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Abstract. Analyses of the accuracy and cost of algorithms sometimes
turn out to be incorrect. A claimed proof can have mistakes. A claimed
theorem can be false. Even when a theorem is correctly proven, an
algorithm analysis can have unproven components beyond the theorem,
and there can be mistakes in those components.
The literature sometimes suggests that algorithm-analysis errors are rare,
but sometimes suggests that such errors are more common. The actual
rate of errors is important for risk assessment and risk mitigation. A high
rate would help justify investment in techniques to increase the assurance
level for proofs, and for algorithm analyses beyond proofs.
This paper considers a particular strategy to determine, with high
assurance, an interval containing the actual error rate of a specified
pool of algorithm analyses. This paper presents reasons to believe that
the interval produced by this strategy will be much smaller than the
trivial interval [0, 1]. This paper also presents reasons to believe that
this strategy is feasible to carry out.

1 Introduction

In 2021, the Australian government agreed to pay 1.8 billion Australian dollars
to hundreds of thousands of victims of the government’s “robodebt” scheme. The
government had spent years issuing accusations of welfare fraud—often ruining
lives—on the basis of a flawed algorithm. Under the applicable law, people were
entitled to receive welfare payments during each two-week period of low salary;
the algorithm incorrectly assumed that salary payments were spread uniformly
over longer periods of time. See, e.g., [65] and [79] for short summaries of the
damage, and [92] for an official post-mortem issued in 2023.

A typical response to flawed algorithms is to ask for algorithms to be analyzed.
For example, [92, Recommendation 17.1] said that “algorithms should be made
available, to enable independent expert scrutiny”. O’Neil’s 2016 book “Weapons
of math destruction” [85] covers many further examples of decisions that had
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been delegated to flawed algorithms; [85, Conclusion] recommended “algorithmic
audits”.

There is a long history of literature analyzing the accuracy and cost3 of a broad
range of different algorithms. Simple examples of algorithm analysis are a core
part of the standard curriculum for computer-science undegraduates. A typical
textbook, “Introduction to algorithms” [52] by Cormen, Leiserson, Rivest, and
Stein, says the following:

This book will teach you techniques of algorithm design and analysis so
that you can develop algorithms on your own, show that they give the
correct answer, and understand their efficiency.

The word “show” refers to mathematical proofs, which—in theory; we’ll return to
reality later—are rigorous chains of logic guaranteeing that the algorithms always
work as advertised.4 Algorithms and analyses in the literature often tackle tasks
much more sophisticated than the financial computations from [92]. Even better,
beyond covering all possible inputs to an algorithm, proofs often cover many
algorithms at once. This saves analysis time, and sometimes it sheds light on
the question of what algorithms cannot do—a central question in computational
complexity theory and in cryptography, where these multi-algorithm proofs are
often labeled as “proofs of security”.

Structurally, it is clear that an algorithm merely tested on some examples—or
designed in the first place to work for those examples—can have failure cases
caught by an analysis that considers what happens in all cases. However, the fact
that algorithm analysis sometimes catches errors does not mean that algorithm
analysis is error-free. On the contrary, an algorithm analysis can be incorrect,
as the following example illustrates.

A paper [90] posted in October 2021 claimed that a specified quantum
algorithm at a specified cost would solve “SVP”, the famous problem of
finding minimum-length nonzero vectors in lattices. Note that testing quantum
algorithms is difficult without big quantum computers, but one can still
analyze them and in particular prove theorems about them. Analyses of
3 Cost is not always an issue. However, often a user is unable or unwilling to incur

the costs of running an algorithm to completion; see, e.g., [96]. An analysis that
ignores cost might have promised that the algorithm would deliver an accurate
answer; in reality, the user has not received an answer. Even if the user finds this
less damaging than a wrong answer, the user ends up dissatisfied (which is good in
some cases—for example, perhaps this is an algorithm to attack cryptography).
So it is unsurprising for algorithm analyses to include analyses of cost. Beware
that the literature often uses the phrase “analysis of algorithms” to refer solely
to analyses of cost, excluding analyses of accuracy: for example, [52, Section 2.2]
says that “Analyzing an algorithm has come to mean predicting the resources that
the algorithm requires”.

4 Note that this structure inherently requires specifications of what the algorithms are
supposed to do. There are some types of algorithms for which the only specifications
that seem easy to write down are case-by-case tests: see, e.g., [87] on difficulties in
specifying what it means for a neural network to do a good job of recognizing faces.
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the capabilities of quantum algorithms motivate the ongoing upgrade to
post-quantum cryptography; within post-quantum cryptography, these analyses
influence decisions of which cryptographic systems to use.

I wrote to the authors a week and a half later asking a question about how
[90, Corollary 7] was supposed to follow from [90, Theorem 6]. I didn’t hear
back. I then tweeted that I was skeptical about [90, Corollary 7], and said
why. A month later, after a closer look, I tweeted that I was skeptical about
[90, Theorem 6], and said why. See [22] and [23] (“aren’t half of these nested
amplifications?”). In September 2022, the authors retracted their paper, writing
that “A reviewer pointed out an error in the amplitude amplification step in the
analysis of Theorem 6”.

It’s easy to respond that this example simply demonstrates the importance of
peer review. The paper [90] was an unrefereed preprint; the mistake was rapidly
caught. The same comment applies to, e.g., a paper [49] in 2024 that claimed a
faster quantum algorithm for another lattice problem; [49] was withdrawn nine
days after it was posted.

However, the following example is not so easy to dismiss. This is an
example where a refereed algorithm analysis—in fact, two such analyses—went
disastrously wrong.

The topic of this example is a cryptographic construction called “XCB”
that converts a standard “block cipher” AES into a disk-encryption mechanism
XCB-AES. A refereed paper from 2007 [80] presented a “proof of security”
supposedly showing that any algorithm breaking XCB-AES could be converted
into an algorithm at similar cost breaking AES. No fast algorithm is known
today to break AES, so this “proof of security” supposedly says that no fast
algorithm is known to break XCB-AES. XCB was standardized in 2010.

Years later, a refereed paper [48] pointed out an exploitable flaw in the original
“proof”. This paper explained a fast attack breaking XCB-AES for unusual
disk-block lengths. On the other hand, [48] also claimed to provide a “new
security theorem” for XCB for normal disk-block lengths.

In October 2024, two independent papers, namely [102] and [39], presented
fast attacks breaking XCB-AES for normal disk-block lengths. The papers do
not seem to have been refereed yet, but [39, Section 4.3] explains a fatal flaw
appearing in the refereed “proofs” from both [80] and [48]; [39] also reports that
the authors of [80] concur. Evidently this algorithm-analysis flaw had escaped
the notice of the authors and reviewers of [80] and [48].

A cryptography textbook by Katz and Lindell [70, page 20] claims that
“Proofs of security give an iron-clad guarantee—relative to the definition and
assumptions—that no attacker will succeed”. The only way to reconcile this
claim with the XCB example is to say that [80] and [48] were not actually
providing “proofs of security”. In other words, this “iron-clad guarantee” is not
actually for everything labeled as “proofs of security”, but only for the correct
proofs—whichever ones those might be. This begs the question of how many
more “proofs of security” are also wrong. More broadly, it is natural to ask how
often algorithm analyses are wrong.
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2 Weak evidence that algorithm-analysis errors are
common

This section gives examples of how various sources can lead readers to think that
the rate of algorithm-analysis errors is high. However, this section also pinpoints
various reasons that the cited sources are not demonstrating a high rate of errors.
See also Section 3 for various sources that can lead readers to think that the rate
of algorithm-analysis errors is low.

2.1 Beware of bugs

In 1977, Knuth [55, page 7 in cited PDF] wrote the following, after presenting
(pseudo)code for a particular algorithm: “Beware of bugs in the above code; I
have only proved it correct, not tried it.” A Google Scholar search for the quoted
phrase “beware of bugs in the above code” finds 245 results as of January 2025,
including 242 naming Knuth.

This call for caution can be understood as suggesting that algorithm-analysis
errors are a common occurrence; but this is not even stated explicitly, let alone
quantified or justified. The warning can instead be explained as Knuth’s text
being preliminary material: it was a classroom note, not a paper.

2.2 Proofs are rarely examined

A 1994 “security proof” from Bellare and Rogaway [10] was flawed, as pointed
out by Shoup [97] several years later. In a 2007 paper “Another look at ‘provable
security’ ” (first posted as a preprint in 2004), Koblitz and Menezes [74] wrote
the following:

One has to wonder how many “proofs” of security are ever read carefully
with a critical eye. The purported proof of Bellare–Rogaway in [7] was
short and well-written, and the result attracted much interest (and
caused OAEP to be included in the SET electronic payment standard
of MasterCard and Visa [3]). If this proof went essentially unexamined
for seven years, one cannot help asking whether the lengthy and often
poorly-written “proofs” of less famous security claims are ever read
carefully by anyone.

But asking questions is not the same as providing evidence. My papers [16,
Section 7], [17], [37, Appendix A], [19, Sections 4.1 and 6], and [25, Appendix
A.4] report discoveries of errors in several more “security proofs”, and [75]
surveys further examples,5 but this does not address the question of how frequent
such failures are.

Similarly, regarding proofs more broadly (not just “proofs of security”),
Voevodsky claimed in 2014 [101] that a “technical argument by a trusted author,
5 [75] also surveys examples of a different problem, namely theorems being treated as

saying more than they actually do.
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which is hard to check and looks similar to arguments known to be correct,
is hardly ever checked in detail”; but the evidence provided for this claim in
[101] consists of a series of anecdotes. Those stories are troubling—for example,
published “theorems” were sometimes applied for years with nobody checking
them—but they do not contradict the idea that such failures are rare. Similar
comments apply to a 1972 claim from Davis [54] that “most proofs in research
papers are unchecked other than by the author”.

2.3 Corrections are suppressed

In a 2013 paper “Errors and corrections in mathematics literature” [62] (this is
another source considering proofs generally, not specifically algorithm analyses),
Grcar wrote the following:

In summary, the mathematics literature observably has low correction
rates, yet systemic considerations suggest that mathematicians do not
have lower error rates than other researchers. This mismatch may
stem from a cultural emphasis on perfection that discourages discussing
mistakes. The consequences are an absurdly high expectation for peer
review to catch all errors and a neglect of policies to correct the literature
once published.

It is, however, easy to see gaps in the “systemic considerations” in [62]. For
example, [62] claims that there is “no reason” to think that “mathematicians
make mistakes less often than other researchers”; but the fact that a complete
proof can in theory be recognized by pure logic is such a reason.

As another example, [62] observes that correction procedures are much less
visible in editorial guidelines for mathematics than in editorial guidelines for
other areas of science; [62] attributes this to a claimed pattern of mathematicians
suppressing errors, rather than to proofs being more reliable than other scientific
mechanisms. A few examples are given in [62] of proof errors being suppressed,
but this is weak evidence for claims of a broader pattern.6

2.4 One reviewer found many errors

In 2022, Lamport posted a 2-page report “Some data on the frequency of errors
in mathematics papers” [76]. This report says the following:

• There is “plenty of anecdotal evidence of errors in papers published in
mathematical journals”.

• A search found no “published data on the frequency of those errors”—beyond
[62] reporting the (low) rate of corrections, which is not the same question.

6 For example, one might dismiss the Mittag-Leffler incident summarized in [62] as
being an isolated incident from the 19th century. As another example, there is a
footnote in [62] pointing to a much more recent incident described in [66], but [66]
says that the first author of the erroneous paper in question was “a professor of
political science”; proofs are not a standard part of the political-science curriculum.
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• Lamport had gone through all 84 public paper reviews written by one
mathematician (George Bergman), and had found that 28 of those reviews
reported errors (“what I thought to be serious errors, not easily corrected
mistakes”), including “11 reviews reporting incorrect results” (meaning that
a claimed “theorem” is false).

However, even if the numbers in [76] are correct,7 this could simply reflect
carelessness in papers in one specific area of mathematics, perhaps further biased
by how papers were selected for Bergman to review. As noted in [76]: “They
were all in Bergman’s area of expertise. (He is an algebraist specializing in ring
theory.)”

There is a counterargument in [76]: “I know of no reason to expect the number
of errors in other fields of math to be significantly different.” But it is easy to
imagine such reasons. Consider, for example, the comment from Gowers [61]
that, for some types of mathematics, “progress is often the result of clever
combinations of a wide range of existing results”. A “proof” that relies on many
existing “theorems” is unsupported if even one of those “theorems” is wrong.

More to the point, even if errors are common in pure mathematics (which,
again, goes beyond what is shown in [76]), this does not imply that errors are
common in algorithm analysis. One can imagine, for example, that algorithm
analyses are almost always carefully checked, exactly because of the real-world
importance of algorithms.

2.5 Actions speak louder than words

There are some papers (e.g., [27]) reporting computer verification of proofs,
sometimes including proofs regarding algorithms. Why would people bother
investing this effort unless proof errors are common?

There are many easy answers to this question: for example, I enjoy explaining
proofs to a computer. More to the point, various references above show that
some people, typically extrapolating from anecdotes, say that proof errors are
common. An observation that some people seem to be acting upon this belief is
not independent evidence that proof errors are common.

2.6 Summary so far

One can understand [54], [55], [74], [62], [101], [75], [76], and papers on
computer-checked proofs as suggesting that errors in algorithm analyses are
common; but the evidence for this suggestion is weak.

On the other hand, the suggestion could be correct. Suggestions to the
contrary are also based on weak evidence, as we will see in Section 3.
7 The list of claimed errors is not provided in [76] for spot-checking; instead [76, last

paragraph] invites the reader to redo the entire analysis.



The error rate of algorithm analyses 7

3 Weak evidence that algorithm-analysis errors are rare

This section is analogous to Section 2 in considering weak evidence, but now the
weaknesses are in evidence for suggestions that algorithm-analysis errors rarely
occur.

3.1 Proofs are guarantees

It is easy to find literature describing “proofs” as guarantees of knowledge. Recall
the “Proofs of security give an iron-clad guarantee” statement from [70] quoted
in Section 1, for example; or consider Skiena’s algorithm textbook [98, page 4]
saying that “Correct algorithms usually come with a proof of correctness, which
is an explanation of why we know that the algorithm must take every instance
of the problem to the desired result”.

It is easy to see how readers could end up thinking that claimed “proofs” are
always correct—“100% certainty”, as [74] puts it. The statements from [70] and
[98] are not accompanied by warnings such as “The portion of the literature
labeled as provable security does not give us iron-clad guarantees: some claimed
proofs are wrong” or “We do not know that algorithms labeled as having proofs of
correctness always work correctly: some claimed proofs are wrong, and sometimes
the algorithms turn out not to work correctly”.

Meanwhile readers who have separately heard about a few erroneous “proofs”
can easily be led to think that errors are so rare as to not be worth mentioning.
The book [70] states many theorems8 and evidently endorses them. But consider
the online list [71] of errata for [70]. The first entry in the list says “page 58,
Theorem 3.11: f should be computable in polynomial time”. This is not a clearly
worded retraction, but inspecting [70, Theorem 3.11, “PROOF (Sketch)”] finds
the problem: inside the proof sketch, there is a construction of an algorithm with
a step that outputs “0 if and only if A outputs f(m)”; the rest of the proof does
not work unless this algorithm takes polynomial time; justifying this requires an
assumption that input-output pairs for f are recognizable in polynomial time;
[70, Theorem 3.11] failed to make any such assumption.

It is easy to imagine that proofs included in a textbook are simpler and better
reviewed than average proofs, especially once the textbook has reached its third
edition; and yet a “theorem” claimed in [70] had to be withdrawn as unproven.
These considerations do not tell us what the overall error rate is, but they do
illustrate weaknesses in the evidence that [70] provides for a low error rate.

3.2 Known flaws are rare

Goldreich commented in 2007 [60] on “the unfortunate (and rare) cases in which
flaws were found in published claimed ‘proofs’ (of security)”. Goldreich continued
by saying that these cases “reinforce the importance of careful verification of
proofs, which constitute our only way of distinguishing facts from conjectures”.
8 The book [98] does not: it has a “strict no-theorem/proof policy”.
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In context, what this appears to be claiming is that normally proofs are carefully
verified, but occasionally this important step is not taken before publication, so
occasionally flaws are found in published proofs.

However, [60] provided no quantification, evidence, or citation for the claim
that the known cases are “rare”. It is easy to imagine reasons that someone can
hear about a “proof of security” without hearing about the discovery of an error
(for example, because of the error-suppression tendencies hypothesized in [62]),
so one would guess that visibility bias will produce a perceived discovery rate
below the actual discovery rate.

Furthermore, even if the rate of known errors in published proofs is low, the
actual error rate of published proofs could be much higher. Consider the following
numbers:

• Recall from Section 2.4 that [76] reported that Bergman’s reviews of 84
papers had identified 28 errors classified by Lamport as “serious”, including
11 false “theorem” statements.

• For comparison, [62, Figure 5] reported that papers in almost every area of
mathematics had well below 1% chance of having an erratum issued by then.

A simple explanation for this gap is claimed in [76], namely that “Bergman
was one of the few Math Reviews reviewers who read the papers carefully”. This
is consistent with the claims from, e.g., [54] and [101] about most papers not
being checked carefully. A contrary claim in, e.g., [69] is that mistakes “rarely”
happen; but [69] provides no evidence for this claim.

3.3 Mathematicians are careful

In 2007, Koblitz and Menezes [74] wrote the following:

In theoretical mathematics, one of the reasons why theorems engender
confidence and trust is that the proof of a major result is almost always
scrutinized carefully by referees and others before publication.

However, the “almost always” claim is not quantified. Furthermore, the entire
evidence presented or cited for this claim in [74] consists of two examples: (1)
the discovery, by a referee, of a gap in the original Wiles “proof” of “Fermat’s
last theorem”; (2) the rapid confirmation at preprint time (see, e.g., [12] and
[13]) of the Agrawal–Kayal–Saxena [5] theorem “PRIMES is in P”.

There is no discussion in [74] of contrary examples. Consider, e.g., [83], a
1994 Inventiones Mathematicae paper by Nakamura and Uhlmann. This paper
was withdrawn [84] in 2003 (“Unfortunately, we have not been able to prove
the global result stated in [NU1]”), before the first version of [74] was posted.
Does an article appearing in a top mathematics journal not qualify as a “major
result”? If the concept of “major result” is so narrow, how is careful scrutiny of
the occasional “major result” supposed to “engender confidence and trust” in
mathematics more broadly?

Here are some newer examples. A 1999 Annals of Mathematics paper [6] by
Alesker was withdrawn [7] in 2007: “We do not know if Theorem A is true.” A
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2006 Inventiones Mathematicae paper [40] by Biss and Farb was withdrawn [41]
in 2009: “should be considered an open problem”. See also [78] and [46].

The wiggle room of the word “almost” from [74] (regarding “theoretical
mathematics”), like the wiggle room of the word “rare” from [60] (regarding
“proofs of security”), allows any particular examples of errors in published proofs
to be waved away. But extrapolating from some examples, and then inserting
wiggle room to dismiss contrary examples, is not a valid basis for drawing
conclusions. One could just as easily extrapolate from examples of incorrect
proofs to the opposite claim—“almost all proofs are wrong”—and use the word
“almost” to wave away any particular examples of correct proofs.

Section 2.2 mentioned the same paper [74] as questioning the extent to which
“proofs of security” have been reviewed. The paper claims that “theoretical
cryptography”, unlike “theoretical mathematics”, lacks a “tradition of careful
examination of all important papers”. Similarly, Koblitz in [73] claims that
cryptographers “rarely read other authors’ papers carefully”. Perhaps this is
true—but perhaps mathematicians also rarely read papers carefully. More to
the point, perhaps algorithm analyses from all sources have a high error rate
and are rarely checked carefully.

3.4 Actions, revisited

Section 2.5 mentioned that some papers report computer verification of proofs.
Obviously many proof papers don’t. On 23 January 2025, arXiv reported 106039
search results for “theorem” (including 10932 in the past 12 months); 93142
(including 10890) results for “proof”; 1028 (217) results for “formal verification”;
780 (139) results for “proof assistant”; 729 (102) results for “theorem prover”;
713 (96) results for “Coq” (the name of one of the available proof-checking tools,
until its recent renaming as “Rocq”; skimming convinced me that many, although
not all, of the results were for this tool rather than other things called “Coq”);
447 (101) results for “formally verified”; etc.

Papers not taking this step to ensure proof correctness can be interpreted
as indications that the authors think proof errors (or at least their own proof
errors) are rare. But this is weak evidence. People could instead be deterred
by perceptions that the tools are too hard to use. Consider, e.g., Aaronson in
2019 [3] describing computer verification of proofs as “massive rote coding work
that none of us has any intention of ever doing”.

It is similarly weak evidence to point to examples of authors using theorems
from other people without having checked the proofs, or specifically examples of
authors relying on algorithm analyses from other people without having checked
the analyses. While such examples could be viewed as expressing trust and
suggesting that errors are too rare to worry about, they can also be explained
by a perception that the cost of checking outweighs the benefits of doing so.

Finally, consider replacing “common” with “rare” at the end of Section 2.5.
We have already seen people expressing a belief that proof errors are rare;
an observation that some people seem to be acting upon this belief is not
independent evidence that proof errors are rare.
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4 How to confidently determine the error rate of a pool
of papers with proofs

Here are two radically different hypotheses, neither of which is disproven by the
weak evidence reviewed in Sections 2 and 3:

• The error rate of proof papers is below 1% (almost as small as the erratum
rate reported in [62]). Reason: Proofs are almost always checked carefully.
Invalid extrapolation from occasional failures sometimes leads people to
wildly overestimate the error rate, to spread unfounded distrust in proofs,
and to waste time having computers check proofs.

• The error rate of proof papers is above 50% (even higher than what [76] says
is the rate of “serious” errors that Bergman pointed out in his reviews of
selected algebra papers). Reason: People are overconfident and continually
make mistakes. Persistent failure to check proofs leaves most proofs with
undetected errors, also leading people to wildly underestimate the error rate.

This section gives reasons to believe that it is feasible to rule out at least one of
these hypotheses, via a particular strategy to pin down the actual error rates of
papers with proofs.

4.1 The strategy

The first step is obvious and easy: pick a random sample of (say) 100 papers to
study. I’m not insisting on finding the exact error rates: statistical confidence is
good enough for settling the risk-assessment debate.

For example, finding errors in 28 papers within a random sample of 84 papers
(matching the non-random sample in [76]) would convincingly disprove the
“below 1%” hypothesis. Indeed, if the hypothesis is correct then the chance of
errors existing in ≥28 papers out of 84 is at most

∑
e≥28

(84
e

)
0.01e0.9984−e ≈

2−113; it’s not plausible that a random experiment is so lucky. As another
example, a sample of 100 papers having 100 correct papers would convincingly
disprove the “above 50%” hypothesis. One can also easily calculate the “95%
confidence interval” typically used in experimental sciences.

The hard part is to figure out how many of the papers in the sample are
correct. It isn’t sufficient here to follow the manual proof-checking steps that an
author or referee would normally carry out: what we’re trying to see is whether
papers claiming “theorems” often have errors that are not caught by those steps.
Saying “I’ve carried out a particularly diligent check of each proof step” or even
“Look, I wrote a much more detailed presentation of the proof” still doesn’t
eliminate the question: maybe the detailed writeup has the same error as the
original proof. The strategy, then, is to produce public computer-checked versions
of the proofs, guaranteeing that the theorems really are correct.

This isn’t the complete strategy yet: what happens if many papers in the
sample have proof errors? The simple answer is to say “I don’t believe the
following proofs”, but then a skeptical reader is left wondering whether the actual
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situation is that the person who claims to have tried checking the proofs simply
hasn’t done enough work to recognize that the proofs are all fine. The strategy
for convincingly settling such cases is to produce a public counterexample to a
“proof” step.

There can be intermediate cases where someone reading a “proof” finds a
gap in the logic—meaning a claim whose justification is unobvious to that
reader—but at the same time finds no evident counterexamples to the claim. This
could be a problem with the “proof”, or a failure on the reader’s part. Hopefully
such cases (and cases of claims being ambiguous) can be rapidly resolved by
communication with the “proof” authors; my experience is that sometimes a
“proof” is withdrawn and sometimes a gap is filled. Note that if some papers
in a sample end up with computer-checked proofs, while others end up with
counterexamples, then leaving (say) 10% of papers unresolved won’t have much
effect on the statistical conclusions; on the other hand, if the error rate is actually
very close to 0, then demonstrating this is incompatible with leaving so many
proof gaps unfilled.

Conceptually, the rationale stated above for computer-checked proofs is not
exactly the same as the rationale given in, e.g., [101]. The goal of [101] was
to switch to computer-checked proofs to eliminate errors (compensating for a
claimed problem regarding the current level of checking of proofs), whereas the
goal of the strategy I’m describing is instead to convincingly determine the error
rate. Perhaps the result will be that proof errors are extremely rare, in which case
we can obtain high confidence in this via computer-checked proofs for a random
sample, in much the same way that quality-assurance tests are applied to random
samples of commercial products (see, e.g., [82]). Or perhaps the result will be
knowing that proof errors are common, which would add weight to arguments
for much broader usage of computer-checked proofs.

4.2 A pool of papers to study

The strategy from Section 4.1 doesn’t care whether it’s being applied to all
papers with proofs. One can specify any pool of papers with proofs and then
take a sample from that pool.

One reason for generalizing in this way is that there are interesting questions
about variations across pools, such as whether proof reliability is changing over
time (increasing because of improved access to preprints? decreasing because of
increased publication pressure?) and whether peer review makes a big difference
in error rates. Of course, determining error rates for multiple pools is a larger
project than determining error rates for one pool, so it makes sense to start with
one pool.

Another reason for not taking all papers with proofs is that, for the objective
of understanding the error rate of algorithm analyses, extrapolating from the
overall error rate of proofs could produce large errors in either direction. Consider
again [74] suggesting that proofs in cryptography have higher error rates
than proofs in “theoretical mathematics”; or consider the contrary hypothesis
formulated in Section 2.4.
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Furthermore, I want to try applying this strategy. My levels of interest and
experience vary from one pool to another, so it makes sense for me to take a pool
that I’m particularly interested in as an initial case study. I already have many
papers on a wide range of algorithms to attack cryptographic systems—more
than 60 such papers at last count, including some multi-algorithm analyses such
as [14], [16], [8], [34], and [32]—so, okay, I’m taking the following pool: recent
papers on algorithms to attack cryptographic systems.

To be concrete, let’s define “recent” as papers that appeared in 2024 on the
preprint server of IACR, the International Association of Cryptologic Research,
not counting any subsequent revisions to the papers; I’m not limiting this to
peer-reviewed papers. Here’s a sampling mechanism: start the number-theory
calculator gp and repeatedly call random(2100)+1, which produces a number
between 1 and 2100; the papers on this preprint server in 2024 are numbered 1
through 2100. This calculator uses a deterministic seed for pseudorandomness
by default, so anyone trying this will see the same sequence of paper numbers,
namely 1679, 1473, 1498, etc. Skip the following papers: duplicates; papers that
don’t analyze attack algorithms against cryptographic systems;9 and, to avoid
conflict-of-interest questions, papers from anyone who (co)authored any of my
papers since 2020. Take a total of 100 papers.

One reason I find this particular algorithmic topic intriguing is that it
inherently involves considering the capabilities of computer resources far beyond
the resources that we have available for tests. The whole point is to help
users select safe cryptosystems; obviously users won’t use a cryptosystem if
we can demonstrate an attack breaking the cryptosystem, but we also want
users to avoid the larger set of cryptosystems breakable by a real attacker with
many billions of dollars of computer equipment. Attackers are also intercepting
encrypted data in the hopes of decrypting it in the future using even larger
computers or quantum computers; see, e.g., [63] and [89].

4.3 Won’t this be an insane amount of work?

For people who have heard that writing a computer-checked proof is
time-consuming—certainly worth a paper by itself, beyond the paper that
presented the original proof—the idea of writing computer-checked proofs for
100 papers might sound like a lifetime of work, so the only way to produce
statistically meaningful results within (say) 5 years would be to split the work
across many people. I have four reasons to think that, no, this is within reach
for one person.

First, as soon as I’ve found a counterexample to any claim in any algorithm
analysis in a paper, that paper goes into the “error” column and I don’t have to
spend more time on it. I expect this to happen frequently. This isn’t cheating: one
false claim in a “proof” means that the “proof” is not correct. Presumably some of
these “proofs” will be fixable (maybe very easily fixable), but that is not relevant
9 Note to any cryptographers reading this: I mean the mathematical systems, not the

implementations, so side-channel attacks aren’t included here.
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to the question of whether the paper proved what it claimed. Counting only
“serious” errors, as in [76], could be another topic of interest but is subjective,
dependent upon who’s checking proofs, as [76] notes; see also the fascinating
way that the word “typo” was used in the retraction analyzed in [19, Section
6.5]. Furthermore, presumably cases where people agree that a “theorem” is
easily fixable have an overlap with cases where the non-fixed “theorem” leads
to disaster, such as the XCB incident reviewed in Section 1 (or the “OCB2”
incident; see [68]). We want theorems to be trustworthy as stated, not just to
make an intellectual contribution.

Second, while an algorithm analysis can occupy many pages, it can also be
a small component of a paper, reducing the amount of work correspondingly.
Also, recall from Section 4.1 that occasionally skipping a hard-to-evaluate paper
is okay when error rates aren’t very close to 0% (or 100%).

Third, the time I needed to write computer-checked proofs for four of my
recent papers (see [21], [28], [24], and [27]) was just a few weeks per paper.
For one paper, I explained the theorems to the Lean proof-checker, and then
explained them all again to the HOL Light proof-checker; I used HOL Light
for everything else. See my report [26] for further information about the time
consumption. These are papers where I already knew exactly how the proofs
worked; to test whether that really matters, I recently wrote a computer-checked
proof [30] of the transcendence of π, and then [31] of the full Lindemann theorem
(often called Lindemann–Weierstrass), in each case taking just a few weeks.

Fourth, most of my time in writing computer-checked proofs has been
spent proving background lemmas, and I’ve already been able to productively
reuse some lemmas across my HOL Light projects.10 Even without any other
improvements in proof-checking tools, I won’t be surprised to see further reuse
of lemmas reduce my average computer-checking time below a week per checked
paper. For papers with counterexamples, I’m hoping for under a day per paper.

A caveat covered in [26] is that in the meantime I had two papers with
proofs that I didn’t try explaining to a proof-checker, in both cases because
I estimated that proving the relevant background would take a few months of
work. In particular, it’s critical to have a broad enough definition of “algorithm”;
see Section 4.4. This work will be shared across many theorems, and looking at
the proof techniques used in the papers selected in Section 4.2 makes me believe
that for this pool there won’t be other gaps at this level of importance.11

10 I plan to continue using HOL Light. My time estimates are based on this. The
reasons that I selected HOL Light for my previous proof-checking projects certainly
don’t guarantee that HOL Light is the most efficient option overall, and I’ve
also been investigating other tools (see, e.g., [26, Section 4]); but, for checking
algorithm-analysis proofs, I have enough confidence in feasibility using HOL Light
that the possibility of saving time using something else is outweighed by the
possibility of losing time using something else.

11 For comparison, I would expect applying the same strategy to a sample from all
proof papers to be more difficult—still feasible, but I would want to spread the work
out more, for example delegating differential-geometry proofs to a geometer.
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Just in case I’m underestimating the total work, I plan to start with the first
6 papers12 in the sequence described in Section 4.2; then expand to the first 12;
then expand to the first 25; then expand to the first 50; and finally cover all 100.
But I don’t expect this precaution to be necessary.

4.4 Defining algorithms

In 2020, Forster, Kunze, and Wuttke [57] provided various computer-checked
proofs (in Coq) starting with a general definition of deterministic multi-tape
Turing machines. This might seem at first glance to be an adequate foundation
for proving typical theorems about algorithms. One proof says that a particular
deterministic multi-tape Turing machine needs 22m+12n+98 steps to compute
the sum of an m-bit integer and an n-bit integer.

However, the literature defines and uses many concepts of “algorithm” beyond
deterministic multi-tape Turing machines. Some of these definitional variations
aren’t a big deal to skip, but some are essential for the task of verifying existing
algorithm analyses.

As an example of something that’s commonly done but easily skipped,
consider extending the definition of Turing machines to drop the requirement
of determinism. This extension allows “do this” and “do that” instructions to
be combined into “do this or do that”; in particular, there is then a combined
instruction “store 0 or store 1”, i.e., a coin flip. This extension is commonly
used to define non-deterministic complexity classes such as NP and randomized
complexity classes such as RP and BPP. To skip this extension, simply provide
a sequence of coin flips as another input to a deterministic machine. This means,
e.g., taking [86, Proposition 9.1] as the definition of NP rather than proving it
as a consequence of a non-deterministic definition. Proofs using NP normally
use this characterization anyway, as admitted in [86, page 425].

Here’s an example of something that’s clearly not skippable. While the
literature sometimes tracks every bit operation in a large computation (see,
e.g., my recent paper [33] with Chou) and sometimes tracks data layout on
a multi-tape Turing machine (see, e.g., the 1994 book [94] from Schönhage,
Grotefeld, and Vetter), it is easier—and much more common among the papers
I’ve read—to allow larger operations, for example allowing c ← a + b and
c← x[i] as single instructions. Verifying a theorem regarding the number of such
instructions requires definitions that allow these instructions inside algorithms.

As a side note, such instruction counts can be a remarkably poor predictor
of real-world cost. See, e.g., Shamir’s 1977 algorithm [95] to find a nontrivial
factor of a composite integer n ≥ 4 using O(log n) arithmetic instructions.13 But
12 I know from experience that it’s good for me to have multiple projects to work on

at once, so I don’t want to force myself to finish handling each paper before looking
at the next. On the other hand, I handled the first paper already; see Section 5.1.

13 The algorithm begins with O(log n) multiplications to compute (2n + 1)e for a
selected value of e ∈ Θ(n). The literature sometimes avoids such abuses by
prohibiting multiplication instructions, as in [86, Sections 2.6 and 15.2], but this
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the question of whether the metric chosen for an algorithm analysis is realistic
is different from the question of whether the analysis is correct.

Another common extension is a “call an oracle” instruction. The function
computed by this instruction is a parameter that can be specified later, and
theorems often consider multiple possibilities for this parameter. As one of many
examples, my recent not-yet-computer-checked paper [32, Theorem 2.5.1] puts
an upper bound on the success probability for a specified task of any algorithm
making “at most q distinct calls to the F oracle”, where F is defined as “a uniform
random injective function from {0, 1}b+h to {0, 1}c”, assuming “c ≥ b + h”;
success probability is “by definition averaged over all choices of the oracle”.

The cost of an algorithm, like the correctness of an algorithm, is often a
random variable. As a simple illustration, one of the aforementioned algorithm
textbooks [52, Section 5.4.2] describes a process of tossing balls independently
and uniformly at random into bins 1, 2, . . . , b; [52] asks questions such as “How
many balls must you toss, on the average, until a given bin contains a ball?” and
“How many balls must you toss until every bin contains at least one ball?”. Note
that the set of possible ball-tossing runs is uncountable except for small b, even if
“until” terminates a run;14 the standard mathematical definition of probabilities
on such sets involves measure theory15 at the level reviewed in, e.g., my paper
[11, Appendix]. See [67] for a formal development of probabilistic algorithms,
including measure theory, in the HOL4 proof-checker. For HOL Light, the theory
of Lebesgue measure on Rd is available, and then one can simply take the
uniform distribution on {x ∈ R : 0 ≤ x < 1} as a source of random bits via
binary expansions, ignoring the measure-0 set {s ∈ {0, 1}∞ : #{i : si = 0} <∞}
of strings that cannot occur as expansions.

A general theory of algorithm execution on top of any set of instructions is
already available in HOL Light (see [81]) and supports statements such as “this
program terminates after this number of steps, producing an output satisfying
this property”. This theory is usable: consider, e.g., the computer-checked proof
from [64] that a particular sequence of Intel instructions correctly computes
scalar multiplication on Curve25519, an elliptic curve that I had introduced in
[15]. The Intel instruction set operates on bounded-size states, but substituting
another instruction set will allow statements such as “this algorithm takes
polynomial time”, and including an oracle-call instruction will allow statements
such as “this algorithm uses at most q oracle calls”. I plan to build statements
about algorithm executions on random inputs as a modular layer on top of that.

still allows a linear number of instructions to generate a quadratic number of bits. A
more direct fix is to have a parameter—typically growing logarithmically with the
input size—that limits the number of bits in each integer; see, e.g., [38, Section 6].

14 Consider, e.g., the set of possible ball-tossing sequences, terminated as soon as bin
1 contains a ball. This set includes {2, 3}∞ if b ≥ 3.

15 Various proof gaps in the literature seem easy to explain from the fact that measure
theory is not part of the standard computer-science curriculum. For example, [52,
Appendix C.3] says that uncountable sample spaces “are unnecessary to address for
our purposes”, and [9] says that a uniform random function from an infinite set to
a finite set “has no meaning”.
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5 Beyond proofs

So far I’ve been describing algorithm analysis as a sub-topic of proofs. The reality
is more complicated: an algorithm analysis can have some proven components
and some heuristic components, so the analysis can be incorrect even if all of the
proofs are correct. Sometimes an analysis that relies on heuristics is mislabeled
as a proven analysis.

Section 5.1 presents a recent example of this phenomenon. Section 5.2 fits
this example into the context of various examples identified in my paper [33]
with Chou. Section 5.3 extends the strategy from Section 4.1 to cover algorithm
analyses beyond proofs.

5.1 Case study: paper 1679

Let’s look at the first paper in the sequence from Section 4.2, namely [47].
This paper is in the specified pool: it’s a paper on “information-set decoding”
(ISD), which is the fastest technique known to attack various cryptosystems
based on error-correcting codes. Skimming the paper finds, among other things,
[47, Corollary 4.1] giving a formula for the “asymptotic average complexity of
Algorithm 1”.

[47, Algorithm 1] says that its inputs are “H ∈ R(n−k0)×n”, “s ∈ Rn−k0”,
“w ∈ N”, and “v ≤ min{M ·K, w}”; and that its output is a vector “e ∈ Rn

such that wtd(e) ≤ w and He> = s>”.
Here R is any “Galois ring”; [47, Example 2.1] says that any prime field is a

Galois ring, so let’s focus on R = Z/2 for concreteness. The quantity K is the
minimum cardinality of a subset of C that generates C as an R-module, where
C is the kernel of H; see [47, Definitions 2.3 and 2.4]. The quantity M is the
maximum “weight” of any length-1 vector. In the context of [47, Corollary 4.1],
“weight” and “wtd” both refer to Hamming weight (number of nonzero entries),
so M = 1.

Inside the algorithm, the only vectors e that can be returned satisfy “eI = e1”
(line 6), meaning that the restriction of e to a particular set I of coordinates is
e1. Also “e1 ∈ P” (line 4), which in turn implies “wtd(e1) = v” (line 3); i.e., any
returned vector e has weight v on I. The set I is chosen as an “information set”
(line 1), meaning that #I = K and #CI = #C; see [47, Definition 2.6]. If we
can find an input where these conditions can’t be satisfied, then the algorithm
will loop forever (line 7).

Let’s try a simple example: H maps Rn to Rn−k0 by removing the last k0
coordinates. The kernel C ⊆ Rn consists of all vectors supported on the last k0
coordinates. The rank K of C is k0. A set I is an information set exactly when
it consists of the last k0 coordinates, so a vector e returned by this algorithm
must have weight v on the last k0 coordinates.

Take specifically k0 = bn/2c, and assume n ≥ 2; then 0 < k0 < n. Consider,
as algorithm input, this matrix H; the vector s = (1, 0, 0, . . . , 0) ∈ Rn−k0 ; w = 1;
and v = 1, which satisfies v ≤ MK (since 1 ≤ k0 = K) and v ≤ w as required.
A correct algorithm would return a vector e ∈ Rn of weight ≤1 that maps to



The error rate of algorithm analyses 17

s, i.e., a vector of weight ≤1 whose first n − k0 coordinates are (1, 0, 0, . . . , 0).
This vector must be (1, 0, 0, . . . , 0) ∈ Rn, which has weight 0 on the last k0
coordinates, so it cannot be returned by [47, Algorithm 1], so the algorithm
runs forever.

A statement about “average” cost could mean that, for each algorithm input,
the algorithm has the stated cost on average over coin flips inside the algorithm;
or it could also be averaging over all finitely many (H, s) for this (n, k0, v, w).
Either way, having one input running forever means that the average is infinite.
One can check that the formula in [47, Corollary 4.1] is finite.

From the perspective of the strategy described in Section 4.1 as applied to
the pool described in Section 4.2, this counterexample disposes of [47] (leaving
99 further papers to investigate from this sample), since it is a counterexample
to something the paper claims to have proven. This counterexample took under
a day to find and check, in line with the predictions from Section 4.3.

5.2 Heuristic algorithm analyses

Wait a minute: [47] says that various earlier papers already introduced and
analyzed these ISD algorithms for the case of fields R. For example, [47] credits
[47, Algorithm 1] to a 1988 paper [77] by Lee and Brickell. More than 50 ISD
papers are listed in [29]. The counterexample from Section 5.1 takes a field
R = Z/2. Does this mean that every other ISD paper we look at will also have
a wrong proof?

Answer: No. For example, the Lee–Brickell paper [77] doesn’t claim any
theorems. A 1989 paper by Stern [100] states theorems regarding an improved
algorithm, but notes that those theorems are regarding a heuristic model of the
algorithm performance, a model discounting possible (anti-)correlations between
outputs and information sets: “We think that it is a reasonable measure of the
probability . . . although it neglects the role of the possible revisions in the choices
of the columns that are performed during step 1.” Similar disclaimers appear in
some newer ISD papers, such as [35, Section 3, “bias”] and [36, Section 5].

It’s easy to see that almost all large matrices H have many more information
sets than the example in Section 5.1; [50] plausibly claims to be able to prove
that ISD performance for “virtually all” choices of H has the same asymptotic
exponents as the model. However, for code-based cryptography, we care about
the matrices H that appear in various code-based cryptosystems. Small-scale
experiments haven’t found ISD distinguishing this class of matrices from most
matrices, nor does anyone have an explanation of how that could happen—but
nobody has proven ISD performance for this class of matrices; it’s just a
conjecture based on a heuristic. No algorithm for these matrices has been proven
to be as fast as the conjectured performance of ISD.

Will someone who wants to get a computation done ignore what seems to
be the fastest algorithm, merely because there’s no proof that it’s the fastest?
Possibly—the user might consider speedups less important than being sure in
advance what the performance will be—but surely many users will decide to
make the opposite tradeoff, especially when the unproven speedups are large.
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This tension between proofs and performance is not unique to ISD. [33,
Appendix B] surveys unproven speedups for integer factorization, elliptic-curve
discrete logarithms, and lattice problems, and explains why this should not be
surprising—even if it is different from the impression conveyed by the algorithms
selected for typical textbooks.

5.3 High assurance for algorithm analyses beyond proofs

One can, with enough effort, increase the level of assurance of a claimed proof of
the cost and success probability of an algorithm: explain the proof to a computer.
When proofs are not available, can one increase the level of assurance of an
unproven analysis of the cost and success probability of an algorithm?

The main point of [33] is to provide an answer to this question, along with
demos of the answer. The answer starts the same way as a computer-checked
proof: one has to write

• a complete definition of the model of computation including a cost metric,
• a complete definition of the problem supposedly being solved,
• a complete definition of the algorithm in this model of computation,
• a complete formula for the predicted cost of the algorithm, and
• a complete formula for the predicted success probability of the algorithm

in a language that a computer can understand. But the dénouement is different:

• Given a proof of the predictions, one would finish by explaining the proof to
the computer and having the computer verify the proof, as in Section 4.1.

• The approach of [33] is instead to have the computer simulate the algorithm
on a sample of inputs, comparing the observed cost and the observed success
probability to the predictions.

The demos in [33] are for a simple brute-force search and a spectrum of ISD
algorithms, in both cases with a perfect match of observed cost to predictions
and a close match of observed success probability to predictions. There are
various examples in [33] of how this structure—with its computer-enforced links
between the model of computation, the cost metric, the algorithm definitions,
the predictions, and the simulations—would have caught errors in unproven
algorithm analyses in the literature.

So it is natural to consider the following supplement to the strategy from
Section 4.1: instead of ignoring the components of an algorithm analysis that
are not labeled as proofs,16 try fitting the algorithm analysis into the structure
from [33]. Perhaps this will catch an error; perhaps it will observe a close
match between predictions and simulations. A close match is not as convincing
as a computer-checked proof—for example, perhaps an analysis error becomes
invisible when one scales down input sizes to be able to afford simulations—but
16 If there is an error in something that is labeled as a proof then this supplement

does not apply. For example, [47] is still classified as “counterexample to claimed
theorem”. Again, the point is to determine whether we can trust what papers claim.
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it is still interesting to see how often algorithm analyses survive this level of
scrutiny.

The central software framework from [33] expresses all algorithms as
compositions of bit operations. Bit operations are how real chips carry out
computations, but it is desirable to support more cost metrics so as to check
analyses of those metrics, and it is desirable to match definitions to Section 4.4
to be able to connect simulations to any available proofs. Also, currently the only
success notion supported by the framework is “the algorithm found f(x) given
g(x)”; I plan to extend the framework to support a wider range of specifications
of what it means for an algorithm to succeed.

Finally, “trapdoor simulation” from [18] can, in at least some cases, efficiently
simulate interesting quantum circuits, without having a quantum computer
available for simulations. However, sampling makes me think that, for the
occasional quantum circuits in the pool from Section 4.2, it suffices to focus
on computer-checked proofs. Note that quantum circuits aren’t hard to define;
see, e.g., [44] or my exposition [20].
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