Problem ldentification by Mining Trouble Tickets

Vikrant Shimpi, Maitreya Natu, Vaishali Sadaphal, Vaishali Kulkarni
Tata Research Development and Design Centre
{vikrant.shimpi, maitreya.natu, vaishali.sadaphal, vaishali.kulkarniy@tcs.com

ABSTRACT

IT systems of today’s enterprises are continuously monitored
and managed by a team of resolvers. Any problem in the
system is reported in the form of trouble-tickets. A ticket
contains various details of the observed problem. However,
the knowledge of the actual problem is hidden in the ticket
description along with other information. Knowledge of is-
sues helps the service providers to better plan to improve
cost and quality of operations. In this paper, we address the
problem of extracting the issues from ticket descriptions. We
discuss various challenges in issue extraction and present al-
gorithms to handle different scenarios. We demonstrate the
effectiveness of the proposed algorithms through two real-
world case-studies.

1. INTRODUCTION

With the increasing reliance of business on IT, the health
of IT systems is continuously monitored. The IT service
providers manage these systems with a team of resolvers.
These resolvers act on the reported problems and take cor-
rective actions to ensure smooth functioning of I'T and busi-
ness. The system problems are reported to the resolvers in
two ways:

e System-generated issues: Components such as busi-
ness applications, processes, CPU, disk, and network
interfaces are monitored to detect anomalies. The
monitoring tools capture and report any abnormal be-
havior of system components in the form of alerts.

e User-generated issues: The users of IT systems report
problems through calls, emails, or chats.

Both system-generated and user-generated issues are re-
ported in the form of tickets to a team of resolvers. A ticket
contains various details of the reported problem such as the
reporting time, system-of-origin, severity, and other details.
In addition to this, each ticket also contains a description
field that contains the details of the observed problem. In

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

The 20th International Conference on Management of Data (COMAD),
17th-19th Dec 2014 at Hyderabad, India.

Copyright(©)2014 Computer Society of India (CSI).

76

case of system-generated tickets, this description is auto-
matically generated by the monitoring and alerting tools.
This description is often structured and is based on how
the alerting tools have been configured to report a problem.
However, in case of user-generated tickets, this description
contains free-form text written by users. This description is
unstructured and contains variations, ill-formed sentences,
and spelling and grammar mistakes.

While the ticket description contains many details, it is
important to extract the information of the actual problem
referred by the ticket. We refer to the problem referred by
the ticket as issue. For instance, consider the following ticket
description

PATROL alert for filesystem apps-orabase is 90% full on
d-2hh4knn

The issue referred by this description is

PATROL alert for filesystem full

Extraction of issues occurring in the IT system can pro-
vide crucial information to better understand and control
the IT operations. It can assist in improving both the IT
system and the human system involved in the operations.
The IT system consists of the business functions, applica-
tions, and the infrastructure. The human system consists of
the teams of resolvers that manage the IT systems. Below
are some examples of how the knowledge of issues can assist
in improving these systems.

1. Improving the IT system: (a) The knowledge of is-
sues observed in the IT system helps in inferring prob-
lem trends and frequent problematic areas in the sys-
tem. (b) The issues referred by the high-severity tick-
ets can provide insights into the critical areas that
cause customer unrest or business instability. These
issues can be prioritized for taking corrective actions
by problem management. (c) Knowledge of frequent
issues observed in specific domains can assist the ser-
vice providers to prepare a service catalog. A service
provider uses the service catalog for knowledge acquisi-
tion, generating training plans, developing automation
scripts, etc.

. Improving the human system: (a) The knowledge of is-
sues can be used to identify issues that consume max-
imum effort of the resolvers. These issues can be con-
sidered for full or partial automation. (b) The knowl-
edge of frequent issues can be used to prepare training
plans to train resolvers with appropriate skills. (c) The
knowledge of arrival patterns of the issues can be used

to plan shifts with right number of resolvers with right
skills.

Mining issue from the ticket descriptions presents several
challenges. (a) The same problem is represented in different
ways in different tickets. (b) The organizations customize
the structure of the description according to their own pref-
erences. (c¢) The descriptions are domain-dependent and
contain domain-specific words. For example, Oracle issues
have words such as tables, SQL query, filesystem, disk, and
Oracle-specific error codes. (d) The descriptions in user-
generated tickets are written in free-form text. They are
often ambiguous, and contain spelling and grammar errors.

Currently, service providers lack a systematic approach
to capture the knowledge of issues. They either rely on the
coarse-grained information from the ticketing tools or on the
intuition-driven inputs provided by the resolvers.

e Ticketing tools such as ServiceNow [1] and BMC Rem-
edy [2] allow resolvers to classify each ticket in various
categories and subcategories. These categories are of-
ten referred as Category, Type, Item, and Summary
(CTIS) [3]. However, most often these tools are not
configured to sufficient level of details. For instance,
various disk-related issues such as disk full, disk fail-
ure, or disk corruption are all classified as Category
= Infrastructure, Type = Hardware, Item = Storage,
Summary = Disk issue. In addition to that, resolvers
and users make mistakes in rightly classifying the is-
sue. As a result, the analysis based simply on this
classification can often lead to incorrect and insuffi-
cient knowledge of the issues.

e Another approach that is adopted to infer the issues
is by analyzing the fixlogs used for ticket resolution.
A fixlog of an issue is a document that contains the
details of the resolution steps to act on the issue. A
resolver after acting on an issue makes an entry in
the ticketing tool of the fixlog used to resolve a ticket.
However, there are several practical challenges faced
in this approach. Often the fixlogs are not available
for all issues. Many times, the fixlogs are too generic
and are used for many issues. In addition to this, the
resolvers often do not make an entry of the fixlog in
the ticketing system.

e The most common approach used to infer issues is
the manual intuition-driven approach. The service
providers infer the issue information either from the
monthly reports manually produced by the teams or
by talking to the domain experts. This approach car-
ries the risk of being incomplete, inaccurate, and of
variable quality.

In this paper, we propose an analytics-driven approach to
mine the textual descriptions of tickets to extract issues. We
propose the following approach of issue extraction.

e We propose to use information retrieval techniques
along with domain knowledge to extract the issues
from tickets.

e We propose two different algorithms to extract is-
sues from system-generated and user-generated tick-
ets. There is an inherent difference in the struc-
ture and heterogeneity in the descriptions of system-

7

|
Domain Service Clustering || Cluster

2 Dictionary Catalog labeling

o |

b= N |

o . ~)

= Service System-generated tickets

o Data

@ . > Catalog

o© Preparation Map User-generated tickets

-

=

= n-grams

Stemming
| Synonyms >

Spell correction

Keyword |
extraction construction

Figure 1: Functional diagram of the proposed ap-
proach.

generated and user-generated tickets. The system-
generated tickets have structured and consistent de-
scriptions. We propose a clustering-based technique
for system-generated tickets. On the other hand, the
user-generated tickets have verbose and ambiguous de-
scriptions. We propose a keyword-discovery-based ap-
proach for user-generated tickets.

e We capture the knowledge of IT and business domains
in the form of dictionaries of include and exclude list of
words and regular expressions. The knowledge consists
of words and patterns pertaining to (a) the technology
domain such as Oracle, Windows, and Linux, (b) busi-
ness domain such as banking, retail, and finance, (c)
monitoring tools such as ControlM, Autosys, and BMC
Patrol, and (d) organization-specific naming conven-
tions

e Finally, we present validation of the effectiveness of
our techniques through two real word case-studies.

In Section 2, we present design rationale of the proposed
issue extraction techniques. In Section 3, we present the pro-
posed approach for extracting issues for system-generated
and user-generated tickets. In Section 4, we demonstrate
the effectiveness of the proposed approach using two real-
world case-studies. We present related work in Section 5
and conclude in Section 6.

2. DESIGN RATIONALE

In this section, we present the proposed approach for ex-
tracting issues from ticket descriptions. Various factors need
to be addressed while extracting issues from ticket descrip-
tions.

Consider the following description:

job=orahAAAA04 mem-
node=aaaalj msg=sev3 job

ControlM Alert
name=orahotback.sh
failed AAAAO

The issue referred by this description is as follows:

ControlM Alert job failed

The description contains other details such as name of the
application job=orahAAAA04, name of the script mem-
name=orahotback.sh, and severity level msg=sev3. To ac-
curately extract the issues, it is critical to separate the fac-
tual knowledge of the issue from the specific details of its
individual manifestations.

Different tickets describe the same issue in different ways.
For instance, the above example can be reported as

ControlM Sev 3 Alert on
job=orahAAAAO04, script orahotback.sh

Job Failure:

Issues

In case of user-generated tickets, this problem becomes more
challenging because of lack of structure, too many variations,
and spelling and grammar errors. For instance, consider the
following issue.

application not responding

This issue is addressed by users in a variety of ways, such
as,

application hung,

application dead,

No response from application since last 5 mins,

application not responding for the fifth time since
morning.

While extracting issues, it is important to address such vari-
ations and generate a uniform issue for its various manifes-
tations.

As discussed in Section 1, there is an inherent difference in
the structure and heterogeneity in the descriptions of user-
generated and system-generated tickets. Hence, we propose
two different approaches to extract issues. Figure 1 presents
the functional diagram of the proposed approach. The input
is a set of ticket descriptions and the output is the issue
extracted for each description.

Below we present the details of different functional ele-
ments of the proposed approach:

e Data preparation: The first step is to clean the descrip-
tions, remove unwanted details, and tokenize. This
step needs to be customized by knowledge of specific
domains to ensure that all domain-specific words, pat-
terns, and phrases are retained during data prepara-
tion.

e Mapping to service catalog: The commonly occurring
issues in a domain are often captured in the form of
a service catalog. For instance, service catalog of a
technology domain of Oracle contains the list of com-
monly occurring issues in Oracle such as tablespace
full, query running slow, index not built, etc. We use
service catalog to mine these commonly occurring is-
sues from the ticket descriptions. For the remaining
ticket descriptions, we adopt the following approach.

e System-generated tickets: System-generated descrip-
tions have a fixed structure and limited variations.
Hence, we use clustering to group similar issues. We
form label that best represents the descriptions in a
cluster.

e User-generated tickets: On the other hand, user-
generated descriptions demonstrate too many varia-
tions. Here, clustering is not effective. Hence, we
first apply various techniques to address these vari-
ations such as use of stemming, synonym detection,
and spelling corrections. We then extract keywords
and group similar issues based on the commonality of
keywords. We represent each group using an n-gram
of keywords.

e Knowledge cartridge: Note that, the proposed ap-
proach is independent of any specific technology do-
main, and is designed to be configurable to extract
issues for ticket descriptions of any domain. The effec-
tiveness of the proposed approach can be significantly
increased by domain-specific customizations of data

78

preparation and service catalog mapping. We propose
to make cartridges for technology domains (Unix, Ora-
cle, Windows, etc.), business domains (banking, retail,
finance, etc.), and tool domains (BMC Patrol, Con-
trol M, Tivolli TWS, Autosys, etc.) For each domain
we maintain a dictionary of domain-specific words and
patterns to include or exclude while extracting issues.
We also maintain a service catalog of known issues
within the domain.

In the rest of paper, we present details of these functional
elements.

3. PROPOSED APPROACH

In this section, we present the approach of issue extraction
from descriptions in system-generated and user-generated
tickets.

3.1 Data preparation

As discussed earlier, issue is the problem reported in the
ticket description. Ticket description contains lot of addi-
tional information such as timestamp, location, threshold,
system-of-origin, severity, etc. This additional information
changes as the same issue occurs at different timestamp,
location, system-of-origin, etc. Though this information is
important, it misleads issue extraction and hence must be
separated. For example, consider a description such as

Uniz server dt2nlgl down.

Here, the actual issue is

Uniz server down.

The name of system-of-origin dt2n1g1 is additional informa-
tion. Similarly, consider a description such as

filesystem 01hw4884 80% full.

Here, the actual issue is

filesystem full.

Here, the name of the system-of-origin and the current value
of occupancy of space in the filesystem is additional infor-
mation.

The challenge is to find the right set of words that should
be removed or retained. Removing and retaining of words
could have significant impact on subsequent issue extrac-
tion steps. We approach this problem by making following
observations.

o [ssue is made up of dictionary words: Consider follow-
ing examples of description.
1. A-IM002930432.PI reset the Uniz password for login id
bchho02 @ 156.5.238.69,

2. 27488732 CREATED wunable to backup data after up-
grade to windows 7,

3. A-IM002971223—Need to revoke admin access,

4. Domain Drive M:\ setting\ application data\SAP ac-
cess denied.

It can be observed that issues are often described in
plain English dictionary words, while all other details
are non-English words. For example, in description 1
above, issue is described by

reset the Unixz password for login id.

All the other words such as A-IM002930432, Pl, and
bchho02 @ 156.5.238.69 are all non-English words.

e Some domain-specific words related to the issue are
non-FEnglish: Consider a description such as

Portal Alert on appaz040 at 2012-07-11
11:44:40.000 SwapPercentUsed is CRITICAL.

Ideally, the issue described in above description is

Portal alert for SwapPercentUsed is critical.

But, the approach of retaining only English words
identifies

Portal alert for is critical

as the issue. Here, SwapPercentUsed is a non-
dictionary word without which the issue is meaning-
less.

e Some domain-specific words are not related to the issue
but are English: Some English words need to be ex-
cluded since they are domain-specific names of system-
of-origin. Consider a description such as

Portal alert on d-6z9ttk1: /export/home FileSys-
tem is full.

The approach of retaining only English words identifies

Portal alert on export home filesystem is full

as issue. In Unix, name of the filesystem often contains
folder names such as home, root, export, etc. Hence,
we exclude such words while extracting an issue.

Based on above observations, we provide following solution.

o We use English dictionary and mark each word as En-
glish or non-English. We separate non-English words
and retain only the English dictionary words related
to the issue.

e We prepare an Include list that contains domain-
specific non-dictionary words and captures knowledge
about a particular domain. The words in the Include
list are retained in the description since they describe
the issue. This list is populated by subject matter
experts (SME) of respective domains. Some example
words in Include list for Unix domain are FSCapac-
ity_Alarm, SwapPercentUsed, etc.

e We prepare an Fzxclude list that contains domain-
specific English words. Some examples of words in
Ezxclude list are export, home, etc. for the domain of
Unix. We make use of this Ezclude list to remove such
words.

e We also provide a lever to detect patterns in the form
of regular expressions. For example, in case of Oracle,
Include list contains patterns such as ora* that denotes
Oracle errors and memname = *.sh that denotes the
shell script.

The pseudo code for the data preparation step is as fol-
lows.

1. Input and Output

79

e Input: D, = List of description, D = List of dic-
tionary words, I = List of include words, E = List
of exclude words, S = List of special characters

e Output: D. = List of cleaned description

2. Prepare a list of words, W, by tokenizing all descrip-
tions in D, by space.

3. For each word in list of words, W,

o Check if word is a subset of domain include list, I

e If no, tokenize word by special characters, S and add it
to W

4. Prepare a list of non-dictionary words, ND = W -
(D+1)

5. Add list of exclude words to non-dictionary words list,
ND=ND+E

6. Remove non-dictionary words in N D from descriptions
D, to make a list of cleaned descriptions, D. = D, —
ND

3.2 Service catalog mapping

Service catalog of a domain is a predefined set of issues in
a domain for which resolution steps are known. It contains
factual knowledge of the issues in a domain. The service cat-
alogs are based on various technologies in IT infrastructure
such as Unix, Linux, Oracle, Windows, etc. While extract-
ing issues, we make use of this prior knowledge of known
issues, by mapping cleaned descriptions, obtained by data
preparation step, to the service catalog items. The service
catalog makes the search guided and allows customization
for each domain. Hence, many issues can be easily extracted
that are otherwise difficult to extract. For example, consider
a description as

D-8Y6TTK]1 - cluster failover issue.

Here this issue can be easily mapped to service catalog item

Cluster FailOver/FallBack

in Linux service catalog.

Service catalog is structured, well defined, and contains
known and finite set of issues. On the other hand, ticket
descriptions are unstructured, unknown and can occur in
various ways. The challenge is to map ticket descriptions
with service catalog items.

Each service catalog item is defined as a two-tuple <action
object>. For example, action = create, and object = table.
However, ticket descriptions may refer to action in different
ways. For example, create table can be referred as make ta-
ble, construct table, etc. Hence, to best map service catalog
item to descriptions, we construct multiple synonyms of ac-
tion. Thus, for a service catalog item, if both object and
action are present in the description, then we map the de-
scription to the corresponding service catalog item. The ac-
tion and object keywords are either domain sensitive words
or English words. For domain sensitive words, domain ex-
perts are required whereas for English words, an English
thesaurus can be used for synonym creation. For exam-
ple, in service diskdetectionissue, domain sensitive words can
be disk, drive, tape and English words are detect, recognize,
identify, etc. While mapping descriptions to service catalog
items, following cases may occur.

1. One service catalog item maps to multiple descriptions:
The descriptions contain many variations of the action
and the object. These descriptions are mapped to a
single service catalog item. For example, consider de-
scriptions as follows:

o Unlock account,
e Unlock password of my account,

o Requesting unlocking of account.

All these cleaned descriptions contain <action object>
pair <unlock account>. As a result, they all map to
service catalog item UnlockAccount.

2. One description maps to many service catalog items:
This can happen in following cases.

e Issue is composite: Consider a description as

After installing Windows 7, system is very
very slow. For wunlocking machine, system
takes more than 20 min. Please resolve this
ASAP.

We observe that the actual issue might be

(a) windows installation problem, or

(b) account related unlocking problem.

Here, the description contains multiple <action
object> pairs such as <install windows>, or
<wunlock system> which maps to multiples items
in service catalog.

e Service catalog is too detailed: Consider a de-
scription as
backup failure.
This gets mapped to multiple service catalog
items as
(a) Full backup failure,

(b) Incremental backup failure ,
(¢) Differential backup failure ,
(d) Cumulative backup failure ,
(e) Archive log backup failure .

Following is the pseudo code for mapping descriptions to
service catalog item.

1. Input and Output
e Input: D. = List of cleaned description SC =
Service catalog
e Output: Mapping < d;, SC; >
2. For each cleaned description d; in D,
e For each item SC; in service catalog SC' with

object O; and action A;

— If object, O; and action A; keywords are
present, assign the corresponding service cat-
alog item to cleaned description d;

3.3 Issue extraction in system-generated tick-

ets
In this section, we present the approach of extracting is-
sues from remaining descriptions that do not map to service
catalog.

3.3.1 Clustering

The information unrelated to issue is separated from the
descriptions in the data preparation step. The cleaned de-
scriptions still contain variations based on the configuration
of the monitoring tools for different applications in the sys-
tem. We address these variations by clustering the descrip-
tions based on similarity. Clustering helps grouping similar
descriptions together and assign dissimilar descriptions to
separate groups.

Consider two descriptions as

e BMC portal alert on d-hw6ttk1-lvmh: /var for filesystem full,
and

e BMC portal critical alert on d-hw6ttkl-lvmh/var for filesys-
tem full .

After cleaning, the descriptions are
o BMC portal alert on filesystem full, and

e BMC portal critical alert on filesystem full.

These two descriptions are same except the word critical
present in the second description. We group such similar de-
scriptions into one cluster by computing similarity between
two descriptions.

Some of the approaches to compute similarity [8] between
two descriptions are Jaccard coefficient, Dice coefficient, etc.
Dice coefficient gives twice the weight to common elements.
Since we emphasize on commonality, we use Dice coefficient
to compute similarity between two descriptions. Let A and
B be sets of words in two descriptions. Dice similarity, D,
between A and B is defined as follows:

2x|ANB
p=2*1An5 (1)
| A+ |BI
For example, if
e A = BMC portal alert on filesystem full, and

e B = BMC portal critical alert on filesystem full,

then |A| =6, [B| =7, |[ANB| =6 and D = 2% = 0.923.
We compute Dice similarity between every pair of clean
description. We construct a similarity graph of clean de-
scriptions in which nodes are clean descriptions. There is
an edge between two clean descriptions if they are similar.
We consider two clean descriptions similar if the similarity
coefficient between them is greater than a predefined thresh-
old threshold_similarity. We cluster clean descriptions by
applying graph clustering on the similarity graph of clean
descriptions. Various graph clustering techniques can be
used for clustering such as cliques [4], connected compo-
nents [5], graph partitioning [9], graph cuts [7], etc.. We
have used cliques to identify clusters of clean descriptions.
The similarity threshold can be set automatically using cer-
tain heuristics such as median or mean + (k * standard
deviation) of the distribution of similarity threshold values.

3.3.2 Cluster label

A single cluster contains many variations of descriptions.
The next step is to provide a label to each cluster that best
represents all the members within a cluster. The set of com-
mon words from all descriptions within a cluster are proba-
ble candidate for a cluster label. If we arrange these common
words in any order, then the cluster label cannot be easily
understood and is not meaningful. For example, a label,

host connect unable to

does not make sense. While we have narrowed down to the
words to be used for the label, it is also important to place
them correctly to form meaningful phrase. For example, the
correct order of words for the previous example is

unable to connect host.

One of the criteria to compute the position of a word is based
on its position in individual description. For instance, the
word that occurs most frequently on 1st position is placed
in the 1st position in the label.

Following is the pseudo code of clustering and labeling
algorithm we have implemented.

1. Input and Output

e Input: D, List of cleaned description,
threshold_simzilarity = similarity threshold

e Output: Mapping < d;, Issue label >

2. Compute dice similarity for each pair of cleaned de-
scription < d;, d; > in D,

e IssueAdjacencyMatrix[i,j] = Dice similarity coef-
ficient

3. Build adjacency matrix for the issue-similarity graph

o If (IssueAdjacencyMatrix|i,]] >

threshold_similarity), IssueAdjacencyMatrix|[i,]]
=1

e else IssueAdjacencyMatrix[i,j] = 0

4. Identify a maximum clique Cf in IssueAdjacencyMa-
trix

5. Remove issues identified in clique Cy from IssueAdja-
cencyMatrix

6. Repeat step 4 till all issues are covered
7. For each clique Cy, identify a label

e Identify set of common words C,, from the set of
cleaned description belonging to the clique
— For each word w in C,
x Compute its position in set of cleaned de-
scription belonging to clique, p = Mode
of the position of the word w
x Label of the clique = Arrangment of the
words in C,, according to p

3.4 Issue extraction in user-generated tickets
In this section, we present the approach of extraction of
issue from user-generated tickets.

3.4.1 Preprocessing

User description is free-form text primarily written by
users who face issues. Such descriptions contain lot of ambi-
guity, grammatical errors, spelling mistakes, different form
of same words, etc. This results in variations in describing
the same issue. For example, consider descriptions

e job running late,

e job execution delayed, and

81

e abnormal delay observed on job exec.

All these descriptions, mean the same issue, that is,

job running late,

but are written differently.
To overcome this problem, we use following different
levers.

1. Stemming: Users write same words in different forms
such as lock, locked, freeze, freezing, connecting, con-
nect, etc. according to their position in description.
We make use of Porter stemmer algorithm [16] and re-
place these words with their root such as lock, freez,
connect, etc.

2. Spelling correction: Users often make spelling mistakes
while describing issues. We identify such words and
perform spelling correction [15]. For example, users
often write password as, passwd, pasword, etc. By using
spelling correction, we correct these words.

3. Synonyms: Consider examples such as (1) remove, and
delete, (2) modify, and change, (3)big and large, etc.
These words are often used in place of each other by
the users while describing a problem. We make use of
WordNet [10], which is a lexical database for English
language, to automatically detect synonym words and
make them consistent.

We apply these levers, to ensure that all variations in the de-
scriptions are made consistent. By applying levers of Stem-
ming, Spelling correction and Synonyms on above descrip-
tions, we obtain

e job exec delay,
e job exec delay, and

o abnormal delay observed on job exec.

3.4.2 Keyword extraction

The next step is to extract issues from the processed set
of descriptions. We first extract keywords from descrip-
tions which occur frequently, such as job, memory, filesys-
tem, swap, etc. While extracting the keywords we consider
only nouns, adjectives, verbs, and adverbs. This makes the
word search space limited. We consider top frequently oc-
curring keywords to further form clusters. Another option
could be to use TF-IDF for selecting top keywords. Larger
the number of keywords considered, larger is the number of
clean descriptions for which we can extract issue and hence
a larger coverage.

3.4.3 N-gram construction

We next construct n-gram out of these extracted key-
words. For this, we tag each of these keywords to the de-
scriptions where they occur. For each keyword, we identify
descriptions to which they are tagged and extend this key-
word to form n-grams by identifying other words which ap-
pear in the descriptions. Hence, we make n-grams of these
keywords such as

e job failure,
e high memory utilization,

e filesystem backup,

e create swap space, etc.

which describe the issue in a better way. Each of these n-
grams represent issues and we map each of these n-grams

to descriptions.
each n-gram represents a cluster.

The set of descriptions corresponding to
Further, the n-gram is

considered as the label of the cluster as well. maz_n is the
maximum length of n-gram considered for issue extraction
and label. A longer n-gram enables a better explanation of
the issue and larger correctness.

Following pseudo code describes our approach to extract

issues from user-generated tickets.

4

1. Input and Output

e Input: D. = List of cleaned description

e Output: Mapping < d;, Issue label >

. Compute all one words and their frequency of occur-

rence in cleaned descriptions.

. Select top k£ one words as keywords.

. For each word, construct n-gram until the issue is ex-

plained by n-gram

. These set of n-grams represent issues. Assign all n-

grams to cleaned descriptions.

CASE STUDIES

We have applied the approaches proposed in this pa-

per on various real-world case-studies. In this section, we
present two real-world case studies, one demonstrating the
approach used for system-generated tickets and other for
user-generated tickets.

4.1 Evaluation of the approach for system-

generated tickets

In the first case-study, we applied the proposed approach

on the Unix domain of a major retailer in the US. We an-
alyzed ticket history of 6 months where 3854 tickets were
produced. Out of total 3854 tickets, we were able to extract
issues for 90.32% of the tickets. We validated the correctness
of extracted issues by manual verification by domain expert.
For each ticket, the domain expert compared ticket descrip-
tion with extracted issues and tagged the ticket as correct or
incorrect extraction. We correctly extracted issues for 84.37
% of tickets. An example of correct issue extraction is as
follows : Consider a description as

Patrol alert on udbaz2021: STAGE N3 Filesystem udb-
dataetlsi01 data995_0 is not mounted on UDBAX202

and correctly extracted issue is Patrol alert on stage filesys-
tem is not mounted An example of incorrect issue extraction
is as follows : Consider a description as

Portal Alert on bllaplr104e at 2012-11-28 23:30:58.000
the Swap Space Percent Available is CRITICAL

and extracted issue is Portal Alert for number of processes.
We were not able to extract issues for the 9.68 % of the tick-
ets primarily due to insufficient ticket descriptions. These
ticket descriptions did not contain any details of the ticket
and only referred to the affected system-of-origin or the time
of occurrence.

82

. Bvaluation of service catalog mapping:

. Evaluation of

1. Ewaluation of data preparation: We next present eval-

uation of data preparation step. As we described ear-
lier in Section III A , we make use of domain-specific
Include list and Ezclude list of words.

e Include list: We constructed a dictionary of fre-
quently occurring non-English words in Unix do-
main such as bmec, portal, ip, filesystem, etc. We
also made regular expressions such as fscapac-
ity_*, veluster_*, etc. We observed that 2970 tick-
ets (77.06%) contained domain words and regular
expressions which otherwise would not have been
captured.

e Fxclude list: The exclude list contained English
dictionary words that have specific meaning in
Unix environment and should not be considered
for issue extraction. For example, home, export,
root, etc are folder names in filesystem. Hence
these words need to be removed. 45.92% of tickets
contained such exclude words.

We translated each description to cleaned description.
We generated cleaned descriptions for 90.22% of tick-
ets. Remaining 9.68% of tickets correspond to 372 tick-
ets. These remaining descriptions contained only non-
English words and hence, no issues were generated for
these tickets. For example, consider description

texcemdbin051d - texcmedbin052d

After cleaning, many otherwise different looking de-
scriptions became consistent. After cleaning 3854 de-
scriptions, we generated 47 unique cleaned descrip-
tions.

We next
demonstrate the impact of using service catalog map-
ping. The service catalog of Unix domain contained
110 items of frequently occurring issues in Unix envi-
ronment. By using proposed algorithm on cleaned de-
scriptions, we observed a match in 21.01% of tickets.
One of the most dominant match was for the service
” Address Space-Crunch”. Note that this service cat-
alog item matched to 5 different cleaned descriptions
such as

BMC portal alert on dell filesystem is at x percent

full,

BMC portal alert on filesystem is critical at x per-
cent full.

By using service catalog mapping algorithm, we were
able to map 5 out of 47 cleaned descriptions to ser-
vice catalog items. After service catalog mapping, 42
cleaned descriptions remained corresponding to 3013
tickets.

clustering algorithm for system-
generated tickets: Many cleaned descriptions were
similar and had only slight variations. We applied the
proposed clustering approach to group these cleaned
descriptions. We were able to group 42 cleaned
descriptions into 19 groups. Figure 2 (c) shows the
size of these 19 groups where size of a group refers to
the number of cleaned descriptions in the group. Note
that, the number of groups depends on the threshold
threshold_similarity. We later present experiments for
varying threshold values used for clustering.

Similarity threshold = 0.2 Similarity threshold = 0.6 Similarity threshold = 0.8

_. 40 . 40+ . 40
2 2 2
S 35 S 35 S 35
2 2 2
5 30 5 30 5 30
] 3 @
0T 25 0T 25 0T 25
ST 5o Ng
oc 20 o 20 o2 20
>0 20 33
S50 15 838 15 €8 15-
% 10 B 10 B 10
©] [
£ 5 £ £
2, 2 o MBIl N N NN nnnnnnmemnn 2 o ,lu, | I 1 F ey
1 2 3 12345678 910111213141516171819 1 3 5 7 9 11 13 15 17 19 21 23 25
groupid groupid group id
(@) (©) (e)
3 20 30
18 55
g g e 3
32 g 14 8 20
@ o 12 o
5 5 10 - T 151
8 g 8 8
£ 1] £ 6 £ 10
2 2 4 2
5
2
o T - - 0 . 0 - -
0-5 5-10 10-1515-20 20-25 25-30 30-35 3540 0-5 5-10 10-1515-2020-25 25-30 30-35 3540 0-5 5-10 10-1515-2020-25 25-30 30-35 3540
group size group size group size
(b) (d) ()

Figure 2: System-generated tickets: group id vs size of each group

=3 i similarity and hence groups many irrelevant descrip-
= §j tions together. Hence, the algorithm constructed only
84 10 P 3 clusters having average size of 13.66 cleaned descrip-
2 . g 2 tions with 0.2 threshold. On the other hand, a larger
Tz I|I 21 llJ 1 threshold of 0.8 places a very strict constraint on sim-
S0l ‘ ‘ ‘ ‘ 0 e —I ilarity and does not even group different variations of
~ 1234567 8910111213141516171819 6 7 8 9 10 11 12 13 14 15 16 . .
aroup id i i same issue. Hence, the algorithm constructed 25 clus-
=) ters having average size of 1.68 cleaned descriptions

with 0.8 threshold. Similarity threshold of 0.6 balances
this trade-off making 19 groups with an average size of
2.16 cleaned descriptions. Figures 2 (b) (d) (f) show
the group size plotted against the number of groups.
We observe that as threshold increases, smaller groups
are formed.

Figure 3: System generated tickets: (a) group id vs.
label size. (b) label size vs. number of groups

4. Ewvaluation of labels of clusters: The next step is to
assign label to these 19 clusters. As explained in Sec- 6
tion 3, the set of common words from all descriptions
within a cluster are probable candidate for a cluster
label. We were able to assign long labels to most
groups. Figure 3 (a) shows the label size for each of
the 19 clusters. Average label size for each cluster was

. Fvaluation of similarity threshold against accuracy:
For measuring the impact of similarity threshold
against accuracy, we selected similarity thresholds as
0.2, 0.6 and 0.8 for clustering and computed accuracy
as 41.12%, 76.18% and 84.37% respectively. Accuracy
increases with increase in similarity threshold because

10.05 words with maximum being 15 and minimum
being 5 words. There is a structure and commonality
in system-generated tickets. Hence we could gener-
ate long labels. Figure 3 (b) shows label size plotted
against number of groups. We observe that there are
5 groups having label size of 12 words.

. Evaluation of change in threshold threshold_similarity:

Note that, the threshold used to compute similarity
between cleaned descriptions impacts how many num-

high threshold enforces more similarity and hence less
accidental matching.

. Comparison with state of the art: The most common

approach to classify a ticket is based on CTI as dis-
cussed in [12] and [13] and explained in Section 1.
We compare the accuracy of proposed approach with
that of CTI. It can be seen that the accuracy of CTI
is 55.34 % while that of proposed approach is 84.37 %.

4.2 Evaluation of the approach for user-
generated tickets
In this case-study, we applied the proposed approach for

user-generated tickets on Windows domain of a major re-
tailer in the US. We analyzed ticket history of 8 months

ber of clusters are constructed. We experimented with
threshold values 0.2, 0.6 and 0.8. Figures 2 (a) (c) (e)
show the group ids and their size (number of cleaned
descriptions) for thresholds 0.2, 0.6 and 0.8 respec-
tively. Smaller threshold places loose constraint on

83

» 1200 500 |
e
1—,‘;1000— 450‘
8 @ 400
= 2
i 00 §350{
0
g o 230
5 400 - Sas0q
3 T 200
5 200 a |
I
P AN N nmw - || 3 |
& =1m)‘
£ SEX0EzhoCASze RO
H cEEzE E2FEESsEs o |
§55%5% £% sVE 8 0 — o —
c® 4 1-tuple 2-tuple 3-tuple 4 -tuple
(a) (b)
.. 100 500
£ 90 o 450
2 80 S 400
T 7 2 350
08 60 < 300
%E 50 = 250
5 200
ot [
g8 » 2 150
235 30 E
S, S 100
5 o2 < 50
g 10 u | [-
E o T e
e . NP LSNP
MO A HMIN NG A MINNO o NIV T FTFTENE S
- MOGANCANINDNID®D T D ARSI SRS NG SR SN
HE A NNN®OM TS T)
number of groups group size
(c) (d)

Figure 4: User generated tickets: (a) keywords Vs.
number of cleaned descriptions (b) n-gram Vs. num-
ber of groups (c) number of groups Vs. group size
(d) group size Vs. number of groups

where 6909 tickets were produced. Out of total 6909 tick-
ets, we were able to extract issues for 89.34% of tickets. We
verified the correction of extracted issues from domain ex-
perts. 81.63% of these issues were correctly extracted.

1. Ewaluation of data preparation: We added 51 domain-
specific words to the Include list such as citriz, putty,
sharepoint, and ip. We observed that 4496 tickets
(65.07%) contained domain words present in the In-
clude list. We excluded some words such as user, warn-
ing, etc. We observed that 1629 tickets (23.58%) con-
tained the words present in the FEzxclude list. We re-
ceived total 6909 ticket descriptions. After data prepa-
ration step, these ticket descriptions got converted into
3460 cleaned descriptions.

2. Evaluation of service catalog mapping: We next
demonstrate the impact of using service catalog map-
ping. The service catalog of Windows domain con-
sisted of 44 items of frequently occurring issues. We
used proposed algorithm on the cleaned descriptions
and observed a match of 2136 tickets (30.92%). 20 ser-
vice catalog items mapped to 363 cleaned descriptions.
We observed that there were two items which were
dominant and covered 310 cleaned descriptions. Ser-
vice catalog item of Monitoring Disk Utilization cov-
ered 198 different cleaned descriptions and other item
of Limited Permissions FileShare covered 112 different
cleaned descriptions. By using service catalog map-
ping algorithm, we were able to map 363 out of 3460
cleaned descriptions to 20 service catalog items. Af-
ter service catalog mapping, 3097 cleaned descriptions
remained corresponding to 4043 tickets.

3. Ewvaluation of clustering algorithm for user-gemerated
tickets: Unlike system-generated tickets, we observe
many variations in user-generated tickets. We selected
15 words as keywords from 883 words based on fre-
quency and developed n-grams from them. Depending

84

upon how the issue is written and what type of words
are used to write the descriptions, the issues can be
explained by a k-tuple. For this dataset, we consid-
ered maximum 4-tuples. We applied the proposed n-
gram clustering approach to group the remaining 3097
cleaned descriptions and were able to form 505 groups.
Figure 4 (a) shows 15 1-tuples with their correspond-
ing number of tickets. 1089 (35.16%) of cleaned de-
scriptions contained keyword server. We obtained 505
groups of n-grams from these 15 keywords. Figure 4
(c) shows all 505 n-grams plotted against their sizes
where size of a n-gram denotes number of cleaned de-
scriptions that are contained in this n-gram. The top
20 most frequent n-grams cover 856 out of 3097 tick-
ets (27.64%). These 505 groups contain a mixture of
1-tuple, 2-tuple, 3-tuple and 4-tuple depending on how
these tuples explain the issue. Figure 4 (b) shows n-
grams plotted against number of groups. We observe
that majority of the groups, that is 444 are explained
by 2-tuple. Figure 4 (d) shows group size plotted
against number of groups. We observed that many
small groups were formed. We discovered 433 groups
that have less than 10 cleaned descriptions.

. Effect of number of keywords on coverage of tickets:

The number of keywords used to form n-grams has a
direct impact on the number of tickets for which issues
are extracted by the n-grams. We now evaluate the ef-
fect of varying the number of keywords used for issue
extraction. We evaluated the algorithms for varying
number of keywords ranging from 5 to 100. Figure
5(a) shows the number of keywords plotted against
the number of tickets for which issues were extracted.
As expected, the number of tickets for which issues
are extracted increases with increasing number of key-
words. However, for the given data-set the increase is
only marginal after 30 keywords. Our experience on
various data-sets indicate that, in most cases, top 50
keywords are sufficient to extract issues of more than
95% of the tickets.

. Fvaluation of size of n-gram on correctness of issues:

The size of n-gram impacts the level of details cap-
tured about an issue. A single-tuple often fails to give
sufficient details of the issue, such as server, or appli-
cation. Instead, a 2-tuple or a 3-tuple better captures
an issue, such as, server failure, or application slow.
We refer to the maximum value of n that is used for
creating n-grams as maz-_n. For the given set of tick-
ets, we fixed the number of keywords and extracted
issues with changing value of maz_n. We then com-
puted the correctness of the extracted issues for each
experiment. Figure 5(b) shows the effect of different
values of maz_n on the correctness of the extracted is-
sues. The correctness of issues increases with increas-
ing value of maz_n. However, for the given dataset
we were able to extract correct issues for most of the
tickets with 2-tuples. Only few tickets required the
3-tuples or 4-tuples to completely explain the issue.
Hence, increasing the value maz_n to 3 and 4 provided
only marginal increase in correctness.

. Comparison with state of the art: The most common

approach to classify a ticket is based on CTI as dis-

120
100 -{ 70

|

46 60 ‘

50

60 a4 |

40 30 }
20 0

. NN N 1 N B 10 J‘

0!

5 10 20 30 40 50 60 70 80 90 100

% coverage
% correctness
N

o

number of keywords 1-tuple 2-tuple 3 -tuple

4 - tuple

(a) (b)

Figure 5: User generated tickets: (a) number of key-
words vs % coverage (b) n-gram vs %correctness

cussed in [12] and [13] and explained in Section 1. We
compare the accuracy of proposed approach with that
of CTI. It can be seen that the accuracy of CTI is 28.56
% while that of proposed approach is 81.63 %.

5. RELATED WORK

Many researchers in the past have worked on perform-
ing various types of analysis on alerts and tickets based on
various objectives. Some of these objectives are

1) Automated problem inference: Authors in [17] have pro-
posed a system that aims to do automated problem inference
for network trouble tickets.

2) Resolver analysis: Authors in [14] provide statistics-
based discovery algorithms to identify experts, specialists
and highly experienced people for specific service tasks.

3) Problem occurrence pattern: Authors in [12] develop a
subgroup discovery technique and demonstrate its use to
identify expensive problems in an IT Infrastructure Support
(ITIS) organization. Authors in [13] propose statistics-based
discovery algorithms to answer specific business questions
related to ITIS operations such as identifying heavy hitter
problems, identifying problems facing unusually high SLA
violations and identifying problems suitable for automation,
etc.

All above work requires knowledge of issues. Our work
falls in the category of extracting issues from text. Ticket-
ing tools such as ServiceNow [1], Remedy [2], etc. provide
drop-down menus for classification of issues in classes such
as Category, Type, Item and Summary (CTIS). However,
the classification is often coarse grained, as the quality of
classification is dependent upon the customization by the
organizations. Further, the resolvers and users make mis-
takes in categorizing the issue. As a result, the analysis
based on this classification is often misleading.

6. CONCLUSION

In this paper, we address the problem to mine textual
descriptions in tickets to extract issues. We propose use of
informational retrieval techniques along with domain knowl-
edge to extract issue. We capture the knowledge of IT and
business domains in the form of include and exclude lists
of words and regular expressions. We propose two different
algorithms to extract issues for system and user-generated
tickets. In system-generated tickets, the algorithm is based
on clustering descriptions based on similarity, while for user-
generated tickets, we propose keyword based approach to
cluster similar descriptions.

We have applied the proposed ideas on several real-world
case-studies. The proposed algorithms were able to derive

85

issues that were otherwise difficult to extract. We demon-
strate the proof-of-concept of proposed approach using two
real-world case-studies. One for system-generated tickets
and other for user-generated tickets. In system-generated
tickets, by using the proposed approach we were able to
correctly extract the issues for 76.16% of tickets. Whereas,
in user-generated tickets, we were able to correctly extract
the issues for 81.63% of tickets.

7. REFERENCES

[1] http://www.servicenow.com/products/
it-service-automation-applications.htm}1.
http://www.bmc.com/it-solutions/
it-service-management.html.
http://wuw.itil-officialsite.com/aboutitil/
whatisitil.aspx.

Immanuel M Bomze, Marco Budinich, Panos M
Pardalos, and Marcello Pelillo. The maximum clique
problem. In Handbook of combinatorial optimization,
pages 1-74. Springer, 1999.

Fan Chung and Linyuan Lu. Connected components in
random graphs with given expected degree sequences.
Annals of combinatorics, 6(2):125-145, 2002.
Kenneth Ward Church and Patrick Hanks. Word
association norms, mutual information, and
lexicography. Computational linguistics, 16(1):22-29,
1990.

Daniel Freedman and Tao Zhang. Interactive graph
cut based segmentation with shape priors. In
Computer Vision and Pattern Recognition, 2005.
CVPR 2005. IEEE Computer Society Conference on,
volume 1, pages 755-762. IEEE, 2005.

Anna Huang. Similarity measures for text document
clustering. In Proceedings of the sizth new zealand
computer science research student conference
(NZCSRSC2008), Christchurch, New Zealand, pages
49-56, 2008.

George Karypis and Vipin Kumar. Metis-unstructured
graph partitioning and sparse matrix ordering system,
version 2.0. 1995.

George A Miller. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39-41,
1995.

Makoto Nagao and Shinsuke Mori. A new method of
n-gram statistics for large number of n and automatic
extraction of words and phrases from large text data
of japanese. In Proceedings of the 15th conference on
Computational linguistics- Volume 1, pages 611-615.
Association for Computational Linguistics, 1994.
Maitreya Natu and Girish Keshav Palshikar.
Interesting subset discovery and its application on
service processes. In Data Mining for Service, pages
245-269. Springer, 2014.

Girish Keshav Palshikar, Harrick M Vin, Mohammed
Mudassar, and Maitreya Natu. Domain-driven data
mining for it infrastructure support. In Data Mining
Workshops (ICDMW), 2010 IEEE International
Conference on, pages 959-966. IEEE, 2010.

Girish Keshav Palshikar, Harrick M Vin, V Vijaya
Saradhi, and Mohammed Mudassar. Discovering
experts, experienced persons and specialists for it

(12]

(13]

(14]

infrastructure support. Service Science, 3(1):1-21,
2011.

Joseph J Pollock and Antonio Zamora. Automatic
spelling correction in scientific and scholarly text.
Communications of the ACM, 27(4):358-368, 1984.
Martin Porter. Snowball: A language for stemming
algorithms, 2001.

Rahul Potharaju, Navendu Jain, and Cristina
Nita-Rotaru. Juggling the jigsaw: Towards automated
problem inference from network trouble tickets. In
NSDI, pages 127-141, 2013.

86

