Deep Learning in Remote Sensing Paper Summaries

Note: References here do not match reference numbers in the paper. The references are provided at the

end.

Online content provided with paper “A Comprehensive Survey of Deep Learning in Remote Sensing:
Theories, Tools and Challenges for the Community” by Ball, Anderson and Chan

Legend: Spec = Spectral, Spat = Spatial, Temp = Temporal/Multi-temporal, HS/MS = HSI/Multispectral,
US = Ultraspectral, AP/AD = Aerial Photo/Aerial Data (includes satellite data), RGB = RGB color imagery.
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Alam et al. |HS! Image CNN + Conditional Random
. XX field. CNN performs HSI Indian Pines
[1] Segmentation . .
superpixel-level labeling.
A multi-sensor fusion SLAM
and fast dense 3D
reconstruction pipeline
gives coarsely registered
image pairs to a deep
deconvolutional network
Alcantarilla Street-view for pix_el-wise change
et al. [2] change detection. An urban changeRGB VL-CMU-CD
detection detection dataset (order of
magnitude larger than
existing datasets) and
contains challenging
changes due to seasonal
and lighting variations is
also provided.
,[A?’I;exandre f:cc?gbrjmiet(i:;n Transfer learning. RGBD ;/IGUI;tIS View
Custom
Building roof classification |LiDAR, Aerial
Alidoost et |Urban building using CNN for RGB from  |Aerial imagery and
al. [4] classification orthophoto data fused withjorthophoto|LiDAR
roof DSM. S Stuttgart,
Germany
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Segmentation
Audebert prior to deep Used Deep learner to IR-R-G
et al. [5] learning X create features for SVM orthoimage|ISPRS
) processing classifier. s
then SVM
A boosted committee of
CNNs coupled with inter-
. . Prague
band and intra-band fusion. .
Basaeed et Image X x| x Region boundar MultispectrTexture
al. [6] segmentation 8 o y al Segmentation
probability maps are
. . Benchmark
derived from multispectral
bands.
A supervised hierarchical
segmentation of remote- Prague
Basaeed et [Multispectral X x| x sensing images using a MultispectrTexture
al. [7] segmentation committee of multi-scale |al Segmentation
convolutional neural Benchmark
networks.
F h
Deep belief eatl.Jr'es extracted t er.1 Multispectr
Basu et al. |network classified by a deep belief al satellite
) o X X|X| |X network. SAT-4 and SAT-6 | SAT-4, SAT-6
[8] satellite image mages are also images
classification ges an (R,G,B,NIR)
contributions.
. Indian Pines,
An evolutionary
o . Kennedy
optimization algorithm
. o Space Center,
Bazietal. [HSI uses cross-validation . .
A X X|X . HSI images Washington
[9] classification accuracy to determine the DC Mall
extreme learning machine o
Pavia
parameters. . .
University
Explosive
hazard .
Becker et ldetection in Use deep belief network to
al. [10] round X X|discriminate false alarms |GPR data [Custom
) f)enetrating after CFAR prescreener.
radar
. SAR amplitude imagery
(o] h
Bentes et ceanograpn! processed via CFAR. Block
c Target X . [SAR Custom
al. [11] Classification features are processed via
CNN.
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Classifying Spatial multiresolutinal Orthophot
. features are learned by a .
Bergado et very hlgh CNN. A sensitivity analysis o with NIR
resolution + two Custom
al. [12] . of the network hyper- .
satellite . optical
{magery parameters is also bands.
provided.
The artificial neural
Buried network is used to
explosive discriminate clutter from
Besaw [13] |hazard buried explosive hazards. A GPR Custom
detection in custom ConvNet with 2X2
GPR masks and dropout was
utilized.
Buried
Besaw et explosive A custom deep belief
al. [14] hazard network detects buried GPR Custom
detection in explosive hazards.
GPR
Road Convolutional path
Brust et al. |detection and networks aI.Iow for sc.ene RGB KITTI
[15] urban scene understanding and pixel
understanding labeling.
Fusion of RGB, depth
images and semantic
Cadena et Estimating labels. Multi-modal
al. [16] depth from a Autoencoders can solve the|RGB KITTI
single image depth estimation and the
semantic segmentation
problems simultaneously.
Graph-based spatial fusion
;:570] etal. cHIzlssification and Convolutional Neural |AVIRIS Indian Pines
Network (CNN).
Graph-based
Caoetal. |HSI spatial/spectral fusion + . .
[18] classification CNN provides pixel-level AVIRIS Indian Pines

classification.
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Used C
sed CaffeNet and . Aerial Trained on
GoogleNet. Convolutions at .
different sizes allow Optical ImageNet,
CastellucciolLand Use rocessing across scales Images and tested on UC
et al. [19] [Classification P 8 . . |R-G-NIR Merced,
Compared to a wide variety .
. false-color [Brazilian
of other solutions. Transfer |,
. . images Coffee Bean
learning utilized.
Hi-res
Aircraft Preprocessing using satellite
Chen et al. [detection in gradients, gray imagery Customn
[20] hi-res satellite thresholding images (Google
imagery followed by DBN Earth)
S o
pectral classification by Kennedy
stacked autoencoders.
Chen et al. |HSI . . . Space Center,
T Spatial information fusion [HSI .
[21] classification . Pavia City
of PCA, deep learning and
. . Center
logistic regression.
A Restricted Boltzmann
Machine (RBM) and DBN
perform spectral
information-based
Chen et al. HS| classification. A combined Indian Pines,
[22] ) Classification spectral—-spatial feature HSI Pavia City
extraction are utilized. The Center
framework is a hybrid of
PCA, hierarchical learning-
based FE, and logistic
regression (LR).
Input image is mapped to a
small number of key
perception indicators that
directly relate to the
Chen et al. IAutonomous affordance of a road/traffic
23] ' Driving state for driving. This RGB video [KITTI

method provides a set of
compact yet complete
descriptions of the scene to
enable a simple controller

to drive autonomously.
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Chen et al.
[24]

Predicting
drought index

A short-term drought

prediction model based on
deep belief networks
(DBNs) predicts the time
series of different time-
scale standardized
precipitation index (SPI).

Custom
artificial
data,

Custom

hydrologic

datasets

Custom

Chen et al.
[25]

Thematic
Classification

Novel 3D CNN to extract
spectral-spatial features
from the HSI data plus a
deep 2D CNN extracts
elevation features of LiDAR
data. A fully connected
Deep NN fuses the data.

HSI + LiDAR

Custom

Chen et al.
[26]

SAR ATR

A single layer convolutional
neural network is used to
automatically learn
features from SAR images.
Instead of using the
classical backpropagation
algorithm, the convolution
kernel is trained on
randomly sampled image
patches using unsupervised
sparse auto-encoder. After
convolution and pooling, an
input SAR image is then
transformed into a series of
feature maps. These
feature maps are then used
to train a final softmax

SAR

classifier.

MSTAR
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Chen et al.
[27]

3D object
detection for
autonomous
driving

Sparse 3D LiDAR data is
encoded with a compact
multi-view representation.
Two subnetworks process
the data: one for 3D object
proposal generation and
another for multi-view
feature fusion. The
proposal network
generates 3D candidate
boxes efficiently from the
bird’s eye view
representation of 3D point
cloud. A deep fusion
scheme to combine region-
wise features from multiple
views and enable inter-
actions between
intermediate layers of
different paths is
developed.

RGB, LiDAR

KITTI

Chen et al.
(28]

Object class
detection

Stereo imagery is analyzed
to place 3D bounding box
proposals.

The solution is found by
minimizing an energy
function encoding object
size priors, ground plane as
well as several depth
informed features that
reason about free space,
point cloud densities and
distance to the ground.

RGB, LiDAR

KITTI

Chen et al.
[29]

Vehicle
detection in
satellite
imagery

A hybrid DNN (HDNN),
divides the maps of the last
convolutional layer and the
max pooling layer of DNN
into multiple blocks of
variable receptive field
sizes or max-pooling field
sizes, to enable the HDNN
to extract variable-scale
features.

Custom
Google
Earth
imagery of
San
Francisco,
CA

Custom
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Chen et al.
(30]

Thematic

classification

A 3D convolutional neural
network (CNN) to extract
the spectral-spatial
features of HSI data and a
deep 2D CNN extracts the
elevation features of LiDAR
data. A fully connected
deep neural network to
fuses the features and the
classification results are
produced by a logistic
regression method.

Custom HSI
and LiDAR
dataset
over

Houston,

TX

Custom

Cheng et al.
(31]

Land Use
Classification

A library of pretrained part
detectors used for midlevel
visual elements discovery
called “partlets” is utilized.
'To address computational
cost, coarse-to-fine shared
intermediate
representations, which are
termed “sparselets,” are
created using a single-
hidden-layer autoencoder
and a single-hidden-layer
neural network with an LO-
norm sparsity constraint.

Orthoimag
ery

LULC

Cheng et al.
(32]

Scene
classification

Pre-trained CNN models
(AlexNet, VGGNet, and
GoogleNet) are used as
universal feature extractors
and then fine-tuning on our
scene classification dataset.
Scene classification is
carried out by using simple
classifiers such as linear
SVM.

HSI

UC Merced
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A rotation-invariant CNN
(RICNN) model is trained by
optimizing a new objective
function via imposing a
S larizati traint
Cheng et al. cenfa' . reg'u ariza !o.n constraint, Pansharpe NWPU VHR-
classification which explicitly enforces :
(33] ) . ~ _ |ned images(10
in VHR images the feature representations
of the training samples
before and after rotating to
be mapped close to each
other.
Russian
Adaboost first st d
Chigorin et Road sign aboOStIrs s age an RGB Traffic Signs
. color suppression. Custom |
al. [34] detection CNN imagery  |Dataset
' (RTSD)
Road sign Video
Ciresan et |detection and Multi-column DNN based |converted |GTSRB Traffic
al. [35] character on feline visual cortex to still Signs
recognition imagery
A multiscale convolutional .
Pairs of
. Indoor network to learn features
Couprie et . . . RGB and
al. [36] semantic directly from the images depth NYU-v2
) segmentation and the RGBD depth . P
A . imagery
information
Low-
Cuietal. |resolution Cascade of autoencoders
A . RGB Custom
[37] image used to upscale imagery
upscaling
Dahmane [Object Deep Iear.nlng.applled to MSI
i VHR Pleaides imagery to . Custom
et al. [38] |detection (Pleaides)
detect cars and trees.
SAR
A Deep learner learns Custom
Urban features and statistics UAVSAR
De et al. e (alpha and gamma MLC L-
classification Custom
[39] parameters) are also used. [Band
from PolSAR ) .
A multi-layer perceptron is |dataset
used as a classifier. over San
Francisco
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Del Frate et
al. [40]

Classification
sing Multi-
Layer
Perceptron
(MLP)

The generalization
capabilities of the Multi-
Layer Perceptron (MLP) on
the generalization
capabilities of this type of
algorithms with the
purpose of using them as a
tool for fully automatic
classification of collections
of satellite images, either at
very high or at high-
resolution.

HR and
VHR
imagery
(LANDSAT
and
Quickbird)

Custom

Diao et al.
[41]

Object
recognition

A Deep Belief Network
(DBN) has two stages, the
unsupervised pre-training
stage and the supervised
fine-tuning stage. A stacked
set of restricted Boltzmann
machines (RBMs) is used to
build a deep generative
model. The RBM is trained
in an unsupervised manner,
and fine tuning is
performed by using
supervised learning on a
supervised layer at the end
of the RBM chain.

Finally, the deep model
generates good joint
distribution of images and
their labels.

VHR
(Quickbird)

Custom

Ding et al.
[42]

Detecting
objects via
transfer
learning

Deep features and classifier
parameters are obtained
simultaneously. A weighted
scheme to couple source
and target output by
assigning pseudo labels to
target data, therefore
knowledge can be
transferred knowledge
from source (i.e., MWIR) to

LWIR,
MWIR

target (i.e., LWIR).

Custom
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A sparse coding SR method
is shown to be a deep
convolutional network. The
SR maps low-resolution
imagery to high-resolution
imagery. All layers are
D tal. S - ILSVRC 2013
[403r]1g e r:spoeltrjtion jointly optimized. The RGB ImageNet
method achieves high &
speed. Different network
structures and parameter
settings to achieve
tradeoffs between
performance and speed.
'To overcome rotation and
SAR displacement problems
Duetal. [automatic with a traditional CNN, a
. ! SAR MSTAR
[44] target displacement- and
recognition rotation-insensitive deep
CNN is utilized.
The SRCNN (Super Satellite
Super- Resolution CNN) has a infrared
resolution for considerable gain in terms [and
ocean remote of PSNR compared to microwave
Ducournau . . .
sensing sea Xclassical downscaling data, Buoy |Custom
et al. [45] .
surface techniques. data
temperature Data uses AVHRR, AATSR, |[(OSTIA SST
analysis SEVERI, AMSRE, TMl and  [Time
buoy data. Series)
Can CNN SUN-397
Donahue etftraining cross Deep convolution features RGB large scale
al. [46] to other and DeCAF code. object
domains recognition
underwater Coral Classification, Moorea,
Elawady .
[47] coral underwater color RGB Atlantic Deep
classification adjustment algorithms. Sea
UC Merced,
Fang et al Remote and 19-class
" |Sensing Image Uses CaffeNet fine-tuning. [RGB .
[48] e satellite
Classification
scene

10
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Automated
feature
Farias et al. ;xrtr:ctlon N Sparse autoencoders for  [Scattering Il
[49] thegrmonuclear feature reduction. images
fusion
databases
An ensemble of
autoencoders in which
each autoencoder is
trained to learn a
compressed representation
of depth views synthesized Multi-View
Feng et al. 3D shape from each database objects|Low-cost RGBD. NYU-
[50] retrieval is proposed. Each 3D sensor 5 !
autoencoder as a v
probabilistic model that
generates a likelihood
score. Weakly supervised
learning is used for
training.
\Various
atmospheri
A large number (186) of  |c data from
RNN networks are used to [NOAAPORT
Recurrent . . .
CNN for ocean simulate solutions to (wind
Firth [51] nd weather numerical weather speed, Custom
forecasting prediction problems using [temp.
temporal atmospheric relative
data. humidity,
specific
humidity)

11
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Geng et al.
(52]

SAR
classification

A deep convolutional
autoencoder (DCAE)
extracts features and
conduct classification. It is
composed of eight layers: a
convolutional layer to
extract texture features, a
scale transformation layer
to aggregate neighbor
information, four layers
based on sparse
autoencoders to optimize
features and classify, and
the last two layers for post
processing.

SAR ( HH
polarizatio
n
TerraSAR-X
over
Lillestroem,
Norway)

Custom

Georgakis
et al. [53]

multi-view
RGBD object
recognition

A new multi-view 3D
proposal generation
method and several
recognition baselines using
AlexNet are given. A RGBD
dataset is also provided.

RGBD

Custom

Ghazi et al.
[54]

Plant
identification
using transfer
learning

Transfer learning is utilized.
'To decrease the chance of
overfitting, data
augmentation techniques
are applied based on image
transforms such as
rotation, translation,
reflection, and scaling.
Furthermore, the networks'
parameters are adjusted
and different classifiers are
fused to improve overall
performance. An in-depth
performance evaluation of
the critical factors affecting
the fine-tuning of pre-
trained models; specifically
iteration size, batch size,
and data augmentation is

provided.

RGB
Images

LifeCLEF 2015
Plant Task
Dataset

12
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HSI (CASI
Detecti dat
etecting A decision tree and ANN ata over
weed stress Ste-Anne-
Goel et al. approach was used to
and corn de- Custom
[55] . study weed stress and
nitrogen . . Bellevue,
nitrogen status in corn.
status Quebec,
Canada)
Convolutional architectures
Gong et al Multi-label are combined with
[56]g " image approximate top-k ranking [RGB NUS-WIDE
annotation objectives for multi-label
annotation.
Stacked autoencoders use
softmax classifier for
Fu et al. HSI unsupervised pre-training. Hs| Pavia
[57] classification Fine tuning is done with a University
small number of training
samples.
A contextual classifier
based on a Support Vector |LiDAR,
Machi VM Ai
Garcia- LiDAR and ac |.ne (SVM) ?nd. an Irborn.e
., A Evolutionary Majority Thematic
Gutiérrez |imagery data . Custom
. Voting (SVM—EMV) are Mapper
et al. [58] |[fusion . .
used to create thematic multispectr
maps from LiDAR and al (Spain)
imagery data.
Deep convolutional
autoencoder, convolutional SAR
High- . ’ (TerraSAR-
. filters for Gray-level co-
Geng et al. [resolution SAR . X data
occurrence matrix and . Custom
[59] Image imagery of
I Gabor features, scale .
Classification . Lillestroem,
transformations reduce
. Norway)
noise.
Band selection using . .
. . - Indian Pines
Ghamisi et |Land cover fractional order Darwinian .
I . HSI and Pavia
al. [60] classification particle swarm . .
S University
optimization.
h D N IN
Gong et al. c ange.: . eep veura .et to .do Ottawa and
Detection in change detection without a[SAR .
[61] . . Yellow River
SAR Imagery difference image.

13
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RGB
Nonnegative Matrix
Factorization preprocessin (Overhead
Goyal et al. [Vehicle type prep & picture
pe followed by feature Custom
[62] classification . . from
extraction and hybrid deep
Stanford
neural network. . .
University)
Tree segmentation
(individual trees) and deep
Guan et al. [Tree Boltzmann machine
I e . LiDAR Cust
[63] Classification classification using ! ustom
waveform modeling of tree
geometric structure
A deep hierarchical
network is trained to
Robotic scene extract informative and Two stereo
Hadsell et |understanding meaningful features from
. . cameras  |Custom
al. [64] and path an input image, and the nd GPS
planning features are used to train a
real-time classifier to
predict traversability.
Hich spatial A patch-based spatial-
8 p. spectral hierarchical
Han et al. [resolution . UC Merced,
A convolutional sparse auto- [RGB
[65] imagery scene . Google Earth
Classification encoder for unsupervised
training.
An attention-based model
that reasons on human
body shape and motion
dynamics to identify
individuals in the dark. A
Hague et Depth-based combination of BIWI, IIT
N ?66] person convolutional and RGBD PAVIS, IAS-
) identification recurrent neural networks LAB

with the goal of identifying
small, discriminative
regions indicative of human
identity using 4D spatio-

temporal signatures.

14
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A deep stacking network
(DSN) is used, which does
not require stochastic
gradient descent training.
He et al. Feature extraction is Kennedy
Classificati HSI
[67] asstrication obtained by a nonlinear Space Center
activation function on the
hidden layer nodes of each
module (DSNs usually use
linear weights).
Hedge et al.3D Object Fusion of pixel-based and |CAD data [Princeton
[68] classification voxel-based CNNs. and labels |ModelNet
PolISAR
The data coherency matrix Imagery
(Two
are converted to a 9-
. . custom
dimentional data. A
. AIRSAR
Restricted Boltzmann mager
Polarimetric Machine (RBM) is trained gery
Hou et al. . over
SAR by using these patches and Custom
[69] . Flevoland,
classification the learned features and
Netherland
the elements of coherent
. . s,and a
matrix are combined to ustom
train a 3-layers DBNs for .
. .. .. [ESAE multi-
PolSAR image classification.
look
images.)
A Deep Boltzmann Machine
(DBM) is trained on both
. image data and Log-Gabor,
Huetal. |Vehicle PASCAL
HOG and GIST feat . TheRGB
[70] recognition an catures. the VOC2012

pre-feature processing
significantly improves

performance.

15
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Hu et al.

(71]

HSI
classification

Deep convolutional neural
networks are employed to
classify HSI images directly
in spectral domain. The
architecture contains five
layers with weights which
are the input layer, the
convolutional layer, the
max pooling layer, the full
connection layer, and the
output layer.

HSI

Pavia
University,
Salinas

Hua

ng et

al. [72]

Vehicle
Detection in
urban point
clouds

After curb detection and
removal in the
segmentation stage, the
algorithm estimates the
orientation of the
candidates and uses it to
handle the difficult cases
such as the vehicles in the
parking lot. An orthogonal-
view CNN, which are based
on the orthogonal view
projections of the
candidates, is used to
detect vehicles.

LiDAR

Ottawa

Hua

ng et

al. [73]

Pansharpening

A modified sparse
denoising autoencoder
(MSDA) algorithm trains
the relationship between
high-resolution (HR) and
low-resolution (LR) image
patches. A stacked MSDA
(S-MSDA) pretrains the
Deep Neural Network
(DNN). The entire DNN is
then trained by a back-
propagation after
pretraining. The HRMS
image will be reconstructed
from the observed LR MS
image using the trained
DNN.

Panchroma

tic and MS

( IKONOS
and

Quickbird
datasets)

Custom

16
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First paper that applies
deep learning
transportation research. A
deep belief network (DBN) Caltrans
performs unsupervised . Performance
. . Inductive
Huang et [Traffic flow feature learning. To . |Measuremen
- A . loop traffic
al. [74] prediction incorporate multitask data t System
learning (MTL) in the deep database,
architecture, a multitask Custom
regression layer is used
above the DBN for
supervised prediction.
A deep deconvolution
network is trained on a
public large-scale building IEEE GRSS
Huang et [Building dataset. The output Panchroma (2016 Data
al. [75] extraction saliency maps of the fine- tic and MS |Fusion
tuned models are fused to Contest
produce the final building
extraction result.
3D point cloud labeling
using 3D CNN. Data are
. voxelized and voxel
Huang et [Point cloud . .
al. [76] labeling keypoints .are generated. |LiDAR Ottawa
Labels assigned by
dominating category
around each keypoint.
RGB video,
LiDAR, GPS
(Custom
dataset
Lane and An extensive empirical from
Huval et al. ) .
[77] vehlcle. stuc?y of DL on. lane and vehicle Custom
detection vehicle detection. sensors
driven in
San
Francisco
Bay area)
Very high
lftene et al. spatial . Transfer learning. Fine-tuneVHR UC Merced,
(78] resolution CNN on one dataset and imagery  WHU-RS

17
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Satellite
imagery
A cuda-convnet CNN was  |(Custom
Ishii et al Satellite Image modified to use 14 X 14 LANSAT 8
[79] " lobject input image sizes. Results [imagery  |Custom
recognition show CNN outperformed |over Kanto
SVM. and
Kagoshima
in Japan)
The key of this method is to
restructure spectral feature
images and choose
convolution filters with a
reasonable size, so that the
Jia et al. I spectral features of Kennedy
lassif HSI
[80] Classification different land coverings in S Space Center
high dimensions can be
extracted properly. Filter
sizes of 3,5, 7 and 9 (in
each dimension) are
investigated.
Vehicle Graph-based initial vehicle
Jiang et al. [detectionin localization. CNN then Satellite Custom
[81] satellite classifies into vehicle / non-[imagery
imagery vehicle.
. Using recent advances in
Semantic . .
sesmentation measuring uncertainty for
Kampffmey an?j CNNs, their quality is Orthophot
er et al. uncertaint evaluated both os and ISPRS
[82] . .y qualitatively and DSM
modeling in o .
quantitatively in a remote
urban scenes .
sensing context.
Google
M
Uses remote- (Ir:gses
sensing Semi-automated FCN fromg
datasets to approach to semantic
: . . Google
Kaiser [83] |generate large segmentation of public Custom
. . Maps and
ground-truth very high resolution street
datasets for satellite imagery
Cities maps from
OpenStreet
Map)

18
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Kehl et al.
(84]

3D object
detection and
6D pose
estimation

3D object detection uses
regressed descriptors of
locally-sampled RGBD
patches for 6D vote casting.
A convolutional auto-
encoder is employed for
regression. During testing,
scene patch descriptors are
matched against a
database of synthetic
model view patches and
cast 6D object votes.

RGBD

LineMOD

Kim et al.
[85]

Human
detection and
activity
classification

X CNN on micro-Doppler

radar signatures.

Custom
7.25 GHz
Doppler
radar
(microDop

pler)

Custom

Kira et al.
(86]

Long-range
pedestrian
detection

A combination of stereo-
based detection,
classification using deep
learning, and a cascade of
specialized classifiers is
designed for long-range
pedestrian detection.
Stereo images are used to
perform detection of
vertical structures which
are further filtered based
on edge responses. A
convolutional neural
network (CNN) is used for
classification of pedestrians
using both appearance and
stereo disparity-based
features. A second CNN
classifier was trained
specifically for the case of
long-range detections using
appearance only.

RGB Stereo
imagery

Custom

Konoplich
et al. [87]

UAV image
vehicle
detection

Adapted hybrid Neural
Network (AHNN) — handles
scale

Aerial
photos

Custom
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Kontschied

er et al.

(88]

Deep neural
decision
forests for
classification

Deep Neural Decision
Forests unifies classification
trees with the
representation learning
functionality known from
deep convolutional
networks, by training them
in an end-to-end manner. A
stochastic and
differentiable decision tree
model, which steers the
representation learning
usually conducted in the
initial layers of a deep CNN.
The decision forest
provides the final
predictions and it differs
from conventional decision
forests due to a principled,
joint and global
optimization of split and
leaf node parameters.

RGB

MNIST,
ImageNet

Kovordanyi
et al [89]

Cyclone track
forecasting

A multi-layer neural
network, resembling the
human visual system, was
trained to forecast the
movement of cyclones
based on satellite images.
The results indicate that
multi-layer neural networks
could be further developed
into an effective tool for
cyclone track forecasting
using various types of
remote sensing data.

Satellite
imagery
(NOAA

AVHRR

satellite
imagery)

Custom

Krishnan et

al. [90]

Vehicle
detection and
road scene
segmentation

A spatial grid of
classifications is generated
and then regressing
bounding-boxes for pixels
with a high object
confidence score refine the

classifications.

RGB

KITTI, MNIST

20




. e 2 fa o .
Application g 28 o o Approach / Unique Sensor
Ref. prxreal n § 5 c & g S é & .3 k: I:’l:Zontrib/t' o Modaliti Dataset(s)
= “IS¥S2 ution odalities
Hierarchical model that
includes self-organizing SAR
maps (SOM) for data .
. imagery
preprocessing and (Custom
Large-scale segmentation (clustering), .
Kussul et al. . Sentinel 1
[91] land cover ensemble of multi-layer AR Custom
mapping perceptrons (MLP) for data
e Imagery
classification and
. lover
heterogeneous data fusion .
. ) Ukraine)
and geospatial analysis for
post-processing
Several custom MODIS
Kuwatta et Estimating architectures using Caffe  |Enhanced
al. [92] corn crop were investigated. A RBF  |Vegetation |Custom
) yields SVM was used for Index (EVI)
regression estimation. data
Semantic . .
labeling :\rAnUI:g\S/z?SrZ;lj:JtzlogNNs RBG IEEE GRSS
Lagrange etjmultisource P » orthophoto[2015 Data
outperform traditional )
al. [93] Earth methods, transfer learning | DSM, Fusion
observation - & ILiDAR Contest
data helps classifier results
A two-step neural network
approach to reconstruct
basin-wide monthly maps
Estimating the of the sea surface partial
o | pressure Surface
Landschitz finter- I
andschutz inter a'nnua of CO2 (pCO2) ata ocean
er et al. Atlantic ocean . . . SOCAT
[94] arbon sink resolution of 1ox1-. The air-fugacity of
ariabilit sea CO2 flux maps are CO2 data
y computed using a standard
gas exchange
parameterization and high-
resolution wind speeds.
This vehicle detection
system uses convolutional
neural networks on 2D
Lange et al. |Online vehicle image data. Calculation .
RGB, LiDAR
[95] detection time of the algorithm can GB, L Custom

be significantly reduced by
taking advantage LiDAR

depth information.
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A convolutional neural
network (CNN) is applied to
MSI orthoimagery and a
digital surface model (DSM)
Classification of a small city for a full, fast
. . and and accurate per-pixel MSI, DSM
Langkvist et . e .
segmentation |X|X| |X X |X classification. The predicted|over Custom
al. [96] .
of MSI low-level pixel classes are [Sweden)
orthoimagery then used to improve the
high-level segmentation.
Various design choices of
the CNN architecture are
evaluated and analyzed.
.Estlmate.geo- RGB
information of (Custom
photo CNN to estimate geo- .
Lee et al. . A . . Flickr
(population X information of certain Custom
[97] ) . dataset -
density, attributes.
. 40M
demographics, images)
etc.) via CNN &
The contextual deep CNN
jointly exploit spatial and
spectral features for HSI
classification. It
concurrently applies
multiple 3D local
convolutional filters of
lee etal. S| d|fferfar1t sizes J‘omtly Indlfz\n Pines,
e X|X X|X exploiting spatial and HSI Pavia
[98] classification . .
spectral features. The University
spatial and spectral feature
maps are then combined to
form a joint spatio-spectral
feature map, which is the
input to a set of fully
convolutional layers that
assign class labels.
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To recognize general geo-
informative attributes of a
photo, e.g. the elevation
gradient, population
_— density, demographics,
Lee et al. g;’fldmg etc., these attributes are
[99] i formative esti.mated using a large RGB (Flickr)(Custom
ttributes (noisy) set of geo-tagged
images from Flickr by
training deep convolutional
neural networks (CNNs).
A large-scale dataset is also
provided.
ITo detect obstacles, a
single color camera is used
Levi et al. dO:tset:‘::ilsn and and the ta.sk reduces.to @ .
[100] road column-W|se.reg.reSS|on RGB, LiDARKITTI, Custom
segmentation problem, which is solved
using a deep convolutional
neural network (CNN).
Stacked autoencoders train
a DL network. Iterative
Li [101] HSI procedure reduces Hs| Pavia
classification uncertainty and allows University
better generalization
capability.
The fully convolutional
network based detection
Vehicle techniques are extended
Li [102] detection in from 2D to 3D and applied [RGB KITTI
point clouds it to point cloud data. The

CNN creates "objectness"

and bounding box maps.
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Li et al.
[103]

Spatial and
color pooling
for 3D object
recognition

ITo make object
representations that are
more robust to viewpoint
changes, multiple scales of
filters coupled with
different pooling
granularities are applied in
a CNN and color is also
used as an additional
pooling domain.

A new dataset for industrial
objects is also provided
(JHUIT-50).

RGBD

Multi-View
RGBD,
BigBIRD,
UHUIT

Li et al.
[104]

Classification

Principle components of
the HSI image are filtered
by three dimensional
Gabor wavelets, followed
by stacked autoencoders
are trained on the outputs
of the previous step
through unsupervised pre-
training, finally deep neural
network is trained on those
stacked autoencoders.

HSI

Indian Pines

Li et al.
[105]

HSI image
classification

Restricted Boltzmann
machine and Deep Belief
Network. DBN using 7x7
spatial neighbors and 144
HSI bands.

HSI

IEEE GRSS
2013 Data
Fusion
Contest

Li et al.
[106]

HSI image
classification

Deep CNN using pixel-pair
features and voting
classification. Achieves high
results with small amount
of training data.

HSI

Indian Pines,
Salinas, Pavia
University

Li et al.
[107]

HSI image
classification

Spatial features-based
strategy for band selection,
CNN optimized parameter
model, then image is
classified by the efficient
extreme learning machine

(ELM). Fast computation.

HSI

Indian Pines,
Salinas, Pavia
University
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MSI
(Custom
Lietal. Land-cover Hand-tuned stacked auto- |[LANDSAT Custom
[108] mappin encoder. and time-
pping
series
MODIS)
A convolutional neural
network (CNN) is are
applied to predict the
probability of a pixel
beIong|.ng to road regions, Satellite
and assign labels to each |
ixel to describe whether it| 25>
Lietal. Road network p L (Geoeye
. is road. A line integral Custom
[109] extraction . and
convolution based .
. . Pleaides
algorithm is developed to datasets)
smooth the rough map to
connect small gaps. Finally,
using common image
processing operators, road
centerlines are delineated.
A restricted Boltzmann
machine (RBM) model and
its <.3|eep structure deep IEEE GRSS
. belief networks (DBN), are
Lietal. HSI A . . 2013 Data
e introduced in HSI image HSI .
[110] classification . Fusion
processing as the feature
Contest
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Li et al.
[111]

HSI Anomaly
detection

This approach uses transfer
learning. A multilayer CNN
is trained by using
difference between pixel
pairs generated from the
reference image scene.
Then, for each pixel in the
image for anomaly
detection, difference
between pixel pairs,
constructed by combining
the center pixel and its
surrounding pixels, is
classified by the trained
CNN with the result of
similarity measurement.
The detection output is
simply generated by
averaging these similarity
scores.

HSI

Custom,
Cuprite

Liebel et al.

[112]

Super-
resolution HSI
image
processing

Custom CNN with super-
resolution output.

HSI

Copernicus
SENTINEL

Lin et al.

[113]

HSI
classification

Extract features via
autoencoder. PCA
(spectral) + autoencoder on
spatial dimensions.

HSI

Kennedy
Space Center,
Pavia
University

Liu et al.

[114]

SAR terrain
classification

Spatial information
between pixels on PoISAR
image is combined into the
input data. The proposed
deep network only needs
to tune a few parameters
during pre-training and
fine-tuning.

s)

POISAR ( L-
band
PoISAR
data over
Flevoland,
Netherland

Custom

Liu et al.

[115]

HSI
classification

Spectral used stacked
denoising autoencoders,
superpixels used for spatial
constraints.

HSI

Indian Pines,
Salinas, Pavia
Center, Pavia

University
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Liu et al.
[116]

HSI
classification

>
>

Spectral used stacked
denoising autoencoders,
superpixels used for spatial
constraints.

HSI

Indian Pines,
Salinas, Pavia
Center, Pavia
University

Liu et al.
[117]

HSI
classification

An active learning
algorithm based on a
weighted incremental
dictionary learning is
proposed for such
applications. The proposed
algorithm selects training
samples that maximize two
selection criteria, namely
representative and
uncertainty. This algorithm
trains a deep network
efficiently by actively
selecting training samples
at each iteration.

HSI

Pavia City
Center, Pavia
University,
Botswana

Liu et al.
[118]

Geological
disaster
recognition

A deep learning based
landslide recognition
method for optical remote
sensing images.
Preprocessing is performed
using a wavelet
transformation. A
denoising method
enhances the robustness of
the model in recognize
landslide features. Then, a
deep autoencoder network
with multiple hidden layers
is proposed to learn high-
level features. A softmax
classifier is used for class
prediction.

Satellite
imagery
(Google
Earth)

Custom

Luus et al.
[119]

Multispectral
land use
classification

DL learns hierarchical
feature representation.

aerial
orthoimage

ry

UC Merced
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Traffic data|Caltrans
) every Performance
I['Iz(;[]al' l:zgil(c:tiizw Stacked AE. 30sec from [Measuremen
15,000 t System
sensors database
PolISAR
multi-
Multi-temporal PoISAR temporal
data is analyzed using a data
Lv et al. Landcover pixel window where the  (RADARSAT Custom
[121] classification data is stacked and -2 C-band
processed via a multi-layer ([data over
RBM. Toronto,
Ontario,
Canada)
PolISAR
multi-
A DBN model extracts Le;r;poral
L et al. Urban land contextual mapping (RADARSAT
use and land features from the PolISAR Custom
[122] . -2 C-band
cover data to improve the
classification performance. data over
Toronto,
Ontario,
Canada)
Pre-label unlabeled using a
local decision based on
weighted neighborhood
information, and a global
decision based on deep Indian Pines,
m;;]t al. t?:siiﬂcation learning is performed by  HSI Pavia
the most similar training University

samples. Unlabeled ones
with high confidence are
selected to extend the

training set.
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Ma et al.
[124]

Classification

A regularization term in the
energy function encodes
sample similarity and
features are updated by
integrating contextual
information. A
collaborative
representation-based
classification helps deal
with small training
datasets. To suppress salt-
and-pepper noise, a graph-
cut-based spatial
regularization is performed.

HSI

Indian Pines,
Pavia Center,
Botswana

Ma et al.
[125]

Classification

A prior is imposed on the
deep network to deal with
the instability of parameter
estimation. The proposed
method adjusts parameters
of the whole network to
minimize the classification
error as all supervised deep
learning algorithm and
minimizes the discrepancy
within each class and
maximize the difference
between different classes.

HSI

Washington
DC Mall,
Pavia City
Center

Makantasis
et al. [126]

Land
Classification

Deep learning based
classification method that
hierarchically constructs
high-level features. CNN to
encode pixels’ spectral and
spatial information, Multi-
Layer Perceptron classifier

HSI

Indian Pines,
Salinas, Pavia
Centre, Pavia
University

Marmanis
et al. [127]

Urban object
classification

The MLP detects patterns
in DEM that characterize
buildings.

Digital
Elevation
Maps
(VHSR DEM
Munich,
Dongying

City)

Custom
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Marmanis
et al. [128]

Semantic
segmentation
of aerial
imagery

A CNN with added
deconvolutional network
layers to undo the spatial
downsampling and Fully
Convolution Networks
(FCNs) are used to perform
pixel-based classification at
full resolution.

Aerial
orthoimage
ry, DSM

ISPRS

Marmanis
et al. [129]

Classification

A pre-trained CNN
designed for tackling an
entirely different
classification problem (the
ImageNet challenge) is
used to extract an initial set
of representations. The
derived representations are
then transferred into a
supervised CNN classifier,
along with their class
labels, effectively training
the system. This two-stage
framework successfully
deals with the limited-data
problem commonly
encountered in HSI
processing.

Orthoimag
ery

ImageNet,
LULC

Masi et al.
[130]

Pansharpening

Use CNN for
pansharpening. Uses Wald
protocol to downsample
high-res image to MS image
reference

Aerial
Photos,
multispectr
al (IKONOS,
GeoEye-1,
WorldView
-2)

Custom
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LiDAR
(Synthetic
. dataset,
A volumetric occupancy emi.
map is paired with a 3D .
. synthetic
Convolutional Neural datasets -
Maturana |LiDAR landing Network (CNN) is applied |
. . . simulated |Custom
et al. [131] [zone detection to detecting safe landing <olid
zones for autonomous obiects
helicopters from LiDAR WHJCh real
point clouds. .
point cloud
data for
vegetation)
Indian Pines,
Meietal. |Land 5-layer CNN and Parametricl_|SI Pavia
[132] Classification RelU. University,
Salinas
An arctan-like term is
added to the objective
function as a sparse
. . USI (ASTER
constraint to improve and(
Infrared classification accuracy. A Environme
Mei et al. |ultraspectral Gaussian prior helps avoid ntal Custom
[133] image overfitting. A multi-layer Protection
classification Restricted Boltzmann Acenc
Machine model, a deep dfta) ¥
belief network provides
ultraspectral signature
classification.
To handle data fusion of Indian Pines,
Merentis et high orders, outputs of DL IEEE GRSS
al. [134] Classification first-layer are used to HSI, LIDAR 2013 Data
) perform HSI and LiDAR data Fusion
fusion. Contest
Non-linear band-by-band
diffusion preprocessing is
followed by a Restricted
Midhun et |Land Boltzmann Machine (RBM) Hs| indian Pines
al. [135] Classification that encodes spectral
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Mnih et al.
[136]

Road
Detection

>
>

Two robust loss functions
handle incomplete and
poorly labeled training
imagery.

High-
resolution
aerial
imagery

URBAN1,
URBAN?2

Mou et al.
[137]

Space video
scene
interpretation

Fusion of spaceborne video
and MSl is performed. A
deep neural network uses
unpooling to create coarse
probability maps which are
refined into average
superpixel maps. Traffic
activities are analyzed
using tracklets produced by
a Kanade-Lucas-Tomasi
keypoint tracker. The
labeled ground truth and
visualization code are
available at
http://www.sipeo.bgu.tum.
de/downloads/gt4dfcl6vid
eo.rar

MSI,
satellite
video

IEEE GRSS
2016 Data
Fusion
Contest

Morgan
[138]

SAR ATR

A custom CNN is designed.
It can detect targets not in
training set.

SAR

MSTAR

Nogueira et
al. [139]

Land
Classification

Investigate fine tuning, full
training, and feature
extractor from CNN. SVM
classifier.

HR aerial
photos and
MSI

UC Merced,
RS19,
Brazilian
Coffee

Ni et al.
[140]

SAR ATR

This algorithm contains
three stages: (1) Image
preprocessing where a
Kuan filter provided image
enhancement and an
adaptive Intersecting

X [Cortical Model (ICM) to do
the segmentation, (2)
feature extraction using a
sparse autoencoder, and
(3) classification using a
softmax regression
classifier

SAR

MSTAR
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A recurrent neural network
(RNN) learns mapping from
sensor measurements to b0 laser
Ondruska |Multi-object object tracks which handles
et al. [141] tracking occluded sensor data. The scan (2D Custom
laser data)
system can track a large
number of dynamic objects
with occlusion.
An initial feature
representation is generated
by a CNN pre-learnedona | ,.
large amount of labeled High .
- resolution [UC Merced,
Othman et |Land Use data from an auxiliary . .
al. [142]  [Classification domain. These are inputs serial Banja—Ll'Jka
photos and [LU Public
to a sparse autoencoder forMSI
learning a new suitable
representation in an
unsupervised manner.
A deformable part-based
model is used to obtain the
scores of part detectors
and the visibilities of parts
are modeled as hidden
Pedestrian variables. A discriminative
Ouwang et (detection with deep model is used for Caltech
al. [143] cclusion learning the visibility RGB Pedestrian,
handling relationship among ETH, Daimler
overlapping parts at
multiple layers. A new
dataset (CUHK) is provided
for testing occlusion
handling in pedestrian
detection.
This change detection HR satellite
algorithm is based on imagery
neural networks, and itis |(Landsat
Change able .to exploit both the ' data over
Pacifici et detection in multi-band and the multi- Tor. Vergata
al. [144] HR satellite te'zmpor_al data to pnlver5|ty Custom
imagery discriminate between real [in Rome,
changes and false alarms. |ltaly, and
In general, the classification|Rock Creek
errors are reduced by a in Superior,
factor of 2-3. CO, USA.)
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Both CNN and hand-crafted
features are applied to
dense image patches to
produce per-pixel class
Paisitkriang Semantic pixel probabilities. A CNN Aerial
krai et al. . P creates probability maps  |orthoimage|ISPRS
labellin
[145] & and predicted labels. The |ry
conditional random field
processing infers a labeling
that smoothes regions
while preserving edges.
Detecti f . . |HRi
A etection o An AE is used to determine |, .. Imagery
impact craters L (HiRISE
. descriptive features. A two
Palafox et jand volcanic . . |data over
convolutional layer CNN is . |Custom
al. [146]  |rootless cones . the Elysium
A . then used to combine o
in HR Martian . Planitia,
. spatial features.
imagery Mars)
Satellite
imagery (
L 7
A CNN is proposed with no andsat
ooling and two layers of ETM+
Paletal. |Urban growth i & . y imagery
. convolution. The class of a Custom
[147] prediction . L over
given pixel is related to the .
. Mumbai,
classes around it. .
India and
Rajarhat,
Kolkata)
The vertex component
analysis network (R-
VCANet) achieves higher
accuracy with a small
number of training
samples. The inherent
properties of HSI data, Indian Pines,
Pan et al spatial information and Pavia
[148] " |Classification spectral characteristics, are [HSI University,
utilized to construct the Kennedy

network. Spectral and
spatial information are
combined via the rolling
guidance filter, which
examines the structure
features and removes small

details from HSI.

Space Center
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Papadoman VHR MSI
olaki et al. \cllHaI:smition X |X ?I':SXS':C?;FU layer +SVM ¢ G,B.NIR) [Custom
[149] ' (NAIP)
Transfer learning for High
. ConvNets trained for resolution [UC Merced,
Penattiet |Land . . . .
al. [150] Classification eve.ryday objects to cIa'ssncy aerial Brazilian
aerial and remote sensing [photos and |Coffee
imagery. MSI
Satellite
imagery
A CNN and random forest |(AIRSAR L-
Piramanaya with decision trees based |band ISPRS
gam et al. [Classification on features obtained from |imagery ’
A Custom
[151] image patches and labels |over
are compared. Flevoland,
Netherland
s)
A RBM is used with an
AdaBoost instead of a PoISAR
stacked deep model, for  |(PoISAR L-
Object- object-oriented band
Qin etal. |oriented classification in PolSAR imagery Customn
[152] PolSAR imagery. The experimental |over
classification results demonstrate that |Flevoland,
the proposed model is Netherland
superior to the stacked s)

RBM model.
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Qin et al.
[153]

Underwater
live fish
recognition

Sparse and low-rank matrix
decomposition is used to
extract foreground
information. Then, a deep
architecture is used to
extract features of the
foreground fish images.
Principal component
analysis (PCA) is used in
two convolutional layers,
followed by binary hashing
in the non-linear layer and
block-wise histograms in
the feature pooling layer.
Spatial pyramid pooling
(SPP) is used to extract
information invariant to
large poses. Classification
uses a linear SVM.

RGB video

Fish
Recognition
Ground-Truth
dataset

Qin et al.
[154]

Underwater
live fish
recognition

Sparse and low-rank matrix
decomposition is used to
extract foreground
information. Then, a deep
architecture is used to
extract features of the
foreground fish images.
Principal component
analysis (PCA) is used in
two convolutional layers,
followed by binary hashing
in the non-linear layer and
block-wise histograms in
the feature pooling layer.
Spatial pyramid pooling
(SPP) is used to extract
information invariant to
large poses. Classification
uses a linear SVM.

RGB video

Fish
Recognition
Ground-Truth
dataset

Qu et al.
[155]

Semantic
understanding
of high-res

imagery

Deep multimodal NN
analyzes image and exports
sentences with content

HR aerial
photos

UC Merced,
Sydney
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Quan et al.
[156]

SAR image
registration

The deep learning module
learns essential features of
the images and a new
algorithm to help remove
incorrect matching points
using RANSAC are
implemented.

X

SAR
imagery
(June 2008
and 2009)

Yellow River

Rajan et al.
[157]

Classification

X

An active learning
technique that efficiently
updates existing classifiers
by using fewer labeled data
points than semisupervised
methods. This method is
well suited for learning or
adapting classifiers when
there is substantial change
in the spectral signatures
between labeled and
unlabeled data.

HSI

Kennedy
Space Center,
Botswana

Ran et al.
[158]

Classification

X

A deep convolutional
network splits the
spectrum bands into
groups based on their
correlation relationships. A
band variant CNN sub-
model is built, where each
group is modeled by one of
those sub-models. A
conventional CNN model is
also learned globally on the
spatial-spectral space, to
maintain robustness of sub-
model changes. The global
CNN model and band-
specific CNN sub-models
are fused into to one

HSI

unique model.

Indian Pines,
Pavia
University
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A deep neural network
which consists of a
convolutional side (CNN)
Crop which uses the raw Pixel
Rebetez et [classification valyes and a dens'e side HR imagery
al. [159] i HR UAV whlch uses RGB histograms (from UAV) Custom
imagery (HistNN). The output of
both networks was merged
by a final layer which
predicts the class of each
pixel.
Greedy layer-wise {?Hn: use:
unsupervised pre-training imagery
Land use and with an efficient algorithm land cover:
Romero et land cover for unsupervised sparse HS UC Merced,
al. [160] Classification feature learning. Algorithm (Custom Custom
simultaneously enforces L
population and lifetime QUICI.(bIrd .
sparsity. multispectr
al)
Convolutional Neural
- Networks (CNN) learn the | . .
Building and high spatial
Saito et al. |road degtection mapping from raw pixel reiolur'zion Mass.
[161] for large aerial values in aerial imagery to erial Building,
A three object labels . Mass. Roads
imagery imagery

(buildings, roads, and
others).
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Ref. Application g 'g g = 3:‘ g g é 8 g -'E Approac!\ / l:lnique Sens'o!' Dataset(s)
Area Ay g ysas & Contribution Modalities
A CNN pre-trained on
ImageNet is used perform
object recognition in
remote sensing data. The
method consists of three
stages: (i) Detection of
potential objects, (ii)
feature extraction and (iii)
classification of potential
objects. The first stageis  |MSI:
application dependent, R,G,B,NIR
salberg Seal detection with the aim of detecting |(MSl image
[162] using transfer |X|X Xl |X all seal pups in the image, |with 123  |Custom
learning with the expense of adult and
detecting a large amount of{84 pup
false objects. The second |harp seals)
stage extracts generic
image features from a local
image corresponding to
each potential seal
detected in the first stage
using a CNN trained on the
ImageNet database. The
third stage uses a linear
SVM for classification.
Highway Networks allow
for very deep networks
that can be trained using
the smaller datasets typical [SAR
in SAR-based ship imagery
detection. A very deep (Custom
Ship Highway Network perform |dataset
Shwegman [, ~ .
et al. [163] f:llscrlm.lnatlon X X| X X ship dlscrlr.mnatlon.stage usmg 22 |Custom
in SAR imagery for SAR ship detection. The [Sentinel-1
paper also presents a and 3
three-class SAR dataset Radarsat 2
that allows for more images)
meaningful analysis of ship
discrimination
performances.
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Application
Area

Snec |
Spat
Temb
3D
SAR
HS/MS
AP/AD
Video |
RGB
LiDAR
Radar

Approach / Unique
Contribution

Sensor
Modalities

Dataset(s)

Sedaghat et
al. [164]

3D object
recognition

The system predicts the
object pose and the class
label. This yields significant
improvements in the
classification results. An
orientation-boosting voxel
net was proposed and
LiDAR data, CAD models
and RGBD images were
analyzed.

LiDAR,
RGBD

Sydney, KITTI,
NYU-v2,
Princeton
ModelNet

Sherrah et
al. [165]

Dense
semantic
labelling of HR
imagery

Deep CNNs are applied to
semantic labelling of HR
remote sensing data. A full-
resolution labelling is
inferred using a deep FCN
with no downsampling
(requires no deconvolution
or interpolation).

Orthoimag
ery
(R,G,IR),
(R,G,B,IR)
and DSM

ISPRS

Shi et al.
[166]

Cloud
detection

The deep CNNs consists of
four convolutional layers
and two fully-connected
layers. The image is
clustered into superpixels
as sub-region through
simple linear iterative
clustering, and the
probability of each
superpixel that belongs to
cloud region is generated.
The cloud region is
obtained according to the

gradient of the cloud map.

RGB

Custom
Quickbird,
Google and
Flickr imagery|
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Ref. Application g ‘g g a 5 g g é 8 g -'E Approach / Unique Sensor Dataset(s)
Area Aa@Miaages g Contribution Modalities
Precipitation nowcasting as
a spatiotemporal sequence
forecasting problem in
which both the input and |Weather
the prediction target are  |radar
spatiotemporal sequences. fintensity
Shietal. |Precipitation By extending the FC LSTM |data Custom
[167] nowcasting to have convolutional (Custom
structures in both the radar
input-to-state and state-to- weather
state transitions, the intensity)
convolutional LSTM
(ConvLSTM) is used for
precipitation nowcasting.
Sladojevic |Plant disease Plant disease recog.n|t|on RGB
et al. [168] [recognition baseq.on .CNN I(?af 'mage imagery Custom
classification using Caffe.
Slavkoviki IThe CNN is able to learn
et al. [169] Classification spectral band-pass filters  |HSI Indian Pines
during image classification.
RGB
A two-channel CNN (Custom
implements change dataset
Change detection using pairs of with
Stent [170] detection in approximately registered |artificial Custom
tunnel image patches taken at cracks,
imagery different times and leaks and
classifies them to detect  |rust
anomalous changes. applied to
tunnels)
Autoencoder classifier
sunetal  lLand using RBM pretr.ai.ning and Kennedy
[171] Classification multinomial logistic HSI Space Center,
regression to generate Indian Pines

outputs.
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Application
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Snec |
Spat
Temb
3D
SAR
HS/MS
AP/AD
Video |
RGB
LiDAR
Radar

Approach / Unique
Contribution

Sensor
Modalities

Dataset(s)

Sun et al.
[172]

ATR in SAR

The method makes use of a
probabilistic NN, RBM,
modeling probability
distribution of
environment. The model
learns a shared
representation of the
target and its shadow to
reflect the target shape.

SAR

MSTAR

Tang et al.
[173]

Ship detection
satellite
imagery

A ship detection approach
to uses wavelet coefficients
extracted from JPEG2000
compressed domain
combined with DNN and
ELM. Compressed domain
is adopted for fast ship
candidate extraction, DNN
is exploited for high-level
feature representation and
classification, and ELM is
used for efficient feature
pooling and decision
making

Satellite
imagery
(SPOT 5
panchroma
tic images)

Custom

Tome et al.
[174]

Pedestrian
detection

Fast CNN running on Jetson
TK1. Optimized detection
pipeline.

RGB

Caltech
Pedestrian

Uba [175]

Land use and
land cover
classification

Uses transfer learning with
ConvNets and dataset
augmentation with rotated
imagery

High
resolution
aerial
photos and
MSI

UC Merced,
Brazilian
Coffee
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images

resolution by
deconvolutions. By doing
so, the CNN learns to
densely label every pixel at
the original image

resolution.

. e 2 fa o .
Appl 28 aZd A h
Ref. pplication g q 5 a o g S é & g g Pproac. /l:lnlque Sens?!' Dataset(s)
Area AAE M9 ESe S & Contribution Modalities
A DL approach depicts the
lowest level by the
primitive feature vectors
color, texture and shape. At
the next level of
representation, single
objects like building,
highway, forest, boat .
'ghway ore§ 0atOr satellite
lake are described by .
. S imagery
. unigue combinations of the
Semantic o (Custom
Vaduva et . primitive feature vectors. .
labelling of . o . WorldView |Custom
al. [176] . Object spatial interactions | .
VHR imagery 2 image of
are learned at a
. . . Bucharest,
hierarchical level. Using Romania)
Latent Dirichlet Analysis,
three-level hierarchy, in
which documents of a
corpus are represented as
random mixtures over
latent topics and each topic
is characterized by a
distribution over words.
VHR MSI
Automated building .
o . i imagery
Vakalopoul |Building detection using deep L
o . . (Quickbird
ou et al. detection in convolutional NNs with a nd Custom
[177] VHR MSI MRF model to label .
. WorldView
detected buildings. .
-2 imagery)
A CNN-based system
relying on a downsample-
then-upsample
architecture learns a rough
spatial map of high-level
Dense representations by means
. semantic of convolutions and then |[VHR
Volpi et al. ) A
[178] labeling of learns to upsample them |imagery  [ISPRS
sub-decimeter back to the original (R,G,NIR)
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information used via
Laplacian smoothness
regularization to the output
of the classifier making the
spatial constraint more
flexible

. e 2 fa o .
Appl 28 aZd A h
Ref. pplication g q 5 a o g E é & g g Pproac. /l:lnlque Sens?!' Dataset(s)
Area AAE M9 ESe S & Contribution Modalities
ITHSI elementary idea of
using zeroth order (depth),
' first-order (surface normal) NYU-v2,
Wang et al. |Object and second-order (surface I
. RGBD Multi-View
[179] detection curvature) features are also RGBD
supplied to a CNN hat has
been pre-trained on a color
image database.
Road VHR
detection in satellite
Wang et al. lvery high CNN plus state machine for [imagery
i . Custom
[180] resolution road extraction. (Google
satellite Earth
imagery imagery)
Uses semisupervised
approach and utilizes
unlabeled image samples
by evaluating the
confidence probability of
the predicted labels.
Wang et al. [HsI C!as.sifier paramet‘e.rs and Ind‘ian Pinesj,
S dictionary atoms jointly HSI Salinas, Pavia
[181] classification . . . .
optimized. Spatial University
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Application
Area

Approach / Unique Sensor

Ref.
€ Contribution Modalities

Dataset(s)

Snec |
Spat
Video |

Temb
3D
SAR
HS/MS
AP/AD
RGB
LiDAR
Radar

A deep learning based
vehicle detection algorithm
with 2D deep belief
network (2D-DBN) is
proposed. In the algorithm,
the proposed 2D-DBN
architecture uses second-
Wang et al. Vehicle order planes instead of
[182] detection first-order vector as input
and uses bilinear projection
for retaining discriminative
information so as to
determine the size of the
deep architecture which
enhances the success rate
of vehicle detection.

RGB Caltech1999

On a large database, brake
lights patterns are learned
by a multi-layer perception
NN. Given an image, the
vehicles can be classified as
“brake” or “normal” using
the deep classifier. The mono RGB
vehicle can be detected camera,
quickly and robustly by LiDAR
combining multi-layer (Custom

Xl |X X[X|X| |LiDAR and fusing with imagery  |Custom
mono-camera imagery. hand-
Road segmentation and a |[labeled as
novel vanishing point brake or
region of interest normal)
determination method are
explored to further speed
up the detection and
improve the robustness.
The AlexNet model was
used for the CNN.

Wang et al. [Vehicle brake-
[183] light detection
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geographical locations.
Training data is augmented
with synthetic data avoid

overfitting.

.. [2fa o .
Application g =2 REER é . Approach / Unique Sensor
Ref. EE g3 I~ ... | Dataset
€ Area S84 EE SEEE Contribution Modalities| - o>¢ (s)
Vehicle candidates are
generated by thresholding
. . the IR data and then post-
Nigh-time
. processed by contour
Wang et al. \vehicle . .
o analysis to reduce the false IR imagery [Custom
[184] sensing in far . .
IR positive rate. Finally,
vehicle candidates are
verified using a DBN-based
classifier.
A custom CNN (A-ConvNet)
is proposed with reduced
Wang et al, pa.rfa\meters an.d helps
SAR ATR mitigate overfitting. A- SAR MSTAR
[185]
ConvNet replaces the fully
connected layers with
convolutional layers.
Vehicle Aerial
Wang et al. |detection in Parallel DNN provides fast [photos Customn
[186] satellite implementation. (Google
imagery Earth)
UC Merced,
. o IEEE GRSS
Wang et al. [Segmentation A fast scanning image .
. . I HR imagery2013 Data
[187] of HR images segmentation within a DL. .
Fusion
Contest
HSI (UC
M d
A CNN learns parameters erc.e
.. ) (training),
. Image for a denoising function.
Wei et al. . . custom
denoising and The network can be trained| . | . Custom
[188] . Quickbird
haze removal on one sensor and applied nd DC
successfully to another. Mall
(testing))
The deep networks are
learned using a massive
database of real, measured
sonar data collected at sea
Williams et [Sonar during different
I " . . Sonar data |Custom
al. [189] classification expeditions in various
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valid 3D reconstruction of
the input 3D shape via
normalized convolution
kernels, enabling clear
visualization of the learned

features.

Application g #9 ‘§ a é %@ Approach/ Unique Sensor
Ref. Area a4 E C A EE = & -2 E Contribution Modalities Dataset(s)
DBMs model the shape
priors via the unsupervised
training process. An energy
function uses the model
integrated into a new RGB
energy function to (Custom
Wu et al. zfl;?:ci—based eliminate the influence of |dataset of Custom
[190] ex'iraction disturbing background and |QuickBird
combines local and region |images of
information. A new region faircraft)
term in the function is
proposed to eliminate the
influence of object
shadows.
A novel machine learning
approach to extract large-
scale socioeconomic
indicators from HR satellite .
A Satellite
imagery. AFC CNN learns |
filters identifying different w:agery
Xie etal. |Poverty terrains and man-made Lg:ﬁm Custom
[191] mapping structures, including roads, nighttime
buildings, and farmlands, .
without any supervision :satelllte
beyond nighttime lights. images)
These learned features are
highly informative for
poverty mapping.
A Multi-View Deep Extreme
Learning Machine (MVD-
ELM) ensures the feature
maps learned for different
views are mutually
dependent via shared
Xie et al. ?Dtshape Weciigtf;]tstatr;d in each layer 3D Princeton
eature and that the
[192] learning "unprojections" form a database  ModelNet
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segmentation, large-size
marking classification, and
small-size marking
classification based on DL,
and principal component
analysis.

Ref. Application g ‘g g a 5 g g é 8 g -'E Approach / Unique Sensor Dataset(s)
Area Aa@Miaages g Contribution Modalities
A two-channel CNN jointly
learns spectral and spatial . .
Yang etal. HSI I XX features. A fully connected [HSI Ind‘lan Pines,
[193] classification Salinas
layer then fuses the
features for classification.
HSI
Two ANN approaches are [Satellite
satisfactory in imagery
Yang et al. |Cloud discriminating cloud phase |(Custom Custom
[194] detection using FY-3A/Visible and multi-
InfRared Radiometer (VIRR)|channel
multi-channel data, satellite
data)
A fusion of CNN and hand-
IR-R-G
Yao etal. |Urban area crafted features based on .
[195] classification evidence combination orthoimagefISPRS
theory.
CNN optimized to use
Vu et al. Hs| smaller training sets, 1 X 1 Indian Pines,
e convolutional layers, HSI Salinas, Pavia
[196] classification . . .
average pooling and larger University
dropout.
Road surface points are
segmented using a curb-
based approach. Road
markings are extracted.
Seven specific types of road
markings are further
Automated accurately delineated
VU et al. road marking through a combination of
[197] extraction Euclidean distance LiDAR Custom
from 3D LiDAR clustering, voxel-based
point clouds normalized cut
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AP/AD
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LiDAR
Radar

Approach / Unique
Contribution

Sensor

Modalities

Dataset(s)

Yu et al.
[198]

Automated
road manhole
extraction

Road surface points are
segmented from a raw
point cloud via a curb-
based road surface
segmentation. A supervised
DL model is developed to
construct a multilayer
feature generation model
for depicting high-order
features of local image
patches, and a random
forest model is trained to
learn mappings from high-
order patch features to the
probabilities of the
existence manhole covers.
The manhole covers are
detected using the
multilayer feature
generation and random
forest.

LiDAR

Custom

Yuan et al.
[199]

Scene
recognition

A manifold regularized
deep architecture exploits
the structural information
of the data, making for a
mapping between visible
layer and hidden layer and
learns in an unsupervised
manner.

RGB

15 Scenes,
Sports-8,
SUN-397

Yue et al.
[200]

HSI
classification

This method merges spatial
and spectral features
stacked auto- encoders
(SAEs) and deep
convolutional neural
networks (DCNNs) followed
by a logistic regression (LR)
classifier. Spatial pyramid
pooling (SPP) to pool the
spatial feature maps of the
top convolutional layers

into a fixed-length feature.

HSI

Pavia City
Center
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Yue et al.
[201]

HSI
classification

The deep convolutional
neural networks (DCNNs)
hierarchically extract deep
features of HSI. The feature
map generation algorithm
generates the spectral and
spatial feature maps. Next,
the DCNNs Logistic
Regression classifier is
trained to get useful high-
level features and to fine-
tune the whole model.

HSI

Pavia City
Center

Zabalza et
al. [202]

HSI

reduction

dimensionality

Segmented stacked auto
encoders (S-SAE) divides
the original features into
smaller data segments,
which are separately
processed by different
smaller SAEs, which results
in reduced complexity but
improved efficacy of data
abstraction and
classification accuracy.

HSI

Indian Pines,
Pavia City
Center

Zeggada et
al. [203]

UAV image
classification

A UAV-shot image is first
subdivided into a grid of
equal tiles and deep NN-
induced features are
extracted from each tile
and then fed into a radial
basis function NN classifier.
A refinement step at the
top of the complete deep
network architecture helps
to boost the classification

results.

RGB
UAV
over

Trento,
Italy)

(Custom

imagery

Custom
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rea AAE M9 ESe S & Contribution Modalities
The segmentation task is
reframed over the scan
acquisition grid versus the
3D point cloud. Missing
points in the scan grid are |LiDAR
Urban LiDAR labeled and this improves |(Google
Zelener et [segmentation classifier accuracies. The  [Street View Custom
al. [204] (with missing choice of input features data over
points) maps to the CNN New York
significantly affect City)
segmentation accuracy and
these features should be
chosen to fully encapsulate
the 3D scene structure.
German
Zeng et al. [Traffic sign Comt.)ines FNN for feature ' Traffic S.i.gn
[205] recognition learning with extreme RGB video [Recognition
learning machine classifier. Benchmark
(GTSRB)
HR satellite
imagery
High . Gradient boosting random (Custom
Zhang et al.|resolution CNN proposed which Goggle UC Merced,
[206] satellite scene . . earth Custom
I combines multiple CNNs. |,
classification imagery
over
Sydney)
The wide and deep
information are explored
for the object proposal
windows extracted in each
image, and the co-saliency
scores are calculated by
integrating the intra-image
Zhang et al.|Co-saliency contrast and intra-group i
[207] detection consistency via a principled RGB iCoseg, MSRC

Bayesian formulation.
Finally the window-level
co-saliency scores are
converted to the
superpixel-level co-saliency
maps through a foreground
region agreement strategy.
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Zhang et al.
[208]

Scene
classification

A gradient boosting
random convolutional
network (GBRCN)
framework for scene
classification, which can
effectively combine many
deep neural networks and
outperforms single deep
learning approaches.

Satellite
imagery

UC Merced,
Sydney

Zhang et al.
[209]

HSI Spectral-
spatial
classification

A dual-channel
convolutional neural
network (DC-CNN)
framework has a one-
dimensional CNN to
automatically extract the
hierarchical spectral
features and two-
dimensional CNN is applied
to extract the hierarchical
space- related features,
and then a softmax
regression classifier to fuse
the spectral and spatial
features and perform
classification. A simple data
augmentation method is
proposed to overcome
limited training data.

HSI

Pavia
University,
Indian Pines

Zhang et al.
[210]

IR imagery
enhancement

A systematic approach
based on image bias
correction and DL is
proposed to increase target
signature resolution and
optimize the baseline
quality of inputs for object
recognition.

IR imagery

Custom
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detection method to find
small ships is also
developed. Both of these
ship proposals are fed to
the trained CNN for robust
and efficient detection.

.. [2fa o .
Application g #9 [l Approach / Unique Sensor
Ref. prxreal 0 § 5 '9‘ b g E é E E k: I:’l:Zontrib/t' v Modaliti Dataset(s)
= “IS¥S2 ution odalities
First, a modified ellipse and
line segment detector
based on gradient
orientation is used to select
. candidates in the image .
Zhang et al. |Oil-tank Aerial
. and HOG features are Custom
[211] detection photos
extracted. For the
surrounding area, the CNN
transfer learning is applied.
A linear SVM provides
classification.
Satellite
A multi-scale saliency magery
. (Custom
computation is employed Google
to extract built- up areas g
. . Earth
and a sliding windows . .
. . imagery in
approach is applied to Guanehua
Zhang et al.|Urban building generate candidate Sanchguan ! Custom
etection regions, a is applied to .
[212] d i i CNN i lied ’
. . Songping,
classify the regions, and nd
then an improved non .
. . Chenghai
maximum suppression is >
counties of
used to remove false
- Yunnan
buildings. .
province,
China)
A ship detection method
based on CNNs, called S-
CNN, uses two ship models
(the “V” ship head model
and the “| |” ship body) to
localize the ship proposals
Zhang et al. Ship Detection from extracted !ine BGB (aerial Customn
[213] segments. A saliency imagery)
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Area Ay g ysas & Contribution Modalities
A CNN-based functional
zone classification method
is proposed. The method
consists of three steps. The
aerial imagery of the city is
partitioned into disjoint RGB
regions by road network  |(Google
Urban and then each region is Earth
Zhang et al.|functional further divided into imagery Customn
[214] zone patches and is fed to a fully jover
classification connected CNN. The outputShenyang
of which is considered as  |and Beijing,
distributions of this patches|China)
on the five previously
defined functional zones. A
vote strategy is used to
identify the function zone
of this region.
A deep neural .network Ottawa, Bern,
Zhao et al. |Change uses unsupervised feature .
) . ) SAR imagesjand Yellow
[215] detection learning and supervised River
fine-tuning.
Three classes: positive SAR
change backscatter, satellite
. negative change imagery
Zhao et al. S:R 'magery backscatter and no change |(custom  |Yellow River,
[216] c ange.: learned through a deep ESAERS-2 |Custom
detection . . A
belief network using a log- [image of
ratio operator on SAR San
imagery. Francisco)
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grained pooling layers, the
extraction precision rate of
the best modified model

improves significantly.

. e 2 fa o .
Appl 28 aZd A h
Ref. pplication g q 5 a o g S é & g g Pproac. /l:lnlque Sens?!' Dataset(s)
Area AAE M9 ESe S & Contribution Modalities
A multi-scale CNN (MCNN)
to learn spatial-related
deep features for
hyperspectral remote
imagery classification. Hyperspect
MCNN first transforms the [ral imagery .
. . . Pavia City
Multi-scale original data sets into a (Custom .
Zhao et al. . . Center, Pavia
land pyramid structure Worldview-| . .
[217] I . . . University,
classification containing spatial Il image of
A . . Custom
information at multiple Beijing,
scales, and then China)
automatically extracts high-
level spatial features using
multi-scale training data
sets.
The large patch
convolutional NN (LPCNN)
uses large patch sampling
t te hundreds of
Classification oge‘nera € hundreds High spatial
. . possible scene patches for .
of high spatial . resolution
Zhong et al. . the feature learning, and a .
resolution . satellite  |Custom
[218] . global average pooling .
satellite . imagery
ager layer is used to replace the (IKONOS)
gery fully connected network as
the classifier, which can
greatly reduce the total
parameters.
The influence of filter
stride, learning rate, input
data size, training epoch
and fine-tuning on model
Road and performance is studied. As
building a result of combining High spatial Mass
Zhong et al.|extraction in shallow fine-grained resolution .
. . . . . Building,
[219] high spatial pooling layer outputs with [aerial
. i A Mass. Roads
resolution the deep final-score layer |imagery
imagery or abandoning coarse-
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Zhong et al.[Satellite image
[220]

A fast CNN denoted
SatCNN for classification of [Multispectr
satellite HSI imagery. The [al satellite
classification CNN uses efficient imagery
convolutional layers and  |(R,G,B,IR)
small kernels.

SAT-4, SAT-6

Zhou et al. |Object
[221]

It is shown that object
detectors emerge from
training CNNs to perform
scene classification. Scenes
are composed of objects,
the CNN for scene
classification automatically
discovers meaningful
objects detectors, ImageNet
X X X representative of the RGB LSVRC2012,
learned scene categories. It SUN

is demonstrated that the
same network can perform
both scene recognition and
object localization in a
single forward-pass,
without ever having been
explicitly taught the notion
of objects.

Detection
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