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Abstract

This paper presents several fault-tolerant extensions of
the Rate-Monotonic First-Fit multiprocessor scheduling al-
gorithm handling both active and passive task copies. In
particular, the technique of backup phasing delay is used to
reduce the portions of active task copies that must be always
executed and to deallocate active task copies as soon as
their primary task copies have been successfully executed.
It is also shown how to employ this technique while con-
sidering passive task duplication so as to over-book each
processor with many passive task copies, assigning tasks to
processors in such a way that tasks with equal or multiple
periods have a high chance to be assigned to the same pro-
cessor, and partitioning the processors into groups to avoid
the mix of primary, active, and passive task copies on the
same processor.

Extensive simulations reveal a remarkable saving of both
the overall number of processors used and the total compu-
tation time of the schedulability test (achieved especially by
two new algorithms, calledARR3 andS-PR-PASS) with re-
spect to previously proposed algorithms.

Keywords: fault-tolerance, hard-real-time systems, multi-
processors, periodic tasks, Rate-Monotonic scheduling.

1 Introduction

Hard-real-time computing systems are widely used in
our society, e.g. for periodically executing monitor and con-
trol functions. Such systems are characterized by periodi-
cally occurring tasks which have to be preemptively sched-
uled on identical processors in such a way that each task
occurrence has to be completely executed by a hard dead-
line, which often coincides with the end of the task period.
Since the purpose of a hard-real-time system is to provide
time-critical services to its environment, the system mustbe
capable of providing such a service even in the presence of
failures. Thus fault-tolerance plays a vital role in the design
of hard-real-time systems.

Since the hard-real-time scheduling problem is NP-hard,
even if only a single processor is available [18], several
heuristics for scheduling periodic tasks on uniprocessor and
multiprocessor systems have been proposed. Liu and Lay-
land [20] proposed theRate-Monotonic(RM) algorithm, a
fixed-priority, preemptive algorithm for a single processor,
where the task with shortest period has the highest pri-
ority: the ready task with highest priority is executed on
the processor suspending, if necessary, a running task with
lower priority. TheCompletion Time Test(CTT), devised by
Joseph and Pandya [14], is also used for checking schedu-
lability of a set of fixed-priority tasks on a single proces-
sor. RM has been generalized to multiprocessor systems
by Dhall and Liu [11], who proposed theRate-Monotonic
First-Fit (RMFF) heuristic, where tasks are considered by
RM priority order and assigned to the first processor in
which they fit.

A simple technique to achieve fault-tolerance in hard-
real-time multiprocessor systems consists in replicatingon
at least two sets of processors the schedule obtained for the
non-fault-tolerant case (i.e. by employing active duplica-
tion for all tasks), but this approach, studied by Oh and Son
[21] for RM scheduling, presents the disadvantage of re-
quiring many processors. They show that on the average
40% extra processors are required compared to the lower
bound needed to schedule all the primary and active backup
copies. In the case of multiprocessors, the use of passive
task copies has the advantage of over-booking the proces-
sors: many passive copies of primary copies assigned to
different processors can be scheduled on the same proces-
sor during the same time interval - under the assumption of a
single processor failure, only one of such passive copies will
be actually executed. Ghosh, Melhem and Mosse [12] stud-
ied this technique in the case of aperiodic non-preemptive
tasks and achieved high acceptance ratio postponing as
much as possible the execution of passive backup copies. A
heuristic was introduced in [5], calledFault-Tolerant Rate-
Monotonic First-Fit(FTRMFF), which extends theRMFFal-
gorithm by combining in the same schedule both active and
passive task duplication, thus exploiting the advantages of



both types of duplication.

The present paper considers the problem of preemptively
scheduling a set of independent periodic tasks on a mul-
tiprocessor system. In particular, we extend the RMFF
scheduling algorithm to tolerate permanent processor fail-
ures that can affect more tasks at a time. In other words
when a processor fails, all the primary copies executed
on that processor are considered to be failed. The fault-
tolerance is provided by combining passive and active du-
plication, preferring passive duplication whenever possible.
Furthermore, we consider thephasing delaytechnique to
extend theFTRMFF heuristic and to improve the schedule
of the backup copies. Thephasing delaytechnique, intro-
duced in [22, 1], allows the delay of a passive copy until
the completion time of its primary copy so that the passive
copy is executed only when the primary task fails. More-
over, the phasing delay enables to reduce the length of the
worst case overlapping interval between a primary and its
active copy, so that only a small fraction of the computa-
tion of the active copy must be executed in the absence of
failure of the primary copy. Indeed, a disadvantage of ac-
tive task duplication is an excess of redundant computation
due to useless portions of active copies which are executed
after their corresponding primary copies have been success-
fully completed. Therefore, one could deallocate the unex-
ecuted portion of an active copy as soon as a primary copy
has been successfully completed, thus reusing the processor
for the execution of another task. This can be achieved by
forcing the scheduling of the active copies as late as possi-
ble within their periods, thus reducing the initial portions of
active copies that must be always executed before the com-
pletion of their corresponding primary copies. Note that
although the techniques of postponing, over-booking and
time deallocation of passive copies have been proposed in
[12], their application to active copies has not been inves-
tigated to our knowledge so far. Indeed, a passive backup
copy can be simply delayed until the completion time of
its primary copy to maximize the over-booking and deal-
location of passive copies. However, the over-booking and
deallocation of active copies are more difficult since they re-
quire to establish exactly the computation overlap between
an active copy and its primary copy. Such a computation
overlap is determined by the unrelated preemptions caused
by higher priority tasks. This paper considers the phasing
delay, the over-booking and the time deallocation of active
backup copies and generalizes these optimizations in a task
set composed of both active and passive copies, thus com-
bining together all the techniques proposed in [22, 5, 12].

In order to reduce further both the number of processors
needed and the running time for task assignment, it is also
shown how to combine the phasing delay with other known
techniques. For instance, instead of assigning tasks to pro-
cessors following the Rate-Monotonic order, one could con-

sider other assignment orders, such as theS priority, pro-
posed by Burchard, Liebeherr, Oh and Son [6], which has
the effect of grouping together on the same processor those
tasks whose periods are equal or multiple, since this could
produce a more compact schedule and thus employs less
processors. However, the computation time of the schedu-
lability test is related to the number of invocations ofCTT
required to assign each task. Thus, the processors can be
partitioned into groups so as to avoid the mix of primary,
active, and passive copies on the same group and reduce the
overall number ofCTT invocations. Finally, when all tasks
have low utilization factors, one could employ only passive
duplication.

The remaining part of this paper is structured as follows.
Section 2 gives the notation, the fault-tolerant system as-
sumptions, and a formal definition of the scheduling prob-
lem. Section 3 deals with theActive Resource Reclaiming
(ARR) strategy, which exploits the backup phasing delay to
schedule the active copies as late as possible within their
periods and to permit the deallocation of active copies as
soon as their primary copies have been successfully exe-
cuted. In order to reduce the number ofCTT invocations,
the active resource reclaiming technique is combined with
a partitioning of the processors into at most three groups
(algorithmsARR1, ARR2 andARR3). Section 4 introduces
the S-PRIORITYalgorithm, where processors are also par-
titioned into groups but tasks are assigned to processors by
following the S priority [6] in such a way that tasks with
equal or multiple periods have a high chance to be assigned
to the same processor. In Section 5, thePASSIVEalgorithm
is presented, which considers only passive task duplication,
and then theS-PRIORITYandPASSIVEalgorithms are com-
bined to derive theS-PR-PASSalgorithm. Section 6 reports
extensive simulations where all the algorithms proposed in
this paper are compared. The simulation results show a
remarkable saving of both the number of processors used
and the total computation times achieved especially by the
ARR3 andS-PR-PASSalgorithms.

2 Problem formulation and assumptions

This section gives a formal definition of the scheduling
problem and a precise specification of the fault-tolerance
model. Aperiodictaskτi is characterized by the tuple:

τi = (Ri ,Ti ,Ci ,Di)

where Ri is thereleasetime, that is, the time of the first invo-
cation, Ti is the invocation (or request, or arrival)period, Ci

is the (worst case)computation time, and Di is thedeadline.
The ratio Ui = Ci

Ti
is called theload (or utilization) of task

τi and cannot be greater than 1 for the task to be schedu-
lable. Each periodic task leads to an infinite sequence of
occurrences. Thek− th occurrence of taskτi is ready for



execution at time Ri + (k− 1)Ti and, in order to meet its
deadline, must complete its execution — that requires Ci

time units — no later than time Ri +(k−1)Ti +Di.
To better understand the algorithms presented in this

paper, two results due to Liu and Layland [20] are re-
called about static priority-driven scheduling. Considera
set{τ1, . . . ,τn} of periodic tasks, indexed by decreasing pri-
ority, such that Di = Ti for i = 1, . . . ,n.

Theorem 2.1 The longest response time (i.e. difference be-
tween completion and release time) foranyoccurrence of a
taskτi occurs when it is requested at a critical instant, that
is, simultaneously with all higher priority tasks (e.g. when
R1 = R2 = . . . = Ri).

Theorem 2.2 A periodic task set can be scheduled by a
fixed-priority preemptive algorithm provided that the dead-
line of thefirst request of each task starting from a critical
instant is met.

Due to the above results, in the following all the first ar-
rival times of the tasks are assumed to be 0, i.e. R1 = R2 =
. . . = Rn = 0, since this assumption takes care of the worst
possible case. As a consequence, to check the schedula-
bility of any taskτi , it is sufficient to check whetherτi is
schedulable within its first period[0,Ti ] by its first dead-
line Di , when it is scheduled with all higher priority tasks
{τ1, . . . ,τi−1}. Moreover, we also assume, as in [11] and
[20], that all the tasks areindependent, namely, there is no
precedence relation among them. For the sake of simplic-
ity, we assume that all the task deadlines coincide with the
end of the task periods, in symbols: Di = Ti . However,
the above results and theCompletion Time Test(CTT) have
been extended in [23] relaxing this assumption, hence the
fault tolerant algorithms presented here could also be gen-
eralized when Di ≤ Ti .

Below, the basic formulation ofCTT is reported which
will be used to test whether a taskτh can be assigned to a
given processor. CTT determines the minimum Wh such
that:

Wh = Ch + ∑
j∈hp(h)

Cj

⌈

Wh

Tj

⌉

(1)

wherehp(h) denotes the subset of tasks with higher prior-
ity thanτh already assigned to the same processor, and Wh

denotes theworst-case response timeof τh

Remark 2.3 A taskτh can be scheduled on a processor to-
gether with all higher priority tasks if and only if:

Wh ≤ Th.

Given n periodic independent tasks{τ1, . . . ,τn}, the
fault-tolerant scheduling problem considered in the present

paper consists in finding an order in which all the periodic
task occurrences have to be executed on a set of identical
processors (using preemption and backup copies, when nec-
essary) so as to meet all the task deadlines, even in the pres-
ence of a processor failure, and to minimize the total num-
bermof processors used.

As for the fault-tolerance model, we assume that the fail-
ure characteristics of the multiprocessor system are the fol-
lowing: (1) processors fail in a fail-stop manner, that is a
processor is either operational (i.e. non-faulty) or ceases
functioning; (2) all non-faulty processors can communicate
with each other; (3) a faulty processor cannot cause incor-
rect behavior in a non-faulty processor (that is, processors
are independent as regard to failures); and (4) the failure of
a processor Pf is detected by the remaining non-faulty pro-
cessors after the failure, but within the instant correspond-
ing to the closest task completion time of a task scheduled
on Pf . Each (primary) task is assumed to have a backup
copy with the same parameters. In particular, for the sake
of simplicity, it is assumed that each backup copy has the
same computation time as its primary copy, and that a sin-
gle permanent processor failure has to be tolerated, unless
otherwise stated. However, the results could be generalized
to tolerate many permanent processor failures even when
the two copies of the same task have different computation
times.

The algorithms presented here introduce fault-tolerance
by extendingRMFF in a natural way. Two copies for
each task are used, aprimary copy and abackupcopy,
such that each backup copy has the sameRM priority as
its corresponding primary copy. The task set thus be-
comes{τ1,τ2, . . . ,τ2i+1,τ2i+2, . . . ,τ2n−1,τ2n}, whereτ2i+1

and τ2i+2 denote the primary copy and the backup copy,
respectively, of the same task.

A primary copyτ2i+1 of a task is always executed, while
its backup copyτ2i+2 is executed according to its status,
which can be active or passive. If the status is active, then
τ2i+2 is always executed, while if it is passive, thenτ2i+2 is
executed only when the primary copy fails. In other words,
although both active and passive copies of the primary tasks
are statically assigned to processors, passive copies are ac-
tually executed only when a failure of the corresponding
primary copy occurs, see [5] for further details.

3 The Active Resource Reclaiming Algo-
rithms

This section deals with theActive Resource Reclaiming
(ARR) algorithms which use the phasing delay of active
copies with the purpose of: (1) forcing the active copies to
be scheduled as late as possible within their periods, so as
to minimize their overlap with their corresponding primary
copies; (2) permitting the deallocation of unfinished active



copies as soon as their corresponding primary copies have
been successfully executed; (3) reusing the free processor
time for the execution of other tasks.

The algorithms presented in the rest of this paper, while
assigning the tasks to the processors, determine whether a
backup copy has to be passive or active. Indeed, theCTT
returns the worst-case response time W2i+1 of each primary
copyτ2i+1 on the processor it is assigned to. Ifτ2i+1 fails,
there are T2i+1−W2i+1 time units for recovering the task.
Two cases may arise:

1. If T2i+1−W2i+1 ≥ C2i+2, then the time interval be-
tween the finish time of the primary copy and the end
of the period is large enough to completely execute
the backup copy, and thusτ2i+2 is chosen to be pas-
sive.

2. If T2i+1 −W2i+1 < C2i+2, the backup copyτ2i+2 is
chosen to be active, since its execution must begin
before the finish time of its primary copy.

We now introduce with the help of the example in Fig-
ure 1 the scheduling strategy used for active copies. In
the best case, a primary copyτ2i+1 is executed with no
preemption at the beginning of its period, while its active
copy τ2i+2 is executed with no preemption at the end of
its period as shown in the figure. Sinceτ2i+2 is active,
C2i+2 > T2i+1−W2i+1 and thus a minimum computational
overlap of 2C2i+2−T2i+1 > 0 time exists betweenτ2i+1 and
τ2i+2. Therefore, the active copyτ2i+2 can be executed ei-
ther for 2C2i+2 − T2i+1 time, if the primary copyτ2i+1 is
successfully completed, or for C2i+2 time, if the primary
copy fails. Note that, in the absence of failures, the remain-
ing T2i+1 −C2i+1 time units of the unfinished active copy
can be reused.

In general, the length of the computation overlap is larger
than the minimum 2C2i+2 − T2i+1 and it is difficult to be
determined exactly, due to the scheduling of higher priority
tasks which cause unrelated preemptions of bothτ2i+1 and
τ2i+2. For this reason, theworst case overlapping interval
betweenτ2i+2 and its primary copyτ2i+1 is introduced as
an upper bound. Such interval starts from the release time
of the active copyτ2i+2 and ends at the worst case response
time of the primary copyτ2i+1. To reduce the length of
the worst case overlapping interval, the only way consists
in delaying the release time of the active copyτ2i+2. This
is the rule employed by theARR strategy, which determines
in advance during the schedulability test the time intervalan
active copy can be delayed and when it can be deallocated
in the absence of failures of the primary copy. In order to
determine the value of thephasing delaydmax2i+2 of an ac-
tive copy, consider the assignment of tasksτ2i+1 andτ2i+2:

1. A primary copyτ2i+1 is assigned, say, to processor Ph

and thus its worst-case response time W2i+1 is com-

Figure 1. A schedule for the primary copy and
the active copy of the same task having min-
imum computation overlap.

puted byCTT. Assume that T2i+1 −W2i+1 < C2i+2

and thus the backup copyτ2i+2 is active.

2. The active copyτ2i+2 is assigned, say, to Pk 6= Ph and
its worst-case response time is W2i+2. The parameter
dmax2i+2, which gives the maximum phasing delay
applicable toτ2i+2 without τ2i+2 misses its deadline,
is:

dmax2i+2 = T2i+1−W2i+2.

3. Let C′2i+2 denote the computation time of a portion of
the active copy that has to be always executed. Such a
time is equal to the minimum between C2i+2 and the
worst case overlapping interval:

C′
2i+2 =

min{C2i+2,W2i+1−dmax2i+2} ≥ 2C2i+2−T2i+1.

3.1 Maximum phasing delay of an active copy

In order to justify the introduction of the parameter
dmax2i+2 to delay the execution of an active copyτ2i+2,
assume that W2i+2 has been already computed for the worst
possible case which, by Theorems 2.1 and 2.2, arises when
the task copyτ2i+2 starts in phase with all the task copies al-
ready assigned to the same processor, say Pk, (see the next
subsection for all the details on how W2i+2 is actually com-
puted).

If W2i+2 ≤ T2i+1 thenτ2i+2 can be scheduled on Pk and
delayed by dmax2i+2 = T2i+1−W2i+2 units. Note that such
a delay has the sole purpose of reducing the worst case
overlapping interval between an active copy and its primary
copy during their execution and cannot cause an incorrect
schedule on Pk. Indeed, a phasing delay of dmax2i+2 > 0 for
the first occurrence (and also the successive occurrences)
of τ2i+2 can cause neither a response time greater than
W2i+2, which already includes the worst possible case, nor



a change in the task priorities. If the first invocation ofτ2i+2

has a dmax2i+2 delay (equal to T2i+1−W2i+2), then the first
occurrence ofτ2i+2 will be completed no later than:

dmax2i+2 +W2i+2 = (T2i+1−W2i+2)+W2i+2 = T2i+1.

Thus the completion of the active copyτ2i+2 is guaranteed
by the end of the period of its primary copyτ2i+1, although
the period of the active copy is delayed by dmax2i+2 during
the execution. Note that, during the schedulability test, the
active copyτ2i+2 may be considered as a replica ofτ2i+1,
characterized by thesameparameters (C2i+2,T2i+2, . . .),
and thus with no phase delay (i.e. R2i+2 = 0). In contrast,
τ2i+2 is delayed by R2i+2 = dmax2i+2 time during the actual
task execution. Such a delay is determined only after that
W2i+2 has been computed byCTT.

Given any phasing delay dmax2i+2 > 0, the following
results hold.

Remark 3.1 If the k-th occurrence ofτ2i+2 is invoked at
timedmax2i+2 +(k−1)T2i+2, then it will be completed at
most by time

dmax2i+2 +(k−1)T2i+2+W2i+2.

Remark 3.2 Let τ2i+2 andτ2i+1 be the active and primary
copies of the same task, and letW2i+2 be the worst-case
response time ofτ2i+2. If τ2i+2 has a phasing delay

dmax2i+2 = T2i+1−W2i+2

with respect toτ2i+1 andPf = P(τ2i+1) fails during the k-th
occurrence ofτ2i+1, thenτ2i+2 terminates by kT2i+1.

3.2 Worst-case response time of an active copy

In order to determine the maximum phasing delay, as ex-
plained in the previous subsection, a particular care has
to be taken while computing the worst-case response time
W2i+2 of an active copyτ2i+2. Indeed, the worst-case re-
sponse time must be equal to:

W2i+2 = max{W2i+2(NF),W2i+2(OF)}

where W2i+2(NF) and W2i+2(OF) represent the worst-case
response time in the absence of failures and in the case of
one failure, respectively.

3.3 Determining the portion of active copy to be
always executed

In this subsection, the formula for computing C′
2i+2, the

portion of active copy to be always executed, is considered
in details. We know thatτ2i+1 terminates within W2i+1 units
after the beginning of the period, whileτ2i+2 cannot start
before dmax2i+2 units after the beginning of the period.

Sinceτ2i+2 is active, the quantity W2i+1−dmax2i+2 rep-
resents the worst case overlapping interval of the active
copy that may be executed before the primary copyτ2i+1

terminates. In order to determine whetherτ2i+2 has to be
completely executed or not, a final test is needed:

• if dmax2i+2 + C2i+2 ≤ W2i+1, then an occurrence of
τ2i+2 may exist that terminates before the completion
of τ2i+1, since the worst case arises whenτ2i+2 starts
at time dmax2i+2 and is executed with no preemption
for C2i+2 time units, and hence C′2i+2 = C2i+2;

• if dmax2i+2 + C2i+2 > W2i+1, then the execution of
τ2i+2 must necessarily continue beyond W2i+1, and
the maximum portion of the active copy that has to
be executed before W2i+1 is indeed C′2i+2 = W2i+1−
dmax2i+2.

3.4 Assignment of tasks to processors

Let P(τh) denote the processor to which the (primary or
backup) copyτh is assigned. The following notation is use-
ful:

primary(Pj) = {τ2i+1 : P(τ2i+1) = Pj}

backup(Pj) = {τ2i+2 : P(τ2i+2) = Pj}

active(Pj) = {τ2i+2 ∈ backup(Pj) : τ2i+2 is active}

passRecover(Pj ,Pf) =

{τ2i+2 ∈ backup(Pj) : P(τ2i+1) = Pf ,τ2i+2 is passive}

actRecover(Pj,Pf) =

{τ2i+2 ∈ backup(Pj) : P(τ2i+1) = Pf ,τ2i+2 is active}

recover(Pj ,Pf) =

passRecover(Pj ,Pf)∪actRecover(Pj,Pf)

The setsprimary(Pj) andbackup(Pj) represent the pri-
mary and backup copies assigned to processor Pj . The
set active(Pj) includes the active backup copies assigned
to processor Pj . The setpassRecovery(Pj ,Pf) consists of
the passive copies assigned to Pj such that their primary
copies are assigned to Pf , namely, this set contains all the
passive backup copies that processor Pj must start schedul-
ing when a failure of processor Pf is detected. The set
actRecovery(Pj,Pf) denotes the active copies assigned to Pj

with primary copies assigned to Pf , namely, this set contains
all the active backup copies that processor Pj must keep exe-
cuting when Pf fails. Finally,recover(Pj ,Pf) gives the union
between the last two sets.

The following definition has to be added to those above,
to take into account the active copies whose computation
can be performed only partially because their corresponding
primary copies successfully complete. Let

shortActive(Pj,Pf) =

{τ2i+2 ∈ backup(Pj) : P(τ2i+1) 6= Pf ,τ2i+2 is active}.



Remark 3.3 shortActive(Pj,Pf) denotes the active copies
whose corresponding primary copies are not assigned toPf

and that could be partially executed. Note that, by defini-
tion: (1) shortActive(Pj,Pf) ∩ actRecover(Pj,Pf) = /0 and
shortActive(Pj,Pf) ∪ actRecover(Pj,Pf) = active(Pj). That
is the active copies onPj are partitioned in two sets:
shortActive(Pj,Pf) containing the active copies that could
be partially executed and actRecover(Pj,Pf) containing the
active copies that must be completely executed; and (2) the
particular set shortActive(Pj,Pj) indicates that all the ac-
tive copies in active(Pj) could be partially executed(no ac-
tive copy onPj can have its primary copy on the same pro-
cessorPj , and thus shortActive(Pj,Pj) = active(Pj)).

The task copies are considered by decreasingRM priorities
and assigned to processors following theFirst-Fit heuris-
tic. The schedulability test is theCTT executed on task sets
determined according to the following considerations.

To assign a task copyτh to a processor Pj , two feasi-
bility tests,NoFaultCTTandOneFaultCTT, have to be ex-
ecuted on proper sets, which depend on the characteristic
(i.e. primary, active, or passive) of the task copyτh and
on the potential failed processor Pf . The testOneFaultCTT
is exactly the same as described in [5] whileNoFaultCTT
is obtained from that of [5] by replacingactive(Pj) with
shortActive(Pj,Pj).

In the following, we expand on the implementation of
NoFaultCTTto cope with theARR strategy. In the absence
of failure, to check whetherτh (either primary or active) can
be scheduled on Pj , determine the minimum Wh satisfying

Wh =

Ch + ∑
τ2k+1∈hp(h)

C2k+1

⌈

Wh

T2k+1

⌉

+ ∑
τ2k+2∈hp(h)

E2k+2

⌈

Wh

T2k+2

⌉

where,

E2k+2 =































C2k+2 if τh is active andτ2k+2

∈ actRecover(Pj,P(τh−1))
C′

2k+2 if (τh is primary andτ2k+2

∈ shortActive(Pj,Pj)) or
(τh is active andτ2k+2

∈ shortActive(Pj,P(τh−1)))

and check whether
Wh ≤ Th.

Note that the two alternatives for E2k+2 follow from the def-
inition of NoFaultCTT. In particular, to schedule an active
copyτh together with other active copiesτ2k+2 on proces-
sor Pj , the entire computation time C2k+2 must be consid-
ered whenτ2k+2 belongs to the active copies whose primary
copies are assigned toP(τh−1) (τh is an active copy, hence
P(τh−1) denotes the processor to which the primary copy

τh−1 is assigned). In the other case,τ2k+2 can be partially
executed and the computation time C′

2k+2 is considered.
A high-level description of the algorithm for assigning

tasks to processors, calledARR1, is given below. Its cor-
rectness follows from Remarks 3.1 and 3.2 and from the
correctness ofCTT.
ARR1
(0) Let the task copiesτ1,τ2, . . . ,τ2n−1,τ2n be indexed by increas-

ing periods and set to 1 the numberm of processors used.

(1) Repeat the following steps fori = 0, . . . ,n−1:

(1.1) Assign the primary copyτ2i+1 to the first pro-
cessor Pj for which NoFaultCTT(τ2i+1,Pj) and
OneFaultCTT(τ2i+1,Pj ,Pf) for all Pf 6= Pj are satis-
fied. If there is no such processor, then setm to m+1
and assignτ2i+1 to Pm. Compute W2i+1.

(1.2) If T2i+1 − W2i+1 < C2i+2, then setτ2i+2 to ac-
tive, otherwise setτ2i+2 to passive and dmax2i+2 to
W2i+1.

(1.3) If τ2i+2 is active, then assign it to the first
processor Pj for which NoFaultCTT(τ2i+2,Pj) and
OneFaultCTT(τ2i+2,Pj ,P(τ2i+1)) are satisfied. If
there is no such processor, then setm to m+ 1 and
assignτ2i+2 to Pm.

(1.3.1) Consider
W2i+2 = max{W2i+2(NF),W2i+2(OF)}, where
W2i+2(NF) is the worst-case
response time computed by NoFaultCTT, while
W2i+2(OF) is that computed by OneFaultCTT.
Set dmax2i+2 = T2i+1−W2i+2.

(1.3.2) Compute the partial computation time:

C′
2i+2 =







W2i+1−dmax2i+2 if dmax2i+2+
C2i+2 > W2i+1

C2i+2 otherwise

(1.4) If τ2i+2 is passive, then assign it to the first proces-
sor Pj for which OneFaultCTT(τ2i+2,Pj ,P(τ2i+1)) is
satisfied. If there is no such processor, then setm to
m+1 and assignτ2i+2 to Pm.

(2) Return the numberm of processors used and the schedule so
found.

3.5 Recovery from a failure

Once the task copies are assigned, each processor Pj ex-
ecutes, in the absence of failures, the task copies in
primary(Pj)∪ shortActive(Pj,Pj) by means of theRM al-
gorithm. As soon as a primary copyτ2i+1 completes its
execution, a “successful completion” message is sent to the
processor where the backup copy is allocated. If such a
copy is passive, then no action is taken, while if it is active,
then its execution is immediately suspended. If a failure of
processor Pf is detected at timeθ, e.g., the successful com-
pletion message ofτ2i+1 is not received by P(τ2i+2) by time



θ which corresponds to the completion time ofτ2i+1, then
a Recoveryprocedure is invoked. Such aRecoveryproce-
dure can be obtained from that in [5] by replacingactive(Pj)
with shortActive(Pj,Pj). Moreover, such procedure can be
extended to tolerate more than one processor failure with a
technique related to that described in [5].

3.6 Reducing the number ofCTT invocations

In the ARR1 assignment procedure seen above, each task
copy is assigned to the first processor to which it fits, thus
mixing together primary, active, and passive copies on the
same processor. In this way, however, manyCTT’s are re-
quired to assign each task, thus increasing the computation
time of the schedulability test.

In order to reduce the number ofCTT invocations, the
active resource reclaiming technique can be combined with
a partitioning of the processors into two or three groups so
as to avoid to mix together primary, active, and passive task
copies on the same processor.

The simplest version to be implemented is clearly that in
which three groups of processors are used, denotedARR3,
where there is a first group of processors for the primary
copies, a second group for the active copies, and a third one
for the passive copies. However, two groups can also be
used (versionARR2), the first group for both primary and
active copies (which indeed are handled in a very similar
way) and the second one for the passive copies. TheARR2
andARR3 algorithms can be easily derived from theARR1
algorithm explained above, and thus are not described here
in details.

The advantage ofARR3 is that of requiring lessCTT in-
vocations thanARR1 and ARR2. Indeed, usingARR3, at
mostm CTT’s are needed to assign a primary copy, for a
total of O(nm) CTT’s, wheren is the number of primary
copies andm the number of processors employed. In con-
trast, when usingARR1 andARR2 for assigning a primary
copy to a processor Pj , besides to check for schedulability
in the absence of failures, one needs to check for schedula-
bility also in the case of a failure to any processor other than
Pj , for a total of O(nm2) CTT’s.

4 The S-PRIORITYalgorithm

This section discusses a variant of theARR strategy
where tasks are assigned to processors without following
the Rate-Monotonic priority. In particular, we consider an-
other assignment priority, called hereS-PRIORITY, which
was introduced in [6] and has the effect of grouping to-
gether on the same processor those tasks whose periods are
equal or multiple, thus producing a more compact schedule
in many cases. It is worth noting that, once the tasks are

assigned to processors, they are scheduled on each single
processor by means of the usualRM algorithm.

In order to assign to the same processor those tasks
whose periods are equal or multiple, the priority ordering
given in [6] can be used. Considerk tasks{τ1, . . . ,τk} in-
dexed byRM priorities, that is, with T1 ≤ . . .≤ Tk. For each
taskτi compute

Si = log2Ti −
⌊

log2Ti
⌋

i = 1, . . . ,k

and consider the permutation(1,2, . . . ,k) → ( j1, j2, . . . , jk)
such that{τj1, . . . ,τjk} are ordered byS priorities, namely
Sj1 ≤ . . . ≤ Sjk . Then assign tasks to processors following
such an ordering. Observe that, in this case, when assigning
τj i to any processor Ph, tasks withRM priority smaller than
that ofτj i can be already assigned to Ph. Therefore, besides
to test for schedulability ofτj i together with the tasks in
hp( j i), aCTT must be performed again for eachτj l , already
assigned to Ph, with Tj l > Tj i .

In this way, however, the worst-case response times of
the primary copies are known only whenall the primary
copies have been assigned to the processors. Therefore,
to assign a backup copy, its status (active/passive) can be
determined only after that the assignment of all the pri-
mary copies is completed. In order to maintain unchanged
the worst-case response times of the primary copies, the
backup copies are assigned to a second group of proces-
sors, following theSpriority order. Thus the primary copies
τ1,τ3, . . . ,τ2n−1 are first assigned to a group of processors,
and then the backup copiesτ2,τ4, . . . ,τ2n are successively
assigned to the other group of processors. Remember, how-
ever, that theS priority is used only for assigning tasks to
processors, since all the tasks assigned to the same proces-
sor are then scheduled by the usualRM priority.

5 The PASSIVEand S-PR-PASSalgorithms

In an ideal situation, only passive duplication should be
used, since in this case redundant computations are per-
formed only when needed after a failure. In contrast, ac-
tive copies require at least a partial computation even in
the absence of failures. This section presents two algo-
rithms that employ only passive duplication: whenever
T2i+1−W2i+1 < C2i+2 a new processor is used to schedule
τ2i+1, hence only passive backup copies can be employed
to tolerate failures. Clearly, this is not possible in all cases,
but only when

C2i+1 +C2i+2 ≤ T2i+1 i = 0, . . . ,n−1,

which, under our assumption C2i+1 = C2i+2, becomes
U2i+1 =

C2i+1
T2i+1

≤ 1
2 for i = 0, . . . ,n− 1, since in this case

the period of each task is long enough to permit the execu-
tion of both a primary copy and its passive in the case of a
failure.



The first algorithm, calledPASSIVE, uses the RM priority
both to assign tasks to processors and to schedule the tasks
assigned to each processor. ThePASSIVEalgorithm can be
described as follows.
PASSIVE

(0) Let the task copiesτ1,τ2, . . . ,τ2n−1,τ2n be indexed by in-
creasing periods, set to 1 the numbermof processors used,
and set to passive all the backup copiesτ2,τ4, . . . ,τ2n−2,τ2n

(1) Repeat the following steps fori = 0, . . . ,n−1:

(1.1) Assign the primary copyτ2i+1 to the first processor
Pj for which NoFault-
CTT(τ2i+1,Pj), OneFaultCTT(τ2i+1,Pj ,Pf) for each
Pf 6= Pj, and the condition (T2i+1−W2i+1 ≥ C2i+2)
are all satisfied. If there is no such processor, then set
m to m+1 and assignτ2i+1 to Pm. Compute W2i+1,
and set dmax2i+2 to W2i+1.

(1.2) Assign τ2i+2 to the first processor Pj for which
OneFaultCTT(τ2i+2,Pj ,P(τ2i+1)) is satisfied. If there
is no such processor, then setm to m+ 1 and assign
τ2i+2 to Pm.

(2) Return the numberm of processors used and the schedule
so found.

TheS-PR-PASSalgorithm combines thePASSIVEandS-
PRIORITY algorithms previously presented. As in theS-
PRIORITY algorithm, all the primary copies are first as-
signed to a group of processors following theS priorities.
The schedulability test of any primary copyτ2i+1 on any
processor Pj consists in the following steps, where all the
CTT’s are executed on task sets containing only primary
copies:

- a CTT on{τ2i+1}∪hp(2i+1);

- a CTT on {τ2k+1} ∪ {τ2i+1} ∪ hp(2k+ 1) for each
τ2k+1 already assigned to Pj such that T2k+1 > T2i+1;

- a check to verify whether T2i+1−W2i+1 ≥ C2i+2, in
order to guarantee that there is enough time to sched-
ule the passive copy within the same period (other-
wise,τ2i+1 is assigned to a new processor).

During the assignment of the primary copies, noOneFault-
CTT is needed, since primary and passive copies are as-
signed to two different groups of processors. Once all the
primary copies are assigned, theS-PR-PASSalgorithm as-
signs all the passive copies following again theS priorities.
As in thePASSIVEalgorithm,S-PR-PASSuses the RM pri-
ority to schedule the tasks assigned to each processor.

6 Simulation results

In the previous sections, theRMFF algorithm has been
extended leading to six fault-tolerant algorithms:ARR1,
ARR2, ARR3, PASSIVE, S-PRIORITY, and S-PR-PASS. In

this section, simulation experiments are reported in order
to evaluate the performance of the different algorithms.

As in [5, 6], large task sets with at mostn = 600 tasks
are generated. The parameters of each taskτi are chosen as
follows. The period Ti is an integer uniformly distributed in
[1,Tmax], while the computation time Ci is an integer uni-
formly distributed in[1,αTi ], whereα = maxi

Ci
Ti

is an up-
per bound for the task load. Tmax is fixed to 500, and each
backup copy has the same period and computation time as
its primary copy. Three values forα are chosen, namely,
0.2, 0.5, and 0.8. For the chosenn andα, the experiment is
repeated 30 times. The performance metric in all the exper-
iments is the number N of processors used by an algorithm
to schedule both primary and backup copies. Another use-
ful metric should be the ratioNN0

, where N0 is the minimum
number of processors to schedule only the primary copies,
since N

N0
− 1 gives the ratio of additional processors intro-

duced to tolerate a processor failure. Since an optimal task
assignment is hard to be found for large task sets, N0 is re-
placed by its lower bound U, which is obtained by summing
up all the loads of the primary copies.

For the chosenn and α, the j − th experiment gives

Nj , Uj , and
Nj
Uj

. Since the experiment is repeated 30

times, the average results are computed as follows: N=
(

∑30
j=1Nj

)

/30, U=
(

∑30
j=1Uj

)

/30, andN
U =

(

∑30
j=1

Nj
Uj

)

/30.

All the algorithms were written in C and run on a Digital
Alpha-Server 2100, Model 5/250. The outcome of the ex-
periments is given in Figure 2 (for the sake of clarity, the
results forARR1 andARR3, which are similar to those of
ARR2, will be reported only in Figure 3 but not in Figure 2).

Figure 2 shows the ratioNU for the experiments, where U
is the lower bound for scheduling only the primary copies,
and N the number of processors required by the various al-
gorithm, including also theFTRMFFalgorithm presented in
[5].

By observing Figure 2, one notes that, whenα = 0.2,
PASSIVEandARR2 behave asFTRMFFsince in this case all
the tasks have a low load and thus bothFTRMFFandARR2
employ almost exclusively the passive duplication. When
α = 0.2, the best performance is given by theS-PRIORITY
and S-PR-PASSalgorithms. Whenα = 0.5 andα = 0.8,
FTRMFF is the worst algorithm. In theα = 0.5 case,S-
PR-PASSandARR2 have the best performance, while in the
α = 0.8 case the best algorithm isARR2. Indeed, in this
latter case, almost all tasks have a high load and thus the
active duplication is almost exclusively employed. There-
fore,ARR2 gains benefits from the active resource reclaim-
ing strategy where active copies are executed only partially.
Observe also that forα = 0.2 andα = 0.5 theS-PR-PASSal-
gorithm can tolerate a failure by using a number of proces-
sors close to the minimum number of processors required in
the non fault-tolerant case, since the corresponding ratioN

U
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Figure 2. Ratio N/U of the number N of proces-
sors for scheduling both primary and backup
copies and the lower bound U for scheduling
only the primary copies. N/U− 1 gives the
ratio of additional processors introduced to
tolerate a processor failure.

is close to 1.
Oh and Son [21] report the performance of their best RM

scheduling algorithm to achieve fault-tolerance considering
multiple backup copies. They show that on the average 40%
extra processors are required compared to the lower bound
L which is equal to the sum of all the loads of the primary
copies and backup copies. If each task has one backup
copy with the same computation time as its primary then
the lower bound L becomes twice the lower bound U con-
sidered here, and thus 180% extra processors are required
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Figure 3. Performance and running times of
the proposed algorithms. The second col-
umn reports the percentage of gain intro-
duced by the proposed algorithms with re-
spect to the FTRMFFalgorithm in [5].

by [21] with respect to U. In contrast, Figure 2 shows that
the extra processors needed by our best algorithms range
from 20% to 80% with respect to the lower bound U.

The performance of all the new algorithms introduced in
this paper (including alsoARR1andARR3) are summarized
in Figure 3. In this figure, the second column reports the
percentage gained by the proposed algorithms with respect
to FTRMFF (for instance, theS-PR-PASSalgorithm with
α = 0.5 employs 21% less processors thanFTRMFF). These
values are computed forn= 400 only, since forn≥ 400 the
gain remains almost the same. Moreover, Figure 3 reports
also the average computation time of the six assignment al-
gorithms, forn = 100, n = 300, andn = 600. The aver-
age running times ofFTRMFF are comparable to those of
ARR1 and are not reported explicitly. A circle in the figure
outlines the entries with the highest processor gains or the
lowest running time.

By observing Figure 3, it is possible to choose the best
algorithm depending on the characteristics of the task set,
taking into account not only the number of processors used
in the schedule, but also the running time of the assignment
algorithm. Note that the running times in this figure are



those required by the assignment algorithm, which is per-
formed off-line only once. The algorithms for the actual
task scheduling and for recovering from a failure are per-
formed on-line and are much faster. Indeed, all the schedu-
lability tests and all the task sets to be scheduled on the pro-
cessors in the case of a failure were previously computed
off-line by the assignment algorithm.

One can note in Figure 3 thatARR2has a good processor
gain for all values ofα, and thusARR2 can handle task sets
with different characteristics. The good number of proces-
sors found, however, may require a high running time. Dis-
regarding the running time, theARR1algorithm is that using
the lowest number of processors whenα = 0.8. Instead,S-
PRIORITY has the smallest running time, but this is paid in
terms of a higher number of processors. The trade-off pro-
cessors/time suggests to choose the assignment algorithm
as follows:

• S-PR-PASS, fast and effective forα = 0.2 andα = 0.5;

• ARR3, with low number of processors and running
time forα = 0.8.

7 Conclusions

In this paper, several fault-tolerant extensions to the
RMFF algorithm have been presented that improve the per-
formance, reducing both the number of processors needed
for the schedule and the running time of the assignment al-
gorithm, with respect to previously presented algorithms.

Several questions still remain to be explored. For exam-
ple, a schedulability condition could be used which is only
sufficient, such as those proposed in [20] and [6], but easier
and faster to verify than the necessary and sufficientCTT.
In addition, to reduce the number of processors needed, one
could employ either a new task ordering different from both
the RM and theS priority for the task assignment, or new
heuristics different from the First-Fit heuristics.

However, it does not seem straightforward to find new
heuristics which can lead to better performance. For in-
stance, we tried to assign the primary copies to the less
loaded processors, since one expects that such a criterium
would simplify the scheduling of the passive copies, but the
outcome of the resulting experiments was worse thanARR1.
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