
Design of a Role-based Trust-management Framework

Ninghui Li John C. Mitchell
Department of Computer Science

Stanford University
Gates 4B

Stanford, CA 94305-9045
{ninghui.li, mitchell}@cs.stanford.edu

William H. Winsborough
NAI Labs

Network Associates, Inc.
3060 Washington Road
Glenwood, MD 21738

william winsborough@nai.com

Abstract

We introduce theRT framework, a family of Role-
based Trust-management languages for representing poli-
cies and credentials in distributed authorization.RT com-
bines the strengths of role-based access control and trust-
management systems and is especially suitable for attribute-
based access control. Using a few simple credential forms,
RT provides localized authority over roles, delegation in
role definition, linked roles, and parameterized roles.RT
also introduces manifold roles, which can be used to ex-
press threshold and separation-of-duty policies, and dele-
gation of role activations. We formally define the semantics
of credentials in theRT framework by presenting a transla-
tion from credentials to Datalog rules. This translation also
shows that this semantics is algorithmically tractable.

1 Introduction

We introduce theRT framework, a family of Role-based
Trust-management languages for representing policies and
credentials in distributed authorization. Development of the
RT framework is part of an on-going effort to address se-
curity problems that arise when independent organizations
enter into coalitions whose membership and very existence
change rapidly. A coalition may be formed by several au-
tonomous organizations wishing to share resources. While
sharing resources, each organization retains ultimate au-
thority over the resources it controlled prior to entering the
coalition. We call such systemsdecentralized collaborative
systems, since they have no single central authority.

Access control in decentralized collaborative systems
presents difficult problems, particularly when resources and
the subjects requesting them belong to different security do-
mains controlled by different authorities. Traditional access
control mechanisms make authorization decisions based on

the identity of the resource requester. Unfortunately, when
the resource owner and the requester are unknown to one
another, access control based on identity may be ineffec-
tive. In [3], Blaze, Feigenbaum, and Lacy coined the term
“trust management” to group together some principles deal-
ing with decentralized authorization.

Some trust management (TM) systems, such as
KeyNote [2] and SPKI/SDSI [8, 10], use credentials to dele-
gate permissions. Each credential delegates certain permis-
sions from its issuer to its subject. A chain of one or more
credentials acts as a capability, granting certain permissions
to the subject of the last credential in the chain. However,
even such capability-style systems do not address the dis-
tributed nature of authority in a decentralized environment.

Consider an simple example: A book store wants to give
15% discount to students of a nearby university. Ideally,
the book store would express this policy in one statement,
and a student could get the discount by showing her student
ID, issued by the university. However, one cannot follow
this simple approach in capability-style TM systems. For
instance, in KeyNote or SPKI 1.01, one cannot express the
statement that anyone who is a student is entitled to a dis-
count. Instead, there are two alternative approaches, neither
of which is satisfactory. One is to have the book store del-
egate the discount permission to the university’s key. Then
the university’s key explicitly delegates this permission to
each student’s key. This places too heavy an administra-
tive burden on the university, since there could be many
businesses giving discounts to students, each of which re-
quires a separate delegation by the university to each stu-
dent. In the second approach, the university would create a
new key pair representing the group of all students. Each
student ID would then be a complete delegation from this
group key to the student’s public key. This would allow
the bookstore to establish the student discount policy by is-

1We use SPKI 1.0 to denote the part of SPKI/SDSI 2.0 [8, 10] origi-
nally from SPKI, i.e., 5-tuples, and SDSI 1.0 to denote the part of SDSI
originally from SDSI,i.e., name certificates (or 4-tuples as called in [10]).

1



suing a credential granting the discount to the group key.
However, this approach requires the university to manage a
separate public/private key pair for each meaningful group.
It also requires group public keys to be distributed to entities
like book stores. Furthermore, the bookstore needs to know
which key corresponds to the group of students; this would
require another public-key infrastructure. Moreover, using
one key pair to represent each group provides very limited
expressive power. A student ID takes the form of a com-
plete delegation from the group key and cannot contain any
application-independent attribute information about the stu-
dent, such as department, year,etc., which are often useful
in deriving other attributes or making access control deci-
sions.

To simplify authorization in collaborative environments,
we need a system in which access control decisions are
based on authenticated attributes of the subjects, and at-
tribute authority is decentralized. We call such systems
attribute-based access control (ABAC) systems. We argue
that an expressive ABAC system should be able to express
the following:

1. Decentralized attributes: an entity asserts that another
entity has a certain attribute.

2. Delegation of attribute authority: an entity delegates
the authority over an attribute to another entity,i.e., the
entity trusts another entity’s judgement on the attribute.

3. Inference of attributes: an entity uses one attribute to
make inferences about another attribute.

4. Attribute fields. It is often useful to have attribute cre-
dentials carry field values, such as age and credit limit.
It is also useful to infer additional attributes based on
these field values and to delegate attribute authority to
a certain entity only for certain specific field values,
e.g., only when spending level is below a certain limit.

5. Attribute-based delegation of attribute authority. A
key to ABAC’s scalability is the ability to delegate to
strangers whose trustworthiness is determined based
on their own certified attributes. For example, one may
delegate the authority on (identifying) students to enti-
ties that are certified universities, and delegate the au-
thority on universities to an accrediting board. By do-
ing so, one avoids having to know all the universities.

Using KeyNote, SPKI 1.0, or X.509 attribute certifi-
cates [11], one cannot express inference of attributes or
attribute-based delegation. SDSI 1.0 or even SPKI/SDSI
2.0 do not support attribute fields. Neither TPL [15] nor
the language in [4] supports delegation of authority over ar-
bitrary attributes. Although one can use Delegation Logic
(DL) [17, 19] to express all of the above, it is not very con-
venient. Through a basic attribute credential, a designated

issuer should be able to express the judgement that a subject
has a certain attribute. A basic certificate in DL has only an
issuer and a statement. Although one can encode the sub-
ject and attribute together in a statement, DL lacks the ex-
plicit subject abstraction, which we desire for the following
reasons. The explicit abstraction allows clear, concise rep-
resentation of attribute-based delegation,e.g., in the form
of linked local names in SDSI. The subject abstraction also
enables distributed storage and discovery of credentials, as
shown in [20]. It also enables us to view attributes simi-
larly to roles in role-based access control (RBAC) [23], and
to use concepts similar to role activations to enable entities
to make selective use of those roles. Another TM system
SD3 [16] can be viewed as Delegation Logic without del-
egation constructs; it does not have the subject abstraction
either.

RT is our proposal for meeting the requirements of
ABAC systems.RT uses the notion of roles to represent
attributes. Arole in RT defines a set of entities who are
members of this role. A role can be viewed as anattribute:
An entity is a member of a role if and only if it has the
attribute identified by the role. This notion of roles also
captures the notions of groups in many systems.

RT combines the strengths of RBAC and trust-
management (TM) systems. From RBAC, it borrows the
notions of role, interposed in the assignment of permissions
to users to aid organizing those assignments, and of sessions
and selective role activations. From TM,RT borrows prin-
ciples of managing distributed authority through the use of
credentials, as well as some clear notation denoting relation-
ships between those authorities,e.g., localized name spaces
and linked local names from SDSI. From DL, it borrows
the logic-programming-based approach to TM. In addition,
RT has policy concepts such as intersections of roles, role-
product operators, manifold roles, and delegation of role ac-
tivations. These concepts can express policies that are not
possible to express in existing systems; they can also ex-
press some other policies in more succinct or intuitive ways.

The most basic part ofRT , RT0, was presented in [20],
together with algorithms that search for chains ofRT0 cre-
dentials, and a type system about credential storage that en-
sures chains can be found among credentials whose storage
is distributed.RT0 meets four of the five requirements listed
above; it doesn’t supports attribute fields. In this paper,
we present four additional components of theRT frame-
work: RT1, RT2, RTT , andRTD. RT1 adds toRT0 pa-
rameterized roles, which can express attribute fields.RT2

adds toRT1 logical objects, which can group logically re-
lated objects together so that permissions about them can
be assigned together.RTT provides manifold roles and
role-product operators, which can express threshold and
separation-of-duty policies.RTD provides delegation of
role activations, which can express selective use of capaci-

2



ties and delegation of these capacities.
Our goal in designingRT is an expressive yet clean sys-

tem with an intuitive, formally defined, and tractable seman-
tics. We formally define the semantics ofRT credentials by
presenting a translation from credentials to negation-free,
safe Datalog rules. This guarantees that the semantics is
precise, monotonic, and algorithmically tractable. In de-
centralized collaborative systems, there must be agreement
on the meaning of credentials. Because Datalog is a subset
of first-order predicate calculus, it provides a clear semantic
point of reference. Monotonicity of the semantics is impor-
tant, especially in distributed environments, since to deal
with non-monotonicity, one typically needs complete infor-
mation, which is very hard to obtain in distributed environ-
ments. A Datalog rule is safe if all variables in its head also
appear in the body. This guarantees that the set of conclu-
sions it generates is finite and bounded. The requirement
that eachRT credential can be translated to a negation-
free, safe Datalog rule is the main constraint on expressivity
guiding the design of RT features presented here.

The rest of this paper is organized as follows. In sec-
tion 2, we give an overview of the main features and com-
ponents ofRT . In sections 3, 4, 5, and 6, we introduce four
components:RT1, RT2, RTT , andRTD, respectively. We
then discuss the current status ofRT , implementation is-
sues, future and related work in section 7, and conclude in
section 8.

2 An Overview to theRT framework

In this section, we introduce core concepts in theRT
framework and summarize the different components inRT .

2.1 Entities and roles

An entity in RT is a uniquely identified individual or
process. Entities are also called principals in the literature.
They can issue credentials and make requests.RT assumes
that one can determine which entity issued a particular cre-
dential or a request. Public/private key pairs clearly make
this possible. In some environments, an entity could also
be, say, a secret key or a user account. In this paper, we use
A, B, andD, sometimes with subscripts, to denote entities.
A role in RT defines a set of entities who are members of
this role.

In role-based access control (RBAC) [23], there are
users, roles, and permissions. Roles in RBAC form a mid-
dle layer between users and permissions, thus simplify-
ing the management of the many-to-many relationships be-
tween users and permissions. Permissions are associated
with roles, and users are granted membership in appropriate
roles, thereby acquiring the roles’ permissions. More ad-
vanced RBAC models include role hierarchies. A role hier-

archy extends the role layer to have multiple layers, thereby
further reducing the number of relationships that must be
managed. Role hierarchies are partial orders. If one role,
r1, dominatesanother,r2, (written r1 � r2), thenr1 has
every permission thatr2 has.

Entities inRT correspond to users in RBAC. Roles in
RT can represent both roles and permissions from RBAC.
In RT , we view user-role assignments and role-permission
assignments also as domination relationships. Assigning a
useru to a roler can be represented asu � r. And assign-
ing a permissionp to a roler can be represented asr � p.
In this way, user-role assignments, the role hierarchy, and
role-permission assignments together define a uniform par-
tial order over users, roles, and permissions. In addition to
its implications for permissions,r1 � r2 can equivalently
be read as implying that any user who is a member ofr1 is
also automatically a member ofr2. We say thatr2 contains
(all the user members of)r1. The contains ordering is the
inverse of the dominates ordering. A partial order can be de-
fined using either.RT uses the contains ordering, because
it is entity centric and corresponds better to the attribute in-
terpretation of roles.

2.2 Localized authority for roles

RBAC was developed for access control in a single orga-
nization. Some authors consider it an essential characteris-
tic of RBAC that the control of role membership and role
permissions be relatively centralized in a few users [23].
This centralized control feature does not work well in dis-
tributed collaborative systems. To handle the decentralized
nature of distributed collaborative systems,RT borrows
from existing trust-management systems, since the focus
of these systems is decentralized control. In particular, we
borrow from SDSI the concepts of localized name spaces.
In SDSI, a local name is formed by an entity followed by
a name identifier. Each entity has its own localized name
space and is responsible for defining local names in its own
name space.

In RT , a role is denoted by an entity followed by a role
name, separated by a dot. We useR, often with subscripts,
to denote role names. A roleA.R can be read asA’s R role.
Only A has the authority to define the members of the role
A.R, andA does so by issuing role-definition credentials.
Each credential defines one role to contain either an entity,
another role, or certain other expressions that evaluate to a
set of entities. A role may be defined by multiple creden-
tials. Their effect is union.

An entity A can defineA.R to containA.R1, another
role defined byA. Such a credential readsA.R←−A.R1;
it means thatA defines thatR1 dominatesR. At the same
time, a credentialA.R ←− B.R is a delegation fromA
to B of authority overR. This can be used to decen-

3



tralize the user-role assignment. A credential of the form
A.R←− B.R1 can be used to define role-mapping across
multiple organizations when they collaborate; it also repre-
sents a delegation fromA to B.

Using a linked role in a credential enables the issuer
to delegate to each member of a role. The credential
A.R←− A.R1.R2 states that:A.R contains anyB.R2 if
A.R1 containsB. The set of contains relationships im-
plied by this credential is dynamic in that it depends upon
other credentials, some present at the time when this cre-
dential is issued and any others issued later.RT also al-
lows the use of intersection while defining roles. A creden-
tial A.R←−B1.R1 ∩ B2.R2 states that:A.R contains any
role or entity that are contained by bothB1.R1 andB2.R2.
The set of contains relationships implied by this credential
is also dynamic. Note that such role intersections do not
exist in RBAC. The following example from [20] illustrates
the use ofRT0 credentials.

Example 1 A fictitious Web publishing service, EPub, of-
fers a discount to anyone who is both a preferred customer
and a student. EPub delegates the authority over the iden-
tification of preferred customers to its parent organization,
EOrg. EOrg issues a credential stating that IEEE members
are preferred customers. EPub delegates the authority over
the identification of students to entities that are accredited
universities. To identify such universities, EPub accepts
accrediting credentials issued by the fictitious Accrediting
Board for Universities (ABU). The following credentials
prove that Alice is eligible for the discount:

EPub.disct←−EPub.preferred ∩ EPub.student
EPub.preferred←−EOrg.preferred
EOrg.preferred←−IEEE.member

EPub.student←−EPub.university.stuID
EPub.university←−ABU.accredited

ABU.accredited←−StateU
StateU.stuID←−Alice, IEEE.member←−Alice


2.3 Parameterized roles

In RBAC, a role name is an atomic string. It has
been noted in the literature that this is sometimes too lim-
ited [12, 21]. An organization may contain large numbers of
roles with few differences between them. For example, each
project has a project leader role, and the rights of project
leaders over documents of their projects is often the same.
It is desirable to facilitate the reuse of these role permission
relationships. To address this, the notion of parameterized
roles was introduced in [12, 21] (it was called role templates
in [12]).

RT0 only allows atomic strings as role names.RT1 ex-
tendsRT0 to allow parameterized roles. InRT1, a role
nameis constructed by applying arole identifier to a tuple

of data terms. In this paper, we user, often with subscripts,
to denote role identifiers, and useh, s, andt with subscripts
to denote data terms.RT1 will be introduced in section 3.

Parameterized roles can represent relationships between
entities. For example, if a company Alpha allows the man-
ager of an employee to evaluate an employee (or maybe ap-
prove a purchase request submitted by the employee); we
can use Alpha.managerOf(employee) to name the manager
of an employee. Similarly, if a hospital Beta allows the
physician of a patient to access the documents of a patient,
we can use Beta.physicianOf(patient) to name the physi-
cian of a patient. Parameterized roles can also represent
attributes that have fields. For example, a diploma typi-
cally contain school, degree, year,etc. An IEEE member-
ship certificate needs to contain a member number and a
member grade. A digital driver license should contain birth-
day and other information. Parameterized roles can also
represent access permissions that take parameters identify-
ing resources and access modes.

2.4 Common vocabularies

When an entityA definesA.R to containB.R1, it needs
to understand whatB means by the role nameR1. This
is the problem of establishing a common vocabulary. Dif-
ferent entities need a common vocabulary before they can
use each others’ roles. Common vocabulary is particularly
critical in systems that support attribute-based delegations.
For instance, the expressionEPub.university.stuID only
makes sense when universities usestuID for the same pur-
pose.

In RT , we address this problem through a scheme in-
spired by XML namespaces [5]. We introduceapplication
domain specification documents (ADSDs). Each ADSD de-
fines a vocabulary, which is a suite of related data types, role
identifiers (role ids for short) with the name and the data
type of each of its parameters,etc.An ADSD may also de-
clare other common characteristics of role ids, such as stor-
age type information, as studied in [20]. An ADSD gener-
ally should give natural-language explanations of these role
ids, including the conditions under which credentials defin-
ing them should be issued. Credentials contain a preamble
in which vocabulary identifiers are defined to refer to a par-
ticular ADSD, e.g., by giving its URI. Each use of a role
id inside the credential then incorporates such a vocabulary
identifier as a prefix. Thus, a relatively short role id speci-
fies a globally unique role id. An ADSD can refer to other
ADSDs and use data types defined in it, using the mecha-
nism just described. A concreteRT system is defined by
multiple ADSDs.

Each ADSD defines a vocabulary. The notion of vocab-
ularies is related to the notion of localized name spaces.
They both address name-space issues; however, they ad-

4



dress issues at different levels. The notion of localized name
spaces concerns itself with who has the authority to define
the members of a role. The notion of vocabularies is about
establishing common understandings of role names. For ex-
ample, an accrediting board might issue an ADSD that de-
fines the format of student ID credentials. Then a university
can use this ADSD to issue student ID credentials. The uni-
versity is still the authority of its own name space; it just
uses the vocabulary created by another entity. The univer-
sity can also freely choose which ADSD to use when issuing
credentials. In particular, when there are multiple ADSDs
about student IDs, the university can issue multiple creden-
tials using different ADSDs.

2.5 Logical objects

In RT , roles are also used to represent permissions. A
permission typically consists of an access mode and an ob-
ject. It is often useful to group logically related objects and
access modes together and to give permissions about them
together. To do this, we introduceRT2, which extendsRT1

with the notion of o-sets, which group logically related ob-
jects together. O-sets are defined in ways similar to roles.
The difference is that the members of o-sets are objects that
are not entities.RT2 will be introduced in section 4.

2.6 Threshold and separation-of-duty policies

Threshold structures, which require agreement amongk
out of a list of entities, are common in trust-management
systems. Some systems, such as Delegation Logic, also
have the more expressive dynamic threshold structures,
which are satisfied by the agreement ofk out of a set of
entities that satisfy a specified condition.

A related yet distinct policy concept is separation of duty
(SoD) [7, 24]. This security principle requires that two or
more different people be responsible for the completion of
a sensitive task, such as ordering and paying for a purchase.
SoD can be used to discourage fraud by requiring collu-
sion among entities to commit fraud. In RBAC, SoD is of-
ten achieved by using constraints such as mutual exclusion
among roles [23, 24] and requiring cooperation of mutu-
ally exclusive roles to complete sensitive tasks. Because
no entity is allowed to simultaneously occupy two mutually
exclusive roles, sensitive tasks can be completed only by
cooperation of entities. This is sufficient, though not nec-
essary, to ensure that cooperation between two entities is
required to perform the sensitive task.

Though related, the threshold structures of existing TM
systems cannot generally be used to express SoD policies.
Threshold structures can require agreement only of two dif-
ferent entities drawn from a single set, while SoD policies
typically are concerned with agreement among members of

two different sets. For similar reasons, mutually exclusive
roles cannot be used to achieve thresholds either.

Constraints such as mutual exclusion of roles are non-
monotonic in nature,i.e., an entity cannot be a member of
one role if it is a member of another role. To enforce such
constraints, complete information about role memberships
is needed. Since we allow only monotonic credentials in
RT , we cannot use such constraints. Instead, we use what
we callmanifold rolesto achieve thresholds and separation
of duty. Similar to a role, which defines a set of entities,
a manifold role defines a set ofentity collections, each of
which is a set of entities whose cooperation satisfies the
manifold role. Manifold roles are defined by role expres-
sions constructed using either of the tworole-product oper-
ators: � and⊗.

The role expression
k︷ ︸︸ ︷

A.R⊗A.R⊗ · · · ⊗A.R

represents the dynamic threshold structure that requiresk
(different) entities out of members ofA.R. The role expres-
sion “A.R1 ⊗A.R2” represents the set of entity collections
each of which has two different entities, one fromA.R1 and
the other fromA.R2. This can be used to force coopera-
tion to complete a sensitive task (the goal of SoD) without
forcing roles to be mutually disjoint. This could permit im-
portant flexibility, particularly in small organizations where
individuals may need to fulfill several roles. Such flexibility
motivates mutual exclusion in role activations (also known
as dynamic separation of duty) [24]. Also, because the con-
structs are monotonic, they allow SoD to be supported in a
de-centralized framework, where role membership informa-
tion may be partial or incomplete.

The operator� can be used to implement policies such
as the following: An action is allowed if it gets approval
from two roles. This approval might come from one en-
tity who is a member of both roles, or it might come from
two different entities who are each members of one role.
Manifold roles and role-product operators are part ofRTT ,
which will be introduced in section 5.

2.7 Delegation of role activations

Above we have discussed delegation of authority to de-
fine a role. Let us now consider delegation of the capacity
to exercise one’s membership in a role.

In many scenarios, an entity prefers not to exercise all
his rights. An administrator often logs in as an ordinary
user to perform ordinary tasks. In another example, a user is
temporarily delegated certain access rights by his manager
during his manager’s absence. The user will often want to
exercise only his customary rights, wishing to use his tem-
porary rights only when explicitly working on his manager’s
behalf. This notion is related to the least privilege principle

5



and is supported by many systems. In RBAC, it is supported
by the notion of sessions. A user can selectively activate
some of his eligible roles in a session.

A natural generalization of user-to-session delegation of
role activations is process-to-process delegation of those
role activations. The need for this is particularly acute in
distributed computing environments. Imagine the scenario
in which a user starts a session, activating some of his roles,
and then issues a request. To fulfill this request, the session
process starts a second process on behalf of the user, which
invokes a third process, which is running on a different host,
so as to access back-end services needed to complete the re-
quested task. Each of these processes must be delegated the
authority to act on the user’s behalf, and the first two must
pass that authority to the processes they initiate.

Process-to-process delegation of role activations is not
supported by RBAC. While similar policy concepts were
studied in [1], the logic given there is intractable. Existing
trust-management (TM) systems do not support selective
role activations or delegation of those activations — an en-
tity implicitly uses all of its rights in every request it makes.
In a system where the requester provides credentials to sup-
port its request, the requester could limit the rights being ex-
ercised by providing only a subset of its credentials. How-
ever, this depends on the architectural assumption that cre-
dentials are provided by the requester. Even with this as-
sumption, mechanisms are still needed for specifying which
rights to use in support of a request, and for enforcing such
specifications.

We introduceRTD to handle delegation of the capacity
to exercise role memberships.RTD adds the notion of dele-
gation of role activations to theRT framework. Such a del-

egation takes the formB1
D asA.R−−−−−−→ B2, which means that

B1 delegates toB2 the ability to act on behalf ofD in D’s
capacity as a member ofA.R. This one form of delegation
can be used to express selective role activations, delegation
of role activations, and access requests supported by a sub-
set of the requesting entity’s roles.RTD will be introduced
in section 6.

2.8 Summary of components of theRT frame-
work

RT0 was introduced in [20]. In this paper, we present
four more components ofRT : RT1, RT2, RTT , andRTD.
Following is a brief summary of the features in these com-
ponents.

• RT0 supports localized authorities for roles, role hi-
erarchies, delegation of authority over roles, attribute-
based delegation of authority, and role intersections.

• RT1 adds toRT0 parameterized roles.

• RT2 adds toRT1 logical objects.

• RTT provides manifold roles and role-product oper-
ators, which can express threshold and separation-of-
duty policies.

• RTD provides delegation of role activations, which
can express selective use of capacities and delegation
of these capacities.

RTD andRTT can be used, together or separately, with
each ofRT0, RT1, or RT2. The resulting combinations are
writtenRTi, RTD

i , RTT
i , andRTDT

i for i = 0, 1, 2.
An RT system consists of application domain specifi-

cation documents (ADSDs), definition credentials, and op-
tionally delegation credentials (if usingRTD).

3 RT1: Defining Roles

In this section, we introduceRT1. RT1 credentials de-
fine roles.

3.1 Syntax ofRT1 credentials

The syntax we use in this paper is an abstract syntax de-
signed for understanding the framework. The representation
used in practice can take various forms,e.g., XML.

An RT1 credentialhas a head and a body. Theheadof
a credential has the formA.r(h1, . . . , hn), in whichA is an
entity, andr(h1, . . . , hn) is a role name. Forr(h1, . . . , hn)
to be a role name requires thatr is a role identifier, and that
for eachi in 1..n, hi is a data term having the type of theith
parameter ofr. In RT1, a data term is either a constant or a
variable, with just one exception in the type-3 credential be-
low. We say that a credential with the headA.r(h1, . . . , hn)
definesthe roleA.r(h1, . . . , hn). (This choice of terminol-
ogy is motivated by analogy to name definitions in SDSI,
as well as to predicate definitions in logic programming.)
Such a credential must be issued byA, and so we callA the
issuerof this credential. In the following, we present four
types of credentials, each having a different form of body
corresponding to a different way of defining role member-
ship.

• Type-1: A.r(h1, . . . , hn)←−D.

A and D are (possibly the same) entities. This cre-
dential means thatA definesD to be a member ofA’s
R = r(h1, . . . , hn) role. In the attribute-based view,
this credential can be read asD has the attributeA.R,
or equivalently,A says thatD has the attributeR.

• Type-2: A.r(h1, . . . , hn)←−B.r1(s1, . . . , sm)

A and B are (possibly the same) entities, andR =
r(h1, . . . , hn) andR1 = r1(s1, . . . , sm) are (possibly
the same) role names.

6



This credential means thatA defines itsR role to in-
clude all members ofB’s R1 role. In other words,A
defines the roleB.R1 to be more powerful thanA.R,
in the sense that a member ofB.R1 is automatically a
member ofA.R and thus can do anything that the role
A.R is authorized to do. The attribute-based reading
of this credential is: IfB says that an entity has the
attributeR1, thenA says that it has the attributeR.

• Type-3:
A.r(h1, . . . , hn)←−A.r1(t1, . . . , t`).r2(s1, . . . , sm)

We callA.r1(t1, . . . , t`).r2(s1, . . . , sm) a linked role.
The attribute-based reading of this credential is: If
A says that an entityB has the attributeR1 =
r1(t1, . . . , t`), andB says that an entityD has the at-
tributeR2 = r1(s1, . . . , sm), thenA says thatD has
the attributeR = r(h1, . . . , hn). If R andR2 are the
same,A is delegating its authority overR2 to anyone
who A believes to have the attributeR1. This is an
attribute-based delegation:A identifiesB as an author-
ity on R2 not by using (or knowing)B’s identity, but
by another attribute ofB (viz., R1).

The data terms in the first role namer1(t1, . . . , t`) in
the linked role,i.e., t1, . . . , t`, can be a special key-
word “this”. It has the predefined type entity. The
meaning of it will be explained in section 3.3.

• Type-4: A.R←−B1.R1 ∩B2.R2 ∩ · · · ∩Bk.Rk

In this credential,k is an integer greater than1. We
call B1.R1 ∩ B2.R2 ∩ · · · ∩ Bk.Rk an intersection.2

This credential means that if an entity is a member of
B1.R1, B2.R2, . . . , andBk.Rk, then it is also a mem-
ber ofA.R. The attribute-based reading of this creden-
tial is: A believes that anyone who has all the attributes
B1.R1, . . . , Bk.Rk also has the attributeR.

A variable that appears in anRT1 credential can be either
named or anonymous. Anamed variabletakes the form of
a question mark “?” followed by an alpha-numeric string.
If a variable appears only once in a credential, it does not
need to have a name and can be anonymous. Ananony-
mous variableis represented by the question mark alone.
Note that two different appearances of “?” in a credential
represent two distinct variables. When a variable occurs as
a parameter to a role name, it is implicitly assigned to have
the type of that parameter.

A variable may optionally have one or more constraints
following its name, separated by a colon. Each constraint
is given by a static value set from which possible values of

2In [20], an intersection can also contain entities or linked roles. The
restriction here does not change expressive power: one can always add
additional intermediate roles.

the variable can be drawn. The syntax of static value sets is
introduced in section 3.2.

We now introduce the notion ofwell-formed credentials.
In anyRT system, a credential that is not well-formed is ig-
nored. AnRT1 credential iswell-formedif all named vari-
ables are well-typed and safe. A named variable iswell-
typedif it has the same type across all appearances in one
credential. Two types are the same if they have the same
name. A variable issafeif it appears in the body. As will
be seen in section 3.3, this safety requirement ensures that
RT1 credentials can be translated into safe Datalog rules,
thus help ensures tractability ofRT1.

Example 2 A company Alpha allows the manager of an
employee to evaluate an employee.

Alpha.evaluatorOf(?Y)←−Alpha.managerOf(?Y)
This policy cannot be expressed inRT0.

3.2 Data types inRT1

RT1 has the following data types.

• Integer types. An integer type is ordered. When
declaring an integer type, one can restrict its values
by optionally specifying four facets: amin (default is
−∞), amax (default is∞), a steps (default is1), and
a base valuet (default is0). The legal values of this
type include all integer valuev’s such thatv = t + ks
for some integerk and thatmin ≤ v ≤ max.

• Closed enumeration types. The declaration of a
closed enumeration type declares it as either ordered
or unordered, and lists the allowed values of this type.
An ordered type has a corresponding integer type; the
default is [1..n] for a type ofn elements. The cor-
responding type can also be explicitly specified. The
boolean type is a predefined unordered closed enumer-
ation type.

• Open enumeration types. An open enumeration type
is unordered. The allowed values of an open enumera-
tion type are not given statically; instead, each constant
that appears in a place that requires this type is a value
of this type. The entity type is a predefined open enu-
meration type.

• Float types. A float type is ordered. Defining a float
type is very similar to defining an integer type. One
can optionally specify the four facets, but these facets
now take float values: amin (default is−∞), amax
(default is∞), a steps (default is1.0), and a typical
value t (default is0.0). The legal values of this type
include all valuesv’s such thatv = t + ks for some
integerk and thatmin ≤ v ≤ max.

7



• Date and time types. There are predefined types for
date, time,etc.These types are ordered.

For each type, one can writestatic value sets, which can
be used to constrain variables in credentials. A value set
is said to be static if the values in it do not depend on cre-
dentials. By contrast, a role can be viewed as a dynamic
value set of the entity type. A static value set of an ordered
type τ is represented by a set of non-intersecting ranges
{l1..u1, l2..u2, . . . , ln..un}, whereli’s andui’s are values
of τ . Whenli = ui, it can be written as justli. A static
value set for an unordered type takes the form{v1, . . . , vn},
where vi’s are constants of this type. Note that testing
whether a constant is in a static value set takes time at most
linear in the representation size of the value set.

Example 3 A University StateU gives special privileges to
graduates from the first four years of its operation, no matter
which degree was conferred.

StateU.foundingAlumni ←−
StateU.diploma(?, ?Year:[1955..1958])

Here,diploma is a role identifier that takes two parameters,
a degree and a year, and “?” is an anonymous variable.

3.3 Translation to logic rules and tractability

We now define a translation from eachRT1 credential to
a logical rule. This translation serves both as a definition
of the semantics and also as one possible implementation
mechanism. In the output language, we use a special binary
predicateisMember , which takes an entity and a role as ar-
guments. We also use domain predicates: for each static
value setV , a unary predicatepV is introduced, in which
pV (v) is true for each valuev ∈ V . These domain pred-
icates are used for translating constraints on variables into
logical atoms. Credentials are translated as follows:

1. FromA.R←−D to

isMember(D,A.R).

A.R can be viewed as a shorthand forrole(A,R).

2. FromA.R←−B.R1 to

isMember(?z,A.R)←−
isMember(?z,B.R1),
[conditions].

In the above,?z is a variable, which we callthe implicit
variable.

The optionalconditions part comes from the con-
straints on variables. For each static value setV used
as a constraint on a variable?x in the credential, the
conditions part includes a logical atompV (?x), which
we call anarithmetic atom. We call each logical atom
of isMember a relational atom.

In the rest of the paper, we often omit the optional
conditions part in translation formulas. Remember
that they need to be added when there are constraints
on variables.

3. FromA.R←−A.R1.R2 to

isMember(?z,A.R)←−
isMember(?x,A.R1),
isMember(?z, ?x.R2).

Recall that the keyword “this” can be used as a data
term in R1. Each appearance of “this” is translated
to the implicit variable?z. See example 4 for use of
this.

4. FromA.R←−B1.R1 ∩B2.R2 ∩ · · · ∩Bk.Rk to
isMember(?z,A.R)←−

isMember(?z,B1.R1),
· · · ,
isMember(?z,Bk.Rk).

Local access control policies take the same form as cre-
dentials. Recall that inRT , permissions are also repre-
sented as roles. When an entityD submits a requestreq , and
this request is governed by the roleA.R, the request should
be authorized ifisMember(D,A.R) is provable from sup-
porting credentials and policies. See [20] for work on col-
lecting credentials when they are stored in a distributed
fashion.

Example 4 As part of its annual review process, Alpha
gives a pay raise to an employee if someone authorized to
evaluate the employee says that his performance was good.

Alpha.payRaise ←−
Alpha.evaluatorOf(this).goodPerformance

Rules resulting from the above translation can be
straightforwardly translated into Datalog by translating

isMember(?z,A.r(h1, . . . , hn))
into

member(A, r, h1, . . . , hn, ?z).

Given a set ofRT1 credentialsC, let Trans(C) be the
Datalog program resulting from the translation. Theim-
plicationsof C, defined as the set of membership relation-
ships implied byC, is determined by the minimal model of
Trans(C). In the following, we show thatRT1 is tractable.

Proposition 1 Given a setC of RT1 credentials, assuming
that each credential inC has at mostv variables and that
each role name has at mostp arguments, then computing the
implications ofC can be done in timeO(MNv+2), where
N = max(N0, pN0), N0 is the number of credentials inC,
andM is the size ofC.

8



Proof. An obvious evaluation algorithm is as follows. First
computeTrans(C). Then compute all ground instances
of the resulting rules obtained by substituting variables by
matching-type constants. The arithmetic atoms generated
by constraints are evaluated during the instantiation process,
and ground rules are thrown away if these constraints are
not satisfied. Finally compute the model of the remaining
set of ground rules. Since computing the minimal model of
a set of ground Horn clauses can be done in linear time [9],
the total time this process takes is linear in the size of the
resulting ground program.

Consider the translation of one credentialcred , let
Trans(cred) be the resulting rule.Trans(cred) has up tov
variables coming fromcred and up to2 variables introduced
during the translation. For the variables fromcred , the in-
stantiation process considers only the (at mostpN0) con-
stants that appear as parameters to role names in the heads
of credentials inC because only these constants can appear
as theci’s in a ground atommember(A, r, c1, . . . , cq, D) in
the minimal model ofTrans(C). This follows because each
variable in the head of a credential must also appear in the
body. If cred is a type-2, 3, or 4 credential,Trans(cred)
also has an implicit variable?z; to instantiate?z, only the
(at mostN0) entities that appear on the right-hand sides of
type-1 credentials inC need to be considered. Ifcred is a
type-3 credential, then in addition to?z, Trans(cred) also
has another variable?x, which is instantiated only to the (at
mostN0) entities that appear as the issuers of credentials in
C.

Therefore, the number of variables per rule is at most
v + 2 after the translation, and there areO(N =
max(N0, pN0)) ways to instantiate each variable. For each
rule, there areO(Nv+2) ways to instantiate it, and so the
size of the ground program isO(MNv+2).

We argue that the variable boundv is typically bounded
by 2p, wherep is the maximum arity of all role names in
a vocabulary. A type-1 credential has no variable; a type-2
credential has at mostp variables (because each variable in
the head also appears in the body); a type-3 credential has
at most2p variables; and a type-4 credential has at mostkp
variables. The boundkp is reached when each of the in-
tersecting roles contains an almost completely different set
of variables,3 which is rarely the case in practical policies.
Also note that if one makes the restriction that each type-4
credential can have only2 roles in the body, then the number
of variables is bounded by2p.

3When the roles of an intersection can be partitioned into collections
containing disjoint sets of variables, the credential can be broken up into
several credentials with fewer variables per rule. However some intersec-
tions containing lots of variables cannot be broken up. An extreme case has
p2 variables arranged in ap× p matrix and2p atoms, each atom contains
a row or a column of the matrix. See [13] and the references in it for study
on tractability of conjunctive queries.

Given a set of credentialsC, the time to answer a sin-
gle request is clearly bounded by the time to compute all
the implications ofC, which is polynomial is the size of
C. A trivial algorithm is to first compute the minimal
model ofTrans(C) and check whether the request is true
in the model. However, there are efficient ways to answer
a query without computing the minimal model first. There
has been extensive work in logic programming and deduc-
tive databases on how to answer queries more efficiently,
e.g., [22, 25].

In systems where the requester presents credentials to
prove authorization, one might be concerned about the com-
plexity of searching for conclusions of those credentials,
and potential denial-of-service attacks. To combat this, the
requester can be required to present a credential chain that is
organized into a proof of authorization, where proof check-
ing can be performed linearly.

4 RT2: Describing Logical Rights

RT2 adds toRT1 the notion ofo-sets, which are used
to group logically related objects such as resources, access
modes,etc.An o-set is formed by an entity followed by an
o-set name, separated by a dot. An o-set name is formed by
applying ano-set identifier(o-set id for short) to a tuple of
data terms. An o-set id has a base typeτ . O-set names and
o-sets formed using an o-set id have the same base type as
the o-set id. The value of an o-set is a set of values inτ .

An o-set-definition credential is similar to a role-
definition credential. The head takes the form
A.o(h1, . . . , hn), in which o(h1, . . . , hn) is an o-set
name of base typeτ . The body can be a value of base
type τ , another o-setB.o1(s1, . . . , sm) of base typeτ ,
a linked o-setA.r1(t1, . . . , t`).o1(s1, . . . , sm), in which
r1(t1, . . . , t`) is a role name ando1(s1, . . . , sm) is an o-set
name of base typeτ , or an intersection ofk o-sets of the
base typeτ .

A credential inRT2 is either a role-definition creden-
tial or an o-set-definition credential. Credentials inRT2 are
more general that those inRT1 in the following two aspects.

• A variable of typeτ can be constrained by dynamic
value sets of base typeτ , i.e., roles or o-sets.

• The safety requirement on variables is relaxed. A vari-
able is safe if a) it appears in a role name or an o-set
name that appears in the body of the credential; or, b)
it is constrained by an o-set or a role; or c) it appears
in a role or o-set that constrains a variable. As will be
seen in section 4.1, this relaxed requirement suffices to
guarantee tractability.

RT2’s extensions enable the following examples, which are
not expressible inRT1.

9



Example 5 Alpha allows members of a project team to
read documents of this project:

Alpha.fileAc(read,?F:Alpha.documents(?proj))
←−Alpha.team(?proj)

The variable?proj is safe because it appears in the body,
and the variable?F is safe because it is constrained by an
o-set.

Given “Alpha.documents(proj1) ←− fileA” and
“Alpha.team(proj1) ←− Bob”, one can conclude that
“Alpha.fileAc(read, fileA) ←− Bob”.

Example 6 Alpha allows the manager of the owner of a file
to access that file:

Alpha.read(?F)←−
Alpha.manager(?E:Alpha.owner(?F))

The variable?E is safe because it appears in the body, and
the variable?F is safe because it appears in a role that con-
strains the variable?E.

Given “Alpha.owner(file1) ←− userB” and
“Alpha.manager(userB) ←− userC”, one can conclude
that “Alpha.read(file1) ←− userC”.

4.1 Translation to logic rules

An o-set-definition credential is translated into a logic
rule in exactly the same way as a role-definition credential.
We only need to extend the predicateisMember to take o-
sets and values of other types as arguments. For each con-
straint in which a variable?x is constrained byA.O, add
isMember(?x, A.O) to the body of the rule.

Proposition 2 RT2 has the same computational complexity
as RT1. Given a setC of RT2 credentials, computing the
implications ofC can be done in timeO(MNv+2).

Proof. Because each constraint using a role or an o-set is
translated into a relational atom in the body, the relaxed
variable safety requirement suffices to guarantee that each
variable in a rule appears in a relational atom in the body.

For any variable constrained by a role or an o-set, only
the (at mostN0) same-type constants appearing on the right-
hand-side of some type-1 credentials need to be used to in-
stantiate the variable. The rest follows from the proof of
Proposition 1.

Note that anRT2 rule can contain more variables than an
RT1 rule due to the use of o-sets and roles as constraints.

5 RT T : Supporting Threshold and
Separation-of-Duty Policies

One can express simple threshold structures by using in-
tersections. For example, the policy thatA says that an en-
tity has the attributeR if two out of B1, B2, B3 say so can

be represented by three credentialsA.R←−B1.R ∩ B2.R,
A.R←−B2.R ∩ B3.R, andA.R←−B3.R ∩ B1.R. How-
ever, using intersections alone cannot express the policy that
A says that an entity has attributeR if two different enti-
ties having attributeR1 says so. Another potentially im-
portant policy allows something to happen if one entity of
role A.R1 and a different entity of roleA.R2 both request
it. This is a common separation-of-duty policy; it cannot be
expressed by the threshold structures in Delegation Logic or
other previous trust-management systems.

To express policies like these, we introduceRTT . In-
stead of introducing an operator just for thresholds, we
introduce two more basic and more expressive operators.
These can be used to implement threshold, separation of
duty, and other policies.

More specifically,RTT adds the notion ofmanifold
roles, which generalizes the notion of roles. In contrast, we
call the roles inRTi single-element roles. A manifold role
has a value that is a set of what we callentity collections. An
entity collection is either an entity, which can be viewed as
a singleton set, or a set of two or more entities. This allows
us to view a single-element role as a special-case manifold
role whose value is a set of singletons. In the rest of this pa-
per, we extend the notion ofroles to include both manifold
roles and single-element roles, and we continue to useR to
denote role name of this generalized notion of roles.RTT

introduces two new types of credentials:

• Type-5: A.R←−B1.R1 � · · · �Bk.Rk

In which R and the Ri’s are (single-element or
manifold) role names. This credential means:

members(A.R) ⊇ members(B1.R1 � · · · �Bk.Rk) =
{s1 ∪ · · · ∪ sk | si ∈ members(Bi.Ri) for 1 ≤ i ≤ k}.
Here, whensi is an individual entity, say,D, it is
implicitly converted to the singleton{D}.

• Type-6: A.R←−B1.R1 ⊗ · · · ⊗Bk.Rk

This credential means:

members(A.R) ⊇ members(B1.R1 ⊗ · · · ⊗Bk.Rk) =
{s1 ∪ · · · ∪ sk | (si ∈ members(Bi.Ri) & si ∩ sj =
∅) for 1 ≤ i 6= j ≤ k}

Example 7 A says that an entity has attributeR if one
member ofA.R1 and two different members ofA.R2

all say so. This can be represented using the following
credentials:

A.R3←−A.R2 ⊗A.R2, A.R4←−A.R1 �A.R3,
A.R←−A.R4.R.

Suppose that in addition one has the following credentials:

A.R1←−B, A.R1←−E,
A.R2←−B, A.R2←−C, A.R2←−D.

Then one can conclude the following:

10



members(A.R1) ⊇ {B,E}
members(A.R2) ⊇ {B,C,D}
members(A.R3) ⊇ {{B,C}, {B,D}, {C,D}},
members(A.R4) ⊇ {{B,C}, {B,D}, {B,C,D},

{B,C,E}, {B,D,E}, {C,D,E}}.
Now suppose one further has the following credentials:

B.R←−B, B.R←−C,
C.R←−C, C.R←−D, C.R←−E,
D.R←−D, D.R←−E,
E.R←−E.

Then one can conclude thatmembers(A.R) ⊇ {C,E},
but one cannot concludemembers(A.R) ⊇ {B} or
members(A.R) ⊇ {D}.

As noted in section 2.6, the⊗ operator can be used to
enforce separation of duty (SoD) without requiring mutual
exclusion of roles. See section 6.2 for additional examples
of SoD.

In RTT , type 1 through 4 credentials are also generalized
in that a manifold role name can appear where a role name
is allowed, except when as a constraint to a variable.

Each role identifier has asize. The size of a manifold
role id should be specified when the role id is declared in
an ADSD. A single-element role id always has size one. A
role namer(t1, . . . , th) has the same size asr, and we have
size(A.R) = size(R). This size of a role limits the max-
imum size of each of its member entity set. For example,
if size(A.R) = 2, thenmembers(A.R) can never contain
{B1, B2, B3}.

For anRTT role-definition credential to be well-formed,
it has to satisfy the additional requirement that the size of its
head is always greater than or equal to the size of its body.
And the size of its body is defined as follows:

size(D) = 1
size(A.R1.R2) = size(R2)
size(B1.R1 ∩ · · · ∩Bk.Rk) = maxi=1..k size(Ri)
size(B1.R1 � · · · �Bk.Rk) =

∑
i=1..k size(Ri)

size(B1.R1 ⊗ · · · ⊗Bk.Rk) =
∑

i=1..k size(Ri)

5.1 Translation into logic rules

We extend the predicateisMember in the output lan-
guage to allow the first argument to be an entity collec-
tion, and to allow the second argument to be a manifold
role as well as a single-element role. Lett be the maxi-
mum size of all manifold roles in the system, we also intro-
duce2(t − 1) new predicatessetk andnisetk for k = 2..t.
Eachsetk takesk + 1 entity collections as arguments, and
setk(s, s1, . . . , sk) is true if and only ifs = s1 ∪ · · · ∪
sk; where whensi is an entity, it is treated as a single-
element set. Eachnisetk is similar to setk, except that
nisetk(s, s1, . . . , sk) is true if and only ifs = s1 ∪ · · · ∪ sk

and for any1 ≤ i 6= j ≤ k, si ∩ sj = ∅.

The translation for type 1, 2, and 4 credentials is the same
as that in section 3.3. The other three types are translated as
follows:

• FromA.R←−A.R1.R2,
whensize(R1) = 1, to

isMember(?z,A.R)←−
isMember(?x,A.R1),
isMember(?z, ?x.R2).

whensize(R1) = k > 1, to

isMember(?z,A.R)←−
isMember(?x, A.R1),
isMember(?z, ?x1.R2),
· · · ,
isMember(?z, ?xk.R2),
setk(?x, ?x1, . . . , ?xk).

• FromA.R←−B1.R1 � · · · �Bk.Rk to

isMember(?z,A.R)←−
isMember(?z1, B1.R1),
· · · ,
isMember(?zk, Bk.Rk),
setk(?z, ?z1, . . . , ?zk).

• FromA.R←−B1.R1 ⊗ · · · ⊗Bk.Rk to

isMember(?z,A.R)←−
isMember(?z1, B1.R1),
· · · ,
isMember(?zk, Bk.Rk),
nisetk(?z, ?z1, . . . , ?zk).

It is easy to see that this translation is an extension to
that in section 3.3. When a credential contains no manifold
roles, the resulting rule is the same.

Proposition 3 Given a setC ofRTT credentials, lett be the
maximal size of all roles inC. Computing the implications
of C can be done in timeO(MNv+2t).

Proof. The resulting rules have atoms like
setk(z, z1, . . . , zk) in the body; these atoms are eval-
uated and removed during the grounding process, similar
to arithmetic atoms generated from constraints. Consider
a rule translated from a type-5 credentialcred , the trans-
lation introduces new variables?z, ?z1, . . . , ?zk. When
the values of variables?z1, . . . , ?zk are fixed, the value
of ?z is uniquely determined bysetk(?z, ?z1, . . . , ?zk).
Given N entities, there areO(Ns) entity collections
of size ≤ s. And so for eachi = 1..k, there are
O(Nsize(Ri)) ways to instantiate?zi. Therefore, there are
O(Nsize(R1)+···+size(Rk)) = O(Nsize(R)) = O(N t) ways
to instantiate?z1, . . . , ?zk. The variables coming from
cred (there are at mostv of them) can be instantiated in
O(Nv) ways. So all together, the rule can be instantiated

11



in O(Nv+t) ways. Similar arguments apply to type-6
credentials.

Consider a rule translated from a type-3 credential, the
translation introduces variables?z, ?x, ?x1, . . . , ?xk. For
each of?x1, . . . , ?xk, only theO(N) entities that are is-
suers of credentials inC need to be considered. And
when?x1, . . . , ?xk are fixed,?x is uniquely determined by
setk(?x, ?x1, . . . , ?xk). Sincek = size(R1) ≤ t, there are
O(N t) ways to instantiate?x, ?x1, . . . , ?xk. And there are
O(Nsize(R2)) = O(N t) ways to instantiatez. So all to-
gether, a type-3 credential can be instantiated inO(Nv+2t)
ways.

It is not hard to see that a type-1 credential can be instan-
tiated inO(Nv) ways; a type-2 or type-4 credential can be
instantiated inO(Nv+t) ways; and so the complexity result
follows.

6 RTD: Supporting Delegation of Role Acti-
vations

As discussed in section 2.7,RTD has the notion of del-
egation of role activations, which can be used to express
user-to-session and process-to-process delegation of capac-
ity. For example, that an entityD activates the roleA.R
to use in a sessionB0 can be represented by adelegation

credential, “D
D asA.R−−−−−−→ B0”. We call “D asA.R” a role

activation.B0 can further delegate this role activation toB1

by issuing the credential, “B0
D asA.R−−−−−−→ B1”. An entity

can issue multiple delegation credentials to another entity.
Also, several role activations can be delegated in one dele-
gation credential. This is viewed as a shorthand for multiple
delegation credentials.

A delegation credential can also contains a keyword

“all”. For example, “B0
all−−→ B1” means thatB0 is del-

egating all role activations it has toB1; and “B0
D asall−−−−−→

B1” means thatB0 is delegating toB1 those ofB0’s role
activations in whichD is activating the roles.

A request in RTD is represented by a delegation
credential that delegates from the requester to the re-
quest. For example, thatB1 requests to readfileA
in the capacity of “D as A.R” can be represented by:

B1
D asA.R−−−−−−→ fileAccess(read, fileA). Note that

fileAccess(read, fileA) is not an entity. This delega-
tion should be interpreted as being fromB1 to a dummy en-
tity representing the requestfileAccess(read, fileA).
An RTD system assigns a unique dummy entity to each
request. ThatB1 is making the requestreq using all its ca-

pacities is represented byB1
all−−→ req.

Delegation of role activations is delegation of the capac-
ity to act in a role. It is a different kind of delegation from
delegation of authority to define a role, as in a role-definition

credential “A.R←− B.R”. These differences will be fur-
ther discussed in the following section.

6.1 Translation to logic rules

Now, let us consider what credentials (both definition
credentials and delegation credentials, which include re-
quests) mean inRTD. Again, we do this by present-
ing a translation to logic rules. We introduce the predi-
cateforRole. An logical atomforRole(B,D,A.R) reads
B is acting for “D as A.R”; it means thatB is acting
for the role activation in whichD activatesA.R. The
atom forRole(B,D,A.R) is true whenD is a member
of A.R and D delegates this role activation through a
chain toB. Note thatD has to be a member ofA.R for
forRole(B,D,A.R) to be true. ThatD is a member ofA.R
is equivalent toforRole(D,D,A.R).

Being delegated the capacity to act in a role is strictly
weaker than being a member of the role. The former is
represented byforRole(B, ?y, A.R) and the latter is rep-
resented byforRole(B,B,A.R). This difference is most
clearly shown in the translation of type-3 credentials below.

The translation described below subsumes the transla-
tions in section 5.1 for role definition credentials. Trans-
lation for O-set definition credentials remain unchanged.

• A delegation credentialB1
D asA.R−−−−−−→ B2 is translated

to:

forRole(B2, D, A.R)←−
forRole(B1, D,A.R).

This rule means thatB2 is acting for “D asA.R” if
B1 is doing so. Note thatD is the source of the capac-
ity to act in the roleA.R, and the entityD is always
explicitly maintained during the inferencing.

• A delegation credentialB1
D asall−−−−−→ B2 is translated

to:

forRole(B2, D, ?r)←−
forRole(B1, D, ?r).

This rule means that ifB1 is acting for D activating a
role (any role), thenB2 is doing so as well.

• A delegation credentialB1
all−−→ B2 is translated to:

forRole(B2, ?y, ?r)←−
forRole(B1, ?y, ?r).

This rule means that ifB1 is acting for an entity (any
entity) activating a role (any role), thenB2 is also do-
ing so. This is a delegation of all capacities.

• A request is translated the same way as a delegation
credential; the request is replaced by the dummy entity

corresponding to it. For example,B
D asall−−−−−→ req is

12



translated to:

forRole(ReqID , D, ?r)←−
forRole(B,D, ?r).

Here,ReqID is the dummy entity for the requestreq .

If a requestreq is governed by the roleA.R, and
ReqID is the dummy entity forreq , then the request
req is authorized ifforRole(reqID , ?y, A.R) is true.
Note that the above authorization query has a variable
?y. This means that on whose behalf this request is
issued does not affect whether the request should be
authorized. However, this variable will be instantiated
by the authorizing chain, and the resulting information
can be used in auditing. So, while delegation is not di-
rectly controlled, it can be regulated through auditing
mechanisms.

• FromA.R←−D to

forRole(D,D,A.R).

This rule means thatD is acting for itself asA.R, i.e.,
D is a member ofA.R.

• FromA.R←−B.R1 to

forRole(?z, ?y, A.R)←−
forRole(?z, ?y, B.R1).

This rule means that anyone who is acting for “?y
as B.R1” is also acting for “?y as A.R”, i.e., acti-
vatingB.R1 implies activatingA.R becauseB.R1 is
more powerful thanA.R. Note that this rule subsumes
forRole(?z, ?z,A.R) ←− forRole(?z, ?z,B.R1),
which means that any member ofB.R1 is also a mem-
ber ofA.R.

• FromA.R←−A.R1.R2,

whensize(R1) = 1, to

forRole(?z, ?y, A.R)←−
forRole(?x, ?x, A.R1),
forRole(?z, ?y, ?x.R2).

This rule means that when?x is a member ofA.R1,
activatingB.R2 implies activatingA.R. Note that?x
has to be a member ofA.R1; it is insufficient if ?x is
just delegated the capacity to act in the roleA.R1. This
is because the credentialA.R ←− A.R1.R2 implies
A.R←−B.R2 only whenB is a member ofA.R1.

whensize(R1) = k > 1, to

forRole(?z, ?y, A.R)←−
forRole(?x, ?x, A.R1),
forRole(?z, ?y, ?x1.R2),
· · · ,
forRole(?z, ?y, ?xk.R2),
setk(?x, ?x1, . . . , ?xk).

When an entity is a member of a role, it implicitly has
the capacity to act in the role. However, the converse
does not hold. In particular, when one is delegated the
capacity to act to in a role, although one can access
resources by using this capacity, one cannot use this
capacity to affect the meanings of the definition cre-
dentials it issued. Role memberships are determined
only by definition credentials and are not affected by
delegation credentials. Thus, delegated capacity pro-
vides no additional authority to define roles.

• FromA.R←−B1.R1 ∩ · · · ∩Bk.Rk to

forRole(?z, ?y, A.R)←−
forRole(?z, ?y, B1.R1),
· · · ,
forRole(?z, ?y, Bk.Rk).

• FromA.R←−B1.R1 � · · · �Bk.Rk to

forRole(?z, ?y, A.R)←−
forRole(?z, ?y1, B1.R1),
· · · ,
forRole(?z, ?yk, Bk.Rk),
setk(?y, ?y1, . . . , ?yk).

• FromA.R←−B1.R1 ⊗ · · · ⊗Bk.Rk to

forRole(?z, ?y, A.R)←−
forRole(?z, ?y1, B1.R1),
· · · ,
forRole(?z, ?yk, Bk.Rk),
niset(?y, ?y1, . . . , ?yk).

In addition to being strictly weaker, delegation of role ac-
tivations is also intended to be different from delegation of
authority in that it is more dynamic, in the following sense.
First, delegation credentials are not stored in a distributed
fashion and searched as are definition credentials. Instead,
each entity keeps the chain of delegation credentials ending
at itself, and passes this chain when delegating to other en-
tities. Second, delegation credentials typically accompany
a request (which itself is represented by a delegation cre-
dential) and are processed and used when processing the re-
quest. As a contrast, definition credentials are often prepro-
cessed and stored. Third, delegation credentials typically
have a shorter valid life time than definition credentials.

Proposition 4 AddingRTD adds a factor ofO(N) to the
complexity.

Proof. For the rules resulting from definition credentials,
there is an additional variable of type entity per rule. This
adds an additionalO(N) factor.

We need to be careful when instantiating rules re-
sulting from delegation credentials that involve the key-

word all. For example,B1
all−−→ B2 is translated to

13



“ forRole(B2, ?y, ?r)←− forRole(B1, ?y, ?r)”. Rules that
have the variable?r should be instantiated last. We now
show that they do not increase the complexity bound.

Consider how many ways one can instantiate the clause
“ forRole(B2, ?y, ?r) ←− forRole(B1, ?y, ?r),” which is
the most expensive kind of clauses resulting from delegation
credentials. Suppose that we are not usingRTT . The vari-
able?y needs to be instantiated withO(N) entities, and?r
needs to be instantiated with the roles that appear in the head
of some ground rules, for which there are at mostO(Nv+1).
So the clause needs to be instantiated inO(Nv+2) ways,
which is the same as that of clauses resulting from type-3
credentials. When we are usingRTT , then?y can be in-
stantiated inO(N t) ways, wheret is the maximum size of
all roles, and the number of ways to instantiate?r is still
O(Nv+1), and so the total number of ways to instantiate is
O(Nv+1+t) = O(Nv+2t).

6.2 Examples usingRTDT
1

Example 8 In a small organizationSOrg, any purchasing
order has to be submitted and approved before it is placed.
Any employee can submit a purchasing order. A manager
can approve an order. A manager is also an employee; how-
ever, a manager cannot approve his own order. This can be
represented as follows:

SOrg.place ←−SOrg.submit ⊗ SOrg.approve
SOrg.submit ←− SOrg.employee
SOrg.approve ←− SOrg.manager
SOrg.employee ←− SOrg.manager

Suppose that bothAlice andBob and managers:
SOrg.manager ←− Alice
SOrg.manager ←− Bob

Alice can submit an order by issuing:

Alice
Alice as SOrg.employee−−−−−−−−−−−−−−−−−→ order(orderID)

And Bob can approve it by issuing:

Bob
Bob as SOrg.approve−−−−−−−−−−−−−−→ order(orderID)

Then one can prove that

forRole(ReqID, {Alice, Bob}, SOrg.place),
where ReqID is the dummy principal representing
order(orderID).

If Bob does not issue the above approval andAlice ap-
proves the order by also issuing:

Alice
Alice as SOrg.approve−−−−−−−−−−−−−−−−→ order(orderID)

One still cannot prove that

forRole(ReqID, {Alice, Bob}, SOrg.place).

Now consider another example, which is from [1]. It
is not exactly the same, because the logic in [1] (which we
will call the ABLP logic) has both groups and roles and uses

roles differently. However, it captures the intended scenar-
ios and policies. This example is expressed inRT straight-
forwardly.

Example 9 A serverS authorizesfileA to be deleted if it
is requested from a good workstation on behalf of a user.S
knows thatalice is a user and trustsCA in certifying public
keys for users.S knows thatws1 is a good workstation and
trustsCA in certifying public keys for workstations. These
are expressed in the following credentials:

S.del(fileA) ←− S.user ⊗ S.goodWS
S.user ←− CA.userCert(alice)
S.goodWS ←− CA.machineCert(ws1)

The following are credentials issued byCA:

CA.userCert(alice) ←− K alice
CA.machineCert(ws1) ←− K ws1

In the setting studied in [1], a work station stores its private
key in tamper-resistant firmware. When it boots, it gener-
ates a key pair for the operating system and issues a cre-
dential to delegate the activation ofS.goodWS to the new
key. When the useralice logs into a workstationws1, a
new processp1 is set up and a new key pair is generated.
Throughp1, alice then makes a request to the serverS to
deletefileA. The processp1 sets up a secure channelCh to
the server, and then sends the request through the channel.
The following are delegation credentials that are needed.

K ws1
K ws1 as S.goodWS−−−−−−−−−−−−−→ K os1

K os1
K ws1 as S.goodWS−−−−−−−−−−−−−→ K p1

K alice
K alice as S.user−−−−−−−−−−−−−→ K p1

K p1
K ws1 as S.goodWS, K alice as S.user−−−−−−−−−−−−−−−−−−−−−−−−−−−→ K Ch

The request sent byK Ch to deletefileA on behalf of
user alice working on a good workstation is represented as:

K Ch
K ws1 as S.goodWS, K alice as S.user−−−−−−−−−−−−−−−−−−−−−−−−−−−→ del(fileA).

And this request should be authorized.

7 Discussions, Future, and Related Work

We have implemented and usedRT0, and we are in
the process of implementing other components of theRT
framework. TheRT0 inference engine is implemented in
Java, using algorithms described in [20]. We have con-
structed two demonstration applications usingRT0, a dis-
tributed scheduling (calendar) system and a web-based file
sharing system. They are implemented by translating poli-
cies from a user interface intoRT0. Policies in these two
applications often require features outside ofRT0. These
needs drove the development of the features reported in this
paper, as well as additional features discussed in section 7.2.
Currently, policies using features outsideRT0 are handled
by adding an ad-hoc layer on top ofRT0. We are in the

14



process of extending the algorithms in [20] to other, more
expressive, components in the framework and implement-
ing them. We will then use them to replace the ad-hoc layer.

In general, credentials may contain sensitive informa-
tion. To protect sensitive credentials while allowing them
to be used in a decentralized environment, ABAC can be
applied to credentials, as to any other resource. Trust can be
established between two entities in such a context through
an iterative process of revealing credentials to one another,
called a trust negotiation [27]. Concurrently with the de-
sign ofRT , we are developing a system for automated trust
negotiation that supportsRT . A design supportingRT0 is
presented in [26], where additional references to work in
this area can also be found.

7.1 Implementation

A straightforward approach to implement an inference
engine forRT is to use the translation process described in
this paper together with a Datalog inference engine. How-
ever, there are several drawbacks of this approach. First,
most Datalog or Prolog engines do not suit our needs. To
work with a large number of credentials stored in a dis-
tributed way, we require a goal-oriented (top down) infer-
ence engine. This rules out many deductive database imple-
mentations that use bottom-up evaluation algorithms. We
also require the inference engine to guarantee termination.
This rules out many Prolog engines, which run into infi-
nite loops with recursive rules. Second, the size of a full-
blown Datalog inference engine might be unacceptable for
some applications. For instance, XSB [14] is a system that
satisfies our goal-orientation and termination requirements.
In fact, one of the authors has used XSB previously while
working on Delegation Logic [17]. Unfortunately, even the
stripped down version of the XSB is several megabytes,
while the jar file of the currentRT0 engine is less than
40KB. Third, based on our experience, it is often hard to
integrate with a Datalog engine closely; and one has less
control than needed during the inference process. For exam-
ple, it might be hard to interleave credential collection with
inferencing steps, as needed for some applications. Last but
not least, we require support for functions and predicates
for application-defined data types. For these reasons, we are
developing direct algorithms, which can be implemented in
general programming languages.

We use XML to represent both ADSDs and credentials.
Credentials are digitally signed. We plan to address the re-
vocation issue by requiring that each credential have an is-
sue time and a validity period, similar to the approach sug-
gested in [18]. Delegation credentials should have short life
time and be renewed when needed. Definition credentials
can have verification mechanism descriptions. For exam-
ple, a verification mechanism might include an address for

finding a credential revocation list (CRL), or the address and
public key of an online certificate status verification server.

7.2 Future Work

In this paper, we have restricted our design to features
that can be implemented in safe Datalog. Several further
features that cannot be implemented in Datalog would also
be desirable, however. While non-monotonicity is typically
inappropriate for a de-centralized environment, certain non-
monotonic constraints may be useful and appropriate. For
example, mutual exclusion among roles that can be acti-
vated at the same time (also known as dynamic separation
of duty) may be important to some organizations. Enforc-
ing this policy requires complete information only about
which roles are being activated, which can be expected to
be available when processing access requests. A second
desirable feature would enable authorization to depend on
state information, such as history or environment data. For
instance, history information is needed to implement the
Chinese Wall policy [6]. Policies representing such poli-
cies often result in unsafe Datalog rules. We plan to ad-
dress this by distinguishing a class of request-processing
rules that are used only in connection with a specific re-
quest. When the request is made, it supplies values for all
variables in the request-processing rule that might otherwise
be unsafe. Yet another desirable feature is to be able to rep-
resent unbounded, structured resources, such as directory
hierarchies. Handling these requires going beyond Datalog.
We plan to address this by using Datalog with constraints
to replace Datalog as the underlying foundation. Ongoing
work on such extensions will be reported in near future.

7.3 Related Work

In section 1, we discussed the limitations of capability-
style systems such as KeyNote and SPKI 1.0 and argued
that the trust-management systems SPKI/SDSI [8, 10],
KeyNote [2], and TPL [15] cannot express the five require-
ments for attribute-based access control. Here, we give ad-
ditional comparisons ofRT with related work.

RT unifies RBAC and trust-management concepts; it
thus differs from previous TM systems in that it uses roles
as a central notion. One advantage of this is the ability to
allow selective role activation and delegation of these acti-
vations. This supports using partial authority in a request,
which no previous TM systems support. In addition, the
two role product operators inRTD are more expressive than
threshold structures in existing trust management systems.

The SDSI part of SPKI/SDSI is equivalent toRT0 mi-
nus type-4 credentials (intersection). The SPKI part of
SPKI/SDSI is a capability-style system. SPKI/SDSI is

15



roughly equivalent toRT1 with no variables, but it has one
compound data type for tags.

KeyNote [2] is a capability-style system simi-
lar to SPKI. A KeyNote credential is similar to an
RT credential of the form: “A.r(h1, . . . , hn) ←−
B.r(h1, . . . , hn), conditions”, where conditions are
boolean expressions onh1, . . . , hn. However, KeyNote
allows conditions to contain operators like regular ex-
pression matching. This is fairly expressive, but has the
disadvantage of being nondeclarative.

As we discussed in section 1, DL does not have the ab-
straction of subjects. On the other hand, DL has integer
delegation depth and allows query of delegations; these are
not allowed in RT.RT0,1,2 can be viewed as syntactically
sugared version of a subset of DL.

Our treatment of RTD uses role activations like
“D asA.R” and atoms like forRole(B,D,A.R). The
ABLP logic [1] also has “as”, which it uses for restrict-
ing privileges. There, “D asR” has less privilege than
D; furthermore, “D1 asR” and “D2 asR” may have dif-
ferent privileges. InRT , the use of roles follows that in
RBAC, and “as” is interpreted as activating roles. InRT ,
“D1 asA.R” has the same privilege as “D2 asA.R”. The
difference betweenD1 and D2 becomes significant only
when the role product operator⊗ is involved and/or au-
diting is desired. The ABLP logic also has an operator
“for”, which can be encoded using a quoting operator|,
and there is also a conjunction operator∧. The logic al-
lows one to write arbitrarily long and complex principal
expressions using these operators. The combination of∧
and | makes the ABLP logic intractable, even though it
does not support localized name space for roles or param-
eterized roles. InRT , ∧ is implicitly achieved by hav-
ing multiple credentials and manifold roles. The statement
forRole(B,D,A.R) in RTD can be roughly read as “B for
(D asA.R)”; and this is the only form of statementRTD

allows. Note that “B for B1 for D asA.R” can be achieved
by two delegation credentials fromD to B1 and then toB.
We do not distinguish between “B for B1 for D asA.R”
and “B for B2 for D asA.R”. They are achieved by differ-
ent credential chains; butB would have the same privilege
in both cases. This reduces computational complexity of
RT , makes it easier to understand, and still seems sufficient
to capture policy concepts motivating the ABLP logic.

8 Conclusions

We introduce theRT framework, a family of Role-
based Trust-management languages for representing poli-
cies and credentials in distributed authorization.RT com-
bines the strengths of role-based access control and trust-
management systems and is especially suitable for attribute-
based access control. We present four components of the

RT framework: RT1, RT2, RTT , andRTD. Together,
they have seven forms of credentials and support localized
authority of roles, delegation in role definition, linked roles,
parameterized roles, manifold roles, and delegation of role
activations. We also presented a translation fromRT cre-
dentials to Datalog rules, which both serves as a logic-based
semantics forRT and shows that the semantics is algorith-
mically tractable.

Acknowledgements

This work is supported by DARPA through SPAWAR
contracts N66001-01-C-8005 and N66001-00-C-8015 and
MURI grant N00014-97-1-0505 administrated by ONR.
Raghuram Sri Sivalanka made some helpful comments on
an earlier version of this paper. We also thank anonymous
reviewers for their helpful reports.

References

[1] Martı́n Abadi, Michael Burrows, Butler Lampson, and
Gordon Plotkin. A calculus for access control in dis-
tributed systems.Transactions on Programming Lan-
guages and Systems, 15(4):706–734, October 1993.

[2] Matt Blaze, Joan Feigenbaum, John Ioannidis,
and Angelos D. Keromytis. The KeyNote trust-
management system, version 2. IETF RFC 2704,
September 1999.

[3] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decen-
tralized trust management. InProceedings of the 1996
IEEE Symposium on Security and Privacy, pages 164–
173. IEEE Computer Society Press, May 1996.

[4] Piero Bonatti and Pierangela Samarati. Regulating ser-
vice access and information release on the web. In
Proceedings of the 7th ACM Conference on Computer
and Communications Security (CCS-7), pages 134–
143. ACM Press, November 2000.

[5] Tim Bray, Dave Hollander, and Andrew Layman.
Namespaces in XML. W3C Recommendation, Jan-
uary 1999.

[6] David F.C. Brewer and Michael J. Nash. The chi-
nese wall security policy. InProceedings of the 1989
IEEE Symposium on Security and Privacy, pages 206–
218, Los Alamitos, May 1989. IEEE Computer Soci-
ety Press.

[7] David D. Clark and David R. Wilson. A comparision
of commercial and military computer security poli-
cies. InProceedings of the 1987 IEEE Symposium on
Security and Privacy, pages 184–194. IEEE Computer
Society Press, May 1987.

16



[8] Dwaine Clarke, Jean-Emile Elien, Carl Ellison, Matt
Fredette, Alexander Morcos, and Ronald L. Rivest.
Certificate chain discovery in SPKI/SDSI.Journal of
Computer Security, 9(4):285–322, 2001.

[9] William F. Dowling and Jean H. Gallier. Linear-
time algorithms for testing the satisfiability of proposi-
tional horn formulae.Journal of Logic Programming,
1(3):267–284, 1984.

[10] Carl Ellison, Bill Frantz, Butler Lampson, Ron Rivest,
Brian Thomas, and Tatu Ylonen. SPKI certificate the-
ory. IETF RFC 2693, September 1999.

[11] Stephen Farrell and Russell Housley. An Internet at-
tribute certificate profile for authorization, 2001.

[12] Luigi Giuri and Pietro Iglio. Role templates for
content-based access control. InProceedings of the
Second ACM Workshop on Role-Based Access Control
(RBAC’97), pages 153–159, November 1997.

[13] Martin Groher, Thomas Schwentick, and Luc
Segoufin. When is the evaluation of conjunctive
queries tractable? InProceedings of the 33rd An-
nual Symposium on Theory of Computing (STOC’01),
pages 657–666, July 2001.

[14] The XSB Research Group. The XSB programming
system.http://xsb.sourceforge.net/.

[15] Amir Herzberg, Yosi Mass, Joris Mihaeli, Dalit Naor,
and Yiftach Ravid. Access control meets public key
infrastructure, or: Assigning roles to strangers. InPro-
ceedings of the 2000 IEEE Symposium on Security and
Privacy, pages 2–14. IEEE Computer Society Press,
May 2000.

[16] Trevor Jim. SD3: a trust management system with cer-
tificate evaluation. InProceedings of the 2001 IEEE
Symposium on Security and Privacy, pages 106–115.
IEEE Computer Society Press, May 2001.

[17] Ninghui Li. Delegation Logic: A Logic-based Ap-
proach to Distributed Authorization. PhD thesis, New
York University, September 2000.

[18] Ninghui Li and Joan Feigenbaum. Nonmonotonic-
ity, user interfaces, and risk assessment in certifi-
cate revocation (position paper). InProceedings of
the 5th Internation Conference on Financial Cryp-
tography (FC’01). To be published by Springer.
http://crypto.stanford.edu/˜ninghui/papers/fc01.pdf.

[19] Ninghui Li, Benjamin N. Grosof, and Joan Feigen-
baum. A practically implementable and tractable del-
egation logic. InProceedings of the 2000 IEEE Sym-
posium on Security and Privacy, pages 27–42. IEEE
Computer Society Press, May 2000.

[20] Ninghui Li, William H. Winsborough, and John C.
Mitchell. Distributed credential chain discovery in
trust management (extended abstract). InProceedings
of the Eighth ACM Conference on Computer and Com-
munications Security (CCS-8), pages 156–165. ACM
Press, November 2001.

[21] Emil Lupu and Morris Sloman. Reconciling role based
management and role based access control. InPro-
ceedings of the Second ACM Workshop on Role-Based
Access Control (RBAC’97), pages 135–141, Novem-
ber 1997.

[22] I. V. Ramakrishnan, Prasad Rao, Konstantinos Sago-
nas, Terrance Swift, and David S. Warren. Efficient
access mechanisms for tabled logic programs.Journal
of Logic Programming, 38(1):31–55, January 1999.

[23] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein,
and Charles E. Youman. Role-based access con-
trol models. IEEE Computer, 29(2):38–47, February
1996.

[24] Tichard T. Simon and Mary Ellen Zurko. Separation
of duty in role-based environments. InProceedings
of The 10th Computer Security Foundations Workshop
(CSFW-10), pages 183–194. IEEE Computer Society
Press, June 1997.

[25] Jefferey D. Ullman. Principles of Databases and
Knowledge-Base System, volume 2. Computer Sci-
ence Press, 1989.

[26] William H. Winsborough and Ninghui Li. Towards
practical automated trust negotiation. InIEEE 3rd Intl.
Workshop on Policies for Distributed Systems and Net-
works (Policy 2002). IEEE Press, June 2002.

[27] William H. Winsborough, Kent E. Seamons, and
Vicki E. Jones. Automated trust negotiation. In
DARPA Information Survivability Conference and Ex-
position. IEEE Press, January 2000.

17


