
17

A Model Independent and User-Friendly Querying System
for Indoor Spaces

Amrutha H.
Dept. of Computer Science and Engineering,

Amrita School of Engineering, Coimbatore
Amrita Vishwa Vidyapeetham (University)

amrutha.hari12@gmail.com

Vidhya Balasubramanian
Dept. of Computer Science and Engineering,

Amrita School of Engineering, Coimbatore
Amrita Vishwa Vidyapeetham (University)

b vidhya@cb.amrita.edu

ABSTRACT

Querying indoor information has become important with in-
creasing demand for indoor pervasive applications in vogue.
A number of applications have been developed like indoor
navigation, localization etc., which work on the modeled
indoor data. Different models like geometric, spatial and
topological models exist for the indoor space. Existing query
languages are model specific, and not user friendly. We pro-
pose a querying system which will work irrespective of the
underlying model by hiding the complex details of the indoor
model from the user. A querying framework is developed
which abstracts out basic entities and primitive operators
from multiple models. A text-based query language for the
indoor space is built on this framework. A visual querying
interface is developed which further simplifies the task of
querying.
Index Terms- indoor information modeling, querying frame-
work, visual querying

1. INTRODUCTION
Indoor information modeling and management has gained

significance, with a large number of applications like indoor
navigation, localization, asset management etc operating on
the indoor space. To support these applications an effective
querying framework over indoor space is necessary. Exist-
ing querying systems over indoor space have been developed
based on the underlying indoor models like geometric, spa-
tial and topology based models [7]. Models constructed for
the indoor space, represent its entities like rooms, doors etc,
relations between the entities and a set of constraints. Each
model deals with different aspects of an indoor space. Spa-
tial models represent the spatial attributes of entities and
relations, topology based models represent the space as a set
of entities connected by a set of relations[11] etc. Each model
is stored in suitable databases and querying is done using

0This work has been funded in part by DST(India) grant
DyNo. 100/IFD/2764/2012-2013

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
The 20th International Conference on Management of Data (COMAD),

17th­19st Dec, 2014 at Hyderabad, India.
Copyright c©2014 Computer Society of India (CSI).

the general purpose query languages supported by them.
The current query languages which support querying over

indoor models (e.g. SQL which supports spatial models
[16], Cypher Query Language that supports topology based
model [1] and BIMQL for Building Information Models that
supports a semantic model [12]) have a syntax that is diffi-
cult for use by non-professional users. These languages use
complex terminologies, and are tightly coupled with the un-
derlying modeling framework. The user needs to be familiar
with the specific terminologies associated with a framework,
and the way in which the space is modeled, each time he
queries the data model stored. In current systems, to query
an indoor space, a naive user has to either directly query
the underlying database using the associated general pur-
pose query language or use an existing model specific lan-
guage making the querying complicated. This necessitates
development of a generalized query language which can work
above multiple indoor data models.

The next challenge is that existing query languages over
indoor space are complex i.e, though they use SQL like syn-
tax, the queries are long and complicated. For instance for
finding a path between two points in the indoor space, a
function has to be written in the underlying language. There
are no simple and direct constructs that can help users spec-
ify such queries easily. While such constructs have been de-
veloped for outdoor spatial applications, it has not been de-
veloped in the indoor domain to the best of our knowledge.
Also, to ease the querying process further, effective visual
querying systems are needed, as there are no known visual
query interfaces for indoor spaces. Compared to text-based
querying, visual querying mechanisms simplify the task of
querying and provide an increased level of comprehension
[13]. The user friendliness of querying can hence be im-
proved by adopting a visual querying interface.

In this paper, we address the above issues by developing a
model independent querying framework for the indoor space.
This querying system can be used in different application
scenarios irrespective of the underlying data models. Along
with providing a model independent querying system, the
work aims to enhance the user’s querying experience, by
defining an indoor query language that can help construct
indoor queries easily both using SQL like syntax and a visual
query interface.

To achieve these goals, we develop a querying framework
which abstracts out the basic entities and operators which
are common to multiple models. Based on this querying
framework, SQL type text-based query operators are devel-
oped. An SQL type query language is developed as SQL

18

syntax shares similarities with most of the existing query
languages. A visual querying component is added above
this language to help the user construct queries with much
ease and improved comprehension. For using the querying
system above multiple data models, translation modules are
designed to translate the input queries to the general pur-
pose languages supported by the models.

The rest of the paper is organized as follows : Section II
and III present the related work and illustrate the architec-
ture of the proposed indoor querying system. Section IV
deals with design of the model independent querying frame-
work along with its evaluation. The query translation and
its evaluation are discussed in Section V. Conclusion and
future directions are given in Section VI.

2. RELATED WORK
Our goal in this paper is to design a querying framework

that is model independent and is user friendly. In this sec-
tion, we detail the existing spatial querying approaches for
both indoor and outdoor space, and motivate the need for
our work.

One of the primary problems in querying spatial data is
the complex syntax of the spatial functions. To address this,
one of the earlier approaches to make querying over spa-
tial data more easier is to use Structured Query Language
(SQL) extensions. Works based on this approach, add func-
tionalities to SQL for supporting spatial queries like shortest
path and nearest neighbor queries. One such query language
developed for spatial databases is Spatial SQL [8]. This
provides support for spatial data types like lines and poly-
gon, operators like intersects, disjoint etc., and predicates
over SQL. Some systems, additionally use an interface that
allows for spatial objects used in the queries to be picked
from the screen. Another work with a similar approach is
GEOQL (GEOgraphic Query Language) [14] that defines a
similar set of spatial predicates for geographical data. In
[3], a spatial query language for building information mod-
els is designed by adding extensions to SQL. It defines a
set of geometric operators between objects in a 3D space
by designing a 9IM (9 Intersection model). The operators
defined are ‘contain’, ‘disjoint ’, ‘equal ’, ‘overlap’, ‘touches’
and ‘within’ between the geometries. In this language how-
ever, the specific terminologies in terms of IFC (Industry
Foundation Classes) standard like IfcSpace, IfcDoors, etc.
are used in the queries, making it difficult to use.

Another approach is to define a new language for a partic-
ular domain. A domain specific query language captures the
semantics of the domain better than a general purpose query
language. BIMQL (Building Information Model Query Lan-
guage) [12] is an open source spatial query language devel-
oped for the spatial analysis of building information models.
This is an improvement to the previously mentioned work
that extended SQL for building information models. Build-
ing Information Modelling(BIM) is the standardization of
IFC(Industry Foundation Classes) based models of build-
ings. The IFC specific terminologies like IfcDoor, IfcStan-
dardWallCase etc., are replaced by natural language terms
like ‘doors’, ‘walls’ etc. The language hides the complex
terminologies involved in the IFC based modeling but does
not reduce the complexities of query syntax. In addition the
language is still tightly bound to the underlying model.

An indexing for the trajectories and a query language for
finding the indoor objects is proposed in [10]. It uses two R-

Tree based structures to represent the user trajectories. The
queries defined are of the format, Q(Es, Et, P) where Es is
an indoor space partition, Et is the temporal extent and P
is the topological predicate. This primarily is designed to
support trajectory based querying and is not extensible to
general indoor querying.

In order to support the heterogeneity in GIS data, a Vir-
GIS mediation system is proposed in [4] for the outdoor
space. There exist different data sources for GIS data (e.g.
topographic maps, satellite images etc.). The system pro-
posed in this work provides a unified model for supporting
data from different data sources. A global schema is devel-
oped which represents a set of abstract features like roads,
bridges etc. in the outdoor space. Mappings from the global
schema to the underlying local data sources are done us-
ing one to one mappings. The queries issued to the global
schema are converted using the corresponding local schema.

To improve user friendliness of queries several approaches
have been proposed, one of which is to use natural language.
One such system [17] adopts a controlled natural language
interface for GIS(Geographic Information Systems). Since
the introduction of natural language interfaces can lead to
vague inputs from the user, the work proposes a controlled
language interface. A semantic representation of the GIS
queries called Lambda SQL is defined which serves as an in-
termediate representation to the interface. The natural lan-
guage query is converted to the intermediate format which
is then converted to the SQL query with spatial support.
This language works only for outdoor queries and high level
queries describing a building and is not generalizable to any
model.

Another approach to increase ease of querying, is to use
a menu based natural language interface as is proposed in
(MBNLI) [18]. It uses a completion based menu interface
where each word selected by the user is parsed and another
set of words are suggested to construct the query. This helps
overcome issues in natural language queries and prevents the
user from writing vague queries. An extension to MBNLI is
introduced in [5] to support geospatial queries. Here support
for spatial operators such as intersects, contains, touches,
covers, disjoint etc. are added as defined in Oracle. The
MBNLI query, termed as LingoLogic query is converted to
the equivalent spatial query. The output is converted to
KML(Keyhole Markup Language) and displayed in Google
Earth. However such approaches are yet to be tested in a
3d space.

Visual querying is another suitable approach, which helps
the user construct queries through visual interactions. Users
need not learn the query syntax as in the text-based query
languages. Visual querying on spatial databases is presented
in [13], where a diagrammatic technique is used based on
a data flow metaphor. The flow of data between the in-
put and output elements through one or more filters visu-
ally represents a query. Spatial entities and spatial relations
(e.g. disjoint, touches, crosses, in etc.) are defined, which
interact in constructing spatial queries. Another work [2]
presents a prototype implementation of Spatial-Query-By-
Sketch which is a sketch based user interface to query GIS
data. While the previous work involves using a set of icons
for querying, this approach processes the sketch drawn by
the user to convert it into a canonical form called digital
sketch. This format identifies the entities, their topological
and directional relations.

19

While several querying approaches are available as men-
tioned above, they are developed to suit a particular mod-
elling framework. Also, visual querying which makes the
task of querying the most simpler is not implemented for
indoor information. We develop a generic query language to
support the various(spatial, geometric and topology based)
models of the indoor space. Additionally a visual querying
interface that helps enhance the user’s experience of building
the queries is introduced in the system.

3. ARCHITECTURE OF THE INDOOR QUERY-

ING SYSTEM
We now explain the architecture of the proposed query-

ing system which will work on multiple models of indoor
space. To achieve this, the system works on a framework
that abstracts out the details that are common to most
used indoor models inorder to construct a generic repre-
sentation. Text-based and visual querying languages are
designed based on this framework. The working of the sys-
tem starts with the user constructing a visual query, which
is converted to the text-based query defined specifically for
indoor spaces. This query is then converted to the corre-
sponding query languages like SQL or cypher query language
associated with the underlying database. Figure 1 presents
the architecture diagram of the indoor querying system pro-
posed in this work. The main modules of this system are
explained as follows.

Figure 1: Architecture of the indoor querying sys-
tem

• Visual query interface
This provides a 3D visualization of the indoor space
through which the user interacts to construct the vi-
sual queries. For each query, a set of visual interactions
are defined like selecting the query type and giving the
query parameters visually.

• Query compilers and translators
These enable the translation of the input visual queries
to a format which can be issued to the stored indoor

data models. There are two query compiler modules
defined in the system.

– Visual query compiler
The compiler processes the visual query input by
the user to generate the query in corresponding
text-based query language defined in the system.
The relevant details like the query type and query
parameters are extracted and substituted in the
text query syntax.

– Text-based query compiler
This component parses the text-based query to
validate the query syntax and aid its translation.
The compiler on parsing each textual query gen-
erates an abstract syntax tree.

• Translator modules
The parsed text query from the compiler module is
fed to the translator to generate the queries in lan-
guages supported by each databases. Separate trans-
lation modules exist to generate queries in these gen-
eral purpose query languages.(e.g. To SQL for Post-
GIS[16], to cypher queries for Neo4j [1] etc.)

• Databases
Indoor information models are of different types like
geometric, spatial and topological. Based on the data
models, different databases are adopted (e.g. Topology
based model best represented in a graph database like
Neo4j, spatial models represented in PostGIS etc.).

The proposed querying framework works irrespective of
the underlying models. The framework is formulated using
the abstractions from different models. Based on this frame-
work, a text-based and visual query languages are defined.
The translation to the existing general purpose languages
are done by the translator modules defined in the system.
The next section will delve into the conceptual modeling of
our querying framework.

4. MODEL INDEPENDENT QUERY FRAME-

WORK
The primary purpose of this work as mentioned in previ-

ous sections is to generate an indoor querying system that is
generic enough to support any indoor modeling framework.
To achieve this, we propose the underlying framework that
defines the basic indoor entities and primitive operators that
operate in the indoor space. We identify the basic entities
and operators in the main models of indoor space namely
spatial, topological and geometric, and define a minimum
common set that can map to entities and operators of these
models in constant time. The identified entities and oper-
ators in the indoor space are as given below. While these
entities are similar to the definitions of IndoorGML, they
have been defined keeping in mind specifications in the most
common indoor models.

• Space : This represents all the entities which semanti-
cally represent a space in a building’s interior. These
include rooms, corridors, sub-spaces of corridors/rooms
etc. Space is created by a set of boundaries that de-
termine its dimensions.

20

• Boundary: This corresponds to all the boundary struc-
tures which enclose the space entities in the indoor
space. Boundaries can be classified as navigable bound-
aries and non-navigable boundaries. The non-navigable
boundaries are the boundary components which block
navigation, like the walls. The navigable boundaries
are those which form the boundaries of the space en-
tities and allow navigation, like the doors.

• Transition: Transitions are the entities in the indoor
space which enable the movement from one space to
another. They are the navigable connections which
exist within any indoor environment. Examples of en-
tities which belong to this class are exits, stairs and
elevators.

To demonstrate the completeness of the chosen entities
and operators, we show the correspondence between them
and those in the existing modelling frameworks. The equiv-
alence of entities in different models are shown in Table 1.

Basic En-
tities

PostGIS (spa-
tial)

BIM (geo-
metric)

IndoorGML
(topology
based)

Space Polygons IfcSpace Abstract
Space

Boundary Polylines IfcWall,
IfcDoor,
IfcWin-
dow

Abstract
Space Bound-
ary

Transition MultilineString IfcStair Transfer
Space

Table 1: Entity equivalence

In the spatial model, space is characterised by its ge-
ometry which defines its extent and position in the space
under consideration[11]. This model defines a set of ge-
ometry types like point, polygon, linestring, multilinestring
etc, which is common to spatial database extensions like
PostGIS. The indoor entities are represented as polygons,
polylines or multilinestrings, providing a direct mapping to
the spatial model. In the IndoorGML standard specifica-
tion, which deals with the topology based modeling of in-
door space, a set of classes are defined for entities and a
set of relations between these entities to form the topolo-
gies. The classes defined for the entities are AbstractSpace
to represent an indoor space(e.g. rooms), AbstractSpace-
Boundary to represent boundaries of an indoor space(e.g.
walls), TransferSpace to represent passages from one space
to another(e.g.stairs) etc. [11]. Such mappings can also be
provided to other specifications of the topological model.
Semantic representation is used in the Building Information
Modeling(BIM), which represents a building’s design as a
collection of objects. The underlying modeling of space is
based on geometric modeling. The objects carry their ge-
ometry, attributes and relations [6]. Industry Foundation
Classes(IFC) is the standard which allows representation
and exchange of BIM data. Different classes exist which de-
fines the indoor entity types like IfcSpace, IfcDoor, IfcWalls,
IfcWIndows, IfcStairs etc. The space entity defined in our
framework is an abstraction of IfcSpace, boundary is an ab-
straction of IfcWalls, IfcDoors etc., and transition is an ab-
straction of IfcStairs in BIM.

Next we define the set of primitive operators through
which the basic entities interact with each other. These
operators form a maximum subset such that they can be
transformed to the operators in any model in constant time.
Table 2 shows the primitive operators which are specified
between each of the above defined entities.

SPACE BOUNDARY TRANSITION
SPACE Adjacent,

Con-
nected,
Overlaps,
Within,
Intersects.

Boundedby,
Linked

Linked, Con-
nected

BOUNDARY Bounds,
Linked

Intersects,
Touches

Intersects,
Touches

TRANSITION Linked,
Connected

Intersects,
Touches

Connected

Table 2: Primitive operators in proposed Indoor
Query Framework

We define these operators based on relationships between
entities in the indoor space in various contexts. A space is
‘adjacent’ to another space when there is a common bound-
ary between them. Two spaces are ‘connected to’ each other
when there is a navigable boundary like a door or a transi-
tion between them. A space is ‘linked to’ a navigable bound-
ary and a space is ‘bounded by’ a non-navigable bound-
ary. Other standard spatial relations [16] like ‘intersects’,
‘touches’, ‘overlaps’ and ‘within’, existing between the en-
tities are also given in Table 2. These primitive operators
specified in this work and their definitions are given in Table
3. The notations are defined as follows: E refers to an en-
tity, GEntity to the geometry of an entity, S refers to space,
NB to navigable boundary, NNB to non-navigable bound-
ary and T refers to transition.
To demonstrate the model independence of these operators
and for translating the proposed language to the existing
models, there needs to be a correspondence between the
operators defined in our framework and that of the exist-
ing frameworks. We show the corresponding operators in
the existing modelling frameworks like PostGIS and BIM
in Table 4. The correspondences, either direct or two-step
correspondences are as shown in Table 4.

These operators have either direct or two level correspon-
dence with the operators in existing query languages. The
former include operators which have a direct correspondence
with PostGIS and BIM operators like Intersect, Within,
Touches and Contains. The latter represents the opera-
tors that are equivalent to a combination of operations in
PostGIS and BIM. For instance the ‘Connected ’ operator
is defined for spaces S1 and S2/ transition T2 if both in-
tersect the same navigable boundary in PostGIS. In BIM,
IfcSpace 1 is connected to the IfcSpace 2/ IfcTransition 2
if both intersect a navigable boundary such as IfcDoor.

4.1 Proposed query language
Using the specification of entities and operators over these

entities as given above, we now define the proposed indoor
query language. The goal of this language is to cover the in-
door domain specific queries irrespective of the underlying

21

Primitive op-
erator

Format Definition

Intersects E1 Intersects
E2

Returns true when
the geometry of two
entities intersect.

Touches B1/T1

Touches
B2/T2

Two entities(B/T)
touch when their
geometries have at
least one common
point but their
interiors do not
intersect.

Overlaps S1 Overlaps
S2

Two spaces overlap
when their geome-
tries have a common
part but are not com-
pletely contained by
each other.

Within S1 Within S2 A space lies within
another space when
the geometry of the
former lies com-
pletely inside that of
the latter.

Boundedby S Boundedby
NNB

A space S is bounded
by a non-navigable
boundary NNB
when their geome-
tries intersect

Bounds NNB Bounds
S

A non navigable
boundary bounds
a space when they
have intersecting
geometries.

Linked S Linked
NB/T

A space has a linked
relation to a nav-
igable boundary or
a transition T with
which it intersects.

Adjacent Si Adjacent
Sj

Two spaces are ad-
jacent when they are
linked or bounded by
a common boundary.

Connected Si Connected
Sj/ Tj

A space is connected
to another space or
transition when they
intersect the same
navigable boundary.

Table 3: Primitive operator definition

models, and to provide user friendly querying experience.
It is designed so that a single query in the language can
replace a set of multiple queries, in a model specific query
language. For instance, to find all the entities which fall
within a specific range around a given entity, the user has
to write a function which consists of multiple sub-queries in
existing query languages. In addition, the logic for range
querying in 3d space has to be implemented by the user.
This task can be simplified by a single range query syntax
defined in the new language. This section explains the pro-
posed query language and demonstrates how it achieves the

Operator PostGIS BIM
One level correspondence

Intersects ST Intersect (GE1
,

GE2
)

IfcElement1
not disjoint
IfcElement2

Touches ST Touches
(GB1

/GT1
,

GB2
/GT2

)

IfcBuildingElement1
touch
IfcBuildingElement2

Overlaps ST Overlaps (GS1
,

GS2
)

IfcSpace1 overlap
IfcSpace2

Within ST Within (GS1
,

GS2
)

IfcSpace1 within
IfcSpace2

Two level correspondence
Boundedby ST Intersect (GS ,

GNNB)
IfcSpace intersect
IfcWall/ IfcWindow

Bounds ST Intersect
(GNNB , GS)

IfcWall/ IfcWindow
intersect IfcSpace

Linked ST Intersect
(GS , GNB) or
ST Intersect (GS ,
GT) and vice versa

IfcSpace intersect
IfcDoor/ IfcStair and
vice versa

Adjacent ST Intersect
(GS1

, GNNB) &&
ST Intersect(GNNB ,
GS2

)

IfcSpace1 intersect
IfcStandardWallCase
and IfcStandard-
WallCase intersect
IfcSpace2

Connected ST Intersect
(GS1

, GNB1
)

&& ST Intersect
(GNB1

, GS2
/ GT2

)

IfcSpace1 inter-
sect IfcDoor inter-
sect IfcSpace2/
IfcStair2

Table 4: Equivalence of primitive operators

above objectives.
The indoor query language, is defined to have an SQL like

syntax, with clauses, predicates and expressions, since SQL
like statements are easier to express.

Any query in this proposed query language has the format

‘Find indoor entity where conditions’.

The ‘Find’ clause contains the indoor domain specific en-
tities or items to be selected. This is followed by an op-
tional ‘Where’ clause in which one or more conditions can
be specified similar to an SQL query. The indoor queries
can be broadly classified into the following types: attribute
queries, spatial (e.g. adjacent, k-NN etc.) and geometric
(e.g. finding area, volume).

Attribute queries select the indoor entities based on
some operations on their attributes. An “attribute query”
finds all entities Ei’s of the specified type whose attributes
satisfy the conditions given in the query. These queries can
be specified as ‘Find entity where conditions’. For example
‘Find room where type=‘classroom” is an attribute query.

Spatial queries deal with the spatial characteristics of
the entities in the indoor space. Since indoor space is three
dimensional, the spatial queries have to be modified to suit
this space. They involve the use of spatial relations de-
fined in the querying framework. For example, ‘Find ad-
jacent(SPACE)’ , finds all the spaces which have a com-
mon boundary with this space. The common boundary can
also be in the ‘z’ axis i.e., across floors. Similarly a range

22

Query
category

Syntax Definition Description

Attribute
query

Find Ei

where
Ei.Attr1=
value1 &&
Ei.Attr2
=value2..

For every Ei

, return Ei :
{ Ei.Attr1=
value1 &&
Ei.Attr2=
value2..}

Returns all enti-
ties of the spec-
ified type which
satisfy the condi-
tions specified on
its attributes.

Adjacency
query

Adjacent
(Si) where
conditions

For every
space Sj ,
return Sj , :
{ Si adjacent
Sj is true &&
conditions
met}

Two SPACE
entities are ad-
jacent if they
share a common
boundary (nav-
igable or non
navigable) and
all the conditions
met.

Path
query

Path
(Sstart,
Send/
Tend)
[not]
through
Ei where
conditions

Returns P
={ Sstart,
S2, .. , Send}
such that for
every Si, Si

linked NBi

linked Si+1/
Tend is true
&& Ei[not]
in P &&
conditions
met.

Returns the
sequence of con-
nected spaces
or transitions
between the
start and end
entities, with the
conditions met.

Range
query

Range
(Type of
entity,
Sorigin,
range
value)
where
conditions

For every
Ei , return
Ei :{ p=
path(Sorigin

to Ei) exists
&& condi-
tions met &&
length(p) ≤
range value }

An entity of
the type spec-
ified selected
if there is an
accessible path
which falls within
the specified
range meeting
the conditions
specified.

K-
nearest
neighbor
query

Knn
(Type of
entity,
Sorigin,
k value)
where
conditions

For every
Ei , return
Ei :{ p=
path(Sorigin

to Ei) exists
and Ei is not
kth entity &&
conditions
met}

Finds the first
k entities of a
given type at
closest navigable
distance from
the queried en-
tity and meet
the conditions
specified.

Volume Find
Volume(Ei)

Returns
Volume(Ei)

Returns the vol-
ume of the spec-
ified entity cal-
culated based on
the geometry.

Table 5: Indoor query definitions

query aims to find all entities of a specified basic type (space,
boundary or transition) that fall within a specific distance
around a target entity. Here the range is based on navigable
distance, rather than Euclidean distance due to obstacles in
indoor space. The query format is ‘Find range(entity type,
entity, range value)’. Similarly k-nearest neighbour queries

return k entities, which are at the closest navigable distances
from the origin entity.

Geometric queries deal with the geometric attributes
of the indoor space entities, and they work based on the re-
lationships between geometries. A query to find the volume
of an entity also belongs to this category. The syntax for
this query is defined as ‘Find volume(entity)’.

Navigation queries help find the path between two points
in the indoor space. It can be specified by using the ‘Path’
keyword. The ‘path query ’ finds a sequence of spaces {
Sstart, S2, .. , Send} where each consecutive pair of spaces
in the sequence are connected to each other. A sequence
of connected spaces from the origin space which lead to the
end space are identified. In order to find the shortest path
among these, the navigable distance between the spaces are
given to A* or Dijkstra’s based path finding modules [19].
These queries can include basic shortest path queries or con-
strained path queries, which specify constraints like paths
without stairs etc. In addition, the query language can also
specify queries which are a combination of above queries.
The ‘Where’ clause can be used to combine different types
of queries.

The query language syntax is defined based on the BNF
grammar definitions of SQL(BNF Grammar for ISO/IEC
9075-2:2003- Database Language SQL(SQL-2003))[9]. The
grammar defined for the query language is given in the fol-
lowing part. ANTLR parser generator[15] is used for con-
structing the compiler.

〈statement〉 ::=‘Find’ qstatement [wherestatement]

〈qstatement〉 ::= attributestmnt | adjstmnt | pathstmnt
| knnstmnt | rangestmnt | geomstmnt

〈attributestmnt〉 ::= space | boundary | transition

〈adjstmnt〉 ::= ‘Adjacent’ ‘(’space‘)’

〈pathstmnt〉 ::= ‘Path’ ‘(’entity‘,’entity‘)’ [passconstraint]

〈knnstmnt〉 ::= ‘Knn’ ‘(’etype‘,’entity‘,’kval‘)’

〈rangestmnt〉 ::= ‘Range’ ‘(’etype‘,’entity‘,’range‘)’

〈geostmnt〉 ::= ‘Volume’ ‘(’ entity ‘)’
| ‘Area’ ‘(’ entity ‘)’

〈passconstraint〉 ::= [‘not’] ‘through’ entity

〈wherestatemnt〉 ::= ‘Where’ 〈conditions〉

〈conditions〉 ::= orExpr

〈orExpr〉 ::= andexpr (‘Or’ andexpr)*

〈andexpr〉 ::= compexpr (‘And’ compexpr)*

〈compexpr〉 ::= atom (‘Less’ | ‘Equal’ | ‘Grtr’ atom)?

〈entity〉 ::= SPACE | BOUNDARY | TRANSITION

〈SPACE〉 ::= room | corridor

〈TRANSITION 〉 ::= stair | elevator

23

〈BOUNDARY 〉 ::= walls | windows | doors

〈etype〉 ::= ‘space’ | ‘boundary’ | ‘transition’

〈kval〉 ::= Num

〈range〉 ::= Num

〈atom〉 ::= (‘a’..‘z’ | ‘A’..‘Z’) | ‘0’..‘9’)+

〈Num〉 : ‘0’..‘9’+

The grammar defined for the language presents the syntax
definitions for the specific query types which belong to the
different indoor query categories. The syntax for each query
has at least one basic entity in the indoor space among its
parameters. The definition of each query made in terms of
the basic entities and primitive operators that belong to the
query framework developed in this work are as shown in
Table 5.

As shown in the table, the language also supports ad-
ditional constraints to be specified on some queries. For
example, in path query, the user can specify constraints
i.e., whether a path must or must not pass through an en-
tity. This is specified through the ‘passconstraint ’ part of
the path query syntax. Additional conditions can be speci-
fied in the ‘where’ clause of each query. This helps provide
completeness to the indoor query language. The query lan-
guage as shown helps provide the user with a simple to use
language where most indoor queries can be specified using
simple constructs. To improve the user experience further,
a visual query interface is proposed which is described next.
The user inputs queries visually and these are converted to
the above defined query syntax. The following subsection
presents the visual composition of queries and the corre-
sponding text-based queries generated in the language de-
fined in this work.

4.2 Visual Query Language for Indoor Spaces
A visual querying interface helps improve the querying

experience of a user, specially in the indoor space. The
user makes visual interactions to construct the queries. This
helps any user query the indoor space without need for an
understanding of the underlying system or model. Addi-
tionally it reduces the chances of syntax errors being made
when writing a text-based query.

The visual querying module designed for the indoor query-
ing framework is presented in Table 6. It constitutes 1) a 3D
visualization of the indoor space, 2) visual primitives/ op-
erators defined for a set of queries and 3) translation mech-
anisms to generate equivalent textual queries. The visual
operators help allow the user to construct the queries in
the indoor space. These operators include the basic opera-
tions like select, point etc, which are common to most visual
query interfaces. In addition we define operators specific to
the indoor space, and the Table 6 show these operators, their
operation and their equivalent text command.

The visual operators are designed in such a way that they
visually express their functionality in 3D indoor space. Most
of them have been adapted from common visual operators
used in current spatial systems. For instance, the operator
for the k-nearest neighbor query is composed of a sphere sur-
rounded by k-smaller spheres denoting the neighbors around

Visual opera-
tor

Querying mechanism Equivalent
text query

Represents the adja-
cency of two spaces.
This pointer is placed
on the 3D entity for
which adjacency is to
be found.

Find adjacent
(SPACE)

This supports the
range query. A re-
sizable box is placed
on the entity to be
queried. Increas-
ing/decreasing the
pointer size sets the
range.

Find range
(Etype,
SPACE,
rangeval)

This represents the
path query. The user
selects the start and
end entities and a link
is drawn between the
entities for finding the
path.

Find path
(Estart,Eend)

For the k − NN query
a sphere is first gen-
erated around the se-
lected entity. Select-
ing the sphere gener-
ates one small sphere
each time around the
entity. The number of
small spheres denotes
the value of k.

Find
knn(Etype,
SPACE,k)

Table 6: Visual query primitives

an entity. Each operator visually explains its intended func-
tionality. Queries like volume queries are defined using the
simple select function and choosing options from the selected
entity. For specifying constraints, menu buttons and text
menus are provided.

Using these primitive visual operators a user can construct
the desired indoor queries. To generate the equivalent text-
based query, we need : 1) type of the query (e.g. adjacency,
range query etc.), 2) entity on which the query is issued and
3) the associated parameters(e.g. value of range in range
query, end entity in path query etc.). These are then sub-
stituted in the corresponding text query syntax. A visual
query interface is designed, which allows the users to in-
teract with the indoor space, and construct queries over it.
Figure 2 shows a prototype visual query interface.

The interface consists of the operators panel, and the can-
vas showing the 3d visualization of the chosen building. The
user selects the type of the query using the visual compo-
nents (Table 6) presented in the top left side of the interface.
Then an entity of interest is picked from the 3D visualiza-
tion. The user now performs the interactions defined for
each query (see Table 6).

The query type, entity chosen, and the constraints are
then substituted in the textual syntax defined for each query.
Since the visual query has a one-to-one correspondence with

24

Figure 2: Adjacency query constructed

Figure 3: Adjacency query result visualized

the textual query syntax, the conversion is done with simple
substitutions of the details extracted from the visual inter-
actions as mentioned previously.

Figure 2 shows the adjacency query constructed on a re-
quired indoor space. Selection on the visual primitives given
on the left part of the interface is made to construct each
query type. The corresponding text-based query is auto-
matically generated and displayed in the text area at the
bottom of the interface.

The resultant adjacent rooms of the given space computed
from the indoor data models(spatial models stored in Post-
GIS, topology based models stored in Neo4j) are shown in
the 3D visualization (Figure 3).

Figure 4 shows an example k-nearest neighbor query con-
structed. The user first selects the visual operator for the
k nearest neighbor query. A sphere pointer is placed above
the chosen entity, and as the user clicks the number of outer
spheres increase, indicating the value of k. Figure 5 shows
the rooms that are highlighted as a result of this operator.

We have described so far, a querying framework, a text-
based query language and visual querying mechanism that

Figure 4: k-NN visual query constructed

Figure 5: k-NN query result

have been developed based on this framework. The following
sub-section deals with the evaluation of the proposed query
framework.

4.3 Evaluating the query framework
The querying framework is evaluated based on a set of

queries constructed in the proposed language and analysing
the results obtained. This section explains the system en-
vironment and the use cases demonstrating the correctness
and effectiveness of the proposed query framework.

4.3.1 System Environment

In order to evaluate the system, building’s indoor mod-
els stored in PostGIS and Neo4j graph databases are used.
The dataset consists of a simulated 20-storey building, where
each floor has approximately 30 rooms.The database stores
both the spatial and topological models of indoor space. The
spatial model is represented as a set of tables storing the spa-
tial and non spatial attributes of the indoor entities and is
stored in the PostgreSQL database. The topological model
consists of the following graphs namely adjacency, connec-
tivity,and logical graphs with reference to the IndoorGML
standard[11]. Each graph depicts the basic indoor entities
as the nodes and a particular relation between them as the
edges. The adjacency graph models the Adjacent to rela-
tionships between the indoor entities, connectivity graph de-
picts the Connected to relations and logical graphs model
the access and temporal constraint information about the
indoor entities. These graphs are generated as follows. Ad-
jacency graph is generated by creating an Adjacent to re-

25

lation between the spaces that share a common boundary.
Connectivity graph comprises of edges between nodes cor-
responding to the spaces or transitions which are linked to
a common navigable boundary. Logical graphs are made
by storing the user access types(normal or administrative)
and temporal constraints(the open or closed status). These
graphs are stored in the Neo4j graph database. The indoor
querying system accesses both these databases.

4.3.2 Use cases

In order to evaluate the query language, we analyze the
following a) model independence, b)correctness and c) com-
pleteness of the proposed query framework using use cases.
Model independence is brought about when the queries can
be specified irrespective of the underlying model, or lan-
guage. Correctness is assured when the queries in the lan-
guage yields results which match with the expected out-
comes. Evaluation of completeness is to demonstrate that
any query in the indoor domain can be issued using the
language under consideration.

Now we present the set of use cases for performing evalu-
ations in the above mentioned criteria. Table 7 presents use
cases that evaluate the model independence of the query-
ing framework. For each query in our language, equivalent
queries exist in the SQL(for PostGIS) and cypher query lan-
guage(Neo4j) to which it can be mapped. From the example
queries in the tables we can see the following

• A query in PostGIS or Neo4j requires the user to un-
derstand the underlying database schema. In our lan-
guage the user only has to enter the entity name, which
is commonly used. The only constraint is that the
name commonly used must be unique and an attribute
in the database.

• Additionally a user should understand the spatial prop-
erties (property of r.geom) and how the geometrical
operators like ST Intersects work when querying the
spatial model or the graph theoretical terminologies
like nodes, and operators like “n-[:ADJACENT TO]-
>m”. In the proposed framework, the user just needs
to understand the semantic aspects of indoor space and
can be ignorant of the details of how it is represented.

These two aspects demonstrate the model independence of
the query language.

In order to analyze the correctness of the query language,
we have to assure that the structure of the query types is
suitable for the underlying databases. This ensures that the
query can retrieve the intended results by processing the in-
door data which is available in the databases. The querying
framework that we have defined in this work is based on the
abstractions of different data models of indoor information.
Each query is formulated based on these basic entities and
operators which are abstracted out from the data models.
Hence the queries will have a structure which is compati-
ble to the data present in the databases. The queries also
prevent the users from giving inputs that deviate from its
defined structure or format. It does not allow the user to
provide incorrect arguments to the queries and details which
may not exist in the database. For instance, consider a query
to find the adjacent rooms to a specific room and which are
of type ‘class room’. This query in textual form is repre-
sented as ‘Find Adjacent(A19) where type=‘class room’ ’.

The following sequence of interactions are accepted by our
visual query interface to construct the query.

• The user picks the room on which the query is to be
issued from the 3D visualization of the indoor space.
This prevents the user from giving unavailable rooms
or incorrect references to the rooms in the query.

• In order to state the condition that the adjacent rooms
are to be of type ‘class room’, the user makes a selec-
tion from a drop down list which lists all the room
types which are available in the database. This again
prevents the user from giving a type which is unavail-
able.

Hence the query language prevents the user from construct-
ing queries which are incorrect with respect to the indoor
data stored in the databases.

The next set of use cases are provided to analyse the out-
put of queries specified in the proposed Indoor query lan-
guage. To analyze this, a set of queries (both simple and
complex) in the indoor space are executed. The results ob-
tained are compared with the ideal results. Tables 8 and 9
show the sample queries and their results, and corresponding
expected results. Instances of attribute, adjacency, range,
nearest neighbor and path queries are presented along with
the results. These form basic set of queries which emerge in
the indoor domain and hence are considered for the evalu-
ation. For each query issued in the language, the expected
and the obtained results are presented. The table shows
that our queries retrieve the right results in various cases.

Finally we study the completeness of the proposed query
framework. In this framework a set of basic queries have
been defined. Any complex query can be formulated in
terms of the basic query types defined. This ensures the
completeness of the language. For instance, consider a query
to find all rooms within 200 metres around a specific entity
which are accessible to normal users and are open. This
query can be constructed by enhancing the existing range
query by adding conditions checking to the access types and
the closed/ open status of the spaces. Consider another
query for finding five nearest rooms which can accommo-
date at least 100 people, which may arise in the case of
an educational institution. The above mentioned query can
be written in our language as ‘find knn (room, entity id,
5) where capacity ≥ 100’. This indicates that new queries
can be formulated and issued using the basic set of queries
without changes to syntax.

5. QUERY TRANSLATIONS
We have proposed a model independent query framework

and evaluated the query language in previous sections. One
of the primary requirements in achieving this model inde-
pendence is to be able to translate the query in the proposed
language to any general purpose query language. Specifi-
cally, translations from visual to text-based and from text-
based to the general purpose query languages supported by
the modelling frameworks are required. This section details
the translation mechanisms defined in the system.

The visual to text-based query translation involves sim-
ple substitutions. There exists a 1-1 correspondence be-
tween each text-based and visual query, as explained in the
previous section, and hence the translation is as described

26

Query PostGIS Neo4j
Find
Adja-
cent(A21)

SELECT
r.roomname FROM
bld1floor1rooms as s
, bld1floor1walls as
w, bld1floor1rooms
as r, WHERE
ST Intersects
(r.geom,w.geom)
and ST Intersects
(w.geom,s.geom) and
s.roomname=‘A21’

start n=node(*)
match n-
[:ADJACENT TO]-
>m where
n.roomname=‘A21’
return n,m

Find
range
(rooms,B19,
200)

SELECT
r.roomname,
r.geom FROM
bld1floor1rooms as s
, bld1floor1doors as
d, bld1floor1rooms
as r, WHERE
ST Intersects
(r.geom,d.geom)
and ST Intersects
(d.geom,s.geom) and
sum (ST Distance
(r.geom, d.geom),
ST Distance (
d.geom, s.geom))
≤ 200 and
s.roomname= ‘B19’

start
n=node(*),m=node(*)
match p= (n)-[
r:CONNECTED TO
*..10]->(m) where
n.roomname=‘B19’
and sum (r.distance)
≤ 200 return m

Find
rooms
where
type =
‘con-
ference
halls’ and
floor=1

SELECT * from
bld1floor1rooms
where roomtype=
‘conference halls’

Start n=node(*)
match n.room
n.type: ‘conference
hall’, n.floor:‘1’
return n

Table 7: Evaluation of model independence

Query Query in
proposed
language

Expected result Obtained result

Find all
restrooms
in 2nd
floor

Find
rooms
where
type=
‘restroom’
and
floor=2

(ID,name)
(B5,Gents)
(B8, Gents)
(B15 , Ladies)
(B29, Ladies)

(ID,name)
(B5,Gents)
(B8, Gents)
(B15 , Ladies)
(B29, Ladies)

To find all
adjacent
spaces of
room P12

Find adja-
cent (P12)

(ID,name)
(P6 , Room
6 6)

(ID,name)
(P6 , Room
6 6)

Table 8: Evaluating querying framework’s correct-
ness

Query Query in
proposed
language

Expected result Obtained result

Find all
adjacent
class
rooms to
B4

Find adja-
cent (B19)
where
type=‘class
room’

(ID,name)
(B1 , IV IT A)
(B3 , IV IT C)

(ID,name)
(B1 , IV IT A)
(B3 , IV IT C)

Finding
path from
B2 to B16

Find path
(A21,
B12)

{B2, CRB1,
CRB2, CRB2,
CRB2, B16 }

{B2, CRB1,
CRB2, CRB2,
CRB2, B16}

To find
five near-
est neigh-
boring
rooms of
B4 of type
‘class-
room’

Find knn
(rooms,
B4, 2)
where
type=‘class
room’

(ID,name)
(B3 ,Room
3 3)

(B5, Room
3 5)

(B1, Room
3 1)

(B12, Room
3 12)

(B6, Room
3 6)

(ID,name)
(B3 ,Room
3 3)

(B5, Room
3 5)

(B1, Room
3 1)

(B12, Room
3 12)

(B6, Room
3 6)

To find
all rooms
within
200m
around A2

Find
range
(rooms,
A2, 200)

(ID,name)
(A5 ,CSE PI 2)

(ID,name)
(A5 ,CSE PI 2)

Table 9: Evaluating querying framework’s correct-
ness (contd)

earlier. The translation of the text-based query to the ex-
isting general purpose languages is done by processing the
abstract syntax tree (AST), which is generated while pars-
ing the text-based indoor query. The nodes in the AST
represent each construct in the input query. Parsing the in-
put query involves a set of syntax rules matched from the
syntax definition being invoked. Each rule invoked, triggers
the generation of a subtree in the AST corresponding to the
query. So the AST generation evolves through a sequence
of syntax rule invocations.

In order to perform translation by processing the gener-
ated AST, the structure of the AST has to be defined and
known. Each invoked syntax rule determines the structure
of a part or a subtree of the query’s AST. A syntax rule is
made up of a set of constructs. In order to specify the struc-
ture of the AST’s subtree generated by the rule, which con-
struct forms the root node and which form the child nodes
are defined. Consider a syntax rule with n constructs say
construct1, construct2, .., constructn. The structure def-
inition format for the subtree to be generated is as given
below.
∧(construct1 construct2 .. constructn)
Here the first element after the ∧ symbol indicates the root
element. construct2, .., constructn form its child nodes in
the same order. For every syntax rule in the language’s
definition, a similar structure is defined. The evolution of
an AST with the help of each syntax rule defined and the

27

associated structure definition is presented below. Every
query is made of a ‘qstatement’(or query statement), and
the ‘wherestmnt’ which indicates the ‘where’ clause in the
query. The AST therefore has the ‘Find’ as root of the AST
and the ‘qstatement’ and ‘wherestmnt’ become the children.
The subtree with ‘qstatement’ as the root node, consists of
the type(e.g. adjacent, range, knn etc.) as its children.
Based on the query type, the subtree is chosen. Consider
an input query type to be a ‘range’ query. The syntax for
range query statement is given by

<rangestmnt> ::= ‘Range’ (etype, querypoint, range)

The structure of the corresponding sub tree in the AST is
specified as

^(Range etype querypoint rval)

Here ‘Range’ forms the root of the subtree and the param-
eters form the children. Here ‘etype’ indicating the type of
the entities, ‘querypoint’ the entity on which the query is
issued and ‘rval’ the range value form the children.

The input query may have a set of conditions given in
a ‘where’ clause. The syntax of the ‘where’ clause in the
language is given as follows.

<wherestmnt> ::= ‘Where’ attrcomp

Here the construct ‘attrcomp’ indicates one or more at-
tribute comparisons of the form ‘attribute comparison-operator
value’ combined using ‘and’ or ‘or’ operators. The structure
of the corresponding subtree in the AST is defined as follows

^(Where attrcomp)

Similarly for each rule in the language’s syntax definition, a
structure definition is provided in terms of its constructs.

The AST generated is processed for performing the query
translation. It is processed using a preorder depth first
search traversal. We define an algorithm 1 which will specify
the method of extracting the details from the abstract syn-
tax tree. From any input query, the query type, the parame-
ters and conditions given in the ‘where’ clause are extracted
using this algorithm. Since the structure of the subtree cor-
responding to each syntax rule is defined, for each such sub-
tree, we know which is the root node and in which order
are the child nodes present. The algorithm presents, for
each subtree of the AST defined, the method of extracting
its details. For example, consider the method of processing
the subtree corresponding to ‘range’ query type. Based on
the structure defined, the first node is extracted as the type
of entity, the second as the query origin and the third as
the range value. All these details are then used to generate
the general purpose queries namely SQL(for PostGIS) and
cypher queries(for Neo4j). They are substituted to gener-
ate a single query as in attribute queries or used to invoke
functions written in SQL or cypher query language in case
of range, adjacent, k nearest neighbor and path queries.

An example of translating an attribute query from the
proposed language to SQL is presented in figure 6. The
entities and attributes specified are mapped to the entity
and attribute names in the underlying schema to generate
the SQL query. In some cases, converting these queries to
the general purpose query languages involve invoking proce-
dures corresponding to the query functions in the language.

Next we evaluate the designed translation mechanism by
analysing the time incurred in a set of query translations.

Input: Node astRoot
Node N=astRoot;
if N.data=‘Root’ then

ProcessAST(N.getChild(0));
else if N.data=‘Find’ then

ProcessAST(N.getChild(0));
ProcessAST(N.getChild(1));

else if N.data=‘where statement’ then
for Each child ch of N do

Conditioni.operator=ch.data;
Conditioni.attribute=ch.getChild(0).data;
Conditioni.value=ch.getChild(1).data;

end
ConditionList.add(Condition i);

else if N.data=‘Adjacent’ then
Entity= N.getChild(0).data;

else if N.data=‘Path’ then
startEntity= N.getChild(0).data;
endEntity= N.getChild(1).data;
if N.getChild(2) != null then

passConstraint=N.getChild(2).data;
passentity=N.getChild(2).getChild(0).data;

end

else if N.data=‘Range’ or N.data=‘knn’ then
EntityType= N.getChild(0).data;
Entity= N.getChild(1).data;
if N.data=‘Range’ then

rangevalue=N.getChild(2).data;
else

if N.data=‘Knn’ then
k=N.getChild(2).data;

end

end

else
EntityType=N.getChild(0);

end
Algorithm 1: ProcessAST

Figure 6: Attribute query generated for PostGIS

Table 10 presents the results of this analysis. Here t1 rep-
resents translation time incurred in our language, t2, the
execution time of a query in our language, and t3, the exe-
cution time of a query in PostGIS/Neo4j. It also shows for
each query in the proposed language, the translated queries
in the general purpose query languages. The translation
proceeds as mentioned previously by traversing the abstract
syntax tree constructed.

It can be observed that the translation times are consider-
ably smaller and hence do not cause much overhead to the
entire query execution. The extra translation part which
exists in the system does not affect the total execution time
of the query. To determine if this performance holds for a
larger set of queries, we evaluated the translation time for
100 different queries. The average query translation time

28

Query Translated query Evaluation
time (sec)

Find
adjacent
(A21)

SELECT r. roomname
FROM bld1floor1rooms
as s , bld1floor1walls as
w, bld1floor1rooms as r,
WHERE ST Intersects
(r.geom, w.geom) and
ST Intersects (w.geom,
s.geom) and s.roomname
=‘A21’

t1= 0.02248,
t2= 0.09485,
t3= 0.07237
(PostGIS)

Find
range
(rooms,
B19,
200)

start n=node(*),
m=node(*) match p=
(n)-[r: CONNECTED
TO *..10]-(m) where

n. roomname=‘B19’ and
sum (r. distance) ≤ 200
return m

t1= 0.02276,
t2= 0.93542,
t3 0.91261
(Neo4j)

Find
path
(B14,B2)
where
length
< 400

start n=node(*), m
=node(*) match p= (n)-
[r: CONNECTED TO
* .. 10] -(m) where n.
roomname =‘B14’ and
n. roomname =‘B2’ and
sum (r. distance) < 400

t1= 0.02851,
t2= 0.93557,
t3 0.90704
(Neo4j)

Table 10: Translations and evaluations

was found to be 0.0207 seconds, with a standard deviation
of 0.0046 seconds. This demonstrates that the translation
component is efficient and does not degrade the querying
system’s performance.

6. CONCLUSION AND FUTURE WORK
In this paper we propose a model independent querying

system for indoor spaces. We have developed a querying
framework which abstracts out and represents the common
features of the underlying models. Based on this querying
framework, a text-based and visual querying languages are
developed. Visual querying enhances the ease of querying
the indoor data models. Translation modules are defined
for converting queries in the proposed query language to the
general purpose query languages(SQL and Neo4j) supported
by the models. This allows the system to be used above
multiple models. Evaluations of the querying framework
developed and the translation mechanisms demonstrate the
completeness, correctness and model independence of this
framework. The future work on this system include defin-
ing more queries in the visual querying system and adding
support for other modelling frameworks like BIM and In-
doorGML. Additionally user studies for evaluating the vi-
sual querying and improving it is part of ongoing work.

7. REFERENCES
[1] Neo4j graph database. http://www.neo4j.org/,

November 2013.

[2] Blaser, A. D., and Egenhofer, M. J. A visual tool
for querying geographic databases. In Proceedings of
the Working Conference on Advanced Visual
Interfaces (2000), AVI ’00, ACM, pp. 211–216.

[3] Borrmann, A., and Rank, E. Topological analysis
of 3d building models using a spatial query language.

Adv. Eng. Inform 23 (2009), 370–385.

[4] Boucelma, O., Essid, M., Lacroix, Z., Vinel, J.,

Garinet, J.-Y., and Betari, A. Virgis: mediation
for geographical information systems. In Data
Engineering, 2004. Proceedings. 20th International
Conference on (March 2004), pp. 855–.

[5] Chintaphally, V., Neumeier, K., McFarlane, J.,

Cothren, J., and Thompson, C. Extending a
natural language interface with geospatial queries.
Internet Computing, IEEE 11 (2007), 82–85.

[6] Chuck Eastman, Paul Teicholz, R. s. A guide to
building information modelling for owners, managers,
designers, engineers and contractors, 2011.

[7] Claus Nagel, Thomas Becker, R. K.

Requirements and space-event modelling for indoor
navigation, 2010.

[8] Egenhofer, M. Constraint qualifications in
maximization problems. Knowledge and Data
Engineering, IEEE Transactions on 6 (1994), 86–95.

[9] IEC, I. Bnf grammar for iso/iec 9075-2:2003.
http://savage.net.au/SQL/sql-2003-2.bnf, December
2013.

[10] Jensen, C. S., Lu, H., and Yang, B. Indexing the
trajectories of moving objects in symbolic indoor
space. In Proceedings of the 11th International
Symposium on Advances in Spatial and Temporal
Databases (Berlin, Heidelberg, 2009), SSTD ’09,
Springer-Verlag, pp. 208–227.

[11] Jiyeong Lee, Ki-Joune Li, S. Z. Open geospatial
consortium inc. indoorgml draft,reference no: Ogc
13-nnnrx, 2013.

[12] Mazairac, W., and Beetz, J. Bimql - an open
query language for building information models. Adv.
Eng. Inform 27 (2013), 444–456.

[13] Morris, A. J., Abdelmoty, A. I., and El-Geresy,

B. A. A visual query language for large spatial
databases. In Proceedings of the Working Conference
on Advanced Visual Interfaces (New York, NY, USA,
2002), AVI ’02, ACM, pp. 359–360.

[14] Ooi, B.-C., Davis, R., and McDonnell, K.

Extending a dbms for geographic applications. In
Data Engineering, 1989. Proceedings. Fifth
International Conference on (Feb 1989), pp. 590–597.

[15] Parr, T. Antlr. http://www.antlr.org/, December
2013.

[16] Research, R. Postgis. http://postgis.net/,
September 2013.

[17] Sela Mador-Haim, Yoad Winter, A. B.

Controlled language for geographical information
system queries. In Proc. of Inference in Computational
Semantics. 2006.

[18] Tennant, H. R., Ross, K. M., and Thompson,

C. W. Usable natural language interfaces through
menu-based natural language understanding. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (New York, NY, USA,
1983), CHI ’83, ACM, pp. 154–160.

[19] Thomas H. Cormenn, Charles E. Leiserson, R.

L. R. C. S. Introduction to Algorithms (3rd edition).
MIT Press, 2009.

