
SkyCover: Finding Range-Constrained Approximate
Skylines with Bounded Quality Guarantees

Shubhendu Aggarwal
shubhu@cse.iitk.ac.in

Shubhadip Mitra
smitr@cse.iitk.ac.in

Arnab Bhattacharya
arnabb@cse.iitk.ac.in

Dept. of Computer Science and Engineering,
Indian Institute of Technology, Kanpur.

India

ABSTRACT
Skyline queries retrieve promising data objects that are not dom-
inated in all the attributes of interest. However, in many cases, a
user may not be interested in a skyline set computed over the en-
tire dataset, but rather over a specified range of values for each
attribute. For example, a user may look for hotels only within a
specified budget and/or in a particular area in the city. This leads to
constrained skylines. Even after constraining the query ranges, the
size of the skyline set can be impractically large, thereby necessi-
tating the need for approximate or representative skylines. Thus, in
this paper, we introduce the problem of finding range-constrained
approximate skylines. We design a grid-based framework, called
SkyCover, for computing such skylines. Given an approximation
error parameter ε > 0, the SkyCover framework guarantees that
every skyline is “covered” by at least one representative object that
is not worse by more than a factor of (1 + ε) in all the dimen-
sions. This is achieved by employing a non-uniform grid partition-
ing on the data space. We also propose two new metrics based on
the covering factor to assess the quality of an approximate skyline
set. Experimental evaluation reveals that SkyCover outperforms
the competing methods in both quality and running time.

1. INTRODUCTION
Since their introduction to the database community by [3], sky-

line queries have attracted a significant interest from researchers,
and have also found their way into commercial databases such as
PostgreSQL [11]. Skylines are especially suitable for situations
where there are multiple attributes of interest but no clear opti-
mization function that can help choose a single preferred object.
The skyline set returns all promising objects that are not worse than
another object in all the attributes. There is typically no ordering
among the skyline objects.

A preference function needs to be specified for every dimension
of interest for the skyline query. For example, while looking for
good hotel deals online, the attributes of interest may be cost and
distance to city center, and the preference functions are less than
for both. A user never chooses a hotel H1 that costs more and is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 21st International Conference on Management of Data.
COMAD, March 11-13, 2016, Pune.
Copyright 2016 Computer Society of India (CSI).

farther from city center than another hotel H2. The hotel H1 is,
hence, not a skyline.

Formally, assume that there is a dataset D with d skyline at-
tributes having the preference function in each attribute to be less
than (<).1 In other words, for every skyline dimension i, a smaller
value dominates a larger one. A point t dominates another point u,
denoted by t � u, if and only if ∀i, ti ≤ ui and ∃j, tj < uj .
A point t is in the skyline set S ⊆ D if and only if there does
not exist any other point u in the dataset that dominates it, i.e.,
t ∈ S ⇐⇒ 6∃u ∈ D such that u � t.

Note that in the definition of skylines, the exact values of the ob-
jects are not important; only the relative ordering matters. Thus, the
ranges of the values can be modified (such as scaling and shifting)
as long as the preference relationships are maintained.

When the number of dimensions is large, the skyline query suf-
fers from the cardinality problem in the sense that the size of the
skyline set may be too large. Since one of the basic utilities of the
skyline query is to deduce the set of useful objects by discarding
the useless ones from the dataset that cannot be good, the entire
exercise of finding skylines may suffer.

In many cases, a user may not be interested in all the objects
over the entire range of the dataset. For example, while searching
for hotels, the user may have a certain budget and/or a particular
area of the city in mind. Hence, the skyline query needs to be
appropriately modified as well. The query should return the skyline
set considering only the specified range as the dataset. Informally,
we refer to such skyline objects over a specified query range as
range-constrained skyline objects.

Given a query range Ω, specified by d ranges of the form [li, ui)
for i = 1, . . . , d, let D(Ω) denote the induced set of objects (in D)
that fall within Ω. An object t is referred to as a range-constrained
skyline of D(Ω) if there does not exist any object s ∈ D(Ω) that
dominates it. In other words, t is a skyline object of the set D(Ω).
Note that tmay not be a skyline object inD, as it may be dominated
by some object not inD(Ω). Therefore, the range-constrained sky-
lines cannot be simply computed from the skyline set of D by ap-
plying the range Ω.

Although the range-constrained skylines have been addressed in
the literature [10, 17], they still do not address the cardinality is-
sue satisfactorily. For high dimensions, even the range-constrained
skylines can be very large in number. The cardinality may be pro-
hibitively large also when the query range Ω is large.

To address such high number of range-constrained skylines, in
this work, we propose approximate range-constrained skyline com-
putation. As there are several existing works on approximate or

1A greater than preference function can always be converted by
inverting or negating the values.

representative set of skylines [6,23,32], a natural proposition would
be to employ one of these techniques to compute approximate range-
constrained skylines. Given a query range Ω, a range query is first
performed over D to compute the induced dataset D(Ω). Follow-
ing this step, skylines S(Ω) are computed over the set of objects
D(Ω). Finally, approximate skylines are computed from S(Ω).

However, this strategy has the following limitations:

• Low performance: The approximation is performed only
after computing the skyline set which needs the range query
to be solved before that. Thus, this can be fairly time con-
suming, especially when the range query answer set and the
skyline set are large.

• Low quality: Most of the existing approximate skyline com-
putation techniques do not cover the skyline set, i.e., for ev-
ery skyline object in the original dataset, there may not exist
a suitable representative object in the reported set. Moreover,
they consider optimizing metrics such as k most diverse sky-
lines or k most dominating skylines which are NP-hard prob-
lems and, therefore, resort to heuristics that yield sub-optimal
solutions.

• High storage: The storage of the sets D(Ω) and S(Ω) may
be fairly large.

Motivated by these challenges, in this paper, we propose a new
indexing framework called SKYCOVER that reports a set of approx-
imate range-constrained skylines. The approximation is pushed
within the skyline operator and not afterwards. Further, the approx-
imation is achieved by using a grid structure that guarantees the
coverage up to a user-defined error threshold. In other words, the
reported representative data objects cover the entire set of range-
constrained skylines with bounded approximation errors.

The SkyCover framework employs a hashing scheme that en-
sures the bounded quality guarantees, without requiring any sepa-
rate approximate skyline technique. The proposed index structure
stores a sampled set of objects that is sufficient to offer the quality
guarantees. As a result, the number of input objects to the sky-
line finding routine is reduced, thereby making it faster. The set
returned by the skyline query on this reduced input set is reported
as the SkyCover set, which is an approximate and succinct repre-
sentation of the range-constrained skyline set. In addition to its
efficiency, the proposed SkyCover framework is simple and easily
extensible to several practical variations of skyline queries, such as
top-k skyline queries [4,31], nearest-neighbor skyline queries [19],
progressive skyline queries [24, 29], skyline queries over dynamic
and streaming settings [22, 28], etc.

The basic idea in SkyCover is that if there are two or more ob-
jects that are quite similar to each other, the information added be-
yond the first object is low, and therefore, the subsequent objects
can be filtered out. The similarity is based on the proximity of
the values in the underlying data space. For all such objects that
have values close to each other, the SkyCover index structure re-
tains only one of them.

Ideally, the value of a skyline object that is not reported should be
within some threshold of tolerance within the skyline object that is
reported. The approximation error is captured by an error param-
eter ε. SkyCover guarantees that every range-constrained skyline
object is covered by at least one object in the SkyCover set that is
not worse by a factor of (1 + ε) in all the dimensions. Such an
approximation factor is natural in many applications. For example,
when a skyline hotelH1 has no vacancies, a user may tolerate a ho-
tel H2 that has larger cost and distance than H1 within a factor of,

say, 5%. This translates to finding H2 with cost less than or equal
to 105 units and distance less than 2.1 units when the H1 has a cost
of 100 units and distance 2 units. The value of ε = 0.05 guarantees
this.

In sum, our contributions in this paper are as follows:

1. To the best of our knowledge, this is the first work to directly
address the problem of approximate range-constrained sky-
line computation.

2. We propose a novel SkyCover framework for efficiently com-
puting approximate range-constrained skylines with bounded
quality guarantees.

3. We propose two new metrics for measuring the quality of
an approximate skyline set based on the concept of covering
factor.

4. Experimental evaluation, on both real and synthetic datasets,
reveals that SkyCover outperforms the other competing meth-
ods in both quality and running time.

The outline of the rest of the paper is as follows. Section 2 dis-
cusses the related work. Section 3 describes the SkyCover frame-
work, the properties of which are analyzed in Section 4. In Sec-
tion 5, we propose two new quality metrics. The results are de-
scribed in Section 6. Section 7 concludes.

2. RELATED WORK
We first discuss the works in the area of skyline computation and

then describe the related literature for range-constrained skylines
and approximate skylines.

2.1 Skylines
The skyline problem has been first studied as that of determin-

ing the maxima of a set of vectors. The algorithms in this field
are typically based on the divide-and-conquer [20] and parallel ap-
proaches [25]. These methods assume that the entire data fits in the
main memory.

The notion of skyline for relational database systems was intro-
duced by [3] who proposed the “skyline” operator. Since then,
a large number of algorithms, both index-based and non-index-
based, have been proposed for skyline computation. Index-based
methods include B-tree based schemes [3], bitmap and index [29],
nearest-neighbor (NN) [19] and branch-and-bound (BBS) [24]. More
recently, a trie-based index structure has been proposed in [27]
to improve scalability and maintenance costs in case of data up-
dates. In non-index-based methods, block-nested-loop (BNL) and
divide-and-conquer (DC) were proposed in [3]. Chomicki et al. [7]
proposed a variant of BNL algorithm called the sort-filter-skyline
(SFS) algorithm that involves pre-processing of sorting the data
with respect to a monotone scoring function.

For high dimensional data, there has been a lot of focus on re-
ducing the number of skylines reported. Since it becomes increas-
ingly difficult for a point to dominate another in high dimensions,
k-dominance [6] was introduced to relax the dominance criteria
where it is sufficient to be better in k dimensions in order to domi-
nate another point.

The strategy of grid-based partitioning has been used in the dis-
tributed environment [1, 8, 21, 26, 33]. Essentially, in these works,
a grid is created on the data such that each grid cell has almost the
same amount of data. The same grid structure is imposed by all
the distributed nodes on the data space. Each node computes the
skylines in a specific grid (or a set of grids), and finally the local
results are merged to compute the desired skyline set.

1 (1+ε)2(1+ε)

(1+ε)2

(1+ε)

1

Figure 1: Example of ε-SkyCover.

2.2 Range-Constrained Skylines
The problem of constrained subspace skyline computation was

introduced in [10]. In order to support constrained skylines for ar-
bitrary subspaces, they presented approaches exploiting multiple
low-dimensional indexes instead of a single high-dimensional in-
dex. Range-constrained skylines in two dimensions was investi-
gated in [17]. None of these works address the issue of high cardi-
nality of the skyline set.

2.3 Approximate Skylines
There are several works on approximate or representative sky-

lines. One one hand, [9,13,23] focused on finding k skyline points
that together dominate the maximum number of non-skyline points.
On the other hand, [14, 30] considered returning k skyline points
that best represents the skyline contour. Other works such as [32]
focused on reporting the k most diverse skyline points, where the
diversity is measured using Jaccard distance.

Approximately dominating representatives (ADRs) [18] reports
ε-approximate skyline for some ε given by the user. An ε-ADR
query returns a set of points which together when boosted by ε in
all dimensions dominate all other points (they considered greater
than > as the preference function for all dimensions). This is sim-
ilar to the notion we implement as well. However, their work is
significantly different from ours as they assume that the skyline
set has been pre-computed and the task is to post-process and de-
termine the smallest possible ADR. We, on the other hand, push
the approximation scheme before the skyline operation. They also
show that for a given ε, the problem of minimizing the cardinality
of ε-ADR is NP-hard for three or more dimensions.

Approximate skylines over a data stream was computed in [28]
which gave a notion of additive errors in skylines by defining strong
domination. A point t strongly dominates another point u if for all
dimensions i, ti + ε ≤ ui where ε is an acceptable difference dis-
tance. Their algorithm guarantees that any two approximate skyline
points are at least 2ε apart and for every skyline point there is an
approximate skyline point within ε distance of it. An ε-skyline was
proposed in [34] where the domination criteria called ε-domination
was modified to allow additive error of ε along each weighted di-
mension. Thick skylines were proposed in [16] where all skyline
points and their ε-neighbors (points within ε distance) are reported.
The algorithm involves computing distances between points which
is expensive.

2.4 Comparison with SkyCover
Next we closely compare our SkyCover approach with the k-

RSP approach [23] and SkyDiver approach [32], as they are the
most popular notions of representative skylines. For experimen-
tal evaluation, we compare the quality of the solutions realized by
SkyCover against these two approaches.

While all the three approaches attempt to suitably represent the
skyline set, the computational challenge in optimally (and also ap-
proximately) computing these solutions vary significantly. While

the sets reported by k-RSP and SkyDiver approaches are of fixed
cardinality of size k, the size of the set returned by our SkyCover
approach is not fixed. Due to this reason, while the optimal com-
putation of the representative sets in case of k-RSP and SkyDiver is
NP-hard, the computation of the representative set by our SkyCover
approach is polynomially solvable. While our approach guarantees
that the reported representative points have bounded approximation
errors in all dimensions w.r.t. the skylines missed (not reported),
there is no such guarantee in the other two approaches. For in-
stance, consider the example shown in Figure 1. Observe that each
point in the dataset is a skyline. Suppose a user wants k = 3 rep-
resentative points. Since the dominating sets, i.e., the set of points
dominated by the given point, for each of the points is empty, both
the k-RSP and the SkyDiver approaches report any 3 points arbi-
trarily. Therefore, the worst case approximation factor of the rep-
resentative sets returned by these two approaches can be arbitrarily
bad. On the other hand, as it will be described later, our ε-SkyCover
would select one point from each of the three grid cells containing
the points, thereby guaranteeing that every missed skyline has a
representative point that is worse by a multiplicative factor of at
most (1 + ε).

The k-RSP and SkyDiver problems being NP-hard for dimen-
sions greater than two, it was shown that when greedy heuristic
is applied to them, they can be approximated within a factor of
1 − 1

e
and 2 respectively. For scalability and efficiency reasons,

each of these heuristics consider randomized techniques that offer
theoretical accuracy guarantees. While k-RSP approach employ
probabilistic counting using FM algorithm [12], the SkyDiver em-
ploys min-hash (MH) [5] and LSH [15]. In contrast, we propose
an efficient deterministic algorithm based on the concept of hash-
ing using non-uniform grid-based partitioning, whose complexity
depends on the desired value of the approximation parameter.

Most importantly, the k-RSP and the SkyDiver approaches can
be applied only after the skyline computation which is quite expen-
sive. Our SkyCover approach is applied prior to skyline computa-
tion, which reduces the size of the dataset considerably, thereby
leading to savings in query-time.

In addition, our SkyCover framework is more generic as any of
the post-processing approximation techniques including k-RSP and
SkyDiver techniques can be applied after the approximation and
skyline computations have been done. Hence, our work can be
treated both as alternative as well as complementary to the existing
works in the space of approximate skyline representation.

3. THE SKYCOVER FRAMEWORK
In this section, we first introduce the problem of approximate

range-constrained skyline computation. Then, we describe the pro-
posed SkyCover framework for finding such skylines. Finally, we
analyze its running time, and discuss possible extensions of the
framework.

3.1 Range-Constrained Skylines
Assume that the dataset D is d-dimensional with the range in

each dimension between 1 and R. The total data space, therefore,
is [1, R]d. Suppose S is the skyline set of D. All the symbols used
in this paper are listed in Table 1 for easy reference.

We first introduce the notion of range-constrained skylines. Given
a range Ω =

∏
i[li, ui), where (1 ≤ li ≤ ui ≤ R), D(Ω)

denotes the induced dataset over Ω, i.e., it contains the points in
D that lie within the range Ω. Hence, p ∈ D(Ω) if and only if
li ≤ pi ≤ ui∀i. The skylines S(Ω) computed over D(Ω) is the
range-constrained skyline set.

Table 1: List of Symbols.

Symbol Description
D Dataset

N = |D| Cardinality of dataset
d Dimensionality

[1, R] Range of values along a dimension
S Skyline set

s = |S| Cardinality of skyline set
Ω =

∏
i[li, ui) Query range

D(Ω) Induced dataset over the range Ω
n = |D(Ω)| Cardinality of induced dataset

S(Ω) Range-constrained skyline set of D(Ω)
ε Error parameter

Ωε = [l′i, u
′
i) Stretched range of Ω

l′i = li/(1 + ε) Lower range of Ωε
u′i = ui.(1 + ε) Upper range of Ωε

S′(Ωε) SkyCover set of D(Ω)
g Number of grid partitions along a dimension

P (Ω) Set of grid representatives that lie in Ωε
m = |P (Ω)| Total number of grid representatives stored

S′ SkyCover set of D
k = |S′(Ωε)| Cardinality of SkyCover set

DEFINITION 1 (RANGE-CONSTRAINED SKYLINE). Given a
range Ω, a point s ∈ D(Ω) is in the range-constrained skyline set
S(Ω) of D(Ω) if and only if it is not dominated by any other point
in D(Ω).

It is important to note that S(Ω) is not necessarily a subset of the
skyline set S, as it may contain a point that is dominated by another
in D but not in D(Ω). A range-constrained skyline query is, thus,
a generalization of the regular skyline query.

Although by constraining the data range, the size of the dataset
is reduced, there is no guarantee that the size of the skyline set
will be reduced. This may happen since there may be a globally
dominating skyline outside the range, and not considering it allows
many other objects as skylines.

Even otherwise, the number of range-constrained skylines may
be too many, especially for high-dimensional spaces. Hence, a
flavor of representation or approximation is needed to reduce the
number. For that, we introduce the concept of skyline cover next.

3.2 Skyline Cover
Given an ε > 0, we first define ε-cover.

DEFINITION 2 (ε-COVER). Given ε > 0, a point t ∈ D ε-
covers a point s ∈ D, if and only if for every dimension i, t is not
worse than s by a multiplicative factor of (1 + ε)

t ε-covers s ⇐⇒ ∀i, ti ≤ (1 + ε)si (1)

The simple dominance is a special case of ε-cover when ε = 0.
Using this, we next define the concept of ε-SkyCover. Infor-

mally, a set S′(Ωε) is a skyline cover of S(Ω) if each point in S(Ω)
has a suitable representative in S′(Ωε). The skyline cover S′(Ωε)
is an ε-SkyCover if every point s ∈ S(Ω) is represented within the
multiplicative factor of (1 + ε), i.e., it is ε-covered by at least one
point t ∈ S′(Ωε).

DEFINITION 3 (ε-SKYCOVER). A set S′(Ωε) is an ε-SkyCover
of S(Ω) if every point in S(Ω) is ε-covered by at least one point in

S′(Ωε):

S′(Ωε) is an ε-SkyCover of S(Ω)

⇐⇒ ∀s ∈ S(Ω), ∃t ∈ S′(Ωε) s.t. t ε-covers s (2)

Assume that Ωε denotes the range of Ω that is stretched by a
factor of (1 + ε) along each dimension, i.e., Ωε =

∏
i[l
′
i, u
′
i)∀i

where l′i = li/(1 + ε) and u′i = ui.(1 + ε). The skyline set S′(Ωε)
of D(Ωε) is necessarily an ε-SkyCover of the skyline set S(Ω) of
D(Ω).

When the context is clear, we refer to an ε-SkyCover by simply
SkyCover.

The parameter ε essentially captures the user’s tolerance to ap-
proximation. For example, consider the cost attribute of a particular
dataset. If the cost of a skyline point is 100 units and ε = 0.05, it
means that the user can tolerate a point that costs up to 105 units.

Note that ε is a multiplicative ratio which makes more sense than
an absolute margin (i.e., additive error) such as 5 units in this con-
text. When the cost of an object is more, the difference in cost is
more as well. When it is less, the difference automatically shrinks.
Hence, in the above example, if a skyline object costs 10 units, it
is more likely that a user will tolerate up to 10.5 units and not 15
units. Similarly, if the cost is 1000 units, the user can go up to 1050
units and not 1005 units.

3.3 Problem Statement
In this paper, we address the following query:

PROBLEM 1. Given a range Ω =
∏
i[li, ui), where (1 ≤ li ≤

ui ≤ R), report its SkyCover, i.e., S′(Ωε).

Note that the range Ω is available only at query time. Therefore,
since S′(Ωε) need not be a subset of S or its SkyCover S′, even
if we pre-compute the sets S or S′, it is not easy or efficient to
compute the set S′(Ωε) using these pre-computed sets.

The goal of the proposed SkyCover framework is to, thus, ef-
ficiently compute the SkyCover S′(Ωε). To achieve this, we first
build an index structure using sampled data points in D. On re-
ceiving the query range Ω, we identify a set of points stored in the
index structure that lie in the stretched range of Ω, i.e., Ωε. Finally,
we compute the skylines over this set of points to return the desired
SkyCover. We next discuss these steps in more detail.

3.4 Grid Partitioning
We construct a grid-based index structure by employing a non-

uniform grid partitioning scheme. The grid boundaries are imposed
at multiplicative intervals of (1+ε). Thus, the first grid cell is from
(1 + ε)0 = 1 to (1 + ε)1, the second one from (1 + ε)1 to (1 + ε)2,
and so on. The number of grid partitions, g, along any dimension
is, therefore, equal to

g = dlog1+εRe (3)

Hence, the total number of grid cells for d-dimensional space is gd.
Assume thatR = (1+ε)g such that there are exactly g grid parti-

tions along any dimension. (The data space can always be stretched
so that this happens.) Otherwise, using the ceiling function for g
imposes an error parameter ε′ < ε, thus, protecting the (1 + ε)
SkyCover guarantees.

If the range of a dimension is [min,max], it can always be
shifted and stretched to fit [1, R]. If min = 1, then the ratios
after the transformation do not change. Otherwise, the error value
ε in the [min,max] range can be mapped to an ε′ in the [1, R]
range if min > 0. If both min and max are negative, the ra-
tios are inverted. If, however, min < 0 and max > 0, then the

(1+ε)

(1+ε)

(1+ε)2

(1+ε)3

(1+ε)2 (1+ε)3

u
s

z
w

t

1

1

v

Figure 2: Grid-based partitioning.

concept of multiplicative error makes little sense and we do not
consider such cases. As explained in Section 3.10, an additive er-
ror is more meaningful there and the SkyCover framework can be
appropriately modified to handle that using uniform grid partitions.

A grid cell x = (x0, . . . , xd−1) is indexed by the corresponding
d grid cell numbers along the dimensions. Here, 0 ≤ xi ≤ g − 1
denotes the grid cell index for the ith dimension.

A point t = (t0, . . . , td−1) falls in grid cell x = (x0, . . . , xd−1)
if and only if it satisfies the condition ∀i, (1 + ε)xi ≤ ti < (1 +
ε)xi+1. The hash function hi(ti) that returns the grid cell index for
the attribute i of a point t is, thus, hi(ti) = blog(1+ε) tic. The hash
function h(t) for a point t is the combination of the corresponding
hash functions for each dimension:

h(t) = 〈h0(t0), . . . , hd−1(td−1)〉 (4)

Figure 2 shows an example partitioning of the space with g = 3
and d = 2.

Note that the grids are imposed on the original [1, R)d space
before the query range is made available at run time.

3.5 Choosing Grid Cell Representative
All the points that hash to the same grid cell are represented by

only one of them. In this way, the SkyCover stores a much smaller
sample of the dataset. Since any point within the cell ε-covers any
other point within the same cell, keeping anyone of them would
serve the purpose of ε-SkyCover (shown in Theorem 1). Thus,
this not only ensures quality guarantees, but also significantly con-
tributes towards lower storage and, therefore, higher efficiency.

We next discuss how to choose the cell representative. For each
point t, we employ an entropy function similar to that used in the
SFS algorithm [7]: ent(t) =

∑d−1
i=0 ti. Since the ultimate goal

is to compute range-constrained skylines, the entropy function is
re-used later during the actual skyline computation phase.

The grid representative of a cell x is chosen as the point t with
the lowest entropy: t = arg min{ent(t)|t ∈ x}. Note that no other
point in the same cell can dominate t as then its entropy would have
necessarily lower. Moreover, the scheme guarantees that t ε-covers
any other point in the same cell.

3.6 Query Processing
When the query parameters Ω and ε arrive, the first step is the

retrieval of the set of grid representatives P (Ω) that map to the
stretched range of Ω, i.e., Ωε. Assume the query range is Ω =∏
i[li, ui). Along dimension i, we identify the grid cell indices

that map to the above space as follows. Assume xi = blog1+ε lic
and yi = blog1+ε uic. The set P (Ω) denotes the set of all the grid
representatives of the grids that lie in the space

∏d−1
i=0 [xi, yi]:

P (Ω) = {grid representative of cell z| ∀i, xi ≤ zi ≤ yi} (5)

Next, a skyline finding algorithm is employed over the set of
points in P (Ω). The answer thus obtained is reported as the Sky-
Cover S′(Ωε).

Algorithm 1 SkyCover Algorithm

1: procedure OFFLINE COMPUTATION (DatasetD, Error param-
eter ε)

2: H ← Φ
3: for all t ∈ D do
4: h(t)← grid index of t using ε in Eq. (4)
5: if h(t) is empty then
6: Insert h(t), 〈t, ent(t)〉 in H
7: else
8: 〈u, ent(u)〉 ← value(h(t))
9: if ent(t) < ent(u) then

10: value(h(t))← 〈t, ent(t)〉
11: end if
12: end if
13: end for
14: return H
15: end procedure
1: procedure ONLINE COMPUTATION (Query range Ω)
2: Compute P (Ω) from H as described in Section 3.6
3: return S′(Ωε)← FINDSKYLINES(P (Ω))
4: end procedure

For our implementation, we choose the SFS algorithm [7] as it is
an online algorithm with no requirement of index construction and,
is, thus, applicable in all situations. Moreover, it is quite simple,
easy to implement, and fairly efficient in terms of running time.

3.7 The SkyCover Algorithm
Using the above ideas, we now summarize the steps in the Sky-

Cover framework (pseudocode shown in Algorithm 1).
The framework comprises of two phases, the offline phase and

the online phase. During the offline phase, we build the SkyCover
index structure. A dynamic hash table H is maintained with the
grid cell index as the key and the 2-tuple consisting of the repre-
sentative point and its entropy, as the value. The data points are
processed one at a time. For a point t, its grid cell h(t) is computed
using Eq. (4). If there is no such key inH , a key-value pair with key
h(t) and value 〈t, ent(t)〉 is inserted. If, however, there is already
a key, then the value corresponding to it is extracted. If the entropy
of the new point is less than that of the old one, the old value is re-
placed with the new point (and its entropy). Otherwise, since there
is already a representative of this cell with a lower entropy, the new
point is discarded.

The online phase is discussed in Section 3.6.

3.8 Analysis of Running Time
In this section, we compare the running time of SkyCover algo-

rithm with that of the naı̈ve approach, discussed in Section 1, that
requires range search, followed by skyline computation, and finally
approximate skyline computation.

Assume that the cardinality of the dataset D is N , the dimen-
sionality is d, the size of the skyline set S is s, the number of repre-
sentative points left using the grid-based partitioning is m, and the
size of the SkyCover set extracted from m is k.

We assume that if the cardinality of the induced dataset D(Ω) is
n, the range search required to find all the points in the range Ω is
at least O(n).

We first analyze the naı̈ve approach. For skyline computation,
we consider the SFS algorithm. The SFS algorithm has the follow-
ing costs: (i) Computing entropy: O(nd) for mapping d dimen-
sions to a single value for all n points, (ii) Sorting the points based

on entropy: O(n logn), (iii) Skyline computation: O(ns) assum-
ing a window size of O(s). Hence the total time complexity of the
SFS algorithm is O(n.d+ n logn+ n.s).

Finally, using any existing approximate skyline techniques [6,
23, 32], reporting k representative skylines would require at least
O(sk) time. Hence the total time complexity of the naı̈ve approach
is at leastO(nd+ n logn+ n.s+ s.k).

The running time of the SkyCover framework comprises of the
following components: (i) Computing entropy and hashing during
the offline phase: O(nd) assuming O(1) hashing costs, (ii) Re-
trieving all the hash values during online phase: O(m), (iii) Sorting
based on entropy (during online phase): O(m logm), (iv) Skyline
computation during online phase: O(mk). Thus, the offline cost is
O(n.d), and the online cost is O(m logm+m.k).

It was shown in [2], that if the attribute values are chosen inde-
pendently, then the average number of skylines is O((lnn)d−1).
Thus, assuming s = O((logn)d−1), k = O((logm)d−1) and
d = O(1), and considering only the dominant terms, the query time
of the naı̈ve approach simplifies to O(n.(logn)d−1 + (logm)d−1.
(logn)d−1), and that of the SkyCover becomesO(m.(logm)d−1).
As m < n, the running cost of SkyCover framework is always bet-
ter than that of the naı̈ve approach, at least by an additive factor of
O((logm logn)d−1). In Section 4.3, we present an analysis of
expected value of m.

3.9 SkyCover using Uniform Grids
The SkyCover framework can be easily modified to work with

uniform grid partitions. In this scheme, the total range R − 1 in
each dimension is split into g equal parts. The grid boundaries for
any dimension, therefore, fall at 1, 1+(R−1)/g, 1+2(R−1)/g,
etc. The total number of cells is again gd, i.e., the same as non-
uniform partitioning. The SkyCover framework remains the same
for the two cases.

3.10 Extensions of SkyCover
The grid-based hashing mechanism employed in the SkyCover

framework is generic enough to capture different kinds of errors.
For example, the error parameter can be different for each dimen-
sion. The number of partitions, gi, for dimension i, is computed
using the corresponding error parameter εi.

More importantly, SkyCover is not restricted to only multiplica-
tive errors. For example, guarantees for additive errors can be eas-
ily offered using uniform grid partitions. If the additive error toler-
ance is δ, the width of the grid cells should be at most δ.

Moreover, the SkyCover framework allows seamless integration
of skyline queries over attributes demanding different types of er-
ror tolerance. While some attributes may tolerate multiplicative
errors, some others may require additive errors, and the rest may
not tolerate any error. The dimensions for multiplicative error at-
tributes may be partitioned in a non-uniform manner, while those
for additive errors may be partitioned using equal grid widths. The
dimensions that do not tolerate any error will not be hashed at all
using the grid partitions.

We have, however, stuck to the multiplicative SkyCover frame-
work in this paper and have postponed the detailed experimentation
and analysis of the generalized framework to a later paper.

We also claim that the SkyCover framework is applicable to
streaming data settings [28] with insert-only operations. The multi-
dimensional data points arriving in the stream can be efficiently
hashed into the SkyCover index structure, and subsequently queried
upon. Similarly, the framework is particularly suited for update-
heavy workloads where most of the small updates in the values
of a point can be absorbed since it lies within the same cell. The

update in the skyline set needs to be checked only when a point
moves to a cell that was not occupied earlier. In addition, we claim
that the framework can be easily adapted for other settings such
as distributed environments [26], and moreover, help in computing
approximate top-k skylines [4, 31], progressive skylines [24, 29],
etc. However, in this paper, we do not evaluate the performance of
SkyCover over such settings.

4. PROPERTIES OF SKYCOVER
In this section, we first discuss the correctness of the SkyCover

framework, followed by quality guarantees on falsely reported range-
constrained skylines. Finally, we present a thorough analysis of the
expected number of grid representatives, m.

4.1 Correctness
The following theorem establishes the correctness.

THEOREM 1. Given any range Ω, the SkyCover framework cor-
rectly computes its ε-SkyCover, i.e., (1) S′(Ωε) ⊆ D(Ωε), and
(2) for every range-constrained skyline point s ∈ S(Ω), there ex-
ists at least one t ∈ S′(Ωε) that ε-covers s.

PROOF. Assume the query range to be Ω =
∏
i[li, ui).

(1) Since the SkyCover set S′(Ωε) is a subset of the set of rep-
resentative points, P (Ω), i.e., S′(Ωε) ⊆ P (Ω), it is sufficient to
show that P (Ω) ⊆ D(Ωε). Consider any point t ∈ P (Ω) lying in
the grid cell z = 〈z0, . . . , zd−1〉. Assuming non-uniform grid par-
titioning, the index structure ensures that ∀i, xi ≤ zi ≤ yi, where
xi = blog(1+ε) lic and yi = blog(1+ε) uic. This implies that
∀i, (1+ ε)xi ≤ ti ≤ (1+ ε)yi+1. Plugging in the values of xi and
yi, and using the fact that for any real number a, a− 1 ≤ bac < a,
we get the following: ∀i, li/(1 + ε) ≤ ti ≤ ui.(1 + ε). Hence,
t ∈ D(Ωε). Therefore, P (Ω) ⊆ D(Ωε).

(2) Consider a range-constrained skyline point s ∈ S(Ω). Sup-
pose it lies in a grid cell z. Assume the point t to be the cell repre-
sentative of z where t may or may not be equal to s. Since s and t
are in the same cell, the construction of the non-uniform grid parti-
tioning ensures that t ε-covers s. More formally, ∀i, ti ≤ (1+ε)si.
If t ∈ S′(Ωε), then s is covered by t. If, however, t /∈ S′(Ωε),
then there must exist a point u ∈ S′(Ωε) that dominates t, i.e.,
u � t. Combining with the above inequality, we get ∀i, ui ≤ ti ≤
(1 + ε)si, i.e., u ε-covers s.

The ramification of this theorem is that even if s ∈ S(Ω) was
missed, there is another point t ∈ S′(Ωε) that approximates it in
the sense that it is not too bad in any of the dimensions. To be
precise, the values of t are within a multiplicative factor of (1 + ε)
from those of s in every dimension.

Figure 2 shows an example of how Theorem 1 works. Assume
that Ω = [1, R)2 where R = (1 + ε)3. In this case, any range-
constrained skyline in S(Ω) is a skyline of D. The skyline point
u, which is reported, ε-covers itself. The skyline t is missed and is
represented by s which has a lower entropy (the equi-entropy line
is shown as dashed). The reported point u ∈ S′ dominates s, and
consequently, ε-covers t. Similarly, even though w is not reported,
it is ε-covered by its cell representative z ∈ S′.

4.2 Falsely Reported Skylines
Even though the set S′(Ωε) returned by the SkyCover framework

correctly ε-covers the range-constrained skyline set S(Ω), it may
happen that not every point returned is a range-constrained skyline
itself, i.e., there may exist a point u ∈ S′(Ωε) such that u /∈ S(Ω).
Figure 2 shows such a situation. The point v is not an actual skyline
as it is dominated by t. It is also a grid representative, i.e., v ∈

P (Ω). However, since t /∈ P (Ω), and there is no other point that
dominates v, v ∈ S′(Ωε).

Unfortunately, the guarantees for the values of such falsely re-
ported range-constrained skylines are not very strict. Along some
of the dimensions, the values can be arbitrarily bad as compared to
an actual range-constrained skyline point. However, the next the-
orem shows that it can still be guaranteed that the values of such
falsely reported range-constrained skylines cannot be bad in all the
dimensions.

THEOREM 2. For any u ∈ S′(Ωε), there does not exist any
s ∈ S(Ω) such that ∀i, ui > (1 + ε)si.

PROOF. We prove by contradiction. Suppose such a point s ∈
S(Ω) exists, such that ∀i, ui > (1 + ε)si. From Theorem 1, there
must exist t ∈ S′(Ωε) that ε-covers s, i.e., ∀i, ti ≤ (1 + ε)si.
Together, this implies that, ∀i, ti < ui, i.e., t � u. Since t ∈
S′(Ωε), therefore, u /∈ S′(Ωε), which is a contradiction.

In Figure 2, even though the value of v is very large in the x-
dimension as compared to the skyline point u, it is not worse than
a ratio of (1 + ε) in the y-dimension as well.

For real-life applications such as online hotel deals, assuming a
value of ε = 0.05, this implies that if there is an actual skyline hotel
with cost 100 units and distance 2 units, no hotel is reported in the
SkyCover set that has both cost more than 105 units and distance
more than 2.1 units.

4.3 Expected Number of Representative Points
In this section, we analyze the expected number of representative

grid points for the SkyCover framework. For the sake of compari-
son, we do the analysis for both uniform and non-uniform grids.

We assume that the points are generated independently and the
values are independently and uniformly distributed along the di-
mensions across the data space.

There are two types of grid cells, empty and non-empty. Since
no data point hashes to an empty grid cell, there is no representative
for such cells. For non-empty cells, however, even if there are more
points, exactly one point is chosen as the representative. Thus, we
essentially need to calculate the number of non-empty grid cells to
get an estimate of m.

4.3.1 Uniform Grids
For uniform grids, there are a total of gd grid cells having the

same volume. Hence, the probability that a point lies in a particular
grid cell is

Ppoint = g−d. (6)

The probability that the cell remains empty is equivalent to the
probability that none of the n points lie in it. Since the points are
generated independently, this is equal to

Pempty = (1− Ppoint)n = (1− g−d)n. (7)

Thus, the expected number of empty cells is

E[empty] =
∑
∀cells

Pempty = gd(1− g−d)n. (8)

The estimate for the total number of non-empty grid cells for
uniform grid partitions is, therefore,

mu = gd − gd(1− g−d)n. (9)

Expressing Eq. (9) using binomial expansion, we get

mu = gd − gd
(

1− n.g−d +
n(n− 1)

2
.g−2d − . . .

)
∴
mu

n
= 1− n− 1

2
g−d + . . . (10)

When n < gd, the later terms can be ignored, and therefore,
with increasing n, the ratio mu/n decreases. On the other hand,
when n ≥ gd, since m is constrained to be at most gd, the ratio
will decrease when n increases. Thus, with increasing number of
points and fixed number of grid cells, the proportion of representa-
tive points decreases.

When n is fixed, and gd is increased, the proportion mu/n in-
creases as intuitively there are more options for a point to lie in,
and consequently, more representative points are preserved. When
gd ≥ n, the ratio will saturate to 1.

4.3.2 Non-Uniform Grids
The analysis for non-uniform grid partitions is not so straightfor-

ward as the grid cells have different volumes. Hence, the probabil-
ity of a cell being empty depends on its location.

The volume of a grid cell x = (x0, . . . , xd−1) where 0 ≤ xi ≤
g − 1 is the grid index along dimension i is

v(x) =

d−1∏
i=0

[
(1 + ε)xi+1 − (1 + ε)xi

]
= εd(1 + ε)

∑d−1
i=0 xi

= εd(1 + ε)σx (11)

where σx denotes the sum
∑d−1
i=0 xi for a cell x.

Since the total volume of the data space is (R − 1)d, the proba-
bility that a point lies in the grid cell x is Ppoint = v(x)/(R−1)d.
The probability that it remains empty when n points are generated
independently is, therefore,

Pempty = (1− Ppoint)n =

(
1− v(x)

(R− 1)d

)n
=

(
1−

(
ε

R− 1

)d
(1 + ε)σx

)n
. (12)

Thus, the expected number of empty cells is

E[empty] =
∑
∀cells

Pempty =
∑
∀x

(
1− τd(1 + ε)σx

)n
(13)

=
∑
∀x

[
n∑
j=0

(−1)j
(
n

j

)(
τd(1 + ε)σx

)j]

=

n∑
j=0

[
(−1)j

(
n

j

)
τ jd
∑
∀x

(1 + ε)jσx

]
. (14)

where τ denotes the ratio ε/(R− 1).
To simplify the above equation, we denote (1 + ε)j as α. For the

first term, i.e., when j = 0, the sum
∑
∀x(1 + ε)jσx is simply the

total number of cells, which is gd. For other terms, the summation
can be computed by unrolling one dimension at a time. Thus,∑

∀x

ασx =
∑
∀x

α
∑d−1

i=0 xi

=
∑

∀i=0,...,d−1;∀xi=0,...,g−1

(
α
∑d−1

i=0 xi
)

Table 2: Values of β and m for different combinations.

g d gd ε n β mest

50 3 125000 0.01 10000 0.16 9588
20 4 160000 0.05 10000 0.34 9594
10 5 100000 0.05 10000 0.28 9471
7 6 117649 0.05 10000 0.19 9564

=
∑

∀i=1,...,d−1;∀xi=0,...,g−1

[∑
x0=0,...,g−1

(
α
∑d−1

i=1 xi .αx0
)]

=
∑

∀i=1,...,d−1;∀xi=0,...,g−1

[(
α
∑d−1

i=1 xi
)
.

∑
x0=0,...,g−1

αx0

]

=
∑

∀i=1,...,d−1;∀xi=0,...,g−1

[(
α
∑d−1

i=1 xi
)
.

(
αg − 1

α− 1

)]

=

(
αg − 1

α− 1

) ∑
∀i=1,...,d−1;∀xi=0,...,g−1

(
α
∑d−1

i=1 xi
)

= · · · =
(
αg − 1

α− 1

)d
. (15)

Using Eq. (15) in Eq. (14), and since (1 + ε)g = R, we get

E[empty] = gd +

n∑
j=1

(−1)j
(
n

j

)
τ jd
(

(1 + ε)jg − 1

(1 + ε)j − 1

)d

= gd +

n∑
j=1

(−1)j
(
n

j

)
τ jd
(

Rj − 1

(1 + ε)j − 1

)d
. (16)

The computation of the exact value of the above expression is in-
feasible due to large n. However, if the expression βx = n(τd(1 +
ε)σx) � 1 for all cells x (from Eq. (12)), then the binomial series
converges rapidly and can be bounded with very low error using
only the first few terms. For example, the second term, (i.e., for
j = 1) is simply n. Thus, a very crude estimate for the number of
empty cells is E[empty] = gd − n.

Assume that β = max∀x βx denotes the maximum value all
among the grid cells, i.e., β = n(τd(1+ε)max∀x σx). When β < 1,
the series can be cut-off before any positive term to get a lower
bound. Thus, for example, by retaining only four terms (i.e., from
j = 0 to 3), the estimate for the expected number of empty cells is
at least

E[empty] > gd +

3∑
j=1

(−1)j
(
n

j

)
τ jd
(

Rj − 1

(1 + ε)j − 1

)d

= gd − n+

(
n

2

)
τ2d

(
R2 − 1

(1 + ε)2 − 1

)d

−

(
n

3

)
τ3d

(
R3 − 1

(1 + ε)3 − 1

)d
. (17)

This translates to an upper bound on the estimate of the expected
number of representative points:

mnu = gd −E[empty]

/ n−
3∑
j=2

(−1)j
(
n

j

)
τ jd
(

Rj − 1

(1 + ε)j − 1

)d
. (18)

where / signifies less than or equivalent.
Even if β 6< 1, the number of empty cells can be approximated

Table 3: Estimates of m using Eq. (19) and their empirical coun-
terparts; k denotes the number of terms after which m converges
(β = 1.5× 10−6 × n, g = 8, d = 7, ε = 0.05, gd = 2097152).

n k mest memp

1× 104 3 9975 9977
5× 104 4 49357 49354
1× 105 5 97449 97463
5× 105 7 440688 440592
1× 106 10 782406 782116
5× 106 23 1857515 1857442
1× 107 40 2059755 2059738

by the first k terms of the binomial expansion:

E[empty] ' gd +

k∑
j=1

(−1)j
(
n

j

)
τ jd
(

Rj − 1

(1 + ε)j − 1

)d
. (19)

An appropriate estimate of mnu can then be obtained.
Table 3 shows that even when β > 1, the series converges within

a few iterations and the estimates thus obtained are quite close to
the empirical ones.

Since the maximum σx for any cell is (g − 1)d, the condition
under which β < 1 is n(τd(1 + ε)(g−1)d) < 1. Note that eval-
uating Eq. (13) is computationally inefficient when the number of
cells, i.e., gd is too high. Hence, the approximation using Eq. (17)
is needed for only such cases. Table 2 shows that β < 1 for typical
values of d, g, ε and n when gd is high. It also lists the correspond-
ing estimates for m.

Similar to the case of uniform grids, when the number of grid
cells is fixed, but the number of points n is increased, the ratio
mnu/n decreases. Again, this happens as more points now hash
to the same cell. The ratio increases when number of grid cells is
increased keeping n fixed.

The more interesting observation is when the error parameter ε is
changed, keeping all the other parameters fixed. When ε increases,
the ratio of the largest grid cell to the overall volume increases and
that of the smallest decreases. In other words, the distribution of
the volume becomes more skewed. Thus, more points are likely to
lie on a smaller number of cells, thereby increasing the expected
number of empty cells. Hence, the ratio mnu/n decreases with
increasing ε.

5. QUALITY METRICS
In this section, we describe the various metrics that can be used

to assess the quality of an approximate or reduced skyline set.
The first metric, proposed in [32], is the maximum Jaccard simi-

larity between any two sets of points dominated by a pair of skyline
points. The lesser the Jaccard similarity, the more diverse the two
skyline points are. For a particular size k, the more diverse the
reduced skyline set is, the better.

The second measure, proposed in [23], is the ratio of points dom-
inated by a subset of size k to the total number of points. The more
this ratio is, the better.

5.1 Covering Factor
In this paper, we introduce two more quality metrics based on

covering factor. Intutively, the covering factor is the ratio by which
a skyline needs to be stretched in order to be dominated by a re-
turned point in SkyCover. Hence. if s ∈ S′, cfs = 1. Otherwise,
it is the (maximum) approximation ratio over all dimensions, max-

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

2 3 4 6 8 10 12 15 20 No

T
im

e
(m

s)

Number of partitions, g

Time for FC

Entropy+Hashing
Sorting
Skyline

Figure 3: Running times for real data (FC).

imized over all the points t ∈ S′:

cfs = min
t∈S′

{
max
i

(ti/si)
}

(20)

Thus, the covering factor essentially captures how well a skyline
point s ∈ S is covered by an approximate skyline point t ∈ S′.

5.2 Metrics Based on Covering Factor
Based on the covering factor, we propose two quality metrics:

1. Worst Covering Factor (WCF), is the maximum covering fac-
tor of all the skylines.

2. Cumulative Covering Factor (CCF), is the area under the
curve of the cumulative distribution function (cdf) of the cov-
ering factors of all the skyline points.

Lower values of WCF indicate better quality of the solution. On
the other hand, higher values of CCF signify that the covering fac-
tors attain their highest values earlier and are, thus, preferred.

6. EXPERIMENTAL RESULTS
In this section, we report in detail the results of experimenting

with both real and synthetic datasets. All the experiments were
done in Java on an Intel Core i7 CPU 870 @ 2.93 GHz machine
with 8 GB RAM running Ubuntu Linux 12.04 LTS (64-bit).

For our empirical evaluation, we assume the worst case scenario
of the query range Ω, i.e., Ω = [1, R)d. Hence, D(Ω) = D,
S(Ω) = S, and S′(Ωε) = S′.

6.1 Real Dataset
The real dataset was the Forest Covertype (FC) dataset, contain-

ing different attributes of forest cover types, available from http:
//archive.ics.uci.edu/ml/datasets/Covertype. The size of the dataset
is n = 581012. Similar to [32], only the first d = 5 attributes were
considered. All the attributes were normalized to [1, 2] space. The
number of skylines is s = 1356.

6.1.1 Running Time
Figure 3 shows the running times when the number of grid par-

titions, g, is varied. It also includes the no-grid scheme. The total
time is broken down into three components. The first is for grid par-
titioning (and entropy computation), the second is for sorting them
representatives, and the third is for the skyline computation routine.
When g increases, m increases, thereby increasing the second and
third components as well. As expected, the difference in skyline
computation time is the main source of difference in the running

time. When no grids are employed (i.e., the basic SFS method),
the sorting and skyline finding times are too large. Overall, the
SkyCover method runs 3-9 times faster.

6.1.2 Cardinality
Table 4 shows the statistics of the cardinality of skylines for the

real dataset over the same range of g values. When m is low due
to low g, a lot of actual skylines can be missed; however, a large
proportion of them (the ratio w/s′) always have an approximate
skyline from the same grid cell. For high values of ε, k′ approaches
s. In this case, the number of skylines falsely reported (v = k−k′)
is low as well.

6.1.3 Quality
The last set of experiments on real data measures the quality of

the three methods, SkyDiver, k-RSP and our SkyCover, on the four
quality metrics. Using a particular value of g, we first used our
method to derive the SkyCover set. Assume that the cardinality is
k. We then reduce the actual skyline set using SkyDiver and k-RSP
to the same number k.

Figure 4 shows the covering factor metrics of the three methods.
Expectedly, SkyCover is the best. Although the differences do not
look significantly large, for the same k, while we ensure the WCF
to be within (1+ε), SkyDiver and k-RSP routinely violate it. Thus,
for these methods, no multiplicative error ratio can be guaranteed.

We also conducted a second set of experiments where we took
a particular SkyCover set and reduced it to a subset of lower size,
f , using the MH method of SkyDiver and the FM method of k-
RSP. The skyline set is also reduced to the same size, f , using
both SkyDiver and k-RSP. We then quantized all the four quality
measures for varying f . We do it for g = 8 that produces k = 333.

Figure 5 shows the results. The MH method produces much bet-
ter Jaccard similarity measures. However, very interestingly, when
f is very small, using MH on SkyCover produces a better Jaccard
measure than on SkyDiver. This shows that the SkyCover repre-
sentation of the skyline set is extremely useful not only for the cov-
ering measures but also for other quality metrics. Similarly, FM
produces better domination ratios and using FM on SkyCover is
almost as good as k-RSP.

6.2 Synthetic Datasets
The synthetic datasets were generated using the code available

from http://pgfoundry.org/projects/randdataset/. The parameters ba-
sed on which the experiments were done are: (1) number of grid
partitions per dimension, g, (2) error parameter, ε, (3) dataset car-
dinality, n, (4) dimensionality, d, and (5) type of dataset. While
experimenting, we varied one parameter at a time while fixing the
others to understand the effect of that single parameter better.

In the graphs, “NU” represents non-uniform grid partitioning,
“Uni” represents uniform grid partitioning, and “No” represents the
base method of computing the skylines without using grids.

6.2.1 Effect of Number of Grid Partitions
The first set of experiments (Figure 6a) measures the effect of

number of grid partitions, g. For low values of g (till 5), the number
of grid cells is so low (gd = 54 = 625) that the ratio of the number
of representative points m to the total number of points n is negli-
gible. Consequently, the cardinality of the approximate skyline is
very low as well and the entire method runs very fast. For medium
values of g (= 10), when the number of grid cells (gd = 104) is
comparable to (but still less than) n(= 50000), m → gd. In other
words, almost all the grid cells are occupied. The running times
are still lower than the base non-grid method. For high values of g

http://archive.ics.uci.edu/ml/datasets/Covertype
http://archive.ics.uci.edu/ml/datasets/Covertype
http://pgfoundry.org/projects/randdataset/

Table 4: Statistics of approximate skylines for the FC dataset: n = 581012, s = |S| = 1356, d = 5, R = 2.

Partitions Grid SkyCover Skylines Skylines Skylines Covered by Coveredper Error representatives size truly falsely falsely skyline otherwisedimension reported reported missed in same cell
g ε m = |P | k = |S′| k′ v = k − k′ s′ = s− k′ w t = s′ − w
2 0.414214 32 13 1 12 1355 1276 79
3 0.259921 172 30 11 19 1345 811 534
4 0.189207 515 87 45 42 1311 1102 209
6 0.122462 2086 173 108 65 1248 558 690
8 0.090508 5481 333 252 81 1104 651 453

10 0.071773 12014 427 285 142 1071 545 526
12 0.059463 22015 638 483 155 873 513 360
15 0.047294 44740 783 693 90 663 412 251
20 0.035265 103734 975 869 106 487 271 216

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

S
k
y
D

iv
e

r
K

-R
S

P
S

k
y
C

o
v
e

r

S
k
y
D

iv
e

r
K

-R
S

P
S

k
y
C

o
v
e

r

S
k
y
D

iv
e

r
K

-R
S

P
S

k
y
C

o
v
e

r

S
k
y
D

iv
e

r
K

-R
S

P
S

k
y
C

o
v
e

r

S
k
y
D

iv
e

r
K

-R
S

P
S

k
y
C

o
v
e

r

S
k
y
D

iv
e

r
K

-R
S

P
S

k
y
C

o
v
e

r

S
k
y
D

iv
e

r
K

-R
S

P
S

k
y
C

o
v
e

r

S
k
y
D

iv
e

r
K

-R
S

P
S

k
y
C

o
v
e

r

W
C

F

Number of partitions, g

Worst covering factor for FC

g=20g=15g=12g=10g=8g=6g=4g=3

(a) Worst covering factor.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

S
k
y
D

iv
e

r
K

-R
S

P
S

k
y
C

o
v
e

r

S
k
y
D

iv
e

r
K

-R
S

P
S

k
y
C

o
v
e

r

S
k
y
D

iv
e

r
K

-R
S

P
S

k
y
C

o
v
e

r

S
k
y
D

iv
e

r
K

-R
S

P
S

k
y
C

o
v
e

r

S
k
y
D

iv
e

r
K

-R
S

P
S

k
y
C

o
v
e

r

S
k
y
D

iv
e

r
K

-R
S

P
S

k
y
C

o
v
e

r

S
k
y
D

iv
e

r
K

-R
S

P
S

k
y
C

o
v
e

r

S
k
y
D

iv
e

r
K

-R
S

P
S

k
y
C

o
v
e

r

C
C

F

Number of partitions, g

Cumulative covering factor for FC

g=20g=15g=12g=10g=8g=6g=4g=3

(b) Cumulative covering factor.

Figure 4: Variation of quality with number of partitions, g.

(= 25), the number of grid cells is much larger (≈ 4 × 105) com-
pared to n and consequently, almost all the points lie in a separate
grid cell by itself. As a result, m → n. The running times for the
grid-based mechanisms become worse due to the additional over-
head of hashing, etc. There is little to choose between uniform and
non-uniform grids as far as running time is concerned.

6.2.2 Effect of Error Parameter
For a fixedR, the error parameter ε is complementary to g. When

g increases, ε decreases. Hence, the effect of ε is the reverse of g.

6.2.3 Effect of Dataset Cardinality
We next show how the algorithms scale with increasing size of

dataset (Figure 6b). The cardinality is varied from 104 to 107 with
gd = 87 ≈ 2 × 106 grid cells. Interestingly, the ratio of skyline
points to n, i.e., s/n decreases with increasing n (but not the ab-
solute number). When n is small compared to gd, m/n → 1, and
there is no gain either in running time or otherwise. (Note that both
the scales in the figure are logarithmic.) When n approaches gd

(e.g., for n = 5 × 105, i.e., when n/gd ≈ 1/4), the ratio m/n
starts falling off, and an appreciable difference in the running time
between using the grids and otherwise starts showing up. When n
is larger than gd, the ratio of m/n is quite low, and consequently,
the grid-based mechanisms exhibit much better running times. At
high n (= 107), the grid-based mechanisms are faster by a factor
of more than 3. Also, since the hashing functions for the uniform
case (which are division operations) are simpler than that for the
non-uniform case (logarithms), the difference becomes significant
at large n as there are n.d such operations.

6.2.4 Effect of Dimensionality
Figure 7a shows the effect of dimensionality, d. For independent

datasets, the number of skylines grows exponentially with d. The
running times follow the same behavior (note that the y-axis is log-
arithmic). At high d (from 10 onward), m → n due to too many
grid cells (gd ∼ 107). Consequently, there is no gain in the running
time by employing grids. For medium to low values of d (≤ 7), the
running times are much better as both m and k are lower.

6.2.5 Effect of Type of Data
The last set of experiments is to gauge the effect of the type of

the data. We generated three standard data types, independent, cor-
related and anti-correlated. For correlated data, the number of sky-
lines is low as one point is likely to dominate many points. In an
anti-correlated dataset, the skyline cardinality is high as it is un-
likely that a point dominates another.

Interestingly enough, the number of representative grid cells, m,
decreases for both correlated and anti-correlated datasets in relation
to the independent one. The reason is that the data is not spread
over the entire space uniformly, but is concentrated along certain
directions. The correlated dataset is spread along the main diago-
nal; hence, many points fall on the largest grid (g − 1, . . . , g − 1)
andm is lower. The anti-correlated dataset is spread along the main
anti-diagonal and, hence, m is significantly larger than that of the
correlated one but still lower than the independent distribution.

The running time for the anti-correlated dataset is much greater
than independent though (Figure 7b). This is due to the fact that the
high number of skylines makes the comparison step in SFS of an

 0

 0.2

 0.4

 0.6

 0.8

 1

S
k
y
D

iv
e

r
K

-R
S

P
S

k
y
C

o
v
e

rM
H

S
k
y
C

o
v
e

rF
M

S
k
y
D

iv
e

r
K

-R
S

P
S

k
y
C

o
v
e

rM
H

S
k
y
C

o
v
e

rF
M

S
k
y
D

iv
e

r
K

-R
S

P
S

k
y
C

o
v
e

rM
H

S
k
y
C

o
v
e

rF
M

S
k
y
D

iv
e

r
K

-R
S

P
S

k
y
C

o
v
e

rM
H

S
k
y
C

o
v
e

rF
M

S
k
y
D

iv
e

r
K

-R
S

P
S

k
y
C

o
v
e

rM
H

S
k
y
C

o
v
e

rF
M

S
k
y
D

iv
e

r
K

-R
S

P
S

k
y
C

o
v
e

rM
H

S
k
y
C

o
v
e

rF
M

S
k
y
D

iv
e

r
K

-R
S

P
S

k
y
C

o
v
e

rM
H

S
k
y
C

o
v
e

rF
M

J
a

c
c
a

rd
 s

im
ila

ri
ty

Size of representative set, f

Jaccard similarity for FC

f=200f=100f=50f=25f=15f=10f=5

(a) Jaccard similarity.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

S
k
y
D

iv
e

r
K

-R
S

P
S

k
y
C

o
v
e

rM
H

S
k
y
C

o
v
e

rF
M

S
k
y
D

iv
e

r
K

-R
S

P
S

k
y
C

o
v
e

rM
H

S
k
y
C

o
v
e

rF
M

S
k
y
D

iv
e

r
K

-R
S

P
S

k
y
C

o
v
e

rM
H

S
k
y
C

o
v
e

rF
M

S
k
y
D

iv
e

r
K

-R
S

P
S

k
y
C

o
v
e

rM
H

S
k
y
C

o
v
e

rF
M

S
k
y
D

iv
e

r
K

-R
S

P
S

k
y
C

o
v
e

rM
H

S
k
y
C

o
v
e

rF
M

S
k
y
D

iv
e

r
K

-R
S

P
S

k
y
C

o
v
e

rM
H

S
k
y
C

o
v
e

rF
M

S
k
y
D

iv
e

r
K

-R
S

P
S

k
y
C

o
v
e

rM
H

S
k
y
C

o
v
e

rF
M

D
o

m
in

a
ti
o

n
 r

a
ti
o

Size of representative set, f

Domination ratio for FC

f=200f=100f=50f=25f=15f=10f=5

(b) Domination ratio.

Figure 5: Variation of quality with size of representative set, f .

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 5 10 15 20 25

T
im

e
(m

s)

No. of Grid Partitions, g

Total Time: n=50k, d=4, ε=0.05, Ind.

No
NU
Uni

(a) Number of partitions, g.

 100

 1000

 10000

 100000

 10000 100000 1e+06 1e+07

T
im

e
(m

s)

Dataset Cardinality, n

Total Time: d=7, g=8, ε=0.05, Ind.

No
NU
Uni

(b) Dataset cardinality, n.

Figure 6: Effect of g and n for synthetic data.

object against the current skylines much less efficient as the win-
dow size is larger. The gain in running times over the base method
is the least for the independent dataset.

6.3 Summary of Experiments
We can summarize the empirical observations obtained from the

experiments on synthetic data as follows. If all the other parameters
are fixed, it is better to increase ε up to the factor that the applica-
tion can tolerate. When gd is much larger than n, then m→ n and
the grid-based mechanisms are not beneficial. On the other hand,
if gd is much less than n, then m is constrained by gd and the
number of approximate skylines retrieved is much lower than the
actual skyline cardinality. The SkyCover guarantees of bounded
multiplicative errors still holds, though. In general, the uniform
grid-based partitioning method is faster than the non-uniform coun-
terpart although it provides no guarantees. Finally, the number of
grid representatives is the largest when the data dimensions are in-
dependently distributed, and our method works better for correlated
and anti-correlated datasets.

7. CONCLUSIONS AND FUTURE WORK
Range-constrained skyline queries retrieve skyline points over a

query range and is a generalization of the skyline query. In spite
of having several applications, range-constrained skyline queries
have not received much research attention. The reason is that even

with a constrained range, the size of the skyline set can be imprac-
tically large. To address the above, in this paper, we introduced
the concept of approximate range-constrained skyline queries, and
proposed the SkyCover framework for efficiently computing them.
The framework employs a hashing scheme based on non-uniform
grid partitioning. The hashing itself guarantees the approximation
bound on the desired skyline set, thus avoiding any separate ap-
proximate skyline computation technique. The hashing also signif-
icantly contributes towards efficiency.

We also proposed two new metrics that can be used to measure
the quality of an approximate skyline set. Empirical evaluation of
our framework shows that it is significantly faster than the compet-
ing techniques, and yields solutions with high quality.

The grid-based hashing mechanism is generic enough to capture
other kinds of errors including additive errors and no errors. More
importantly, this framework can be applied in various settings such
as data streams, and distributed environments. Detailed experimen-
tation and analysis of such schemes remain a future work.

8. REFERENCES
[1] F. N. Afrati, P. Koutris, D. Suciu, and J. D. Ullman. Parallel

skyline queries. In ICDT, pages 274–284, 2012.
[2] J. L. Bentley, H. Kung, M. Schkolnick, and C. D. Thompson.

On the average number of maxima in a set of vectors and
applications. J. ACM (JACM), 25(4):536–543, 1978.

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12 14

T
im

e
(m

s)

Dimensionality, d

Total Time: n=50k, g=5, ε=0.05, Ind.

No
NU
Uni

(a) Dimensionality, d.

 200

 400

 600

 800

 1000

 1200

 1400

 1600

I C A

T
im

e
(m

s)

Type of Dataset

Total Time: n=50k, d=5, g=10, ε=0.05

No
NU
Uni

(b) Type of dataset.

Figure 7: Effect of d and type of dataset on synthetic data.

[3] S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline
operator. In ICDE, pages 421–430, 2001.

[4] C. Brando, M. Goncalves, and V. González. Evaluating top-k
skyline queries over relational databases. In DEXA, pages
254–263. Springer, 2007.

[5] A. Z. Broder, M. Charikar, A. M. Frieze, and
M. Mitzenmacher. Min-wise independent permutations. In
STOC, pages 327–336, 1998.

[6] C.-Y. Chan, H. V. Jagadish, K.-L. Tan, A. K. H. Tung, and
Z. Zhang. Finding k-dominant skylines in high dimensional
space. In SIGMOD, pages 503–514, 2006.

[7] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with
presorting. In ICDE, pages 717–719, 2003.

[8] A. Cosgaya-Lozano, A. Rau-Chaplin, and N. Zeh. Parallel
computation of skyline queries. In HPCS, page 12, 2007.

[9] A. Das Sarma, A. Lall, D. Nanongkai, R. J. Lipton, and
J. Xu. Representative skylines using threshold-based
preference distributions. In ICDE, pages 387–398, 2011.

[10] E. Dellis, A. Vlachou, I. Vladimirskiy, B. Seeger, and
Y. Theodoridis. Constrained subspace skyline computation.
In CIKM, pages 415–424. ACM, 2006.

[11] H. Eder. On extending PostgreSQL with the skyline operator.
Master’s thesis, Vienna University of Technology, 2009.

[12] P. Flajolet and G. Nigel Martin. Probabilistic counting
algorithms for database applications. J. Computer and
System Sciences, 31(2):182–209, 1985.

[13] Y. Gao, J. Hu, G. Chen, and C. Chen. Finding the most
desirable skyline objects. In DASFAA, pages 116–122, 2010.

[14] Z. Huang, Y. Xiang, and Z. Lin. l-SkyDiv query: Effectively
improve the usefulness of skylines. SCIENCE CHINA
Information Sciences, 53(9):1785–1799, 2010.

[15] P. Indyk and R. Motwani. Approximate nearest neighbors:
Towards removing the curse of dimensionality. In STOC,
pages 604–613, 1998.

[16] W. Jin, J. Han, and M. Ester. Mining thick skylines over large
databases. In PKDD, pages 255–266, 2004.

[17] A. K. Kalavagattu, A. S. Das, K. Kothapalli, and
K. Srinathan. On finding skyline points for range queries in
plane. In CCCG, 2011.

[18] V. Koltun and C. H. Papadimitriou. Approximately
dominating representatives. Theor. Comput. Sci.,
371(3):148–154, 2007.

[19] D. Kossmann, F. Ramsak, and S. Rost. Shooting stars in the

sky: an online algorithm for skyline queries. In VLDB, pages
275–286, 2002.

[20] H. T. Kung, F. Luccio, and F. P. Preparata. On finding the
maxima of a set of vectors. J. ACM, 22(4):469–476, 1975.

[21] H. Li, Q. Tan, and W.-C. Lee. Efficient progressive
processing of skyline queries in peer-to-peer systems. In
InfoScale, 2006.

[22] Z. Li, Z. Peng, J. Yan, and T. Li. Continuous dynamic
skyline queries over data stream. J. Computer Research and
Development, 1:014, 2011.

[23] X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang. Selecting stars:
The k most representative skyline operator. In ICDE, pages
86–95, 2007.

[24] D. Papadias, Y. Tao, G. Fu, and B. Seeger. An optimal and
progressive algorithm for skyline queries. In SIGMOD,
pages 467–478, 2003.

[25] C. Rhee, S. K. Dhall, and S. Lakshmivarahan. An optimal
parallel algorithm for the maximal element problem
(abstract). In CSC, page 435, 1990.

[26] J. B. Rocha-Junior, A. Vlachou, C. Doulkeridis, and
K. Nørvåg. Agids: A grid-based strategy for distributed
skyline query processing. In Int. Conf. Data Management in
Grid and Peer-to-Peer Systems (Globe), pages 12–23, 2009.

[27] J. Selke and W.-T. Balke. Skymap: a trie-based index
structure for high-performance skyline query processing. In
DEXA, pages 350–365, 2011.

[28] L. Su, P. Zou, and Y. Jia. Adaptive mining the approximate
skyline over data stream. In ICCS, pages 742–745, 2007.

[29] K.-L. Tan, P.-K. Eng, and B. C. Ooi. Efficient progressive
skyline computation. In VLDB, pages 301–310, 2001.

[30] Y. Tao, L. Ding, X. Lin, and J. Pei. Distance-based
representative skyline. In ICDE, pages 892–903, 2009.

[31] Y. Tao, X. Xiao, and J. Pei. Efficient skyline and top-k
retrieval in subspaces. TKDE, 19(8):1072–1088, 2007.

[32] G. Valkanas, A. N. Papadopoulos, and D. Gunopulos.
Skydiver: a framework for skyline diversification. In EDBT,
pages 406–417, 2013.

[33] P. Wu, C. Zhang, Y. Feng, B. Y. Zhao, D. Agrawal, and
A. El Abbadi. Parallelizing skyline queries for scalable
distribution. In EDBT, pages 112–130, 2006.

[34] T. Xia, D. Zhang, and Y. Tao. On skylining with flexible
dominance relation. In ICDE, pages 1397–1399, 2008.

	Introduction
	Related Work
	Skylines
	Range-Constrained Skylines
	Approximate Skylines
	Comparison with SkyCover

	The SkyCover Framework
	Range-Constrained Skylines
	Skyline Cover
	Problem Statement
	Grid Partitioning
	Choosing Grid Cell Representative
	Query Processing
	The SkyCover Algorithm
	Analysis of Running Time
	SkyCover using Uniform Grids
	Extensions of SkyCover

	Properties of SkyCover
	Correctness
	Falsely Reported Skylines
	Expected Number of Representative Points
	Uniform Grids
	Non-Uniform Grids

	Quality Metrics
	Covering Factor
	Metrics Based on Covering Factor

	Experimental Results
	Real Dataset
	Running Time
	Cardinality
	Quality

	Synthetic Datasets
	Effect of Number of Grid Partitions
	Effect of Error Parameter
	Effect of Dataset Cardinality
	Effect of Dimensionality
	Effect of Type of Data

	Summary of Experiments

	Conclusions and Future Work
	References

