Hades: A Hadoop-based Framework for
Detection of Peer-to-Peer Botnets

Pratik Narang, Abhishek Thakur, Chittaranjan Hota
Dept. of Computer Science and Information Systems,
Birla Institute of Technology and Science-Pilani, Hyderabad Campus,
Hyderabad, India

{p2011414, abhishek, hota}@hyderabad.bits-pilani.ac.in

ABSTRACT

This paper presents Hades, a Hadoop-based framework for
detection of P2P botnets in an enterprise-level network,
which is distributed and scalable by design. The contri-
butions of this work are two-fold: Firstly, our work uses
the Hadoop-ecosystem to adopt a ‘host-aggregation based’
approach which aggregates behavioral metrics for each Peer-
to-Peer (P2P) host seen in network communications, and
uses them to distinguish between benign P2P hosts and
hosts infected by P2P botnets. Secondly, we propose a
distributed data-collection architecture which can monitor
inside-to-inside LAN traffic, as opposed to relying solely
on the NetFlow information available at a backbone router
which cannot see the LAN communications happening in
the network.

1. INTRODUCTION

In the past few years, botnets have emerged as the largest
threat to modern networks. With enterprise-level networks
regularly generating billions of events and gathering Ter-
abytes of data each day, tracking malicious activity inside a
network is nothing less than the proverbial needle in the
haystack problem. The evolution of Peer-to-Peer (P2P)
based botnets, which have a distributed and decentralized
architecture, has created further challenges in their detec-
tion.

Traditional methods of botnet detection used signature-
based or port-based approaches [11]. Such techniques were
rendered useless by botnets which did not operate over fixed
ports or used encryption. Although a lot of research has
gone into detection and take-down of botnets (P2P or other-
wise), not much work has been seen which identifies botnets
based on their network behavior.

Detecting P2P botnets is a challenging task because P2P
botnet traffic can very easily blend with benign P2P traffic
in a network, like that of Skype, BitTorrent, eMule etc.
Although some past work evaluated the detection of P2P
botnets in Internet traffic [4], the detection of P2P botnets in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

The 20th International Conference on Management of Data (COMAD),
17th-19th Dec 2014 at Hyderabad, India.

Copyright (©)2014 Computer Society of India (CSI).

121

the presence of benign P2P traffic is a challenging scenario.
Furthermore, scalable detection approaches have received
very little attention (such as in [10]).

Most of the previous work utilizing network behavior of
botnets uses the traditional 5-tuple flow-based analysis of
network traces. The ‘flow-based’ approach classifies packets
on the basis of the 5-tuple: source IP, destination IP,
source port, destination port, protocol. Some of the
recent work has used 5-tuple based flow analysis along with
supervised [7] and unsupervised [10] machine learning tech-
niques or other statistical measures [9] in order to separate
P2P botnet traffic from benign traffic.

The ‘flow’ information is typically obtained in the form
of Cisco’s NetFlow (or by using tools like Argus') from a
backbone router of an enterprise. Large-scale networks may
involve multiple border routers. The NetFlow data collected
at one router will not give a complete picture of the commu-
nications which happened to and from the network. A dis-
tributed data collection approach — where data collectors sit
closer to the nodes in the network — can give a much better
view of the communications. Such a distributed approach is
especially beneficial and essential for the detection of smart
P2P bots inside the perimeter of a network, which talk to
each other and send upgrades to themselves on LAN in a
P2P fashion, and limit communication to the outside world
via one or two peers only. The activity of such bots, which
communicate to each other on LAN in a P2P fashion, cannot
be detected by traditional ‘flow-based’ approaches which
only monitor the data crossing the backbone router(s).

Flow-based approaches are known to suffer from another
drawback [6] that many modern P2P applications and P2P
botnets randomize their port numbers and switch their com-
munication between TCP and UDP. The classical ‘flow’ def-
inition relies of port numbers and protocol, and cannot give
the true picture of the communications that the P2P hosts
inside the network are engaged in.

In this work, we present Hades, which is an acronym for
‘Host-aggregation based detection system’ for P2P bot-
nets. Hades utilizes the distributed computing power of the
Hadoop ecosystem to parse large network traces and extract
‘behavioral’ features for every P2P host seen in network
communications. The extracted feature-set is then used to
train supervised machine learning models which can differ-
entiate P2P botnets from P2P applications. Hades does not
require signature-based detection approaches, Deep Packet
Inspection (DPI) or a ‘seed’ information of bots obtained

"http://qosient.com /argus/

from a blacklist of IPs. Hades just relies on the header
information in the network and transport layer, and extracts
statistical features which quantify the ‘P2P’ behavior of
different kinds of P2P applications.

Hades addresses certain limitations of past works and makes
the following contributions:

1. Hades is built on top of the Hadoop ecosystem, which
is a de facto standard for big data analytics. Since
it utilizes the power of distributed computing through
Hadoop [2], Hades is scalable by design.

We propose a distributed data collection architecture
wherein data collectors are distributed at multiple lo-
cations inside an enterprise network and sit close to the
peers, say at an Access switch or a Wi-fi access point.
This approach allows inside-to-inside communication
view, which can be vital for detecting P2P botnets
inside a network which communicate to each other over
LAN.

Hades does not rely on the traditional ‘low’ definition.
We adopt a Host-aggregation based approach which
obtains statistical features per host for all P2P hosts
involved in network communications.

In order to facilitate reproducible research, we also discuss
the implementation aspects of Hades in detail.

2. SYSTEM DESIGN AND IMPLEMENTA-
TION DETAILS

The system design of Hades employs the libpcap library
for collecting and parsing network traces. It utilizes the
Hadoop ecosystem for aggregation of host-based data and
for building scalable models for the detection of P2P bot-
nets. Hades has been implemented on top of the Hadoop
ecosystem with the open-source projects of Apache Hive [§]
and Apache Mahout [1]. The system architecture of Hades
is given in Figure 1.

2.1 Distributed Data Collection

Instead of relying upon NetFlow data obtained at a back-
bone router, Hades proposes a distributed data-collection
technique wherein data collectors sit close to the peers inside
the network perimeter. As mentioned above, this allows
Hades to have a view of the conversations which happen
inside-to-outside (or vice-versa) as well as inside-to-inside.

The implementation of Hades has multiple data collec-
tors distributed inside the network perimeter. The initial
deployment of the system has data collectors deployed at
Wi-fi access points within the University campus of the
authors. The multiple data collectors consist of commodity-
grade hardware machines with 2 GB RAM, 2 CPU cores
and 200 GB of disk space. The Wi-fi access points used are
NetGear N150 and Belkin N150. Each data collector uses
a libpcap library based module to capture traffic in the
form of network traces .pcap files. Each data collector runs
an automated parser module (built with libpcap library
and Python) which parses the network traces and extracts
packet-level features of interest to us. Features are extracted
from the IP header and TCP/UDP header, and no DPI is
required. For this work, the features extracted from each
packet are:

1. Time-stamp of the packet

122

Student Hostels

Distributed Systems Lab

2. Parse
Packets
& Extract
Features

=
\

3. Parsed
data pushed
to HDFS

4. Host-based
features
aggregated
with Hive

5. Feature set
evaluated
against models
built with
Mahout

i

Data nodes

D

P2P bots

<=~ detected

Q Trigger
Firewall
rules

Figure 1: Hades: System Architecture

Source IP
Destination IP
Time-to-live (TTL) value

5. Transport layer protocol (TCP/UDP)

6. TCP or UDP payload length (as applicable)

The extracted features are stored in a .csv file at each
data collector. Instead of transferring large .pcap files,
these .csv files are periodically transferred from all data
collectors to the Hadoop Distributed File System (HDFS)
[3]. For the purpose of data sanitization, all packets which
are found to mot contain a valid IPv4 header are removed
(E.g- corrupted packets). Presently Hades does not support
IPv6. The present approach of Hades also disregards all
packets corresponding layers below the IP layer, such as
ARP broadcast messages. The implications of this choice
will be further discussed in section 4.

2.2 Host data aggregation

The Hadoop cluster deployed for Hades consists of a ‘name
node’ Virtual Machine with 8 GB RAM, 8 CPU cores and
200 GB disk space, and ten ‘data node’ Virtual Machines,
each having 2 GB RAM, 2 CPU cores and 200 GB of disk
space. Each Virtual Machine runs Ubuntu 12.04 Operating
System.

Packet-level data obtained from multiple data collectors is
aggregated per host for every host seen in network communi-
cation. The packet-level data is stored in Hive in the form of
external tables. Hive commands are written in HQL (Hive
query language) which is very similar to SQL [8]. The Hive
command used to create the table for storing packet-level
data is given here:

CREATE EXTERNAL TABLE packet_data (
timestamp DECIMAL, ip_source STRING,
ip_destination STRING, ttl INT,
proto INT, payload_length INT)

ROW FORMAT DELIMITED FIELDS TERMINATED BY ¢,’

LOCATION ¢/user/hdfs/PacketDump’;

For the task of detecting P2P botnets, we aggregate the
following statistical features over a time-period T (say, one
hour) for every P2P host inside the network:

1. Number of distinct destination hosts contacted:
P2P hosts are involved in sharing content and down-
loading download different chunks of a file from dif-
ferent peers across the globe. A benign P2P host
might be involved in downloading a certain file (or its
chunk) from Adelaide, uploading a file to another peer
at Birmingham, and download music content from a
peer at California. As a normal user of the Internet
engaged in P2P file sharing, a benign P2P host is
expected to contact a number of peers in the different
parts of the world, with no specific pattern involved
in the destinations contacted. Moreover, due to the
sheer size of these networks, most interactions in P2P
file sharing networks are one-time transactions, where
peers who share content with each other may never
interact again. But, the behavior of hosts infected by
P2P botnets gives a contrast. Bot-peers do not engage
in file sharing or downloads. Rather they regularly and
repeatedly contact their set of bot peers to receive or
propagate commands and updates. Thus the number
of unique destination hosts contacted by bot-peers are
expected to be less as compared to benign P2P hosts.

2. The total volume of data sent from the source
host: As stated above, benign P2P hosts are engaged
in file transfers, downloads, uploads etc. whereas bot
hosts are not expected to be engaged in these activi-
ties. The volume of data sent from a benign host is,
quite clearly, expected to be more than the exchange
of data seen at bots which are primarily involved in
exchange of Command & Control information.

3. The average of the TTL value of the packets
sent from the source host: A user of P2P file shar-
ing systems who is involved in downloading some music
content will not bother whether the seeding peers hap-
pen to be from his home country or some other part
of the world. Rather, while the user might himself be
situated in India, he may download one part of the file
from a peer in China, another chunk from a peer in
Holland, and another from a peer in Australia. Since
the file requests of benign P2P users travel all over the
world, these requests typically have high TTL values
associated with them. In contrast, bot hosts tend to
repeatedly contact their set of bot-peers. For the sake
of efficient design and avoiding latency/overheads, bot-
masters would not want their bots to talk to peers
in different parts of the world. Bots are expected to
engage in communication with other bot peers near to
them. This leads to the requests sent by bots having
lower TTL values when compared to requests seen
from benign P2P hosts.

The host-aggregated features described above are stored in
another table:

CREATE TABLE host_data (
host STRING, destinations DECIMAL,
avg_ttl DECIMAL, volume BIGINT)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ¢,°
LINES TERMINATED BY ‘\n’ STORED AS TEXTFILE;

123

100 97.2 949 99 98
90
80
70
60
50
40
30
20

10 5.1 28 2 1
0 .

True Positive False Positive ‘ True Positive False Positive

Training ‘ Testing

m Botnet = Benign

Figure 2: True Positive rate and False Positive rate
with training and testing data for Random forests
of ten trees

Since the packet-level data arrives from different data col-
lectors periodically, a Hive script is run periodically to con-
vert it into host-aggregated form and store it in the table
host_data created above. The Hive script given below uses
a ‘GROUP BY’ operation to obtain data in host-aggregated
format:

INSERT INTO TABLE host_data

SELECT ip_source, COUNT (DISTINCT ip_destination),
AVG(ttl), SUM(payload_length)

FROM packet_data

GROUP BY ip_source;

2.3 Detecting P2P bots from hosts

The host-based features extracted above are used to train
and test supervised machine learning models. Apache Ma-
hout is used for this purpose. Mahout is a fairly new tool,
and at present does not offer many machine learning algo-
rithms. Further, many of Mahout’s algorithms (for clas-
sification and clustering) do not run as MapReduce jobs.
Parallelized implementations are important for scalability
of Hades over large datasets. Thus, for this work, we stick
to the Random Forest implementation of Mahout which is
a parallelized implementation (in contrast to other imple-
mentations like Linear regression, AdaBoost etc., which are
not). More details on the data used are given in the next
section.

Results generated from Hades can be used to alert a net-
work administrator for suspicious activity in the network,
trigger rules to a Firewall, and/or log or drop botnet traffic.
This way Hades can be used by network administrators as
an assisting tool which is ‘P2P-aware’.

3. EVALUATION AND RESULTS

For evaluation of Hades, we use P2P data obtained from
a recent work at the University of Georgia [7]. Our dataset
consists of network traces of two P2P applications, namely
Vuze and Frostwire, and two P2P botnets, namely Storm
and Waledac. The data of P2P applications was generated
by Rahbarinia et al. by running these applications in their
lab environment for a number of days. The data of P2P

botnets was obtained by them from third-parties, and cor-
responds to real-world traces of these botnets.

The size of this dataset was around 20 GB (14 GB for
Vuze and FrostWire, and 6 GB for Storm and Waledac) in
.pcap format, and around 10.5 GB (6.6 GB for Vuze and
FrostWire, and 3.9 GB for Storm and Waledac) when parsed
to .csv format.

After extracting host-based features from each applica-
tion, we created a ‘labeled’ dataset. Instances belonging
to P2P hosts (Vuze or Frostwire) are labeled ‘benign’, while
the instances belonging to P2P bots (Storm or Waledac) are
labeled 'malicious’. This dataset was split into training and
testing data in 2:1 ratio. With the training data, Random
Forest models were built for different number of trees in each
run. The models were then evaluated for their accuracy with
the test data. Due to limitations of space, we only present
the results for number of trees in the forest equal to 10.
Figure 2 shows the accuracy obtained for the training and
testing data with a Random Forest of 10 trees. Our system
could detect bot-infected hosts with a True Positive rate of
97% and 99%, and a low False Positive rate of 5% and 2%
over training and testing datasets respectively.

4. DISCUSSION & POSSIBLE EVASIONS

It was explained in Section 2 that Hades ignores messages
below the IP layer, such as ARP broadcast messages. Its
implications will be discussed here. In the Introduction, we
argued on the case of ‘smart’ P2P bots which may exchange
C & C with peers on a LAN and limit communication with
the outside world to one or two peers. A bot-master may
also configure such smart bots to utilize protocols lower than
the IP layer — such as ARP messages — to facilitate commu-
nication between the bots on the same LAN. Hades will not
be able to detect the communication of such bots since it
does not deal with those messages in its present approach.
Although no past work has touched upon this issue and no
such botnets are known to exist at present, we argue that
with the evolution of botnet detection mechanisms, bot-
masters will also improvise their botnets in these ways to
make them more efficient and harder to detect.

Further, the present approach of Hades is limited to de-
tection of bots when bots and apps are not running on the
same host. If a host which is running P2P applications is
also infected with a bot, Hades will be unable to correctly
classify it as an infected host.

5. CONCLUSIONS AND FUTURE WORK

This work presented Hades, an approach to collected P2P
data inside a network in a distributed manner, and extract
host-aggregated features to distinguish between P2P ap-
plications and botnets using supervised machine learning
approaches. To the best of our knowledge, Hades is the
first attempt at distributed data collection for the detection
of P2P botnet traffic. The distributed data collection ar-
chitecture proposed by us gives inside-to-inside visibility of
traffic. With such an approach, Hades attempts to target the
detection of ‘smart’ P2P bots. However, such botnets are
not known to exist at present?, and thus no network traces
corresponding to such behavior could be evaluated. We

2With the exception of Stuxnet [5], which we ignore here
since it targets SCADA systems, and evaluating its detection
with Internet traffic would not be possible

124

plan to evaluate Hades on such data by generating synthetic
botnet data.

Acknowledgments

The authors would like to thank their teammates G. Sharath
Chandra and Kamaldeep Singh for their efforts on Hadoop
set-up and deployment.

This work was supported by Grant number 12(13)/2012-
ESD for scientific research under Cyber Security area from
the Department of Information Technology, Govt. of India,
New Delhi, India.

6. REFERENCES

[1] Mahout: Scalable machine-learning and data-mining
library. http://mahout .apache.org, Accessed on 30
November 2013.

A. Bialecki, M. Cafarella, D. Cutting, and

0. O MALLEY. Hadoop: a framework for running
applications on large clusters built of commodity
hardware. Wiki at http://lucene.apache.org/hadoop,
11, 2005.

D. Borthakur. The hadoop distributed file system:
Architecture and design, 2007. Apache Software
Foundation, 2011.

J. Francois, S. Wang, R. State, and T. Engel.
Bottrack: Tracking botnets using netflow and
pagerank. In Proceedings of the 10th International
IFIP TC 6 Conference on Networking - Volume Part
I, NETWORKING’11, pages 1-14. Springer-Verlag,
Berlin, Heidelberg, 2011.

L. O. Murchu. Stuxnet p2p component.
http://wuw.symantec.com/connect/blogs/
stuxnet-p2p-component. Accessed on 12th February
2014.

P. Narang, C. Hota, and V. Venkatakrishnan.
Peershark: flow-clustering and conversation-generation
for malicious peer-to-peer traffic identification.
EURASIP Journal on Information Security,
2014(1):1-12, 2014.

B. Rahbarinia, R. Perdisci, A. Lanzi, and K. Li.
Peerrush: Mining for unwanted p2p traffic. In
Detection of Intrusions and Malware, and
Vulnerability Assessment, pages 62—-82.
Springer-Verlag, Berlin, Heidelberg, 2013.

A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
S. Anthony, H. Liu, P. Wyckoff, and R. Murthy. Hive:
a warehousing solution over a map-reduce framework.
Proceedings of the VLDB Endowment, 2(2):1626-1629,
2009.

T.-F. Yen and M. K. Reiter. Are your hosts trading or
plotting? telling p2p file-sharing and bots apart. In
Proceedings of the 2010 30th International Conference
on Distributed Computing Systems, ICDCS ’10, pages
241-252. IEEE, 2010.

J. Zhang, R. Perdisci, W. Lee, X. Luo, and U. Sarfraz.
Building a scalable system for stealthy p2p-botnet
detection. Information Forensics and Security, IEEE
Transactions on, 9(1):27-38, 2014.

Z. Zhu, G. Lu, Y. Chen, Z. Fu, P. Roberts, and

K. Han. Botnet research survey. In Computer Software
and Applications, 2008. COMPSAC’08. 32nd Annual
IEEFE International, pages 967-972. IEEE, 2008.

2]

(10]

(11]

