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Vincent Grosso1∗ Gaëtan Leurent2 François-Xavier Standaert1† Kerem Varici1‡

François Durvaux1∗ Lubos Gaspar1‡ Stéphanie Kerckhof1§
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Abstract

This document defines the family of authenticated encryption (with associated data) algo-
rithms SCREAM and iSCREAM. They are based on Liskov et al.’s Tweakable Authenticated
Encryption (TAE) mode with the new tweakable block ciphers Scream and iScream.

The main desirable features of SCREAM and iSCREAM are:

• A simple and regular design allowing excellent performances on a wide range of architec-
tures, in particular if masking is implemented as a side-channel countermeasure;

• Inheriting from TAE, security beyond the birthday bound, i.e. a 128-bit security guarantee
with up to 2128 blocks of data processed with the same 128-bit key;

• Low overheads for the authentication mode (e.g. no extra cipher calls to generate masks);

• Fully parallelisable authenticated encryption with minimal ciphertext length.

In addition, iSCREAM allows compact implementations for combined encryption and decryption,
by taking advantage of involutive components in its underlying cipher iScream.
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1 Design rationale

The following ciphers and encryption modes aim to allow implementations that are secure against
Side-Channel Attacks (SCAs) such as Differential Power Analysis (DPA) [15] and Electro-Magnetic
Analysis (EMA) [8]. We believe they are important threats to the security of modern computing
devices for an increasingly wider class of applications. In this context, numerous countermeasures
have been introduced in the literature (a good survey can be found in [17]). Our designs will focus on
SCA security based on masking (aka secret sharing) for three main reasons. First, it is a thoroughly
investigated countermeasure with well established benefits (a security gain that can be exponential
in the number of shares [4, 25, 31]) and limitations (the requirement that the leakage of each share
is independent of the others [6, 18]). Second, it can take advantage of algorithms tailored for this
purpose, as we envision here and illustrated by recent block cipher proposals such as PiCaRo [22],
Zorro [10], Robin and Fantomas [11]. Third, it can be implemented efficiently and securely both in
software [9, 26, 28] and hardware devices [20, 21]. As a result, and without neglecting the need to
combine masking with other countermeasures to reach high physical security levels, we believe it is
an important building block in the design of side-channel resistant implementations.

Based on these premises, two important additional criteria are implementation efficiency and
design regularity/simplicity. The first one is motivated by the fact that more operations inevitably
mean more leaking operations that may be exploited by a clever adversary (e.g. such as the algebraic
one in [27]). The second one derives from the observation that physically secure implementations are
easier to obtain if computations are performed on well aligned data. For example, manipulating bits
and bytes such as in the PRESENT block cipher [3] raises additional challenges for the developers
(to guarantee that the bit manipulations do not leak more information than the byte ones). As
a result, we also aim for implementation efficiency on various platforms, with performances close
to the ones of the AES in an unprotected setting, and significantly improved when the masking
countermeasure is activated. Concretely, this includes privileging highly parallel designs.

As far as the block cipher used in our proposal is concerned, the LS-designs recently introduced
at FSE 2014 appear as natural candidates to reach the previous goals [11] – we will take advantage of
their general structure. As for the authenticated encryption mode, two main options are available.
The first one is to directly exploit a block cipher based solution, for which the extra operations
required for authentication are as linear (hence, easy to mask) as possible. Depending on the desired
implementation and security properties (e.g. parallelism, need of decryption, misuse resistance),
modes such as OCB [30], OTR [19], COPA [1], or COBRA [2] could be considered for this purpose.
Yet, a drawback of such schemes is that they only guarantee birthday security. Alternatively,
one can take advantage of the Tweakable Authenticated Encryption (TAE) proposed by Liskov et
al. [16], which looses nothing in terms of its advantage of the underlying tweakable block cipher,
hence can provide beyond birthday security – we will opt for this second solution.

Instantiating TAE requires a tweakable block cipher, which we achieve by extending the pre-
viously proposed block ciphers Robin and Fantomas. Our main ingredient for this purpose is the
addition of a lightweight tweak/key scheduling algorithm. In this respect, our choices were ori-
ented by the conclusions in [14], where it was observed that allowing round keys (and tweaks) to
be derived “on-the-fly” both in encryption and decryption can significantly improve the hardware
performances in certain contexts. We also follow the recommendation that an efficient combination
of encryption and decryption can be highly beneficial to the hardware implementation cost, and
therefore propose instances of ciphers based on both involutive and non-involutive components.

2



Finally, and since we care about physical security issues for which developers anyway have to
pay attention to implementation aspects (e.g. masking is useless in case of biased randomness), we
will not consider misuse resistance as a goal. For similar reasons, we will propose instances of our
ciphers with and without security guarantees against related-key attacks – the later ones being the
most relevant for our intended case studies. Yet, we note that combining misuse resistance with
a leakage-resilient authenticated encryption mode of operation is an interesting scope for further
research. Indeed, both properties generally imply reducing the designs’ parallelism.

In the following, we will denote our non-involutive block cipher as Scream, our involutive block
cipher as iScream, the TAE based on Scream as SCREAM, and the TAE based on iScream as
iSCREAM. The designers have not hidden any weakness in any of these ciphers/modes.

2 Security goals

Our security goals are summarized in Table 1. There is no secret message number. The public
message number is a nonce. The cipher does not promise intergrity or confidentiality if the le-
gitimate key holder uses the same nonce to encrypt two different (plaintext,assicoated data) pairs
under the same key. The numbers in the table correspond to key guesses to find the secret key for
confidentiality, and to online forgery attempts for integrity. Any successful forgery or key recovery
should be assumed to completely compromise confidentiality and integrity of all messages.

Table 1: Summary of our security goals.

SCREAM iSCREAM
bits of security bits of security

Confidentiality of the plaintext 128 128
Integrity of the plaintext 128 128
Integrity of the associated data 128 128
Integrity of the public message number 128 128

Side-channel resistance masking masking
Related-key security optional optional
Misuse resistance no no

The lower part of the table contains qualitative security statements. Side-channel resistant
implementations are expected to be achieved with masking. Related-key security is optional and
can be obtained with an increased number of rounds. Misuse resistance is not claimed.

3 Specifications

3.1 Tweakable LS-designs

Both Scream and iScream are based on a variant of the LS-designs introduced in [11] that we will
denote as Tweakable LS-designs (TLS-designs). They essentially update a n-bit state x by iterating
Ns steps, each of them made of Nr rounds. The state is structured as a l×s matrix, such that x[i, ?]
represents a row and x[?, j] represents a column. The first row contains state bits 0 to l − 1, the
second row contains state bits l to 2l−1, . . . In the following, the number of rounds per step will be
fixed to Nr = 2. By contrast, the number of steps will vary and will serve as a parameter to adapt
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Algorithm 1 TLS-design with l-bit L-boxes and s-bit S-boxes (n = l · s)
x← P ⊕ TK(0); . x is a l × s bits matrix
for 0 < σ ≤ Ns do

for 0 < ρ ≤ Nr do
r = 2 · (σ − 1) + ρ; . Round index
for 0 ≤ j < l do . S-box Layer

x[?, j] = S[x[?, j]];
end for
x← x⊕ C(r); . Constant addition
for 0 ≤ i < s do . L-box Layer

x[i, ?] = L[x[i, ?]];
end for

end for
x← x⊕ TK(σ); . Tweakey addition

end for
return x

the security margins in Section 5. One significant advantage of TLS-designs is their simplicity: they
can be described in a couple of lines, as illustrated in Algorithm 1. In this algorithm, P denotes the
plaintext, TK a combination of the master key K and tweak T that we will call tweakey. Finally,
S and L are the s-bit S-boxes and l-bit L-boxes that are used in all TLS-designs.

3.2 The tweakable block ciphers Scream and iScream

Scream and iScream are n=128-bit ciphers with s=8-bit S-boxes and l=16-bit L-boxes. Specifying
them requires to define these components, together with the round constants. The table repre-
sentation, algebraic normal form and bitslice implementation of the Scream S-box are given in
Appendices A.1 and A.2. The binary representation and 8-bit table representation of the Scream
L-box are given in Appendices A.3 and A.4. Similar definitions are given for the iScream S-box and
L-box, in Appendix B.1 and B.2. Round constants are defined in Appendix C and are the same for
both ciphers. Finally, Scream and iScream have a slightly different tweakey scheduling algorithm
as we now detail. They both take the 128-bit key K and the 128-bit tweak T as input.

Scream tweakey scheduling. The tweak is divided into 64-bit halves: T = t0 ‖ t1. Then, three
different tweakeys are used every three steps as follows:

TK(σ = 3i) = K ⊕ (t0 ‖ t1),

TK(σ = 3i+ 1) = K ⊕ (t0 ⊕ t1 ‖ t0),

TK(σ = 3i+ 2) = K ⊕ (t1 ‖ t0 ⊕ t1).

The tweakeys can also be computed on-the-fly using a simple linear function φ, corresponding to
multiplication by a primitive element in GF (4) (such that φ2(x) = φ(x)⊕ x, and φ3(x) = x):

φ : x0 ‖ x1 7→ (x0 ⊕ x1) ‖ x0,

τ0 = T,

τi+1 = φ(τi),

TK(i) = K ⊕ τi.
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iScream tweakey scheduling. Two different tweakeys are used every two steps as follows:

TK(σ = 2i) = T ⊕K,

TK(σ = 2i+ 1) = (T
16
≪ 1),

where
16
≪ is a rotation of one bit applied independently to all the (16-bit) rows of the state.

3.3 The encryption modes SCREAM and iSCREAM

We use the tweakable block ciphers Scream and iScream in the TAE mode proposed in [16]. A
plaintext (P0, · · · , Pm−1) is encrypted using a nonce (next denoted as N) – the algorithm produces
a ciphertext (C0, · · · , Cm−1) and a tag T . Blocks of associated data (A0, · · · , Aq−1) can optionally
be authenticated with the message, without being encrypted. During the decryption process, the
ciphertext values, tag and associated data are used to recover the plaintext. If the tag is incorrect,
the algorithm returns a null output ⊥. The nonce is supplied by the user, and every message
encrypted with a given key must use a different value for N . The nonce bytesize nb can be chosen
by the user between 1 and 15 bytes (the recommended value is 12 bytes), and every message
encrypted with a given key must use the same nonce size. The length of the associated data is
limited to 2130−8nb bytes and the length of the message is limited to 2131−8nb bytes.

There are three main steps in the mode of operation. First, the associated data is processed
by dividing it into 128-bit blocks. Each block is encrypted through the tweakable block cipher and
the output values are XORed in order to get the main output of this step (denoted as auth.), as
illustrated in Figure 1. If the last block is incomplete, it is padded with a single 1 bit and the rest
of the block is filled with zeroes (we denote this padding as (10∗) := (1000 . . . 0)). If the last block
is a full block, it is not padded but the encryption uses a different tweak.

A0

ẼKT ′0

A1

ẼK

⊕
T ′1 . . .

. . .

T ′∗ ẼK

⊕

Aq−1

auth.

Figure 1: TEA: associated data processing.

Second, plaintext values are encrypted using the tweakable block cipher in order to produce the
ciphertext values, as illustrated in Figure 2. The bitlength of the last plaintext block is encrypted
to generate a mask, which it is then truncated to the partial block size and XORed with the partial
plaintext block. Therefore, the ciphertext length is the same as the plaintext length.

P0

ẼK

C0

T0

P1

ẼK

C1

T1 . . . Tm−2 ẼK

Cm−2

Pm−2

T∗ ẼK

⊕
Cm−1

length

Pm−1

Figure 2: TAE: encryption of the plaintext blocks.
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Finally, the tag is generated as represented in Figure 3. That is, the checksum (i.e. the XOR of
all plaintext blocks) is first encrypted, and the output of this encryption is then XORed with the
output of the associated data processing step (auth.) in order to get the tag.

TΣ ẼK

checksum

⊕
auth.

tag

Figure 3: TAE: tag generation.

For the security of the TAE mode, all the calls to the tweakable block cipher must use distinct
values of the tweak. In addition, we use some special values for domain separation and we define
the tweaks depending on the context. In general, we use tweaks of the form (N ‖ control bits ‖ c),
where c is a block counter. The control bits and counter are set as follows (with 0∗ a zero padding):

Plaintext encryption. c is a 127− 8nb-bit block counter.

• All blocks but the last one use: Tc = (N ‖ 0 ‖ c)
• If the last block is a full block, it uses: T∗ = (N ‖ 11 ‖ 000 ‖ 0∗)
• If the last block is a partial block, it uses: T∗ = (N ‖ 11 ‖ 001 ‖ 0∗)

Associated data processing. c is a 126− 8nb-bit block counter.

• All blocks but the last one use: T ′c = (N ‖ 10 ‖ c)
• If the last block is a full block, it uses: T ′∗ = (N ‖ 11 ‖ 010 ‖ 0∗)
• If the last block is a partial block, it uses: T ′∗ = (N ‖ 11 ‖ 011 ‖ 0∗)

Tag generation.

• If the last plaintext block is a full block, it uses: TΣ = (N ‖ 11 ‖ 100 ‖ 0∗)
• If the last plantext block is a partial block, it uses: TΣ = (N ‖ 11 ‖ 101 ‖ 0∗)

Our version of the TAE mode is specified in Algorithm 2.

4 Reference implementations

We use the bitslice representation of Scream and iScream in the reference implementations, and
consider the 128-bit input values as 8× 16 binary matrices on which we apply the step functions.
We first process the S-boxes row-wise by using Algorithms 3, 4 and 5 given in Appendix. We
then add the round constants before the linear layer, which is performed column-wise using the
pre-computed tables given in Appendix A.3.2, A.4.2 and B.2.2. This completes the execution of one
round, which is iterated and completed with a tweakey addition to conclude one step. The number
of step functions depends on the security level (recommended parameters are in Section 5.3).
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Algorithm 2 Tweakable Authenticated Encryption

function TAE(N , A, P )

Initialisation
c← 0;
auth.← 0;
C ← ∅;
Σ← 0;

TAE: associated data
for 0 ≤ i < b(|A| − 1)/128c do

auth.← auth.⊕ Ẽ(T ′i , Ai);
c← c+ 1;

end for
if |A| - 128 then

Ai+1 ← Ai+1 ‖ 10∗;
auth.← auth.⊕ Ẽ(T ′∗, Ai+1);

else
auth.← auth.⊕ Ẽ(T ′∗, Ai+1);

end if

TAE: Encryption
for 0 ≤ i < b(|P | − 1)/128c do

C ← C ‖ Ẽ(Ti, Pi);
Σ← Σ⊕ Pi;
c← c+ 1;

end for
if |P | - 128 then

C ← C ‖ Trunc(Ẽ(T∗, |Pi+1|))⊕ Pi+1;
Σ← Σ⊕ (Pi+1 ‖ 0∗);

else
C ← C ‖ Ẽ(T∗, |Pi+1|)⊕ Pi+1;
Σ← Σ⊕ Pi+1;

end if

TAE: Tag generation
tag ← Ẽ(TΣ,Σ)⊕ auth.;
return C, tag

end function

5 Security analysis

5.1 The tweakable block ciphers Scream and iScream

Scream and iScream are tweakable block ciphers derived from the LS-ciphers Fantomas and Robin.
The security analysis in [11] shows that those designs have good properties and follow the wide-trail
strategy, which allows deriving simple bounds on the probability of differential and linear trails.
However, the security notion for a tweakable block cipher is much stronger than for a standard
block cipher. Indeed, the family of keyed permutations indexed by the tweak must be secure
against adversaries who can query every member of the family. In particular, she can perform a
differential attack between two members of the family with a different tweak value.

In the following we focus our attention on this scenario, and evaluate the best differential trails
in this context. This analysis is mostly dependent on the tweakey scheduling algorithms used in
Scream and iScream. In Robin and Fantomas, the lack of any key scheduling combined with key
additions every round allows very simple trails with a single active S-box per round. In Scream
and iScream, we avoid this weakness by using a construction similar to the LED design [12]: the
tweakey is used every second round, and we can argue that related-tweak trails over σ steps must
have at least bσ/2c active steps, where each active step has at least 8 active S-boxes.

The tweakey scheduling of Scream and iScream are designed to allow improved bounds in several
scenarios, using two different approaches. On the one hand, the tweakey scheduling of Scream mixes
bits corresponding to the same S-box: it allows to reuse some of the analysis for fixed tweak/key
in a context with differences in the tweak/key. In particular, the non-involutive L-box has been
selected to avoid simple iterative trails with a low number of active S-boxes. On the other hand,
iScream uses an involutive L-box, which allows trails over two rounds with only 8 active S-boxes. In
order to avoid such simple trails, the tweakey scheduling uses a bit rotation, moving any tweakey

7



Setting Steps: 1 2 3 4 5 6 7 8 9 10 11 12

Single-key, fixed-tweak Scream 8 20 30 40
iScream 8 16 24 32 40 48

Single-key, chosen-tweaks Scream 0 8 14 20 28 35
iScream 0 8 12 16 24 28 32 40

Related-keys, chosen-tweaks Scream 0 0 8 14 14 22 28 28 36
iScream 0 0 8 16 16 16 24 32 32 32 40 48

Table 2: Minimum number of active S-boxes for Scream and iScream.

difference from an S-box to the next one. This solution prevents the use of those simple involutive
trails with a difference introduced and canceled by the tweak. As a result, the best trails with an
active step between two inactive steps have 12 active S-boxes, rather than 8.

Our results are listed in Table 2, and the detailed analysis is available in Appendix D.

Note that versions of iScream with an odd number of steps are not really meaningful since the
last key addition is before the last step in these cases. The bounds in grey assume that there is an
extra whitening key at the end. They should only be considered as an indication of the way the
number of active S-boxes grows. We do not recommend the use of the corresponding parameters.

5.2 The encryption modes SCREAM and iSCREAM

The TAE encryption mode provides a tight security reduction to the security of its underlying
tweakable block ciphers that we assume to have 128-bit security (see [16] for the details).

5.3 Suggested and recommended parameters

Based on our security analysis, we suggest the parameters below, corresponding to lightweight
security, single-key security and related-key security, for both SCREAM and iSCREAM. For each
type of security, we provide two sets of (tight and safe) parameters. Some of these suggestions
being redundant, this makes a total of four sets of parameters for SCREAM (with 6, 8, 10 and 12
steps) and four sets of parameters for iSCREAM (with 8, 10, 12 and 14 steps).

Lightweight security. 80-bit security, with a protocol avoiding related keys
Tight parameters: SCREAM with 6 steps, iSCREAM with 8 steps.
Safe parameters: SCREAM with 8 steps, iSCREAM with 10 steps.

Single key security. 128-bit security, with a protocol avoiding related keys
Tight parameters: SCREAM with 8 steps, iSCREAM with 10 steps.
Safe parameters: SCREAM with 10 steps, iSCREAM with 12 steps.

Related-key security. 128-bit security, with possible related keys
Tight parameters: SCREAM with 10 steps, iSCREAM with 12 steps.
Safe parameters: SCREAM with 12 steps, iSCREAM with 14 steps.

Our recommended parameters are the safe ones. Nevertheless, the tight parameters define inter-
esting targets for further cryptanalysis efforts and could lead to additional performance gains.
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6 Performance evaluation

In this section, we provide preliminary implementation results for the previous proposals. Our main
goal is to confirm their excellent behavior on a wide range of platforms. For this purpose, we selected
three implementation contexts that we believe representative of most application scenarios, namely
high-end CPUs, small (here, 8-bit) microcontrollers and Application Specific Integrated Circuits
(ASICs). We limit ourselves to performances results for the tweakable block ciphers (Scream,
iScream), since the overhead of the mode is rather small. We compare the results obtained with the
state-of-the-art performances of the AES on the same platforms. For readability, we only provide
figures corresponding to single-key security with safe parameters. However, we note that changing
the number of steps essentially implies a proportional change in the cycle counts.

6.1 High-end CPUs

An important target for modern cryptography will be high-end CPUs as found in desktop computers
and servers, in particular processors from AMD and Intel. We also consider smaller processors found
in netbooks, smartphones and tablets, such as the ARM Cortex-A processor and Intel Atom series.
They are relatively powerful, and feature a cache hierarchy, various prediction units (branching,
cache access), and a high level of parallelism with vector units and super-scalar abilities.

For our implementation of Scream and iScream, we leverage the vector units of those processors.
More precisely, we wrote an implementation using the SSSE3 instruction set for x86 devices (sup-
ported in most AMD and Intel desktop and server processors since 2006, as well as by the Atom
CPUs), and an implementation using the NEON instruction set for ARM processors (supported in
most Cortex-A CPUs). Using those SIMD instructions, we can compute bitwise Boolean oprations
on 128-bit registers. This allows us to evaluate 128 S-boxes in parallel efficiently. For the L-box
layer, we use the vector shuffling instructions (pshufb in SSSE3, vtbl in NEON) as a 4-bit to 8-bit
look-up table. The 16-bit L-box is decomposed as eight 4-bit to 8-bit look-up tables and 6 XORs1.
This way of evaluating the tables avoids any cache timing attack. We compute 16 instances of
Scream or iScream in parallel (with 16 different plaintexts and tweaks), using 16 SIMD registers,
every register containing one byte from each copy of the cipher (8 registers for the high-order bytes,
and 8 other registers for the low-order bytes). Using SSSE3 instructions, the S-box layer requires
96 instruction to compute two sets of 128 S-boxes in parallel, and the L-box layer requires 280
instructions to evaluate 128 L-boxes. As a point of comparison, the bitsliced AES implementation
of Käsper and Schwabe [13] would take respectively 326 and 102 cycles for the same number of
S-boxes and linear layers. On the one hand our S-box is much easier to implement in a bitslice way
than the AES S-box, since it was one of our design goals. On the other hand, our linear-layer is
optimized for a table-based implementation, and more complex than that of the AES. It can still
be implemented rather efficiently, but it becomes the dominant factor in this implementation.

As illustrated in Table 3, this strategy leads to implementations that are comparable in speed
with the fastest AES implementations. More precisely, Scream-10 and iScream-12 are approximately
35% and 60% slower than the AES implementation of [13], respectively. Note that these overheads
are mainly due to the additional rounds needed to securely process the tweak (which also explains
the difference with the performances of Robin and Fantomas that are even closer to the AES ones).
On CPUs with hardware AES support (such as the AES-NI instructions), AES implementations can
be significantly faster, but Scream and iScream still achieve a very good throughput. Moreover, the

1 This can be further reduced to seven table look-ups for iScream, thanks to the L-box structure.
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latest Intel CPUs support 256-bit wide SIMD operations using AVX2 instructions. This should lead
to implementations of Scream and iScream about twice as fast as on the Ivy Bridge architecture.

Table 3: Implementation results on high-end CPUs. Speed in cycles/byte for long messages.

Scream-10 iScream-12 AES

w/o AES-NI w/AES-NI

Cortex A15 Exynos 5 21.8 26.2 17.8 N/A
Atom Cedarview 55 65 17 N/A
Core i7 Nehalem 9.4 11.2 6.9 N/A

Core i7 Ivy Bridge 7.1 9.1 5.4 1.3

6.2 8-bit microcontrollers

We exploit the methodology and metrics introduced in [7] for comparing the performances of block
ciphers in Atmel AVR devices, and refer to this previous work for the details. Summarizing, our
implementations store the plaintext, key and tweak in RAM and derive the tweakeys on-the-fly.
Performance evaluations are given in Table 4, and compared with two implementations of the AES:
the one in [7] (that follows the same guidelines as ours) and the AES furious in [23] (that does not
compute the key scheduling on-the-fly), leading to three main conclusions.

Table 4: Implementation results in an Atmel AVR microcontroller.

ROM words RAM words Cycle count

code tables total encryption decryption
AES [7] 1147 512 1659 33 4557 7015
AES furious [23] 800 768 1568 192 3629 4462
Scream-10 (ED) 1173 2048 3221 80 7646 7672
iScream-12 (ED) 951 1024 1975 64 8724 8724

Scream-10 (E) 699 1024 1723 80 7646 -
iScream-12 (E) 571 1024 1595 64 8724 -
Scream-10 (D) 727 1024 1751 80 - 7672
iScream-12 (D) 569 1024 1593 64 - 8724

First, the encryption cycle count of a round of Scream and iScream is inferior to the encryption
cycle count of an AES round from [7] (which is observed by multiplying the Scream and iScream
cycle counts by 10/20 and 10/24, respectively). It is also very similar to the AES furious encryption
cycle count (that excludes the on-the-fly computation of the round keys). Second, we see that the
on-the-fly key derivation implies significant overheads in the decryption cycle count of the AES
in [7], while the decryption cycle counts of Scream and iScream are similar to the encryption ones.
Finally, the ED results illustrates the code size gains obtained thanks to the involutive components
in iScream (for which only four 256-byte tables are needed in Appendix B.2.2 vs. eight for Scream
in Appendices A.3.2 and A.4.2). Note that since the L-boxes are linear, the (ROM) memory
requirements of these implementations could be further reduced at the cost of an increased cycle
count, e.g. by computing these operations based on eight 16-byte (or sixteen 16-nibble) tables.
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6.3 Application Specific Integrated Circuits

We exploit the methodology and metrics introduced in [14] for comparing the performances of
block ciphers in a 65-nanometer low-power CMOS technology, and refer to this previous work for
the details. Summarizing, our implementations have a 128-bit datapath, store the plaintext, key
and tweak in registers, and derive the keys on-the-fly. We considered architectures implementing
both a single round per cycle (denoted as 1R/cycle) and two rounds per cycle (denoted as 2R/cycle).
Performance evaluations are given in Table 5 and are compared to the AES implementation in [14].
Current results were only obtained for encryption, but estimates are given for decryption and the
encryption/decryption architectures (in italic)2, leading to the following observations.

Table 5: ASIC Implementation results (65-nanometer low-power CMOS).

Mode Area fmax Latency Throughput
E,D,ED [µm2] [MHz] [cycles] [Mbps]

AES E 17921 444 12 4740
(1R/cycle) D 20292 377 22 2195

ED 24272 363 ≈17 ≈2997

Scream-10 E 12951 751 21 4577
(1R/cycle) D 12951 751 21 4577

ED 17292 751 21 4577

Scream-10 E 17292 446 11 5190
(2R/cycle) D 17292 446 11 5190

ED 25974 446 11 5190

iScream-12 E 13375 740 25 3789
(1R/cycle) D 13375 740 25 3789

ED 13375 740 25 3789

iScream-12 E 17024 448 13 4411
(2R/cycle) D 17024 448 13 4411

ED 17024 448 13 4411

First and most importantly, we see that the combinatorial cost of a single round of Scream
or iScream roughly corresponds to half the combinatorial cost of an AES round. This is observed
both in the area and maximum frequency of our 2R/cycle architectures, and shows that hardware
implementations can further benefit of the compact gate-level description of our S-boxes and L-
boxes. As a result, these architectures provide similar throughputs as the AES 1R/cycle one, at a
similar cost. Second, and as for the previous AVR implementations, the on-the-fly key derivation
in decryption should allow avoiding the loss of a factor two in throughput as it is the case for
the AES. Finally, and as also observed for the previous AVR implementations, the combination of
encryption and decryption should come approximately for free for (involutional) iScream.

2 More precisely, the combinatorial cost of a round (i.e. excluding the registers) is estimated by substracting the
cost of the 1R/cycle architectures from the one of the 2R/cycle architectures. We assume the cost of the decryption
to be similar to the one of encryption, and their combination to require essentially twice as much combinatorial logic
for Scream, while being essentially unchanged for iScream. Cycles count for encryption and decryption are the same.
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6.4 Further work

The preliminary results in this section are encouraging in the sense that they put forward per-
formances for Scream and iScream that are comparable to the AES ones, despite the additional
processing of a tweak. As already mentioned, these performances would be improved with the
tight(er) security parameters. Quite naturally, various additional implementation efforts would be
worth further investigations. This first includes the optimization of our current implementations
and their evaluation on other platforms and architectures. For example, 8051 microcontrollers have
bit-addressable memories that would be useful for the table lookup implementation of our S-boxes
(in order to efficiently access the columns of the state). The regularity of tweakable LS-designs
also make them suitable candidates for compact hardware architectures (i.e. with smaller datapath
than the 128-bit ones considered in the previous section). Evaluating the performances of Scream
and iScream in recent FPGAs is yet another interesting direction. Overall, we believe that the
efficient (both gate-level and table-based) representations of the linear and non-linear operations in
these tweakable block ciphers make them promising and versatile candidates for both lightweight
and high performance computing. Besides, the extension of these preliminary results towards the
authenticated encryption modes is important to analyze as well. Yet, the fully parallelisable nature
of TAE should imply very limited overheads compared to their underlying ciphers, as confirmed
by first estimations with our reference (non-optimized) implementations. Eventually, assessing the
performances and side-channel resistance of masked implementations of SCREAM and iSCREAM is
expected to further amplify these positive observations (as for Robin and Fantomas).

7 Intellectual property

To the extent permitted under law, the designers have released all copyright neighboring rights
related to the tweakable block ciphers Scream and iScream, and the authenticated encryption al-
gorithms SCREAM and iSCREAM to the public domain. The submitters do not hold any patent
related to the designs, nor will apply for any. To the best of their knowledge, the TAE mode of
operation is free of patents. Yet, as acknowledged by its authors, it can be viewed as a paraphrase
or re-statement of the OCB encryption mode proposed by Rogaway et al. [30], which is patented
(US patents 7,046,802, 7,200,227, 7,949,129, and 8,321,675). We note that versions of OCB using a
tweakable block cipher, and related patents, are more recent than the publication of TAE by Liskov
et al. [16]. Referring to Phil Rogaway’s webpage [29], “there are further patents in the authenti-
cated encryption space. I would single out those of Gligor and Donescu (VDG) and Jutla (IBM):
6,963,976, 6,973,187, 7,093,126, and 8,107,620. Do the claims of these patents read against OCB?
It is difficult to answer such a question. In fact, I suspect that nobody can give an answer. It seems
extremely subjective.” If any of this information changes, the submitters will promptly (and within
at most one month) announce these changes on the crypto-competitions mailing list.

8 Consent

The submitters hereby consent to all decisions of the CAESAR selection committee regarding the
selection or non-selection of this submission as a second-round candidate, a third-round candidate,
a finalist, a member of the final portfolio, or any other designation provided by the committee. The
submitters understand that the committee will not comment on the algorithms, except that for
each selected algorithm the committee will simply cite the previously published analyses that led
to the selection of the algorithm. The submitters understand that the selection of some algorithms
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is not a negative comment regarding other algorithms, and that an excellent algorithm might fail to
be selected simply because not enough analysis was available at the time of the committee decision.
The submitters acknowledge that the committee decisions reflect the collective expert judgments
of the committee members and are not subject to appeal. The submitters understand that if they
disagree with published analyses then they are expected to promptly and publicly respond to those
analyses, not to wait for subsequent committee decisions. The submitters understand that this
statement is required as a condition of consideration of this submission by the CAESAR selection
committee.
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A Scream parameters

A.1 Scream S-box

A.1.1 Table representation

0 1 2 3 4 5 6 7 8 9 A B C D E F

00 1E 75 5F E1 99 FC 89 2F 86 EE F1 7B 23 52 10 94

10 0C B7 4D 67 D8 42 C8 D6 C4 6B AA BA 3D A5 00 33

20 53 2D 0B B8 DA A8 C5 6C CA B6 A4 22 60 07 5D D7

30 4F F4 15 32 81 1B 9C 8E 91 3F E6 F9 70 E9 43 7E

40 8D F3 CC 65 08 7A 18 AB 16 6A 77 FD A7 C0 82 04

50 9F 31 DE E3 49 D0 59 46 54 EF 2E 3C BB 21 92 B5

60 55 3E 0F A9 DC B9 C1 7F CE A6 B4 30 72 03 5B D1

70 4B E4 13 20 85 1D 9A 8A 97 2C F6 E8 62 F8 47 6D

80 29 41 68 D5 AC CB BE 1A B0 DB C7 4E 17 64 26 A0

90 39 83 78 51 ED 76 FF E2 F2 5C 9D 8F 0A 93 34 05

A0 25 58 7C CD AF DF B3 19 BD C2 D2 56 14 71 2A A3

B0 3A 80 61 44 F5 6E EB FB E7 48 90 8C 06 9E 37 09

C0 98 E5 D9 73 1F 6F 0D BC 02 7D 63 EA B1 D4 96 12

D0 88 27 C9 F7 5E C6 4C 50 40 FA 3B 2B AE 35 84 A1

E0 01 69 5A FE 8B EC 95 28 9B F0 E0 66 24 57 0E 87

F0 1C B2 45 74 D3 4A CF DD C3 79 A2 BF 36 AD 11 38

Table 6: Scream S-box, table representation.

A.1.2 Algebraic Normal Form

y0 = x0 +x1 +x0x1 +x2 +x1x2 +x0x3 +x0x1x3 +x0x2x3 +x1x2x3 +x0x1x2x3 +x2x4 +x0x2x4 +
x0x1x2x4 + x0x3x4 + x1x3x4 + x0x1x3x4 + x2x3x4 + x0x2x3x4 + x1x2x3x4 + x5 + x0x5 + x1x5 +
x3x5 + x0x3x5 + x2x3x5 + x1x2x3x5 + x0x4x5 + x0x1x4x5 + x0x1x2x4x5 + x3x4x5 + x0x1x3x4x5 +
x2x3x4x5 + x6 + x0x6 + x3x6 + x0x3x6 + x5x6 + x3x5x6 + x0x4x5x6 + x7 + x0x7 + x0x2x7 + x3x7 +
x0x2x4x7 + x1x3x4x7 + x0x1x3x4x7 + x2x3x4x7 + x5x7 + x1x5x7 + x0x1x5x7 + x2x5x7 + x4x5x7

y1 = 1+x0 +x2 +x0x2 +x0x1x2 +x0x3 +x1x3 +x0x1x3 +x2x3 +x0x2x3 +x4 +x2x4 +x0x2x4 +
x0x1x2x4 + x0x3x4 + x2x3x4 + x1x2x3x4 + x2x5 + x0x2x5 + x1x2x5 + x4x5 + x1x4x5 + x0x2x4x5 +
x3x4x5 + x1x3x4x5 + x0x1x3x4x5 + x2x3x4x5 + x6 + x0x1x6 + x2x6 + x0x2x6 + x3x6 + x1x3x6 +
x0x1x3x6 +x2x3x6 +x1x3x4x6 +x0x1x3x4x6 +x2x3x4x6 +x1x5x6 +x0x1x5x6 +x2x5x6 +x4x5x6 +
x7 + x0x7 + x2x7 + x1x2x7 + x4x7 + x0x4x7 + x0x1x4x7 + x2x4x7 + x3x4x7 + x6x7

y2 = 1 + x0x1 + x2 + x0x2 + x0x1x2 + x1x3 + x0x1x3 + x0x2x3 + x1x2x3 + x0x1x4 + x0x2x4 +
x0x3x4 + x2x3x4 + x1x2x3x4 + x5 + x0x5 + x2x5 + x1x2x5 + x4x5 + x0x4x5 + x0x1x4x5 + x2x4x5 +
x3x4x5 + x0x6 + x1x3x6 + x0x1x3x6 + x2x3x6 + x0x2x4x6 + x5x6 + x7

y3 = 1+x0 +x0x2 +x3 +x0x2x4 +x1x3x4 +x0x1x3x4 +x2x3x4 +x5 +x1x5 +x0x1x5 +x2x5 +x4x5

y4 = 1+x0x1 +x1x2 +x0x1x2 +x3 +x1x3 +x0x1x3 +x0x2x3 +x1x2x3 +x4 +x0x4 +x2x4 +x3x4 +
x0x3x4 + x1x3x4 + x0x1x3x4 + x1x2x3x4 + x0x5 + x1x5 + x0x1x5 + x1x2x5 + x0x4x5 + x0x1x4x5 +
x2x4x5 + x3x4x5 + x6 + x0x6 + x1x3x6 + x0x1x3x6 + x2x3x6 + x0x2x4x6 + x5x6 + x7

y5 = x0 + x1x3 + x0x1x3 + x2x3 + x0x2x4 + x7 + x6x7

y6 = x0 + x1 + x0x1 + x1x2 + x0x4 + x0x1x4 + x2x4 + x3x4 + x5 + x5x7

y7 = x0x1 + x2 + x3 + x0x4 + x6 + x5x6
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A.1.3 Bitslice implementation

Algorithm 3 Scream S-box, bitslice implementation

Require: 8 16-bit words (W0, . . . ,W7)
First 5-bit S-box
W2 = W2 ⊕ (W0 ∧W1)
W1 = W1 ⊕W2

W3 = W3 ⊕ (W0 ∧W4)
W2 = W2 ⊕W3

W0 = W0 ⊕ (W3 ∧W1)
W4 = W4 ⊕W1

W1 = W1 ⊕ (W2 ∧W4)
W1 = W1 ⊕W0

Extend-Xor
W0 = W0 ⊕W5

W1 = W1 ⊕W6

W2 = W2 ⊕W7

Constant
W3 = ¬(W3)
W4 = ¬(W4)

First 3-bit S-box
(t5, t6, t7) = (W5,W6,W7)
W5 = W5 ⊕ ¬(t6) ∧ t7
W6 = W6 ⊕ ¬(t7) ∧ t5
W7 = W7 ⊕ ¬(t5) ∧ t6
Truncate-Xor
W5 = W0 ⊕W5

W6 = W1 ⊕W6

W7 = W2 ⊕W7

Second 5-bit S-box
W2 = W2 ⊕ (W0 ∧W1)
W1 = W1 ⊕W2

W3 = W3 ⊕ (W0 ∧W4)
W2 = W2 ⊕W3

W0 = W0 ⊕ (W3 ∧W1)
W4 = W4 ⊕W1

W1 = W1 ⊕ (W2 ∧W4)
W1 = W1 ⊕W0

A.2 Inverse Scream S-box

A.2.1 Table representation

0 1 2 3 4 5 6 7 8 9 A B C D E F

00 1E E0 C8 6D 4F 9F BC 2D 44 BF 9C 22 10 C6 EE 62

10 0E FE CF 72 AC 32 48 8C 46 A7 87 35 F0 75 00 C4

20 73 5D 2B 0C EC A0 8E D1 E7 80 AE DB 79 21 5A 07

30 6B 51 33 1F 9E DD FC BE FF 90 B0 DA 5B 1C 61 39

40 D8 81 15 3E B3 F2 57 7E B9 54 F5 70 D6 12 8B 30

50 D7 93 0D 20 58 60 AB ED A1 56 E2 6E 99 2E D4 02

60 2C B2 7C CA 8D 43 EB 13 82 E1 49 19 27 7F B5 C5

70 3C AD 6C C3 F3 01 95 4A 92 F9 45 0B A2 C9 3F 67

80 B1 34 4E 91 DE 74 08 EF D0 06 77 E4 BB 40 37 9B

90 BA 38 5E 9D 0F E6 CE 78 C0 04 76 E8 36 9A BD 50

A0 8F DF FA AF 2A 1D 69 4C 25 63 1A 47 84 FD DC A4

B0 88 CC F1 A6 6A 5F 29 11 23 65 1B 5C C7 A8 86 FB

C0 4D 66 A9 F8 18 26 D5 8A 16 D2 28 85 42 A3 68 F6

D0 55 6F AA F4 CD 83 17 2F 14 C2 24 89 64 F7 52 A5

E0 EA 03 97 53 71 C1 3A B8 7B 3D CB B6 E5 94 09 59

F0 E9 0A 98 41 31 B4 7A D3 7D 3B D9 B7 05 4B E3 96

Table 7: Inverse Scream S-box, table representation.
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A.2.2 Algebraic Normal Form

y0 = x0x1 +x2 +x1x2 +x0x3 +x2x3 +x0x2x3 +x1x2x3 +x0x1x2x3 +x1x4 +x2x4 +x0x1x2x4 +
x2x3x4 +x0x2x3x4 +x1x2x3x4 +x5 +x1x2x5 +x1x3x5 +x0x1x3x5 +x1x2x3x5 +x1x4x5 +x0x1x4x5 +
x2x4x5 + x0x2x4x5 + x2x3x4x5 + x0x2x3x4x5 + x0x6 + x1x6 + x0x1x6 + x3x6 + x0x3x6 + x1x3x6 +
x2x3x6 + x1x2x3x6 + x4x6 + x0x4x6 + x0x1x4x6 + x2x4x6 + x3x4x6 + x0x3x4x6 + x5x6 + x0x5x6 +
x1x5x6 + x3x5x6 + x0x3x5x6 + x1x3x5x6 + x4x5x6 + x2x4x5x6 + x3x4x5x6 + x2x3x4x5x6 + x7 +
x0x7 + x1x7 + x0x1x7 + x0x2x7 + x0x1x2x7 + x3x7 + x0x1x3x7 + x2x3x7 + x0x2x3x7 + x1x2x3x7 +
x4x7 +x0x4x7 +x0x1x4x7 +x2x4x7 +x3x4x7 +x0x3x4x7 +x1x2x3x4x7 +x5x7 +x0x5x7 +x0x1x5x7 +
x3x5x7 + x0x3x5x7 + x1x3x5x7 + x0x4x5x7 + x0x2x4x5x7 + x0x3x4x5x7 + x1x3x4x5x7 + x0x6x7 +
x0x1x6x7 + x3x6x7 + x0x3x6x7 + x1x3x6x7 + x0x4x6x7 + x0x2x4x6x7 + x0x3x4x6x7 + x1x3x4x6x7

y1 = 1+x0 +x1 +x0x1 +x0x2 +x0x1x2 +x3 +x1x3 +x0x1x3 +x0x2x3 +x1x2x3 +x0x4 +x1x4 +
x0x1x4+x2x4+x3x4+x1x3x4+x1x2x3x4+x1x5+x0x1x5+x2x5+x1x2x5+x3x5+x1x3x5+x0x2x3x5+
x1x2x3x5+x0x4x5+x1x4x5+x0x2x4x5+x3x4x5+x6+x0x6+x1x6+x2x6+x0x2x6+x3x6+x1x3x6+
x0x2x3x6+x1x2x3x6+x4x6+x0x4x6+x2x4x6+x0x3x4x6+x1x3x4x6+x2x3x4x6+x0x5x6+x1x5x6+
x4x5x6 + x2x4x5x6 + x7 + x0x7 + x2x7 + x3x7 + x0x3x7 + x1x3x7 + x4x7 + x2x3x4x7 + x5x7 + x6x7

y2 = 1 + x0 + x1 + x0x2 + x1x2 + x0x3 + x1x3 + x0x1x3 + x2x3 + x0x1x2x3 + x0x4 + x1x4 +
x0x1x4 + x0x1x2x4 + x0x3x4 + x1x3x4 + x1x2x3x4 + x5 + x1x5 + x2x5 + x0x2x5 + x1x2x5 + x3x5 +
x0x3x5 + x1x3x5 + x0x1x3x5 + x2x3x5 + x0x2x3x5 + x1x4x5 + x0x2x3x4x5 + x6 + x0x6 + x0x2x6 +
x1x2x6 + x1x3x6 + x0x1x3x6 + x4x6 + x0x1x4x6 + x2x4x6 + x0x2x4x6 + x3x4x6 + x1x3x4x6 +
x0x2x3x4x6 + x0x5x6 + x2x5x6 + x0x2x5x6 + x0x1x2x5x6 + x0x3x5x6 + x1x3x5x6 + x0x1x3x5x6 +
x2x3x5x6+x0x2x3x5x6+x1x2x3x5x6+x4x5x6+x0x1x4x5x6+x0x2x4x5x6+x3x4x5x6+x1x3x4x5x6+
x1x2x3x4x5x6 +x7 +x2x7 +x1x2x7 +x0x1x2x7 +x0x3x7 +x1x3x7 +x1x4x7 +x0x1x4x7 +x0x2x4x7 +
x1x2x4x7 + x0x1x2x4x7 + x1x3x4x7 + x0x1x3x4x7 + x2x3x4x7 + x1x2x3x4x7 + x0x5x7 + x1x5x7 +
x0x1x5x7 + x2x5x7 + x0x2x5x7 + x3x5x7 + x1x3x5x7 + x0x1x3x5x7 + x2x3x5x7 + x0x2x3x5x7 +
x4x5x7+x0x1x4x5x7+x2x4x5x7+x2x3x4x5x7+x0x2x3x4x5x7+x0x2x6x7+x1x2x6x7+x0x1x2x6x7+
x0x3x6x7 + x1x3x6x7 + x2x3x6x7 + x1x2x3x6x7 + x4x6x7 + x0x4x6x7 + x3x4x6x7 + x0x3x4x6x7 +
x2x3x4x6x7 + x0x2x3x4x6x7 + x1x2x3x4x6x7

y3 = 1+x0 +x0x1 +x0x2 +x0x1x2 +x3 +x1x3 +x0x1x3 +x0x4 +x0x1x2x4 +x1x3x4 +x0x2x3x4 +
x5 + x1x5 + x2x5 + x0x2x5 + x1x2x5 + x3x5 + x0x3x5 + x1x3x5 + x0x2x3x5 + x0x1x2x3x5 + x4x5 +
x0x4x5 + x0x1x4x5 + x2x4x5 + x0x2x4x5 + x0x3x4x5 + x1x3x4x5 + x0x1x3x4x5 + x1x2x3x4x5 +
x1x6 + x0x1x6 + x2x6 + x1x2x6 + x3x6 + x1x3x6 + x1x2x3x6 + x0x1x2x3x6 + x4x6 + x0x1x4x6 +
x0x1x3x4x6 +x1x2x3x4x6 +x5x6 +x0x1x5x6 +x0x4x5x6 +x0x2x4x5x6 +x0x3x4x5x6 +x1x3x4x5x6 +
x2x3x4x5x6 + x7 + x0x7 + x1x7 + x2x7 + x1x2x7 + x0x1x2x7 + x3x7 + x4x7 + x0x4x7 + x1x4x7 +
x0x1x4x7 + x2x4x7 + x1x2x4x7 + x3x4x7 + x0x2x3x4x7 + x1x2x3x4x7 + x0x1x5x7 + x0x3x5x7 +
x1x3x5x7 + x0x4x5x7 + x0x2x4x5x7 + x3x4x5x7 + x0x3x4x5x7 + x1x3x4x5x7 + x6x7 + x0x6x7 +
x0x1x6x7 + x0x2x6x7 + x1x2x6x7 + x0x1x2x6x7 + x0x3x6x7 + x1x3x6x7 + x0x1x3x6x7 + x4x6x7 +
x0x1x4x6x7 + x1x3x4x6x7 + x2x3x4x6x7 + x1x2x3x4x6x7

y4 = 1+x0 +x1 +x0x1 +x2 +x0x1x2 +x3 +x0x1x3 +x4 +x1x4 +x0x1x4 +x2x4 +x3x4 +x0x3x4 +
x2x3x4 +x1x2x3x4 +x0x5 +x0x1x5 +x1x2x5 +x1x3x5 +x0x2x3x5 +x1x2x3x5 +x0x4x5 +x1x4x5 +
x2x4x5 + x0x2x4x5 + x3x4x5 + x1x6 + x2x6 + x0x2x6 + x3x6 + x0x3x6 + x0x2x3x6 + x1x2x3x6 +
x4x6 + x0x4x6 + x2x4x6 + x0x3x4x6 + x1x3x4x6 + x5x6 + x0x5x6 + x1x5x6 + x4x5x6 + x2x4x5x6 +
x0x7 + x2x7 + x3x7 + x0x3x7 + x1x3x7 + x4x7 + x2x3x4x7 + x5x7 + x6x7

y5 = x0 +x0x2 +x1x2 +x2x4 +x5 +x0x6 +x0x1x6 +x2x6 +x0x2x6 +x3x6 +x0x3x6 +x0x2x3x6 +
x1x2x3x6 + x0x2x4x6 + x2x3x4x6 + x7 + x0x7 + x1x7 + x2x7 + x3x7 + x2x4x7 + x6x7
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y6 = x0 + x1 + x0x1 + x2 + x3 + x2x4 + x0x2x4 + x5 + x0x5 + x0x1x5 + x2x5 + x0x2x5 + x3x5 +
x0x3x5+x0x2x3x5+x1x2x3x5+x0x2x4x5+x2x3x4x5+x6+x0x7+x0x3x7+x1x3x7+x2x3x4x7+x5x7

y7 = x0 + x1 + x2x4 + x0x5 + x1x5 + x2x5 + x3x5 + x2x4x5 + x6 + x0x6 + x0x3x6 + x1x3x6 +
x2x3x4x6 + x5x6 + x7

A.2.3 Bitslice implementation

Algorithm 4 Inverse Scream S-box, bitslice implementation

Require: 8 16-bit words (W0, . . . ,W7)
Second 5-bit S-box
W1 = W1 ⊕W0

W1 = W1 ⊕ (W2 ∧W4)
W4 = W4 ⊕W1

W0 = W0 ⊕ (W3 ∧W1)
W2 = W2 ⊕W3

W3 = W3 ⊕ (W0 ∧W4)
W1 = W1 ⊕W2

W2 = W2 ⊕ (W0 ∧W1)
Truncate-Xor
W7 = W2 ⊕W7

W6 = W1 ⊕W6

W5 = W0 ⊕W5

First 3-bit S-box
(t5, t6, t7) = (W5,W6,W7)
W5 = W5 ⊕ ¬(t6) ∧ t7
W6 = W6 ⊕ ¬(t7) ∧ t5

W7 = W7 ⊕ ¬(t5) ∧ t6
Constant
W4 = ¬(W4)
W3 = ¬(W3)
Extend-Xor
W2 = W2 ⊕W7

W1 = W1 ⊕W6

W0 = W0 ⊕W5

First 5-bit S-box
W1 = W1 ⊕W0

W1 = W1 ⊕ (W2 ∧W4)
W4 = W4 ⊕W1

W0 = W0 ⊕ (W3 ∧W1)
W2 = W2 ⊕W3

W3 = W3 ⊕ (W0 ∧W4)
W1 = W1 ⊕W2

W2 = W2 ⊕ (W0 ∧W1)
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A.3 Scream L-box

A.3.1 Binary representation



0 0 1 1 1 0 1 0 0 0 0 1 1 1 0 0
1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0
1 1 0 0 1 1 0 1 1 1 0 1 1 1 1 0
1 0 0 0 0 0 1 1 0 1 1 0 1 0 0 1
1 0 1 1 0 1 1 0 1 1 1 0 1 0 1 1
0 0 0 0 0 1 1 1 0 1 0 1 1 1 0 0
0 0 1 0 0 1 0 0 1 0 1 0 0 1 1 1
1 0 1 0 0 1 0 1 0 1 1 1 1 1 1 1
1 1 0 1 0 0 1 0 0 1 1 0 0 0 1 0
1 1 1 1 0 1 0 1 1 0 0 0 1 1 1 1
1 1 0 0 1 1 0 0 1 0 0 0 0 1 0 1
0 0 1 0 1 1 1 0 1 1 1 1 1 1 1 0
0 1 0 0 1 0 0 0 1 1 1 0 0 1 1 0
1 1 1 1 0 1 1 0 0 1 0 1 1 1 1 0
1 1 0 1 1 0 0 0 0 0 0 0 1 1 1 0
1 0 0 0 1 1 0 1 0 1 0 1 0 0 0 1


A.3.2 8-bit table representation

L(b0 ‖ b1) =
(
L1,1(b1)⊕ L2,1(b0)

)
‖
(
L1,2(b1)⊕ L2,2(b0)

)
.

0 1 2 3 4 5 6 7 8 9 A B C D E F

00 00 38 52 6A 7B 43 29 11 96 AE C4 FC ED D5 BF 87

10 D7 EF 85 BD AC 94 FE C6 41 79 13 2B 3A 02 68 50

20 3A 02 68 50 41 79 13 2B AC 94 FE C6 D7 EF 85 BD

30 ED D5 BF 87 96 AE C4 FC 7B 43 29 11 00 38 52 6A

40 E5 DD B7 8F 9E A6 CC F4 73 4B 21 19 08 30 5A 62

50 32 0A 60 58 49 71 1B 23 A4 9C F6 CE DF E7 8D B5

60 DF E7 8D B5 A4 9C F6 CE 49 71 1B 23 32 0A 60 58

70 08 30 5A 62 73 4B 21 19 9E A6 CC F4 E5 DD B7 8F

80 FE C6 AC 94 85 BD D7 EF 68 50 3A 02 13 2B 41 79

90 29 11 7B 43 52 6A 00 38 BF 87 ED D5 C4 FC 96 AE

A0 C4 FC 96 AE BF 87 ED D5 52 6A 00 38 29 11 7B 43

B0 13 2B 41 79 68 50 3A 02 85 BD D7 EF FE C6 AC 94

C0 1B 23 49 71 60 58 32 0A 8D B5 DF E7 F6 CE A4 9C

D0 CC F4 9E A6 B7 8F E5 DD 5A 62 08 30 21 19 73 4B

E0 21 19 73 4B 5A 62 08 30 B7 8F E5 DD CC F4 9E A6

F0 F6 CE A4 9C 8D B5 DF E7 60 58 32 0A 1B 23 49 71

Table 8: L1,1.
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0 1 2 3 4 5 6 7 8 9 A B C D E F

00 00 5C A9 F5 B3 EF 1A 46 C1 9D 68 34 72 2E DB 87

10 6D 31 C4 98 DE 82 77 2B AC F0 05 59 1F 43 B6 EA

20 E0 BC 49 15 53 0F FA A6 21 7D 88 D4 92 CE 3B 67

30 8D D1 24 78 3E 62 97 CB 4C 10 E5 B9 FF A3 56 0A

40 24 78 8D D1 97 CB 3E 62 E5 B9 4C 10 56 0A FF A3

50 49 15 E0 BC FA A6 53 0F 88 D4 21 7D 3B 67 92 CE

60 C4 98 6D 31 77 2B DE 82 05 59 AC F0 B6 EA 1F 43

70 A9 F5 00 5C 1A 46 B3 EF 68 34 C1 9D DB 87 72 2E

80 A5 F9 0C 50 16 4A BF E3 64 38 CD 91 D7 8B 7E 22

90 C8 94 61 3D 7B 27 D2 8E 09 55 A0 FC BA E6 13 4F

A0 45 19 EC B0 F6 AA 5F 03 84 D8 2D 71 37 6B 9E C2

B0 28 74 81 DD 9B C7 32 6E E9 B5 40 1C 5A 06 F3 AF

C0 81 DD 28 74 32 6E 9B C7 40 1C E9 B5 F3 AF 5A 06

D0 EC B0 45 19 5F 03 F6 AA 2D 71 84 D8 9E C2 37 6B

E0 61 3D C8 94 D2 8E 7B 27 A0 FC 09 55 13 4F BA E6

F0 0C 50 A5 F9 BF E3 16 4A CD 91 64 38 7E 22 D7 8B

Table 9: L1,2.

0 1 2 3 4 5 6 7 8 9 A B C D E F

00 00 46 F1 B7 A1 E7 50 16 7F 39 8E C8 DE 98 2F 69

10 67 21 96 D0 C6 80 37 71 18 5E E9 AF B9 FF 48 0E

20 7A 3C 8B CD DB 9D 2A 6C 05 43 F4 B2 A4 E2 55 13

30 1D 5B EC AA BC FA 4D 0B 62 24 93 D5 C3 85 32 74

40 70 36 81 C7 D1 97 20 66 0F 49 FE B8 AE E8 5F 19

50 17 51 E6 A0 B6 F0 47 01 68 2E 99 DF C9 8F 38 7E

60 0A 4C FB BD AB ED 5A 1C 75 33 84 C2 D4 92 25 63

70 6D 2B 9C DA CC 8A 3D 7B 12 54 E3 A5 B3 F5 42 04

80 8A CC 7B 3D 2B 6D DA 9C F5 B3 04 42 54 12 A5 E3

90 ED AB 1C 5A 4C 0A BD FB 92 D4 63 25 33 75 C2 84

A0 F0 B6 01 47 51 17 A0 E6 8F C9 7E 38 2E 68 DF 99

B0 97 D1 66 20 36 70 C7 81 E8 AE 19 5F 49 0F B8 FE

C0 FA BC 0B 4D 5B 1D AA EC 85 C3 74 32 24 62 D5 93

D0 9D DB 6C 2A 3C 7A CD 8B E2 A4 13 55 43 05 B2 F4

E0 80 C6 71 37 21 67 D0 96 FF B9 0E 48 5E 18 AF E9

F0 E7 A1 16 50 46 00 B7 F1 98 DE 69 2F 39 7F C8 8E

Table 10: L2,1.
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0 1 2 3 4 5 6 7 8 9 A B C D E F

00 00 4B AF E4 33 78 9C D7 74 3F DB 90 47 0C E8 A3

10 12 59 BD F6 21 6A 8E C5 66 2D C9 82 55 1E FA B1

20 6F 24 C0 8B 5C 17 F3 B8 1B 50 B4 FF 28 63 87 CC

30 7D 36 D2 99 4E 05 E1 AA 09 42 A6 ED 3A 71 95 DE

40 1B 50 B4 FF 28 63 87 CC 6F 24 C0 8B 5C 17 F3 B8

50 09 42 A6 ED 3A 71 95 DE 7D 36 D2 99 4E 05 E1 AA

60 74 3F DB 90 47 0C E8 A3 00 4B AF E4 33 78 9C D7

70 66 2D C9 82 55 1E FA B1 12 59 BD F6 21 6A 8E C5

80 B1 FA 1E 55 82 C9 2D 66 C5 8E 6A 21 F6 BD 59 12

90 A3 E8 0C 47 90 DB 3F 74 D7 9C 78 33 E4 AF 4B 00

A0 DE 95 71 3A ED A6 42 09 AA E1 05 4E 99 D2 36 7D

B0 CC 87 63 28 FF B4 50 1B B8 F3 17 5C 8B C0 24 6F

C0 AA E1 05 4E 99 D2 36 7D DE 95 71 3A ED A6 42 09

D0 B8 F3 17 5C 8B C0 24 6F CC 87 63 28 FF B4 50 1B

E0 C5 8E 6A 21 F6 BD 59 12 B1 FA 1E 55 82 C9 2D 66

F0 D7 9C 78 33 E4 AF 4B 00 A3 E8 0C 47 90 DB 3F 74

Table 11: L2,2.

A.4 Inverse Scream L-box

A.4.1 Binary representation



0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1
0 0 1 0 0 0 0 0 1 1 1 0 1 1 1 0
1 0 0 0 1 0 1 1 0 1 0 1 0 1 0 0
1 1 0 0 1 0 0 0 1 1 0 0 0 1 1 0
1 0 1 0 0 0 0 0 0 0 1 1 1 0 1 1
0 1 1 0 1 1 1 1 0 1 1 1 0 1 0 1
1 0 0 1 1 1 0 0 1 0 0 1 0 1 0 0
0 1 1 1 0 1 0 1 0 1 0 0 0 0 0 1
0 0 1 0 1 0 1 0 0 1 1 1 1 0 0 0
0 1 1 1 1 1 0 1 1 0 0 1 1 1 0 1
0 0 0 1 1 0 1 1 1 0 0 1 1 0 0 0
1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 1
1 1 1 1 1 1 0 1 0 1 0 1 0 1 1 0
1 0 1 0 0 1 1 1 0 1 1 1 1 1 1 0
0 1 1 0 1 0 1 1 1 1 0 1 1 1 1 0
0 0 0 1 1 0 1 1 0 1 1 0 0 0 0 1


A.4.2 8-bit table representation

L(b0 ‖ b1) =
(
L1,1(b1)⊕ L2,1(b0)

)
‖
(
L1,2(b1)⊕ L2,2(b0)

)
.
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0 1 2 3 4 5 6 7 8 9 A B C D E F

00 00 E7 77 90 2A CD 5D BA 63 84 14 F3 49 AE 3E D9

10 DC 3B AB 4C F6 11 81 66 BF 58 C8 2F 95 72 E2 05

20 AE 49 D9 3E 84 63 F3 14 CD 2A BA 5D E7 00 90 77

30 72 95 05 E2 58 BF 2F C8 11 F6 66 81 3B DC 4C AB

40 29 CE 5E B9 03 E4 74 93 4A AD 3D DA 60 87 17 F0

50 F5 12 82 65 DF 38 A8 4F 96 71 E1 06 BC 5B CB 2C

60 87 60 F0 17 AD 4A DA 3D E4 03 93 74 CE 29 B9 5E

70 5B BC 2C CB 71 96 06 E1 38 DF 4F A8 12 F5 65 82

80 82 65 F5 12 A8 4F DF 38 E1 06 96 71 CB 2C BC 5B

90 5E B9 29 CE 74 93 03 E4 3D DA 4A AD 17 F0 60 87

A0 2C CB 5B BC 06 E1 71 96 4F A8 38 DF 65 82 12 F5

B0 F0 17 87 60 DA 3D AD 4A 93 74 E4 03 B9 5E CE 29

C0 AB 4C DC 3B 81 66 F6 11 C8 2F BF 58 E2 05 95 72

D0 77 90 00 E7 5D BA 2A CD 14 F3 63 84 3E D9 49 AE

E0 05 E2 72 95 2F C8 58 BF 66 81 11 F6 4C AB 3B DC

F0 D9 3E AE 49 F3 14 84 63 BA 5D CD 2A 90 77 E7 00

Table 12: L1,1.

0 1 2 3 4 5 6 7 8 9 A B C D E F

00 00 9E 04 9A D1 4F D5 4B 13 8D 17 89 C2 5C C6 58

10 05 9B 01 9F D4 4A D0 4E 16 88 12 8C C7 59 C3 5D

20 F6 68 F2 6C 27 B9 23 BD E5 7B E1 7F 34 AA 30 AE

30 F3 6D F7 69 22 BC 26 B8 E0 7E E4 7A 31 AF 35 AB

40 39 A7 3D A3 E8 76 EC 72 2A B4 2E B0 FB 65 FF 61

50 3C A2 38 A6 ED 73 E9 77 2F B1 2B B5 FE 60 FA 64

60 CF 51 CB 55 1E 80 1A 84 DC 42 D8 46 0D 93 09 97

70 CA 54 CE 50 1B 85 1F 81 D9 47 DD 43 08 96 0C 92

80 AE 30 AA 34 7F E1 7B E5 BD 23 B9 27 6C F2 68 F6

90 AB 35 AF 31 7A E4 7E E0 B8 26 BC 22 69 F7 6D F3

A0 58 C6 5C C2 89 17 8D 13 4B D5 4F D1 9A 04 9E 00

B0 5D C3 59 C7 8C 12 88 16 4E D0 4A D4 9F 01 9B 05

C0 97 09 93 0D 46 D8 42 DC 84 1A 80 1E 55 CB 51 CF

D0 92 0C 96 08 43 DD 47 D9 81 1F 85 1B 50 CE 54 CA

E0 61 FF 65 FB B0 2E B4 2A 72 EC 76 E8 A3 3D A7 39

F0 64 FA 60 FE B5 2B B1 2F 77 E9 73 ED A6 38 A2 3C

Table 13: L1,2.
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0 1 2 3 4 5 6 7 8 9 A B C D E F

00 00 1E B9 A7 19 07 A0 BE A8 B6 11 0F B1 AF 08 16

10 6A 74 D3 CD 73 6D CA D4 C2 DC 7B 65 DB C5 62 7C

20 7E 60 C7 D9 67 79 DE C0 D6 C8 6F 71 CF D1 76 68

30 14 0A AD B3 0D 13 B4 AA BC A2 05 1B A5 BB 1C 02

40 7B 65 C2 DC 62 7C DB C5 D3 CD 6A 74 CA D4 73 6D

50 11 0F A8 B6 08 16 B1 AF B9 A7 00 1E A0 BE 19 07

60 05 1B BC A2 1C 02 A5 BB AD B3 14 0A B4 AA 0D 13

70 6F 71 D6 C8 76 68 CF D1 C7 D9 7E 60 DE C0 67 79

80 86 98 3F 21 9F 81 26 38 2E 30 97 89 37 29 8E 90

90 EC F2 55 4B F5 EB 4C 52 44 5A FD E3 5D 43 E4 FA

A0 F8 E6 41 5F E1 FF 58 46 50 4E E9 F7 49 57 F0 EE

B0 92 8C 2B 35 8B 95 32 2C 3A 24 83 9D 23 3D 9A 84

C0 FD E3 44 5A E4 FA 5D 43 55 4B EC F2 4C 52 F5 EB

D0 97 89 2E 30 8E 90 37 29 3F 21 86 98 26 38 9F 81

E0 83 9D 3A 24 9A 84 23 3D 2B 35 92 8C 32 2C 8B 95

F0 E9 F7 50 4E F0 EE 49 57 41 5F F8 E6 58 46 E1 FF

Table 14: L2,1.

0 1 2 3 4 5 6 7 8 9 A B C D E F

00 00 54 BE EA D8 8C 66 32 A5 F1 1B 4F 7D 29 C3 97

10 BF EB 01 55 67 33 D9 8D 1A 4E A4 F0 C2 96 7C 28

20 E5 B1 5B 0F 3D 69 83 D7 40 14 FE AA 98 CC 26 72

30 5A 0E E4 B0 82 D6 3C 68 FF AB 41 15 27 73 99 CD

40 D6 82 68 3C 0E 5A B0 E4 73 27 CD 99 AB FF 15 41

50 69 3D D7 83 B1 E5 0F 5B CC 98 72 26 14 40 AA FE

60 33 67 8D D9 EB BF 55 01 96 C2 28 7C 4E 1A F0 A4

70 8C D8 32 66 54 00 EA BE 29 7D 97 C3 F1 A5 4F 1B

80 D8 8C 66 32 00 54 BE EA 7D 29 C3 97 A5 F1 1B 4F

90 67 33 D9 8D BF EB 01 55 C2 96 7C 28 1A 4E A4 F0

A0 3D 69 83 D7 E5 B1 5B 0F 98 CC 26 72 40 14 FE AA

B0 82 D6 3C 68 5A 0E E4 B0 27 73 99 CD FF AB 41 15

C0 0E 5A B0 E4 D6 82 68 3C AB FF 15 41 73 27 CD 99

D0 B1 E5 0F 5B 69 3D D7 83 14 40 AA FE CC 98 72 26

E0 EB BF 55 01 33 67 8D D9 4E 1A F0 A4 96 C2 28 7C

F0 54 00 EA BE 8C D8 32 66 F1 A5 4F 1B 29 7D 97 C3

Table 15: L2,2.
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B iScream parameters

B.1 iScream S-box

B.1.1 iScream S-box

0 1 2 3 4 5 6 7 8 9 A B C D E F

00 00 85 65 D2 5B FF 7A CE 4D E2 2C 36 92 15 BD AD

10 57 F3 37 2D 88 0D AC BC 18 9F 7E CA 41 EE 61 D6

20 59 EC 78 D4 47 F9 26 A3 90 8B BF 30 0A 13 6F C0

30 2B AE 91 8A D8 74 0B 12 CC 63 FD 43 B2 3D E8 5D

40 B6 1C 83 3B C8 45 9D 24 52 DD E4 F4 AB 08 77 6D

50 F5 E5 48 C5 6C 76 BA 10 99 20 A7 04 87 3F D0 5F

60 A5 1E 9B 39 B0 02 EA 67 C6 DF 71 F6 54 4F 8D 2E

70 E7 6A C7 DE 35 97 55 4E 22 81 06 B4 7C FB 1A A1

80 D5 79 FC 42 84 01 E9 5C 14 93 33 29 C1 6E A8 B8

90 28 32 0C 89 B9 A9 D9 75 ED 58 CD 62 F8 46 9E 19

A0 CB 7F A2 27 D7 60 FE 5A 8E 95 E3 4C 16 0F 31 BE

B0 64 D3 3C B3 7B CF 40 EF 8F 94 56 F2 17 0E AF 2A

C0 2F 8C F1 E1 DC 53 68 72 44 C9 1B A0 38 9A 07 B5

D0 5E D1 03 B1 23 80 1F A4 34 96 E0 F0 C4 49 73 69

E0 DA C3 09 AA 4A 51 F7 70 3E 86 66 EB 21 98 1D B7

F0 DB C2 BB 11 4B 50 6B E6 9C 25 FA 7D 82 3A A6 05

Table 16: iScream S-box, table representation.

B.1.2 Algebraic Normal Form

y0 = x0 +x1 +x2 +x0x2 +x3 +x0x1x3 +x0x2x3 +x4 +x0x4 +x1x4 +x0x1x2x4 +x0x3x4 +x5 +
x0x1x5 +x2x5 +x4x5 +x0x4x5 +x0x1x4x5 +x2x4x5 +x1x2x4x5 +x0x3x4x5 +x1x3x4x5 +x2x3x4x5 +
x0x6 +x2x6 +x3x6 +x0x3x6 +x1x3x6 +x2x3x6 +x0x4x6 +x1x4x6 +x0x1x4x6 +x2x4x6 +x0x2x4x6 +
x1x2x4x6 +x0x3x4x6 +x0x5x6 +x1x5x6 +x3x5x6 +x0x3x5x6 +x0x4x5x6 +x0x1x4x5x6 +x2x4x5x6 +
x0x2x4x5x6 +x0x3x4x5x6 +x7 +x0x7 +x0x3x7 +x0x4x7 +x0x1x4x7 +x0x2x4x7 +x0x3x4x7 +x5x7 +
x4x5x7 +x0x1x4x5x7 +x0x2x4x5x7 +x1x6x7 +x0x1x6x7 +x2x6x7 +x0x2x6x7 +x3x6x7 +x0x4x6x7 +
x1x4x6x7 + x2x4x6x7 + x3x4x6x7 + x5x6x7 + x0x5x6x7

y1 = x0x1 + x2 + x0x1x2 + x0x3 + x0x1x3 + x1x2x3 + x4 + x3x4 + x1x3x4 + x0x1x3x4 +
x2x3x4 + x0x1x5 + x0x2x5 + x1x3x5 + x0x1x3x5 + x1x4x5 + x0x1x4x5 + x0x2x4x5 + x1x3x4x5 +
x2x3x4x5 + x6 + x0x6 + x0x2x6 + x0x3x6 + x1x3x6 + x0x1x3x6 + x2x3x6 + x0x2x3x6 + x0x4x6 +
x0x1x4x6 + x2x4x6 + x1x2x4x6 + x0x1x2x4x6 + x3x4x6 + x1x3x4x6 + x2x3x4x6 + x5x6 + x1x5x6 +
x2x5x6 + x3x5x6 + x0x3x5x6 + x1x2x4x5x6 + x3x4x5x6 + x1x3x4x5x6 + x2x7 + x1x3x7 + x4x7 +
x0x4x7 + x0x2x4x7 + x3x4x7 + x2x3x4x7 + x5x7 + x4x5x7 + x1x4x5x7 + x0x1x4x5x7 + x2x4x5x7 +
x1x2x4x5x7+x3x4x5x7+x0x3x4x5x7+x1x6x7+x2x6x7+x0x2x6x7+x1x2x6x7+x3x6x7+x0x3x6x7+
x1x4x6x7 +x0x2x4x6x7 +x3x4x6x7 +x0x3x4x6x7 +x0x5x6x7 +x1x5x6x7 +x0x1x5x6x7 +x4x5x6x7 +
x0x1x4x5x6x7 + x0x2x4x5x6x7 + x3x4x5x6x7

y2 = x0 + x1 + x1x2 + x3 + x1x3 + x0x1x3 + x2x3 + x4 + x1x4 + x0x1x4 + x2x4 + x1x5 + x2x5 +
x1x2x5+x3x5+x0x3x5+x4x5+x1x4x5+x3x4x5+x0x3x4x5+x1x3x4x5+x6+x0x6+x2x6+x0x2x6+
x1x2x6 +x0x1x2x6 +x0x3x6 +x1x3x6 +x4x6 +x1x4x6 +x0x2x4x6 +x0x3x4x6 +x1x5x6 +x2x5x6 +
x0x2x5x6 +x4x5x6 +x0x4x5x6 +x1x2x4x5x6 +x0x3x4x5x6 +x7 +x1x7 +x3x7 +x0x4x7 +x2x4x7 +
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x3x4x7 +x0x3x4x7 +x5x7 +x1x5x7 +x4x5x7 +x0x4x5x7 +x0x1x4x5x7 +x3x4x5x7 +x6x7 +x1x6x7 +
x2x6x7 +x2x4x6x7 +x0x2x4x6x7 +x3x4x6x7 +x4x5x6x7 +x0x4x5x6x7 +x1x4x5x6x7 +x2x4x5x6x7

y3 = x2 +x3 +x0x3 +x0x2x3 +x1x2x3 +x0x1x4 +x0x1x2x4 +x0x3x4 +x0x1x3x4 +x1x2x3x4 +
x5 + x0x1x5 + x0x2x5 + x1x3x5 + x0x1x3x5 + x1x4x5 + x0x1x4x5 + x2x4x5 + x1x2x4x5 + x3x4x5 +
x0x3x4x5+x0x1x3x4x5+x2x3x4x5+x0x6+x3x6+x0x3x6+x0x1x3x6+x0x4x6+x1x4x6+x0x2x4x6+
x1x2x4x6 + x3x4x6 + x5x6 + x1x5x6 + x2x5x6 + x0x4x5x6 + x1x4x5x6 + x0x1x4x5x6 + x2x4x5x6 +
x0x2x4x5x6 +x0x3x4x5x6 +x1x3x4x5x6 +x0x7 +x1x7 +x2x7 +x0x2x7 +x3x7 +x1x3x7 +x0x1x3x7 +
x0x2x3x7 + x4x7 + x1x4x7 + x0x1x2x4x7 + x0x3x4x7 + x1x3x4x7 + x0x5x7 + x0x1x5x7 + x2x5x7 +
x0x1x4x5x7 +x2x4x5x7 +x1x2x4x5x7 +x0x3x4x5x7 +x1x3x4x5x7 +x2x3x4x5x7 +x6x7 +x1x2x6x7 +
x0x3x6x7 + x1x3x6x7 + x2x3x6x7 + x4x6x7 + x2x4x6x7 + x0x2x4x6x7 + x3x4x6x7 + x0x1x5x6x7 +
x3x5x6x7 + x0x3x5x6x7 + x0x1x4x5x6x7 + x0x2x4x5x6x7 + x3x4x5x6x7 + x0x3x4x5x6x7

y4 = x0x1 + x2 + x4 + x5 + x0x5 + x0x4x5 + x1x4x5 + x6 + x1x6 + x4x6 + x0x4x6 + x0x4x5x6 +
x7 + x0x4x7 + x4x5x7 + x4x6x7

y5 = x1 + x0x1 + x0x2 + x0x1x2 + x0x3 + x0x4 + x0x5 + x0x1x5 + x0x2x5 + x4x5 + x2x4x5 +
x0x2x4x5 +x1x2x4x5 +x3x4x5 +x6 +x0x6 +x0x1x6 +x2x6 +x1x2x6 +x3x6 +x2x4x6 +x0x2x4x6 +
x0x5x6 +x0x1x5x6 +x2x5x6 +x4x5x6 +x0x2x4x5x6 +x0x7 +x0x1x7 +x4x7 +x0x2x4x7 +x0x5x7 +
x4x5x7 + x0x4x5x7 + x1x4x5x7 + x2x4x5x7 + x0x6x7 + x1x6x7 + x2x4x6x7 + x5x6x7

y6 = x1 + x2 + x1x2 + x3 + x4 + x5 + x1x5 + x2x5 + x2x4x5 + x1x6 + x2x4x6 + x5x6 + x1x5x6 +
x2x4x5x6 + x7 + x1x7 + x2x4x7 + x5x7 + x4x5x7 + x6x7

y7 = x0 + x0x1x3 + x2x3 + x0x1x4 + x2x4 + x3x5 + x0x3x5 + x1x4x5 + x0x3x4x5 + x1x3x4x5 +
x6 +x3x6 +x1x3x6 +x0x4x6 +x1x4x6 +x3x4x6 +x0x3x4x6 +x0x4x5x6 +x0x3x4x5x6 +x7 +x3x7 +
x4x7 +x0x4x7 +x0x3x4x7 +x0x4x5x7 +x1x4x5x7 +x0x1x4x5x7 +x2x4x5x7 +x3x4x5x7 +x1x6x7 +
x0x1x6x7 + x2x6x7 + x4x6x7 + x3x4x6x7 + x5x6x7 + x0x5x6x7
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B.1.3 Bitslice implementation

Algorithm 5 iScream S-box, bitslice implementation

Require: 8 16-bit words (W0, . . . ,W7)
First 4-bit S-box
t0 = W4 ∧W5

t0 = t0 ⊕W6

t2 = W6 ∨W5

t2 = t2 ⊕W7

t3 = t0 ∧W7

t3 = t0 ⊕W4

t1 = t3 ∧W4

t1 = t1 ⊕W5

W0 = W0 ⊕ t0
W1 = W1 ⊕ t1
W2 = W2 ⊕ t2
W3 = W3 ⊕ t3
Second 4-bit S-box
t0 = W0 ∧W1

t0 = t0 ⊕W2

t2 = W2 ∨W1

t2 = t2 ⊕W3

t3 = t0 ∧W3

t3 = t0 ⊕W0

t1 = t3 ∧W0

t1 = t1 ⊕W1

W4 = W4 ⊕ t0
W5 = W5 ⊕ t1
W6 = W6 ⊕ t2
W7 = W7 ⊕ t3
Third 4-bit S-box
t0 = W4 ∧W5

t0 = t0 ⊕W6

t2 = W6 ∨W5

t2 = t2 ⊕W7

t3 = t0 ∧W7

t3 = t0 ⊕W4

t1 = t3 ∧W4

t1 = t1 ⊕W5

W0 = W0 ⊕ t0
W1 = W1 ⊕ t1
W2 = W2 ⊕ t2
W3 = W3 ⊕ t3

B.2 iScream L-box

B.2.1 Binary representation



0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1
1 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1
1 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1
1 0 0 1 0 0 0 1 0 1 1 0 0 1 1 0
1 0 1 0 0 0 0 1 1 0 1 0 1 0 1 0
1 1 0 0 0 0 0 1 1 1 0 0 1 1 0 0
1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
1 0 0 1 0 1 1 0 0 0 0 0 0 1 1 1
1 0 1 0 1 0 1 0 0 0 0 0 1 0 1 1
1 1 0 0 1 1 0 0 0 0 0 0 1 1 0 1
1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0
1 0 0 1 0 1 1 0 0 1 1 1 0 0 0 0
1 0 1 0 1 0 1 0 1 0 1 1 0 0 0 0
1 1 0 0 1 1 0 0 1 1 0 1 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0


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B.2.2 8-bit table representation

L(b0 ‖ b1) =
(
L1,1(b1)⊕ L2,1(b0)

)
‖
(
L1,2(b1)⊕ L2,2(b0)

)
.

0 1 2 3 4 5 6 7 8 9 A B C D E F

00 00 FF CC 33 AA 55 66 99 99 66 55 AA 33 CC FF 00

10 66 99 AA 55 CC 33 00 FF FF 00 33 CC 55 AA 99 66

20 55 AA 99 66 FF 00 33 CC CC 33 00 FF 66 99 AA 55

30 33 CC FF 00 99 66 55 AA AA 55 66 99 00 FF CC 33

40 33 CC FF 00 99 66 55 AA AA 55 66 99 00 FF CC 33

50 55 AA 99 66 FF 00 33 CC CC 33 00 FF 66 99 AA 55

60 66 99 AA 55 CC 33 00 FF FF 00 33 CC 55 AA 99 66

70 00 FF CC 33 AA 55 66 99 99 66 55 AA 33 CC FF 00

80 00 FF CC 33 AA 55 66 99 99 66 55 AA 33 CC FF 00

90 66 99 AA 55 CC 33 00 FF FF 00 33 CC 55 AA 99 66

A0 55 AA 99 66 FF 00 33 CC CC 33 00 FF 66 99 AA 55

B0 33 CC FF 00 99 66 55 AA AA 55 66 99 00 FF CC 33

C0 33 CC FF 00 99 66 55 AA AA 55 66 99 00 FF CC 33

D0 55 AA 99 66 FF 00 33 CC CC 33 00 FF 66 99 AA 55

E0 66 99 AA 55 CC 33 00 FF FF 00 33 CC 55 AA 99 66

F0 00 FF CC 33 AA 55 66 99 99 66 55 AA 33 CC FF 00

Table 17: L1,1.

0 1 2 3 4 5 6 7 8 9 A B C D E F

00 00 FE C1 3F A1 5F 60 9E 91 6F 50 AE 30 CE F1 0F

10 89 77 48 B6 28 D6 E9 17 18 E6 D9 27 B9 47 78 86

20 85 7B 44 BA 24 DA E5 1B 14 EA D5 2B B5 4B 74 8A

30 0C F2 CD 33 AD 53 6C 92 9D 63 5C A2 3C C2 FD 03

40 83 7D 42 BC 22 DC E3 1D 12 EC D3 2D B3 4D 72 8C

50 0A F4 CB 35 AB 55 6A 94 9B 65 5A A4 3A C4 FB 05

60 06 F8 C7 39 A7 59 66 98 97 69 56 A8 36 C8 F7 09

70 8F 71 4E B0 2E D0 EF 11 1E E0 DF 21 BF 41 7E 80

80 7F 81 BE 40 DE 20 1F E1 EE 10 2F D1 4F B1 8E 70

90 F6 08 37 C9 57 A9 96 68 67 99 A6 58 C6 38 07 F9

A0 FA 04 3B C5 5B A5 9A 64 6B 95 AA 54 CA 34 0B F5

B0 73 8D B2 4C D2 2C 13 ED E2 1C 23 DD 43 BD 82 7C

C0 FC 02 3D C3 5D A3 9C 62 6D 93 AC 52 CC 32 0D F3

D0 75 8B B4 4A D4 2A 15 EB E4 1A 25 DB 45 BB 84 7A

E0 79 87 B8 46 D8 26 19 E7 E8 16 29 D7 49 B7 88 76

F0 F0 0E 31 CF 51 AF 90 6E 61 9F A0 5E C0 3E 01 FF

Table 18: L1,2.
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0 1 2 3 4 5 6 7 8 9 A B C D E F

00 00 E0 D0 30 B0 50 60 80 70 90 A0 40 C0 20 10 F0

10 0E EE DE 3E BE 5E 6E 8E 7E 9E AE 4E CE 2E 1E FE

20 0D ED DD 3D BD 5D 6D 8D 7D 9D AD 4D CD 2D 1D FD

30 03 E3 D3 33 B3 53 63 83 73 93 A3 43 C3 23 13 F3

40 0B EB DB 3B BB 5B 6B 8B 7B 9B AB 4B CB 2B 1B FB

50 05 E5 D5 35 B5 55 65 85 75 95 A5 45 C5 25 15 F5

60 06 E6 D6 36 B6 56 66 86 76 96 A6 46 C6 26 16 F6

70 08 E8 D8 38 B8 58 68 88 78 98 A8 48 C8 28 18 F8

80 07 E7 D7 37 B7 57 67 87 77 97 A7 47 C7 27 17 F7

90 09 E9 D9 39 B9 59 69 89 79 99 A9 49 C9 29 19 F9

A0 0A EA DA 3A BA 5A 6A 8A 7A 9A AA 4A CA 2A 1A FA

B0 04 E4 D4 34 B4 54 64 84 74 94 A4 44 C4 24 14 F4

C0 0C EC DC 3C BC 5C 6C 8C 7C 9C AC 4C CC 2C 1C FC

D0 02 E2 D2 32 B2 52 62 82 72 92 A2 42 C2 22 12 F2

E0 01 E1 D1 31 B1 51 61 81 71 91 A1 41 C1 21 11 F1

F0 0F EF DF 3F BF 5F 6F 8F 7F 9F AF 4F CF 2F 1F FF

Table 19: L2,1.

0 1 2 3 4 5 6 7 8 9 A B C D E F

00 00 69 55 3C 33 5A 66 0F 0F 66 5A 33 3C 55 69 00

10 69 00 3C 55 5A 33 0F 66 66 0F 33 5A 55 3C 00 69

20 55 3C 00 69 66 0F 33 5A 5A 33 0F 66 69 00 3C 55

30 3C 55 69 00 0F 66 5A 33 33 5A 66 0F 00 69 55 3C

40 33 5A 66 0F 00 69 55 3C 3C 55 69 00 0F 66 5A 33

50 5A 33 0F 66 69 00 3C 55 55 3C 00 69 66 0F 33 5A

60 66 0F 33 5A 55 3C 00 69 69 00 3C 55 5A 33 0F 66

70 0F 66 5A 33 3C 55 69 00 00 69 55 3C 33 5A 66 0F

80 0F 66 5A 33 3C 55 69 00 00 69 55 3C 33 5A 66 0F

90 66 0F 33 5A 55 3C 00 69 69 00 3C 55 5A 33 0F 66

A0 5A 33 0F 66 69 00 3C 55 55 3C 00 69 66 0F 33 5A

B0 33 5A 66 0F 00 69 55 3C 3C 55 69 00 0F 66 5A 33

C0 3C 55 69 00 0F 66 5A 33 33 5A 66 0F 00 69 55 3C

D0 55 3C 00 69 66 0F 33 5A 5A 33 0F 66 69 00 3C 55

E0 69 00 3C 55 5A 33 0F 66 66 0F 33 5A 55 3C 00 69

F0 00 69 55 3C 33 5A 66 0F 0F 66 5A 33 3C 55 69 00

Table 20: L2,2.
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C Round Constants

We use simple constants in order to limit their implementation cost, but expect them to avoid any
kind of slide attack of self-similarity property. The round constants in Scream and iScream are
defined as: C(ρ) = 27 ·ρ mod 256. We consider constants of the form C(ρ) = C ·ρ mod 256 because
they can implemented by incrementing a counter by steps of C. However, we would rather avoid
the trivial choice C = 1 because this implies simple linear relations between the constants, such as
C(2ρ+ 1) = C(2ρ)⊕ 1. Concretely, we built 8× 8 matrices with the binary representation of C(1),
C(2), . . . , C(8), and computed the rank of these matrices. There are a few values that give a full
rank matrix, and we decided to use the smallest value with this property: 27.

D Analysis of differential trails

In this section we give lower bounds on the number of active S-boxes for differential trails on Scream
and iScream. We use a simple notation to describe trails, where ‘x’ denotes an active step, and ‘-’
an inactive step. With this notation, trails using the tweak to limit the number of active steps to
bσ/2c are denoted as ‘-x-x-x-’.

D.1 Analysis of Scream

D.1.1 Single key, fixed tweak

With a fixed tweak, Scream is a slightly modified version of Fantomas, with a different L-box.
Therefore, we can compute bounds on its number of active S-boxes for differential and linear trails
following [11].

D.1.2 Single key, chosen tweaks

The L-box of Scream has been chosen so that trails over one step (2 rounds) with the same input
and output difference pattern have at least 14 active S-boxes. Due to the structure of the tweakey
scheduling, a pair of tweaks with a truncated difference δ gives tweakeys with the difference pattern
δ in every round. In particular a trail ‘-x-’ using a difference in the tweak leads to the same pattern
of active S-boxes δ at the beginning and at the end of the second round; this implies at least 14
active S-boxes.

We also use bounds from single key trails in our analysis of related-key trails. For instance, a
trail ‘-xx-’ gives truncated differences δ  a, b  δ assuming a difference δ in the tweakeys, and
the truncated difference a must be transformed into b after a tweakey addition with difference δ.
This can transformed into a single key trail over two steps: b  δ  a, and we know that such a
trail has at least 20 active S-boxes. Moreover, we can enumerate the trails with 20 active S-boxes,
and we found than there is a single trail where the patterns a, b, and δ are compatible:

b = 0010011100101001 0100001001101000 1100000000000001 = δ,

δ = 1100000000000001 0010001000000111 1110011100101001 = a.

This leads to the following analysis of differential trails:
5-step trails. We can list all the possible 5-step trails with 3 active steps or less (we use

symmetries to consider only half of the patterns), and compute a lower bound on the corresponding
number of active S-boxes:
-x-x-: At least 28 active S-boxes.
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-x-xx: At least 30 active S-boxes (14 + 8 + 8).
-xx-x: At least 28 active S-boxes (20 + 8).
-xxx-: At least 28 active S-boxes (20 + 8; 20 for steps 1 and 3 combined).
x-x-x: At least 30 active S-boxes (8 + 14 + 8).
If there are 4 or more active steps, this implies at least 8× 4 = 32 active S-boxes.

6-step trails. Similarly, we can list all the possible 6-step trails with 4 active steps or less:
-x-x-x: At least 36 active S-boxes (14 + 14 + 8).
-x-xx-: At least 34 active S-boxes (14 + 20).
-x-xxx: At least 38 active S-boxes (14 + 8 + 8 + 8).
-xx-xx: At least 36 active S-boxes (20 + 8 + 8).
-xxx-x: At least 36 active S-boxes (20 + 8 + 8; 20 for steps 1 and 3 combined).
-xxxx-: At least 36 active S-boxes (20 + 8 + 8; 20 for steps 1 and 4 combined).
x-x-xx: At least 38 active S-boxes (8 + 14 + 8 + 8).
x-xx-x: At least 36 active S-boxes (8 + 20 + 8).
If there are 5 or more active steps, this implies at least 8× 5 = 40 active S-boxes.

In addition, we verified that there is no valid trail with only 34 active S-boxes following -x-xx-:
the only trail with weight 20 for steps 3 and 4 gives a tweak difference δ with no valid trails δ  δ
for step 1. This proves that 6-step trails have at least 35 active S-boxes.

D.1.3 Related keys, chosen tweaks

All tweakeys active. First, let us consider trails with a difference in all the tweakeys. Using a
difference in the key and in the tweak, it could be possible to have tweakey differences with only
8 active S-boxes per step. However, such trails must still activate at least bσ/2c steps. Therefore,
they have at least 8 · bσ/2c active S-boxes.

We can improve this bound using the property of the tweakey scheduling that the same tweakeys
are used every three rounds. In particular, a trail ‘-x-x-’ would have tweakey differences δ0, δ1,
δ2, δ0, δ1, δ2, and transitions δ1  δ2 and δ0  δ1. This can be turned into a 2-step single key trail
δ0  δ1  δ2 that has at least 20 active S-boxes. This implies the following bounds:

• The only 7-step trail with 3 active steps is ‘-x-x-x-’; it has at least 28 active S-boxes. Trails
with 4 or more active steps have at least 32 active S-boxes.

• The only 9-step trail with 4 active steps is ‘-x-x-x-x-’; it has at least 40 active S-boxes.
Trails with 5 or more active steps have at least 40 active S-boxes.

Some tweakeys inactive. The tweakey scheduling of Scream further allows to cancel some key
and tweak differences. Let us now consider trails where some tweakeys are inactive.

Without loss of generality, we assume that δ[K] = δ[T ]. The tweakey differences for the following
rounds will be:

δ[K ⊕ φ(T )] = δ[T ]⊕ φ(δ[T ]) = φ2(δ[T ]),

δ[K ⊕ φ2(T )] = δ[T ]⊕ φ2(δ[T ]) = φ(δ[T ]).

In particular, the truncated pattern δ will be the same for all the active tweakeys, because φ is
computed on each state line independently.

This leads to the following analysis of trails:
2-step trails. They can have no active step if the second tweakey is inactive.
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3-step trails. A 3-step trail with a single active step has at least 8 active S-boxes. This can
be reached by following ‘--x’.

4-step trails. A 4-step trail with a single active step must follow ‘--x-’. The third step must
have the same input and output pattern, therefore it has at least 14 active S-boxes. Trails with
two or more active steps have at least 16 active S-boxes.

More generally, a trail over σ steps has at least:

• 14 · bσ/3c − 6 active S-boxes if σ mod 3 = 0.

• 14 · bσ/3c active S-boxes otherwise

D.2 Analysis of iScream

D.2.1 Single key, fixed tweak

With a fixed tweak, iScream is a slightly modified version of Robin. Therefore, the bounds given
in [11] apply: there are at least 8 active S-boxes every 2 rounds, i.e. every step. As in Robin, it is
easy to see that this bound is tight.

D.2.2 Single key, chosen tweaks

A chosen tweak attack on iScream is similar to a related-key attack on Robin with chosen key
differences. Differences in the tweak can be used to cancel differences in the state, but at least half
of the steps must be active: an inactive step is always followed by an active one because the tweak
difference is inserted in the state again.

In iScream, we designed the tweakey scheduling in order to avoid the simple related-key trails of
Robin, and to limit the penalty of using involutive components. In particular, trails like ‘-x-x-x-’
must have a transition δ  δ ≪ 1 or δ  δ ≫ 1 through one step, where δ is the truncated
tweakey difference. Thanks to the rotation, the best trails of this class have 12 active S-boxes,
rather than 8 (as given by the branch number bound). This can be obtained easily by looking for
the minimal value of |x| + |y| where the transitions x  y and y  x ≫ 1 are allowed by the
L-box.

This leads to the following analysis of trails:
3-step trails. A 3-step trail with a single active step follows ‘-x-’, and has at least 12 active

S-boxes. If there are 2 or more active steps, this gives at least 16 active S-boxes.
4-step trails. A 4-step trail has at least 2 active steps, hence 16 active S-boxes.
5-step trails. A 5-step trail with 2 active steps must follow ‘-x-x-’, and has at least 24 active

S-boxes. If there are 3 or more active steps, this gives at least 24 active S-boxes.
6-step trails. We can list all the possible 6-step trails with 3 active steps or less (we use

symmetries to consider only half of the patterns), and compute a lower bound on the corresponding
number of active S-boxes:
-x-x-x: At least 32 active S-boxes (12 + 12 + 8).
-x-xx-: At least 28 active S-boxes (12 + 8 + 8).
If there are 4 or more active steps, this implies at least 8× 4 = 32 active S-boxes.

7-step trails. There is only one 7-step trail with 3 active steps or less: ‘-x-x-x-’, with at least
36 active S-boxes (12 + 12 + 12). If there are 4 or more active steps, this implies at least 8× 4 = 32
active S-boxes. This bound can be reached using a trail ‘-xx-xx-’.

8-step trails. We can list all the possible 8-step trails with 4 active steps or less:
-x-x-x-x: At least 44 active S-boxes (12 + 12 + 12 + 8).
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-x-x-xx-: At least 40 active S-boxes (12 + 12 + 8 + 8).
-x-xx-x-: At least 40 active S-boxes (12 + 8 + 8 + 12).
If there are 5 or more active steps, this implies at least 8× 5 = 40 active S-boxes.

D.2.3 Related keys, chosen tweaks

Related-key trails for iScream can use a difference in the key in order to activate blocks of 2 steps.
There will still be at least 16 · bσ/4c active S-boxes in this case.
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