on a node running Intel Xeon processor (E5-2650) with
2 TB hard disk, 32 GB RAM and 2.00 Ghz clock speed.The
OS used on all the nodes is Ubuntu version 12.04 LTS.

Software installed on every node: We use the version
3.7.0 of the RDF-3X database, the version 20.205 of Hadoop
and the version 1.7 of java in order to run our experiments.

Dataset used for comparison: We use the LUBM bench-

mark to test our approach against the one suggested by Tao
Yang et al. As suggested by Bhavani Thuraisingham et al.,
the queries 1, 2, 4, 9, 12 and 13 of the LUBM benchmark are
sufficient to test the performance of any framework. Each
query is run 10 times and the query execution times are av-
eraged.
We report 3 results namely FQs run according to the ap-
proach of Tao Yang et al., FQs run on only FQDB using
map-reduce (Proposed approach MR) which differs from
Tao Yang et al. in that we run map reduce on FQDB only.
and FQs run on FQDB using our architecture (Proposed ap-
proach). In the table reported below the query Q2 from
the LUBM benchmark takes more time in the case of Tao
Yang et al. which is due to the fact that during execution 4
map tasks failed and were re-issued by Hadoop framework
for completing the query successfully. In the case of LUBM
benchmark the query Q9 is taken as of utmost importance
because of the number of joins involved. We can see from
Table 2 that we actually get a 76X speedup on this query.
On the rest of the queries we get more than 32X speedup.
We do not compare against query Q2 as we think it to be
unfair to judge our framework on it because of the above
mentioned reason.

The comparatative analysis of the results of different ap-
proaches for 10000 universities (1 billion triples) are pre-
sented below in Tablel respectively.

Table 2: Query exec. time (in Sec.) for 1 billion triples.

Approach Ql | Q2 | Q4] Q9 | Q12 | Q13
Proposed approach <l| <1 | <1| <8 | <1 <1
Proposed approach MR | 32 32 32 | 60 31 31
Tao Yang et al. 32 | 2192 | 32 | 611 | 32 32

7. CONCLUSIONS

We present a framework for querying a billion triples us-
ing a frequent triples patterns based approach. In this ap-
proach for frequent triple pattern(s) joins are done by RDF-
3X, hence the execution times are fast. We are also able to
avoid the shuffle and the reduce operations resulting from
a hadoop map-reduce job in the case of a frequent triple
pattern(s) which makes our execution time better than the
current state-of-the-art framework. In the current version
we are addressing only the frequent triple pattern(s) query-

ing. In future we would like to address the infrequent triple
pattern(s) querying. The best framework for the infrequent
triple pattern(s) till date is the one presented by Abadi et
al. This approach introduces a lot of redundant data when
the average degree of the vertex becomes high. For a given
query @ with N joins, we have to take a N-hop approach
to satisfy the query. More hops only increase the redundant
data present on a node.

8. REFERENCES

[1] HADOOP http://hadoop.apache.org/.

[2] HDFS http://en.wikipedia.org/wiki/apache_hadoop.

[3] JSCH http://www.jcraft.com/jsch/.

[4] LOD http://stats.lod2.eu/.

[5] OWL http://www.w3.org/tr/owl-ref/.

[6] RDF http://www.w3.org/rdf/.

[7] SPARQL http://www.w3.org/tr/rdf-sparql-query/.

[8] Tao Yang J. Chen X. Wang Y. Chen and X. Du.
Efficient sparql query evaluation via automatic data
partitioning. DSAA, vol. 7826:244-258, 2013.

[9] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. Proc. Sizth Conf.
Symp. Operating Systems Design and Implementation,
2004.

[10] J. Huang and D. J. K. Ren. Scalable sparql querying
of large rdf graphs. Proc. VLDB Endowment, vol. 4
no. 11:1123-1134, 2011.

[11] M. Husain J. McGlothlin M. M. Masud L. Khan and
B. Thuraisingham. Heuristics based query processing
for large rdf graphs using cloud computing. TKDE,
vol. 23 no. 9:1312-1327, September 2011.

[12] T. Neumann and G. Weikum. Rdf-3x: A risc-style
engine for rdf. Proc. VLDB Endowment, vol. 1 no.
1:647-659, 2008.

[13] Y. Guo Z. Pan and J. Heflin. Lubm: A benchmark for
owl knowledge base systems. Web Semantics: Science,
Services and Agents on the World Wide Web, vol.
3:158-182, 2005.

[14] J. Myung J. Yeon and S.g. Lee. Sparql basic graph

pattern processing with iterative mapreduce. In Proc.

of the 2010 Workshop on Massive Data Analytics on

the Cloud, MDAC:6:1-6:6, 2010.

