Scheduling Hard-Real-Time Tasks with Backup Phasing Delay

Alan A. Bertosst Luigi V. Mancini? Alessandra Menapace
! Dipartimento di Scienze dell'Informazione “Dipartimento di Informatica
Universita di Bologna, Bologna, Italy Universita di Roma “La Sapienza”’, Roma, Italy
bertossi@cs.unibo.it lv.mancini@di.uniromal.it
Abstract Since the hard-real-time scheduling problem is NP-hard,

even if only a single processor is available [18], several

This paper presents several fault-tolerant extensions of heuristics for scheduling periodic tasks on uniprocessdr a
the Rate-Monotonic First-Fit multiprocessor schedulifga multiprocessor systems have been proposed. Liu and Lay-
gorithm handling both active and passive task copies. In land [20] proposed th&ate-Monotoni¢RM) algorithm, a
particular, the technique of backup phasing delay is used to fixed-priority, preemptive algorithm for a single processo
reduce the portions of active task copies that must be alwayswhere the task with shortest period has the highest pri-
executed and to deallocate active task copies as soon a®rity: the ready task with highest priority is executed on
their primary task copies have been successfully executedthe processor suspending, if necessary, a running task with
It is also shown how to employ this technique while con- lower priority. TheCompletion Time TegCTT), devised by
sidering passive task duplication so as to over-book eachJoseph and Pandya [14], is also used for checking schedu-
processor with many passive task copies, assigning tasks tdability of a set of fixed-priority tasks on a single proces-
processors in such a way that tasks with equal or multiple sor. RM has been generalized to multiprocessor systems
periods have a high chance to be assigned to the same proby Dhall and Liu [11], who proposed theate-Monotonic
cessor, and partitioning the processors into groups todvoi First-Fit (RMFF) heuristic, where tasks are considered by
the mix of primary, active, and passive task copies on theRM priority order and assigned to the first processor in
same processor. which they fit.

Extensive simulations reveal a remarkable saving of both
the overall number of processors used and the total compu-
tation time of the schedulability test (achieved espegciay
two new algorithms, calledRR3 and S-PR-PAS$ with re-
spect to previously proposed algorithms.

A simple technique to achieve fault-tolerance in hard-
real-time multiprocessor systems consists in replicating
at least two sets of processors the schedule obtained for the
non-fault-tolerant case (i.e. by employing active duplica
tion for all tasks), but this approach, studied by Oh and Son
[21] for RM scheduling, presents the disadvantage of re-
quiring many processors. They show that on the average
40% extra processors are required compared to the lower
) bound needed to schedule all the primary and active backup
1 Introduction copies. In the case of multiprocessors, the use of passive

task copies has the advantage of over-booking the proces-

Hard-real-time computing systems are widely used in sors: many passive copies of primary copies assigned to
our society, e.g. for periodically executing monitorandco different processors can be scheduled on the same proces-
trol functions. Such systems are characterized by periodi-sor during the same time interval - under the assumption of a
cally occurring tasks which have to be preemptively sched- single processor failure, only one of such passive copiks wi
uled on identical processors in such a way that each taskbe actually executed. Ghosh, Melhem and Mosse [12] stud-
occurrence has to be completely executed by a hard deadied this technique in the case of aperiodic non-preemptive
line, which often coincides with the end of the task period. tasks and achieved high acceptance ratio postponing as
Since the purpose of a hard-real-time system is to providemuch as possible the execution of passive backup copies. A
time-critical services to its environment, the system nbgst heuristic was introduced in [5], calldehult-Tolerant Rate-
capable of providing such a service even in the presence oMMonotonic First-Fit(FTRMFF), which extends theMFF al-
failures. Thus fault-tolerance plays a vital role in theiges ~ gorithm by combining in the same schedule both active and
of hard-real-time systems. passive task duplication, thus exploiting the advantades o

Keywords: fault-tolerance, hard-real-time systems, multi-
processors, periodic tasks, Rate-Monotonic scheduling.

both types of duplication. sider other assignment orders, such asShwiority, pro-

The present paper considers the problem of preemptivelyP0S€d by Burchard, Liebeherr, Oh and Son [6], which has
scheduling a set of independent periodic tasks on a mul-the effect of grouping together on the same processor those
tiprocessor system. In particular, we extend the RMFF tasks whose periods are equal or multiple, since this could
scheduling algorithm to tolerate permanent processor fail Produce a more compact schedule and thus employs less
ures that can affect more tasks at a time. In other wordsProcessors. However, the computation time of the schedu-
when a processor fails, all the primary copies executed'abi”W test is re_lated to the number of invocations@iT
on that processor are considered to be failed. The fault-réquired to assign each task. Thus, the processors can be
tolerance is provided by combining passive and active du-Partitioned into groups so as to avoid the mix of primary,
plication, preferring passive duplication whenever polssi ~ 2Ctive, and passive copies on the same group and reduce the
Furthermore, we consider thghasing delaytechnique to overall num_per QCTT invocations. Finally, when all taskg
extend theeTRMFF heuristic and to improve the schedule have low utilization factors, one could employ only passive
of the backup copies. Thghasing delayechnique, intro- duplication. _ _
duced in [22, 1], allows the delay of a passive copy until The remaining part of tr_us paper is structured as follows.
the completion time of its primary copy so that the passive S€ction 2 gives the notation, the fault-tolerant system as-
copy is executed only when the primary task fails. More- sumptlong, and a formql deflnlt[on of the schedullng prob-
over, the phasing delay enables to reduce the length of thd€M- Section 3 deals with thctive Resource Reclaiming
worst case overlapping interval between a primary and its (ARR) strategy, which exploits the backup phasing delay to
active copy, so that only a small fraction of the computa- sch_edule the active copies as late as possm_le W|th|_n their
tion of the active copy must be executed in the absence ofP€riods and to permit the deallocation of active copies as
failure of the primary copy. Indeed, a disadvantage of ac- S0ON as their primary copies have been successfully exe-
tive task duplication is an excess of redundant computationCuted. In order to reduce the number®fT invocations,
due to useless portions of active copies which are executedn® active resource reclaiming technique is combined with
after their corresponding primary copies have been suecess? Partitioning of the processors into at most three groups
fully completed. Therefore, one could deallocate the unex- (2I90MthMSARR1L, ARR2 andARRS3). Section 4 introduces
ecuted portion of an active copy as soon as a primary copyth€ S-PRIORITY algorithm, where processors are also par-
has been successfully completed, thus reusing the pracessditioned into groups but tasks are assigned to processors by
for the execution of another task. This can be achieved byfollowing the S priority [6] in such a way that tasks with
forcing the scheduling of the active copies as late as possi-€dual or multiple periods have a high chance to be assigned
ble within their periods, thus reducing the initial portiopf [0 the same processor. In Section 5, BASSIVEalgorithm
active copies that must be always executed before the comiS Presented, which considers only passive task duplieatio
pletion of their corresponding primary copies. Note that @nd then th&-PRIORITYandPASSIVEalgorithms are com-
although the techniques of postponing, over-booking and Pined to derive th&-PR-PASSalgorithm. Section 6 reports
time deallocation of passive copies have been proposed irffXtensive simulations where all the algorithms proposed in
[12], their application to active copies has not been inves- this paper are compared. The simulation results show a
tigated to our knowledge so far. Indeed, a passive backug€markable saving of both the number of processors used
copy can be simply delayed until the completion time of and the total computatlor) times achieved especially by the
its primary copy to maximize the over-booking and deal- ARR3ands-PR-PASSalgorithms.
location of passive copies. However, the over-booking and
deallocation of active copies are more difficult since tteyr 2 Problem formulation and assumptions
quire to establish exactly the computation overlap between
an active copy and its primary copy. Such a computation This section gives a formal definition of the scheduling
overlap is determined by the unrelated preemptions causegroblem and a precise specification of the fault-tolerance
by higher priority tasks. This paper considers the phasingmodel. Aperiodictaskt; is characterized by the tuple:
delay, the over-booking and the time deallocation of active
backup copies and generalizes these optimizations in a task T = (R, Ti,Gi,Di)
set composed of both active and passive copies, thus comyhere Ris thereleaseime, that is, the time of the first invo-
bining together all the techniques proposed in [22, 5, 12]. cation, T is the invocation (or request, or arrivariod, G

In order to reduce further both the number of processorsis the (worst caseomputation timgand O is thedeadline
needed and the running time for task assignment, it is alsoThe ratio Y = %‘ is called theload (or utilization) of task
shown how to combine the phasing delay with other known t; and cannot be greater than 1 for the task to be schedu-
techniques. For instance, instead of assigning tasks to prolable. Each periodic task leads to an infinite sequence of
cessors following the Rate-Monotonic order, one could con- occurrences. Thk— th occurrence of task; is ready for

execution at time R+ (k—1)T; and, in order to meet its paper consists in finding an order in which all the periodic
deadline, must complete its execution — that requires C task occurrences have to be executed on a set of identical
time units — no later than time;R- (k — 1)T; + D;. processors (using preemption and backup copies, when nec-

To better understand the algorithms presented in thisessary) so as to meet all the task deadlines, even in the pres-
paper, two results due to Liu and Layland [20] are re- ence of a processor failure, and to minimize the total num-
called about static priority-driven scheduling. Consider bermof processors used.
set{ty,...,Tn} Of periodic tasks, indexed by decreasing pri- As for the fault-tolerance model, we assume that the fail-
ority, suchthat P=T; fori=1,... n. ure characteristics of the multiprocessor system are the fo

))) lowing: (1) processors fail in a fail-stop manner, that is a

Theorem 2.1 The longest response time (i.e. difference be- -ocessor is either operational (i.e. non-faulty) or cease
tween completion and release time) &nyoccurrence of & fnctioning; (2) all non-faulty processors can commurgcat
_task_ri occurs when |? is requ_ested a_t a_crmcal instant, that \yith each other; (3) a faulty processor cannot cause incor-
is, simultaneously with all higher priority tasks (e.g. Wwhe ot pehavior in a non-faulty processor (that is, processor
Ri=Rp=...=Ri. are independent as regard to failures); and (4) the failire o
a processorHs detected by the remaining non-faulty pro-
cessors after the failure, but within the instant corresion
ing to the closest task completion time of a task scheduled
on B. Each (primary) task is assumed to have a backup
copy with the same parameters. In particular, for the sake

Due to the above results, in the following all the first ar- of simplicity, it i_s as;umed _that (_aach backup copy has t_he
rival times of the tasks are assumed to be 0, i £—FR, — same computation time as its primary copy, and that a sin-
... =Ry =0, since this assumption takes care of the worst gle per_manent processor failure has to be tolerated, un]ess
possible case. As a consequence, to check the schedulafltherw'se stated. However, the results cou_ld be genedalize
bility of any taskrT, it is sufficient to check whether; is o tolerate many permanent processor failures even wr_]en
schedulable within its first periof®, T] by its first dead- the two copies of the same task have different computation

line Dj, when it is scheduled with all higher priority tasks times. . .
{1 Ti_1}. Moreover, we also assume, as in [11] and The algorithms presented here introduce fault-tolerance
yecey Hl— . 1 l

[20], that all the tasks aredependenthamely, there is no by ExtenEingRMFFdin a natural Way.d ZEVO Ifopies for
precedence relation among them. For the sake of simplic—eac task are used, @@imary copy an ackupcopy,

ity, we assume that all the task deadlines coincide with the_SuCh that each_ back_up copy has the s&nepriority as
end of the task periods, in symbols; B T;. However, its corresponding primary copy. The task set thus be-

the above results and ti@mpletion Time TegCTT) have Cordr1e§{rlar2, o 7Tf1i+1,T_2i+27 . ,T2n717T(2jn}r,1 WEEYiTziH
been extended in [23] relaxing this assumption, hence the?"d T2i+2 denote the primary copy and the backup copy,
respectively, of the same task.

fault tolerant algorithms presented here could also be gen- , . .
eralized when P< T;. _ A primary COpYT2i+1 of ataskis always_executed, while
Below, the basic formulation o TT is reported which 'S backup copyrai 2 is executed according to its status,
will be used to test whether a task can be assigned to a Wh'ch can be active or passive. I.f Fhe stat_us IS aCt'V?’ then
given processor. CTT determines the minimung Bdch T2i+2 IS always executed, V\./h"e ifitis passive, then, 2 is
that: executed only when the primary copy fails. In other words,
although both active and passive copies of the primary tasks
are statically assigned to processors, passive copiesare a
tually executed only when a failure of the corresponding
primary copy occurs, see [5] for further details.

Theorem 2.2 A periodic task set can be scheduled by a
fixed-priority preemptive algorithm provided that the dead
line of thefirst request of each task starting from a critical
instant is met.

W
jehgny 1

wherehp(h) denotes the subset of tasks with higher prior-
ity than Ty already assigned to the same processor,apd W 3 The Active Resource Reclaiming Algo-
denotes thavorst-case response tinoé T, rithms

Remark 2.3 A taskt, can be scheduled on a processor to-

gether with all higher priority tasks if and only if: This section deals with th&ctive Resource Reclaiming

(ARR) algorithms which use the phasing delay of active
Wh < Th. copies with the purpose of: (1) forcing the active copies to
be scheduled as late as possible within their periods, so as
Given n periodic independent task§ts,...,Tn}, the to minimize their overlap with their corresponding primary
fault-tolerant scheduling problem considered in the prese copies; (2) permitting the deallocation of unfinished ativ

copies as soon as their corresponding primary copies have
been successfully executed; (3) reusing the free processo]:)h primary primary
time for the execution of other tasks.

The algorithms presented in the rest of this paper, while
assigning the tasks to the processors, determine whether Pk -
backup copy has to be passive or active. IndeedCthe = ' =
returns the worst-case response timg.Wof each primary
Copy i1 ON the processor it is assigned to.t4f, 1 fails, | | |
there are 3,1 — Whoj,1 time units for recovering the task.
Two cases may arise:

active 7 active

0 7 14

1. If Toip1 — Wair1 > Coiio, then the time interval be- Figure 1. A schedule for the primary copy and
tween the finish time of the primary copy and the end the active copy of the same task having min-
of the period is large enough to completely execute ~ imum computation overlap.
the backup copy, and thus;, » is chosen to be pas-

sive.
2. If Toip1 — Waip1 < Coitz, the backup copyai, s is puted byCTT. Assume that z_-prl —_W2i+1 < Coiuz
chosen to be active, since its execution must begin and thus the backup copyi,, is active.
before the finish time of its primary copy. 2. The active copyai. 2 is assigned, say, o Py and
We now introduce with the help of the example in Fig- its worst-case response time i$\\. The parameter
ure 1 the scheduling strategy used for active copies. In dmai,2, which gives the maximum phasing delay
the best case, a primary copy; 1 is executed with no applicable torzi; 2 withoutTzi,» misses its deadline,
preemption at the beginning of its period, while its active IS:
copy Toiso is executed with no preemption at the end of dmaxi 2 = Toir1 — Wais2.
its period as shown in the figure. Sintg,» is active, o .
Caivz > T2is1— Whaisq and thus a minimum computational 3. Let Cgi_+2 denote the computation time of a portion of
overlap of 2Gi, 2 — T2is1 > O time exists betweerpi, ; and the active copy that has to be always executed. Sucha
Toiyo. Therefore, the active copyi» can be executed ei- time is equal to the minimum between;(; and the
ther for 2Gi, 2 — Toi,1 time, if the primary copytyi 1 is worst case overlapping interval:
successfully completed, or for,Go time, if the primary O
copy fails. Note that, in the absence of failures, the remain 242 =

ing Ty 1 — Cyiy1 time units of the unfinished active copy
can be reused.

In general, the length of the computation overlap is larger
than the minimum 2&,, — Tj+1 and it is difficult to be
determined exactly, due to the scheduling of higher psiorit
tasks which cause unrelated preemptions of igthy and ! :
Toi.o. For this reason, theiorst case overlapping interval dMa%i+2 to delay the execution of an active copy.»,
betweenT,i,» and its primary copyisis1 is introduced as assume that W/, > has been already computed for the worst
an upper bound. Such interval starts from the release timeP0SSible case which, by Theorems 2.1 and 2.2, arises when
of the active copyisi.» and ends at the worst case response 1€ 1Sk COPYzi2 starts in phase with all the task copies al-
time of the primary copytsi 1. To reduce the length of '€@dy assigned to the same processor, gaysée the next
the worst case overlapping interval, the only way consists SUPsection for all the details on how W is actually com-
in delaying the release time of the active capyi,. This Puted).
is the rule employed by theRR strategy, which determines If Wair2 < Taiyq thentsi. 2 can be scheduled orxand
in advance during the schedulability test the time inteaval ~ d€l@yed by dmax.> = Tai.1 —Woi.» units. Note that such
active copy can be delayed and when it can be deallocated €@y has the sole purpose of reducing the worst case
in the absence of failures of the primary copy. In order to ©Verlappinginterval between an active copy and its primary
determine the value of thghasing delagimax;. » of an ac- copy during their execution and cannot cause an incorrect

tive copy, consider the assignment of tasks1 andTi. 2: schedule on g Indeed, a phasing delay of dmax > O for
the first occurrence (and also the successive occurrences)

1. A primary copytyi.1 iS assigned, say, to process@r P of Tyi;2 can cause neither a response time greater than
and thus its worst-case response timg Wis com- Wi 2, which already includes the worst possible case, nor

min{Coi; 2, Wai 1 —dmadgis2} > 2Cpi 2 — Taif1.
3.1 Maximum phasing delay of an active copy

In order to justify the introduction of the parameter

a change in the task priorities. If the first invocationgf,. ,
has a dmax, » delay (equal to T 1 — W5 2), then the first
occurrence ofy;. > will be completed no later than:

dmagi2 +Woii2 = (Tair1 — Waiy2) +Waio = Tojpa.

Thus the completion of the active copy. » is guaranteed
by the end of the period of its primary copy. 1, although
the period of the active copy is delayed by dmaxduring
the execution. Note that, during the schedulability test, t
active copytyi, 2 may be considered as a replicat®f, 1,
characterized by thesameparameters (&2, T2ii2,--.),
and thus with no phase delay (i.ep;iR = 0). In contrast,
Toi. 2 is delayed by R » = dmax;. » time during the actual

task execution. Such a delay is determined only after that

Wi 2 has been computed Iy T.
Given any phasing delay dmax, > 0, the following
results hold.

Remark 3.1 If the k-th occurrence ofy;.» is invoked at
time dmaxi, 2 + (k — 1)Toi12, then it will be completed at
most by time

dmaxi2+ (K—1)Taip2+ Woiio.

Remark 3.2 Let Ty, 2 and1yj,1 be the active and primary
copies of the same task, and \&b;,» be the worst-case
response time ab;. 2. If 151, 2 has a phasing delay

dmaxiio = Taiy1 — Woito

with respect taz.1 andPs = P(1i11) fails during the k-th
occurrence of i, 1, thenty;, > terminates by Ko ;.

3.2 Worst-case response time of an active copy

In order to determine the maximum phasing delay, as ex-
plained in the previous subsection, a particular care has
to be taken while computing the worst-case response time

Wo;i.» of an active copyt,io. Indeed, the worst-case re-
sponse time must be equal to:

Wai 2 = max{Woi2(NF), Wai, 2(OF) }

Sincety;, 2 is active, the quantity W/, 1 — dma; ., rep-
resents the worst case overlapping interval of the active
copy that may be executed before the primary cogy:
terminates. In order to determine whether.» has to be
completely executed or not, a final test is needed:

o if dmaxyj;2 + Coir2 < Wsiy1, then an occurrence of
Toir2 May exist that terminates before the completion
of 151, 1, since the worst case arises when ; starts
at time dmay;. » and is executed with no preemption
for Cyi, 2 time units, and hence’g. 2 = Cyi, 2;

o if dmaxpiio + Coi2 > Whiy1, then the execution of
Toir2 Must necessarily continue beyond\W, and
the maximum portion of the active copy that has to
be executed before ¥/ ; isindeed G, » = Woi 1 —
dmax; .

3.4 Assignment of tasks to processors

Let P(tn) denote the processor to which the (primary or
backup) copyty, is assigned. The following notation is use-
ful:

primary(P,) = {Toi+1: P(T2iz1) = B}
backufP)) = {T2i42: P(t2i42) =P}
activgP,) = {12i;2 € backugP;) : Toi,2 is active
passRecovéP;, P) =

{12142 € backugP)) : P(12i+1) = Pr, T2i42 is passive
actRecove(P;,Pr) =

{T2i12 € backugP)) : P(12i41) = P, T2i;2 is active:
recovefP;, Pr) =

passRecovéP;, Py) UactRecoveP;, Pr)

The setsprimary(P;) andbackuP;) represent the pri-
mary and backup copies assigned to processor Fhe
setactivgP)) includes the active backup copies assigned
to processor P The setpassRecove(¥;,Pr) consists of
the passive copies assigned tosch that their primary
copies are assigned tg,Mamely, this set contains all the

passive backup copies that processamist start schedul-
ing when a failure of processor s detected. The set

where Wi, 2(NF) and Wi, 2(OF) represent the worst-case actRecovergpP,, Py) denotes the active copies assigned;to P
response time in the absence of failures and in the case ofvith primary copies assigned tg,amely, this set contains

one failure, respectively.

3.3 Determining the portion of active copy to be

all the active backup copies that processanBst keep exe-
cuting when Pfails. Finally,recove(P;, P;) gives the union
between the last two sets.

always executed The following definition has to be added to those above,
to take into account the active copies whose computation
In this subsection, the formula for computing,C», the can be performed only partially because their correspandin

portion of active copy to be always executed, is consideredprimary copies successfully complete. Let

in details. We' knpw thaty;, 1 terminates_ within W 1 units shortActiveP, Py) =

after the beginning of the period, whiig; ., cannot start))

before dmax;, » units after the beginning of the period. {T2i12 € backugP) : P(t2i11) # Pr, Tais2 is active.

Remark 3.3 shortActiveéP;, Pr) denotes the active copies Tth_1 is assigned). In the other cagey,» can be partially
whose corresponding primary copies are not assigné®fto executed and the computation timeG- is considered.

and that could be partially executed. Note that, by defini- A high-level description of the algorithm for assigning
tion: (1) shortActivé¢P;,Pr) N actRecoveiP;, Pr) = 0 and tasks to processors, call@drRR1, is given below. Its cor-
shortActiveéP;,Pr) U actRecoveiP,, Pr) = activgP,). That rectness follows from Remarks 3.1 and 3.2 and from the
is the active copies o, are partitioned in two sets: correctness ofTT.

shortActivéP;, Py) containing the active copies that could ARR1

be partially executed and actReco@r Py) containing the (o) Letthe task copies;, T, ..., Tan_1, T2n be indexed by increas-
active copies that must be completely executed; and (2) the ing periods and set to 1 the numbreof processors used.
particular set shortActiv@®;, Pj) indicates that all the ac-

. o - . (1) Repeat the following steps fo=0,...,n—1:
tive copies in activ@) could be partially executeho ac-

tive copy orP; can have its primary copy on the same pro- (L.1) Assign the primary copytyii1 to the first pro-

cessoP}, and thus shortActiv@, Py) = active(P))). cessor P for which NoFaultCTT(zi:1,F) and
OneFaultCTT(,i 1, Py, Pr) for all Py # P} are satis-

The task copies are considered by decreaBivgriorities fied. If there is no such processor, thenrs¢o m+1

and assigned to processors following fiest-Fit heuris- and assigni.1 0 Pn. Compute W;.. 1.

tic. The schedulability test is theTT executed on task sets (12) If Taipq — Waip1 < Caigp, then setipi, to ac-

determined according to the following considerations. tive, otherwise sety;., to passive and dmay, to

To assign a task copyh to a processor jPtwo feasi- Wait1.

bility tests,NoFaultCTTandOneFaultCTT have to be ex- (1.3) If T4, is active, then assign it to the first

ecuted on proper sets, which depend on the characteristic processor Pfor which NoFaultCTT{zi2,P) and

(i.e. primary, active, or passive) of the task copyand OneFaultCTT(zi 2, P}, P(T2i41)) are satisfied. If

on the potential failed processor. I'he testOneFaultCTT there is no such processor, then seto m+1 and

is exactly the same as described in [5] wHleFaultCTT assignzi:2 1o Fn.

is obtained from that of [5] by replacingctive(P;) with (1.3.1) Consider

shortActivéP,, P,). Waiy2 = max{Wai;2(NF), Wai; 2(OF) }, where

Woi 2(NF) is the worst-case
response time computed by NoFaultCTT, while
Wo; 2(OF) is that computed by OneFaultCTT.
Setdmaxi, 2 = Taiy1 —Waiio.

(1.3.2) Compute the partial computation time:

In the following, we expand on the implementation of
NoFaultCTTto cope with theARR strategy. In the absence
of failure, to check whethar, (either primary or active) can
be scheduled on;Pdetermine the minimum Y\satisfying

Wh = Waiy 1 —dmaxi o if dmaxpi, o+
Wi Wi Claij2= Caivz > Waig1
Ch+ z C2k+1{_|_2k 1-‘ + Z EZHZ[Tzk 2-‘ Coiyo otherwise
+ +
T2k 1€NP(N) Tar2€hp(h) (1.4) If 15, is passive, then assign it to the first proces-
where, sor B for which OneFaultCTTi(; 2, Py, P(T2i11)) is
satisfied. If there is no such processor, themsé&b
Cokr2 if T is active andizk. 2 m-+ 1 and assigny;, » to Pn.
/ € actRecove(R}, P(th-1)) (2) Return the numbem of processors used and the schedule so
E _ Clokyo If (this primary andiok. 2 found.
2k+2 ¢ shortActivéP,,P,)) or

(Tn is active andpiy 2

3.5 Recovery from a failure
€ shortActivéP,, P(th 1)) y

Once the task copies are assigned, each procegsx-P
ecutes, in the absence of failures, the task copies in
primary(P;) U shortActivegP;,P) by means of the&kM al-
Note that the two alternatives fopg, » follow from the def- gorithm. As soon as a primary copyi,1 completes its
inition of NoFaultCTT In particular, to schedule an active execution, a “successful completion” message is sent to the
copy 1, together with other active copiasgy2 on proces- processor where the backup copy is allocated. If such a
sor B, the entire computation timeJ » must be consid- copy is passive, then no action is taken, while if it is active
ered whertyy. » belongs to the active copies whose primary then its execution is immediately suspended. If a failure of
copies are assigned R{th_1) (T, is an active copy, hence processor Pis detected at tim#, e.g., the successful com-
P(th-1) denotes the processor to which the primary copy pletion message abi. 1 is not received by Rg;. ») by time

and check whether
Wh < Th.

0 which corresponds to the completion timetef, 1, then assigned to processors, they are scheduled on each single
a Recovenprocedure is invoked. SuchRecoveryproce- processor by means of the us&al algorithm.

dure can be obtained from that in [5] by replacawivgP)) In order to assign to the same processor those tasks
with shortActiveéP;, P,). Moreover, such procedure can be whose periods are equal or multiple, the priority ordering
extended to tolerate more than one processor failure with agiven in [6] can be used. Considktasks{ts,..., Tk} in-

technique related to that described in [5]. dexed byRM priorities, thatis, with T < ... < Tk. For each
taskt; compute
3.6 Reducing the number ofcTT invocations S =log,Ti— |log, Ti| i=1,....k

kand consider the permutatidh,2,...,k) — (j1,j2,---, jk)
such that{tj,,..., 1), } are ordered by priorities, namely
S, <... < §,. Then assign tasks to processors following

In the ARR1 assignment procedure seen above, each tas
copy is assigned to the first processor to which it fits, thus

L h X ; ; . h . s to ving

;n;r(r;ggpt%%?sse;rprllr:nti?sl’ va\}:\gvibsvr:e?/epraﬁ;%ﬁsgresr? t esuch an ordering. Observe that, in this case, when assigning
. o T ' . Tj. to any processorR tasks withRM priority smaller than

quired to assign each task, thus increasing the computatlor%hat oft, can be already assigned tq. Fiherefore, besides

! . : . ,

time of the schedulability test to test for schedulability of;, together with the tasks in

acive resourcs eciaming echnique can bs comied it Pl 2CTT must b perormed agai foreach aready
9 9 assigned to | with Tj, > Tj;.

P of e ocesers o o f 110 1000 50 s iy howter, e s case response s of
9 P Y. ' P the primary copies are known only wheti the primary

CO‘_)I_IES 0.n thle same procesbso'r ' | dis clearly that i copies have been assigned to the processors. Therefore,
hi heﬂs]lmp est versm;n to be implemente (;:Sg early thatin assign a backup copy, its status (active/passive) can be
which three groups of processors are used, denBiRB, o0 mined only after that the assignment of all the pri-

whe_re there is a first group of processors for the prlimary mary copies is completed. In order to maintain unchanged
copies, a se(?ond grgupfor the active copies, and a third ON8he worst-case response times of the primary copies, the
for the passive copies. However, two groups can also bebackup copies are assigned to a second group of proces-

usgd (vers_lorARFrz]g),hthedflrs(; grour;]) fo(;lbgt_h primary gnq: sors, following thes priority order. Thus the primary copies
active copies (which indeed are handled in a very similar 11,T3,...,T2n1 are first assigned to a group of processors,

way) and the second one for the passive copies. ARR2 and then the backup copies, 14,...,T2y are successively

andA.RRS algoriFhms can be easily derived from le assigned to the other group of processors. Remember, how-
algorithm explained above, and thus are not described hereever, that thes priority is used only for assigning tasks to

in details.) . , processors, since all the tasks assigned to the same proces-
Th_e advantage ofRR3 s that of requiring les€TT in- sor are then scheduled by the usaad priority.
vocations thamARR1 and ARR2. Indeed, usingARR3, at

mostm CTT’s are needed to assign a primary copy, for a
total of O(nm) CTT's, wheren is the number of primary
copies andn the number of processors employed. In con-
trast, when using\RR1 and ARR2 for assigning a primary
copy to a processor; Pbesides to check for schedulability

5 Therassiveand s-pPr-PAsslgorithms

In an ideal situation, only passive duplication should be
used, since in this case redundant computations are per-

in the absence of failures, one needs to check for schedulaformed only when needed after a failure. In contrast, ac-

bility also in the case of a failure to any processor othen tha t'r\]’e cgples reqfu:cre_l at Ieas_trhe_\ partlgl computation ever|1 n
P, for a total of Gnm?) CTT'. the absence of failures. is section presents two algo-

rithms that employ only passive duplication: whenever
Toir1 — Whajr1 < Coiyz @a new processor is used to schedule

4 The s-PrIORITYalgorithm Toi11, hence only passive backup copies can be employed
to tolerate failures. Clearly, this is not possible in akbes,

This section discusses a variant of thBR strategy ~ Putonly when
where tasks are assigned to processors without following Cois1+Coi2 <Toiy1s i=0,..
the Rate-Monotonic priority. In particular, we consider an
other assignment priority, called hegePRIORITY, which ~ Which, under our assumption>G1 = Cyi;2, becomes
was introduced in [6] and has the effect of grouping to- Uzi11 = %:i < 3 fori=0,...,n—1, since in this case
gether on the same processor those tasks whose periods atke period of each task is long enough to permit the execu-
equal or multiple, thus producing a more compact scheduletion of both a primary copy and its passive in the case of a
in many cases. It is worth noting that, once the tasks arefailure.

The first algorithm, calle@ASSIVE, uses the RM priority this section, simulation experiments are reported in order
both to assign tasks to processors and to schedule the task® evaluate the performance of the different algorithms.

assigned to each processor. H#SIVEalgorithm can be As in [5, 6], large task sets with at most= 600 tasks
described as follows. are generated. The parameters of eachtaake chosen as
PASSIVE follows. The period Tis an integer uniformly distributed in
(0) Let the task copiess, T2, ..., T2n-1,T2n be indexed by in- 1, Tay, while the computation time Gs an integer uni-
creasing period_s, setto 1the numhepf processors used, formly distributed in[1,0T;], wherea = max % is an up-
and set to passive all the backup Copiigds, ..., T2n-2,T2n per pound for the task load.m is fixed to 500, and each
(1) Repeat the following steps for=0,...,n—1: backup copy has the same period and computation time as
(1.1) Assign the primary copysi.1 to the first processor its primary copy. Three values far are chosen,'name'ly,
P for which NoFault- 0.2, 0.5, and 08. For the chosen anda, the experiment is
CTT(tzi11,P)), OneFaultCTT(,,1,P,,Pr) for each repeated 30 times. The performance metric in all the exper-
Pr # P, and the condition (i1 —Wait1 > Cait2) iments is the number N of processors used by an algorithm
are all satisfied. If there is no such processor, then set to schedule both primary and backup copies. Another use-
mto m+ 1 and assigni1 to Pm. Compute Wi, 1, ful metric should be the ratiﬁ\‘a, where N is the minimum
and set dmax.» to Wai 1. number of processors to schedule only the primary copies,

(1.2) Assign 15,5 to the first processor jPfor which sinceNﬁ0 — 1 gives the ratio of additional processors intro-
OneFaultCT T2, Py, P(T2i11)) is satisfied. Ifthere duced fo tolerate a processor failure. Since an optimal task
is no such processor, then seto m+1 and assign assignment is hard to be found for large task segsisNe-

T2i42 10 Pm. placed by its lower bound U, which is obtained by summing
(2) Return the numbem of processors used and the schedule UP all the loads of the primary copies.
so found. For the chosem and a, the j —th experiment gives

The S-PR-PASSalgorithm combines thBASSIVEandS- N;, Uj, and S—j Since the experiment is repeated 30
PRIORITY algorithms previously presented. As in tBe times, the average results are computed as follows= N
PRIORITY algorithm, all the primary copies are first as- 30 N /30. U= (530, U:) /30 andN = (530, Niy /30
signed to a group of processors following thgriorities. (222N)/ - (2% J?/ | (27 Ui)/ L
The schedulability test of anv briMary comy:. - on an All the algorithms were written in C and run on a Digital

Y 163 Y primary Comyi1 y Alpha-Server 2100, Model 5/250. The outcome of the ex-
processor Pconsists in the following steps, where all the

CTT's are executed on task sets containing only primar periments is given in Figure 2 (for the sake of clarity, the
copies: gonyp y results forARR1 and ARR3, which are similar to those of

ARR2, will be reported only in Figure 3 but not in Figure 2).

- aCTTon{tzi;1} Uhp(2i+1); Figure 2 shows the rati§§ for the experiments, where U

is the lower bound for scheduling only the primary copies,
and N the number of processors required by the various al-
gorithm, including also theTRMFFalgorithm presented in

- a check to verify whethers[,.1 — Wai,1 > Coiio, in [5].
order to guarantee that there is enough time to sched- By observing Figure 2, one notes that, whenr= 0.2,
ule the passive copy within the same period (other- PASSIVEandARR2 behave a§TRMFFsince in this case all
wise, Tzj,1 IS assigned to a new processor). the tasks have a low load and thus bBTRMFF andARR2

. . . . employ almost exclusively the passive duplication. When
gﬂ”lg t::e?jsesggr;ri?]igt s:i::srsrgzréggsifes’gm;zu;e as o = 0.2, the best performance is given by t8&RIORITY
signed to two d,ifferent groups of processors. Once all the and S-PR-PASSaIgorlthms. .Wherrx =05 anda =08,
primary copies are assigned tBePR-PASSaIg.orithm as- FTRMFF is the worst algorithm. In ther = 0.5 case,S-

. .) ' . . - PR-PASSandARR?2 have the best performance, while in the
signs all the passive copies following again gheriorities.

As in the PASSIVE algorithm. S-PR-PASSI the RM ori o = 0.8 case the best algorithm ARR2. Indeed, in this
s Ih the algorithm, 5-=- ses the P |atter case, almost all tasks have a high load and thus the
ority to schedule the tasks assigned to each processor.

active duplication is almost exclusively employed. There-

)) fore, ARR2 gains benefits from the active resource reclaim-

6 Simulation results ing strategy where active copies are executed only pattiall
Observe also that far = 0.2 anda = 0.5 theS-PR-PASSl-

In the previous sections, theMFF algorithm has been gorithm can tolerate a failure by using a number of proces-

extended leading to six fault-tolerant algorithmaRR1, sors close to the minimum number of processors required in

ARR2, ARR3, PASSIVE S-PRIORITY, and S-PR-PASS In the non fault-tolerant case, since the corresponding %sltio

- a CTT on {Toks1} U {T2ir1} Uhp(2k+ 1) for each
Toky+1 already assigned tq Buch that B 1 > Toij1;

T T T
24l ETRMEE —A— |
: S-PRIORITY —#—
PASSIVE —e—
22 R

2+ 4

18 1

N/U

164 b

14

12

1
100 150 200 250 300 350 400 450 500 550 600
Number of tasks

T T
FTRMFF —A— |
S-PRIORITY —8—
PASSIVE —e—

N/U

1
100 150 200 250 300 350 400 450 500 550 600
Number of tasks

T T T
o4 FTRMFE —A—
: S-PRIORITY —8—

2.2
— e S

B

18

N/U

16

1 1 1 1 1 1 1 1 1 1
100 150 200 250 300 350 400 450 500 550 600
Number of tasks

Figure 2. Ratio N/U of the number N of proces-
sors for scheduling both primary and backup
copies and the lower bound U for scheduling
only the primary copies. N/U— 1 gives the
ratio of additional processors introduced to
tolerate a processor failure.

is close to 1.

o Running time
a % gain (seconds)
n=400 | n=100 n=300 n=600

02 0% 8.1 181.8 1569
PASSIVE 05 15% 150 2405 1693

0.8 — —

02 12% 1.0 44 12.1
S-PRIORITY 05 8.5% 0.9 4.8 19.3

08 3% 1.0 8.4 39.4

02 13% 1.2 6.0 19.3
S-PR-PASS 05 21% 1.3 9.3 36.6

0.8 - -

02 0% 187 3212 2792
ARR1 05 16% 134 1069 424

08 17% 178 1689 7153

02 12% 35 33.6 188.1
ARR2 05 15% 8.4 87.2 400

08 15% 163 160 698

02 8% 1.4 8.4 28.6
ARR3 05 10% 1.7 12.3 56.4

08 14% 2.5 21.6 114.1

Figure 3. Performance and running times of
the proposed algorithms. The second col-
umn reports the percentage of gain intro-
duced by the proposed algorithms with re-
spect to the FTRMFFalgorithm in [5].

by [21] with respect to U. In contrast, Figure 2 shows that
the extra processors needed by our best algorithms range
from 20% to 80% with respect to the lower bound U.

The performance of all the new algorithms introduced in
this paper (including alsaRR1andARR3) are summarized
in Figure 3. In this figure, the second column reports the
percentage gained by the proposed algorithms with respect
to FTRMFF (for instance, theS-PR-PASSalgorithm with
o = 0.5 employs 21% less processors tiFaRMFF). These
values are computed far= 400 only, since fon > 400 the
gain remains almost the same. Moreover, Figure 3 reports
also the average computation time of the six assignment al-
gorithms, forn = 100, n = 300, andn = 600. The aver-

Oh and Son [21] report the performance of their best RM age running times of TRMFF are comparable to those of

scheduling algorithm to achieve fault-tolerance consider

ARR1 and are not reported explicitly. A circle in the figure

multiple backup copies. They show that on the average 40%outlines the entries with the highest processor gains or the
extra processors are required compared to the lower boundowest running time.

L which is equal to the sum of all the loads of the primary

By observing Figure 3, it is possible to choose the best

copies and backup copies. If each task has one backumlgorithm depending on the characteristics of the task set,
copy with the same computation time as its primary then taking into account not only the number of processors used
the lower bound L becomes twice the lower bound U con- in the schedule, but also the running time of the assignment
sidered here, and thus 180% extra processors are requiredlgorithm. Note that the running times in this figure are

those required by the assignment algorithm, which is per- [3]
formed off-line only once. The algorithms for the actual
task scheduling and for recovering from a failure are per-
formed on-line and are much faster. Indeed, all the schedu-
lability tests and all the task sets to be scheduled on the pro
cessors in the case of a failure were previously computed
off-line by the assignment algorithm.

One can note in Figure 3 thaRR2has a good processor
gain for all values ofx, and thusARR2 can handle task sets
with different characteristics. The good number of proces-
sors found, however, may require a high running time. Dis-
regarding the running time, tikR1algorithm is that using
the lowest number of processors wieer- 0.8. InsteadS-
PRIORITY has the smallest running time, but this is paid in
terms of a higher number of processors. The trade-off pro-
cessors/time suggests to choose the assignment algorithmi8l
as follows:

(4]

(5]

(6l

(7]

e S-PR-PASSfast and effective fom = 0.2 anda = 0.5; [l
e ARRS3, with low number of processors and running [10]
time fora = 0.8.

7 Conclusions (11
[12]
In this paper, several fault-tolerant extensions to the

RMFF algorithm have been presented that improve the per-
formance, reducing both the number of processors needed3!
for the schedule and the running time of the assignment al-
gorithm, with respect to previously presented algorithms.

Several questions still remain to be explored. For exam-
ple, a schedulability condition could be used which is only
sufficient, such as those proposed in [20] and [6], but easier
and faster to verify than the necessary and suffio=mt. [16]
In addition, to reduce the number of processors needed, one
could employ either a new task ordering different from both
the RM and thes priority for the task assignment, or new
heuristics different from the First-Fit heuristics.

However, it does not seem straightforward to find new 18]
heuristics which can lead to better performance. For in-
stance, we tried to assign the primary copies to the less|g
loaded processors, since one expects that such a criterium
would simplify the scheduling of the passive copies, but the

(18]

[17]

outcome of the resulting experiments was worse #RR1. [20]
References (21]
[1] N. Audsley, K. Tindell, A. Burns. The end of line for stattyclic (22]
scheduling?Proc. Euromicro Workshop on Real-Time Systegts
41, June 1993.
(23]

[2] A.A.Bertossi, A. Fusiello. Rate-monotonic schedulfiog hard-real-
time systemsEuropean Journal of Operational Researghf, 429-
443,1997.

A.A. Bertossi, A. Fusiello, L.V. Mancini. Fault-tolend deadline-
monotonic algorithm for scheduling hard-real-time tasksoc.
11th IEEE International Parallel Processing Symposijut83-138,
Geneva, Switzerland, April 1997.

A.A. Bertossi, L.V. Mancini. Scheduling algorithms fdiault-
tolerance in hard-real-time systeni&eal-Time Systemg 229-245,
1994.

A.A. Bertossi, L.V. Mancini, F. Rossini. Fault-toleranrate-
monotonic first-fit scheduling in hard-real-time systetB&E Trans-
actions on Parallel and Distributed Systet3, 934-945, September
1999.

A. Burchard, J. Liebherr, Y. Oh, S.H. Son. New strated@sassign-
ing real-time tasks to multiprocessor systeti€E Transactions on
Computersi4, 1429-1442, 1995.

A. Burns, R. Davis, S. Punnekkat. Feasibility analysfsfault-
tolerant real-time task setBroc. Euromicro Workshop on Real-Time
System9-33, June 1996.

G. Buttazzo. Hard Real-Time Computing Systefeal time systems
seriesVol 23, 2nd Edition, ISBN 0-387-23137-4, Springer Verlag,
2005.

M. Caccamo, G. Buttazzo. Optimal scheduling for faoletant and
firm real-time systemd&?roc. IEEE Conference on Real-Time Com-
puting Systems and Applicatigridiroshima, Japan, Oct. 1998.

H. Chetto, M Chetto An adaptive scheduling algorithnr fault-
tolerant real-time system&oftware Engineering Journab3-100,
1991.

S. Dhall, C.L. Liu. On a real-time scheduling proble®perations
Researct26, 127-141, 1978.

S. Ghosh, R. Melhem, D. Mosse. Fault-tolerance thragjteduling
of aperiodic tasks in hard-real-time systeftSEE Transactions on
Parallel and Distributed Systen® 272-284, 1997.

S. Ghosh, R. Melhem, D. Mosse, J.S. Sarma. Fault-toferate-
monotonic schedulingreal Time Systenis, 149-181, 1998.

14] M. Joseph, P. Pandya. Finding response times in airaalgystem.

The Computer Journ&é9, 390-395, 1986.

M.H. Klein, J.P. Lehoczky, R. Rajkumar. Rate-monotominaly-
sis for real-time industrial computindEEE Computer 24-33, Jan.
1994.

C.M. Krishna, K.G. Shin. On scheduling tasks with a ¢uiecovery
from failure. IEEE Transactions on ComputeB5, 448-454, May
1986.

S. Lauzac, R. Melhem, D. Mosse. An Improved Rate-momiotéd-
mission Control and its Applicatiorni&EE Transactions on Comput-
ers52(3), March 2003.

J.Y. Leung, M.L. Merrill, A note on preemptive schedi periodic
real-time taskslnformation Processing Letterkl, 115-118, 1980.

F. Liberato, R. Melhem, D. Mosse, Tolerance to Multifilensient
Faults for Aperiodic Tasks in Hard Real-time SystetBEE Trans-
actions on Computer9(9), Sep 2000.

C.L. Liu, J.W. Layland. Scheduling algorithms for miptogram-
ming in a hard-real-time environmedburnal of the ACM20, 46-61,
1973.

Y. Oh, S.H. Son. Enhancing fault-tolerance in rate-mtonic
schedulingReal-Time Systen¥s 315-329, 1994.

K. Tindell. Adding time-offsets to schedulability dgsis. Technical
Report YCS-221Dept. of Computer Science, University of York,
1994.

K. Tindell, A. Burns, A.J. Wellings. An extendible amarch for ana-
lyzing fixed-priority hard-real-time taskReal-Time Systents 133-
151, 1994.

