
Artificial Intelligence 174 (2010) 570–584

Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

Generalizing constraint satisfaction on trees: Hybrid tractability and
variable elimination

Martin C. Cooper a, Peter G. Jeavons b,∗, András Z. Salamon b,c

a IRIT, University of Toulouse III, 31062 Toulouse, France
b Computing Laboratory, University of Oxford, Oxford, OX1 3QD, UK
c Oxford-Man Institute of Quantitative Finance, 9 Alfred Street, Oxford, OX1 4EH, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 17 August 2009
Received in revised form 13 February 2010
Accepted 24 March 2010
Available online 27 March 2010

Keywords:
Constraint satisfaction
Tractability
Computational complexity
Arc consistency
Variable ordering
Variable elimination

The Constraint Satisfaction Problem (CSP) is a central generic problem in artificial
intelligence. Considerable progress has been made in identifying properties which ensure
tractability in such problems, such as the property of being tree-structured. In this paper
we introduce the broken-triangle property, which allows us to define a novel tractable
class for this problem which significantly generalizes the class of problems with tree
structure. We show that the broken-triangle property is conservative (i.e., it is preserved
under domain reduction and hence under arc consistency operations) and that there is a
polynomial-time algorithm to determine an ordering of the variables for which the broken-
triangle property holds (or to determine that no such ordering exists). We also present
a non-conservative extension of the broken-triangle property which is also sufficient to
ensure tractability and can also be detected in polynomial time.
We show that both the broken-triangle property and its extension can be used to eliminate
variables, and that both of these properties provide the basis for preprocessing procedures
that yield unique closures orthogonal to value elimination by enforcement of consistency.
Finally, we also discuss the possibility of using the broken-triangle property in variable-
ordering heuristics.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The Constraint Satisfaction Problem (CSP) is a central generic problem in artificial intelligence where each instance
consists of a collection of variables which must be assigned values subject to specified constraints. Each CSP instance has
an underlying undirected graph, known as its constraint network, whose nodes are the variables of the instance, and whose
edges connect precisely those pairs of variables which are related by some specified constraint. Such a graph is sometimes
called the structure of the instance.

There is a well-known efficient algorithm for solving any CSP instance whose underlying constraint network is a tree
[1,2]. If establishing arc consistency leads to a domain wipe-out, then no solution exists; otherwise a solution exists and can
be found by a backtrack-free search if the variables are ordered from any designated root to the leaves.

However, having tree structure is a very restrictive property. It is therefore worthwhile exploring more general problem
classes, to identify more widely-applicable properties which still allow efficient solution algorithms. Any subclass of the
general CSP which can be solved in polynomial time, and also can be identified in polynomial time, is called a tractable
subclass.

* Corresponding author.
E-mail addresses: cooper@irit.fr (M.C. Cooper), Peter.Jeavons@comlab.ox.ac.uk (P.G. Jeavons), Andras.Salamon@comlab.ox.ac.uk (A.Z. Salamon).

0004-3702/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.artint.2010.03.002

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
mailto:cooper@irit.fr
mailto:Peter.Jeavons@comlab.ox.ac.uk
mailto:Andras.Salamon@comlab.ox.ac.uk
http://dx.doi.org/10.1016/j.artint.2010.03.002

M.C. Cooper et al. / Artificial Intelligence 174 (2010) 570–584 571

There has been a considerable research effort in identifying tractable subclasses of the CSP over the past two decades.
Most of this work has focused on one of two general approaches: either identifying forms of constraint which are sufficiently
restrictive to ensure tractability no matter how they are combined [3,4], or else identifying structural properties of constraint
networks which ensure tractability no matter what forms of constraint are imposed [2,5].

The first approach has had considerable success in characterizing precisely which forms of constraint ensure tractability
no matter how they are combined. A set of constraint types with this property is called a tractable constraint language. In
general it has been shown that any tractable constraint language must have certain kinds of algebraic properties known
as polymorphisms [6]. A complete characterization of all possible tractable constraint languages has been established in
the following cases: conservative constraint languages (i.e., constraint languages containing all unary constraints) [7], and
constraint languages over a 2-element domain [8] or a 3-element domain [9].

The second approach has also had considerable success in characterizing precisely which structures of constraint net-
works ensure tractability no matter what constraints are imposed. For the class of problems where the arity of the
constraints is bounded above by some fixed constant (such as binary constraint problems) it has been shown that (subject to
certain technical assumptions) the only class of structures which ensure tractability are structures of bounded tree-width [10–
12]. This result significantly extends the class of tree-structured CSPs while retaining tractability.

In practice, constraint satisfaction problems usually do not possess a sufficiently restricted structure or use a sufficiently
restricted constraint language to fall into any of these tractable classes. They may still have properties which ensure they
can be solved efficiently, but these properties concern both the structure of the constraint network and the form of the
constraints. Such properties have sometimes been called hybrid reasons for tractability [13–16], and they are less widely-
studied and much less well-understood than the language properties and structural properties described above.

A classical approach to tractability of CSPs is to identify conditions on the class of CSP instances that can be used to
construct an ordering of variables which allows the instance to be solved efficiently. Freuder introduced a condition that
allows a variable ordering to be found in polynomial time, such that this variable ordering provides a backtrack-free search
procedure [1]. The condition amounts to requiring that a level of consistency has been enforced that is at least as great as a
measure he called the width of the constraint graph. More generally, the amount of backtracking can be bounded in terms
of the relationship between the level of consistency and the width of the constraint graph [17]. We note that Freuder’s
notion of width is equivalent to the notion of tree-width which is now widely used in graph theory [18].

The basic property described in this paper, which we call the Broken-Triangle Property (BTP), is a polynomial-time de-
tectable property which defines a novel hybrid tractable class of binary CSP instances. The BTP can be viewed as forbidding
the occurrence of certain subproblems of a fixed size within a CSP instance. A number of other properties of subproblems
of bounded size that guarantee tractability have previously been identified in the literature [19,20], but the BTP is unusual
in that it also incorporates variable ordering information.

The class of CSP instances that have the BTP with respect to some ordering is tractable: for all such instances there
is a polynomial-time procedure to determine a variable ordering which guarantees backtrack-free search. Our class is not
contained in the classes considered by Freuder, as we do not require a fixed relationship between tree-width and consistency
[1,17]. We show that all tree-structured CSP instances satisfy the BTP, as well as many other instances that are not tree-
structured (including some with unbounded tree-width).

We also show that the BTP, and certain generalizations, can be used to define a variable-elimination strategy which can
be applied to any binary CSP. Even when no variables can be eliminated by this strategy, we show that it can still provide
a basis for a new form of variable-ordering heuristic. For example, if the BTP is satisfied on a subset S of the variables,
then these variables should be placed at the end of the variable ordering. This guarantees that a search algorithm which
maintains arc consistency during search will not backtrack on the variables in S .

The paper is structured as follows. Sections 2 and 3 introduce the broken-triangle property and prove the tractability
of binary CSP instances satisfying the BTP even in the case when the variable ordering is unknown a priori. Section 4
shows that the BTP defines a tractable class that properly includes several other known tractable classes. Section 5 gives an
alternative characterization of instances which have the BTP, while Section 6 defines a non-conservative generalization of
the BTP. Variable elimination by means of the BTP and its extension are discussed in Sections 7 and 8. Finally, in Section 9
we discuss the possible use of the BTP in variable-ordering heuristics and prove the intractability of finding a maximum
subset of the variables on which a CSP instance has the BTP.

2. The broken-triangle property

In this paper we focus on binary constraint satisfaction problems. A binary relation over domains Di and D j is a subset
of Di × D j . For a binary relation R , the reverse relation rev(R) is defined as {(v, u) | (u, v) ∈ R}.

A binary CSP instance consists of a set of variables (where each variable is denoted by a number i ∈ {1, . . . ,n}); for each
variable i, a domain Di containing possible values for variable i; and a set of constraints. Each constraint is of the form
⟨(i, j), R⟩, where i and j are variables, the pair (i, j) is called the scope of the constraint, and R is a relation such that
R ⊆ Di × D j , specifying the allowed combinations of values for the variables in the scope.

To simplify notation we introduce the notion of a canonical constraint relation which combines all of the specified
information about a pair of variables i, j. In the following definition, we use the notation

⋂
S , where S is a set of relations,

to denote the intersection of all the relations in S .

572 M.C. Cooper et al. / Artificial Intelligence 174 (2010) 570–584

Fig. 1. The broken-triangle property on variables i, j, k.

Definition 2.1. Suppose i and j are variables of a CSP instance. Denote by Uij the set of constraint relations specified for
the (ordered) pair of variables (i, j). The canonical constraint relation between variables i and j will be denoted Rij and is
defined as

Rij =
⋂(

Uij ∪
{

rev(R)
∣∣ R ∈ U ji

})
.

The canonical constraint relation Rij contains precisely the pairs of values that are allowed for the variables i and j by
all the constraints on i and j. Note that Rij = rev(R ji). If there are no specified constraints on the pair of variables i and j,
then all pairs of values are allowed, so Rij is defined to be the complete relation Di × D j . (This can be viewed as defining
the value of an empty intersection in Definition 2.1 to be Di × D j .)

Throughout this paper, whenever we consider a binary CSP instance, we will use the notation Rij to refer to the canonical
constraint relation between variables i and j.

Definition 2.2. A binary CSP instance satisfies the broken-triangle property (BTP) with respect to the variable ordering <,
if, for all triples of variables i, j, k such that i < j < k, if (u, v) ∈ Rij , (u,a) ∈ Rik and (v,b) ∈ R jk , then either (u,b) ∈ Rik or
(v,a) ∈ R jk .

The broken-triangle property can be represented in diagrammatic form by the implication shown in Fig. 1. In the figure,
each vertex represents an assignment of a value to a variable, and for each variable an oval is drawn containing all its
possible values. Each line represents a consistent assignment of values for a pair of variables. A line joins element u ∈ Di
and element v ∈ D j if (u, v) ∈ Rij . The BTP on i, j,k simply says that for any “broken-triangle” a − u − v − b, as illustrated
in Fig. 1, there is always a true triangle u − v − c (where c is either equal to a or b).

It is important to note that the BTP must be satisfied for all triples i < j < k, even if the description of the instance does
not specify a constraint between all pairs of these variables. As noted above, if there is no specified constraint between i
and j, then Rij allows all pairs of values.

We remark that the definition of the BTP is similar to the standard definition of directional path consistency [2], but a little
stronger. To be directional path consistent requires that for all triples of variables i, j,k such that i < j < k, if (u, v) ∈ Rij ,
then there exists some c ∈ Dk such that (u, c) ∈ Rik and (v, c) ∈ R jk (but the implication shown in Fig. 1 may not be satisfied,
because c is not necessarily equal to a or b).

We also remark that the definition of the BTP is similar to the definition of hyper-3-consistency given in [21], but a little
weaker. To be hyper-3-consistent requires that for all triples of variables i, j,k, if (u, v) ∈ Rij , (u,a) ∈ Rik and (v,b) ∈ R jk ,
then both (u,b) ∈ Rik and (v,a) ∈ R jk .

A simple reformulation of Definition 2.2 shows that the BTP is equivalent to forbidding the existence of subproblems of
a certain form.

M.C. Cooper et al. / Artificial Intelligence 174 (2010) 570–584 573

Lemma 2.3. A binary CSP instance satisfies the broken-triangle property with respect to the variable ordering <, if, and only if, it
does not contain an ordered triple of variables i, j,k with i < j < k, and values a,b ∈ Dk, u ∈ Di and v ∈ D j , such that (u, v) ∈ Ri, j ,
(u,a) ∈ Rik, (v,b) ∈ R jk, (u,b) /∈ Rik and (v,a) /∈ R jk.

For an element a ∈ Di , we write Rij(a) to represent {b ∈ D j: (a,b) ∈ Rij}, the image of a in the relation Rij . The next
result shows that the BTP is equivalent to having certain inclusion relations between certain image sets.

Lemma 2.4. A binary CSP instance satisfies the broken-triangle property with respect to the variable ordering < if, and only if, for all
triples of variables i < j < k, and for all (u, v) ∈ Rij ,

(
Rik(u) ⊆ R jk(v)

)
∨

(
R jk(v) ⊆ Rik(u)

)
. (1)

Proof. The condition that either Rik(u) ⊆ R jk(v) or R jk(v) ⊆ Rik(u) is equivalent to stating that there do not exist elements
a of Rik(u) and b of R jk(v) such that a /∈ R jk(v) and b /∈ Rik(u). By the definition of the image of an element in a relation,
this in turn is equivalent to the statement that there do not exist a,b ∈ Dk such that (u,a) ∈ Rik , (v,b) ∈ R jk , (u,b) /∈ Rik
and (v,a) /∈ R jk . Hence the result follows by Lemma 2.3. ✷

Definition 2.5. A class of CSP instances is called conservative if it is closed under domain restrictions (i.e., the addition of
arbitrary unary constraints). A property is called conservative if it defines a conservative class of instances.

Lemma 2.6. The broken-triangle property with respect to any fixed variable ordering is conservative.

Proof. Lemma 2.3 states that the broken-triangle property holds for a binary CSP instance if and only if it does not contain
certain subproblems. Removing values from the domain of any variable in an instance cannot create new subproblems, and
hence cannot cause the broken-triangle property to become false. ✷

This result implies that the broken-triangle property is invariant under domain reduction operations such as arc consis-
tency: if a binary CSP instance satisfies the broken-triangle property, then so does its closure under arc consistency. Indeed,
any pre-processing operation which only performs domain reductions, such as arc consistency, path-inverse consistency [22],
or neighbourhood substitution [23,24], can be applied before looking for a variable ordering for which the broken-triangle
property is satisfied; these reduction operations cannot destroy the broken-triangle property, but they can make it more
likely to hold.

A set of CSP instances may satisfy the broken-triangle property due to the structure of the constraint graph, due to the
language of the constraint relations, or due to a combination of these.

Example 2.7. Let I be a binary CSP instance whose constraint relations are all zero/one/all (ZOA) relations, as defined in [25].
Such relations have the property that, for each pair of variables i, j, each u ∈ Di is compatible with either zero, one or
all possible values for j. ZOA relations notably include all relations specified by 2SAT clauses. An important property of
instances where all constraint relations are ZOA is that this remains true after establishing arc consistency and path con-
sistency. Therefore we may assume without loss of generality that I is both arc consistent and path consistent. By arc
consistency, and the definition of ZOA relations, Rij(u) is either a singleton or equal to D j , whenever i and j are distinct
variables and u ∈ Di . The BTP could then only be violated for u ∈ Di , v ∈ D j if Rik(u), R jk(v) were both singletons with
Rik(u) ≠ R jk(v). However, if this were the case, then ⟨u, v⟩ would have been deleted from Rij by path consistency. Therefore
I satisfies the BTP.

Further examples of some broad classes of CSP instances which satisfy the BTP are discussed in Section 4 (see Theo-
rem 4.8).

3. Tractability of BTP instances

In this section we show that if a CSP instance has the broken-triangle property with respect to some fixed variable
ordering, then finding a solution is tractable. Moreover, we show that the problem of finding a suitable ordering if it exists
is also tractable.

For a binary CSP instance with n variables, let d = max{|D1|, . . . , |Dn|} and let e be the number of constraints. Note that
an assignment of values ⟨u1, . . . , uk⟩ to the first k variables of a binary CSP instance is called consistent if ui ∈ Di whenever
1 ! i ! k, and (ui, u j) ∈ Rij whenever 1 ! i < j ! k [26].

Theorem 3.1. For any binary CSP instance which satisfies the BTP with respect to some known variable ordering <, it is possible to find
a solution in O (d2e) time (or determine that no solution exists).

574 M.C. Cooper et al. / Artificial Intelligence 174 (2010) 570–584

Proof. By the discussion in Section 2, if an instance has the BTP with respect to <, then establishing arc consistency
preserves the BTP. Furthermore, it is known that arc consistency can be established in O (d2e) time [27]. If this results in
an empty domain, then the instance has no solutions. Therefore, we assume in the following that the CSP instance is arc
consistent and has non-empty domains.

We can assign some value u1 ∈ D1 to the first variable, since D1 is non-empty. To prove the result it is sufficient to
show, for all k = 2, . . . ,n, that any consistent assignment ⟨u1, . . . , uk−1⟩ for the first k − 1 variables can be extended to a
consistent assignment ⟨u1, . . . , uk⟩ for the first k variables. The case k = 2 follows from arc consistency.

By Lemma 2.4, if i < j < k then either Rik(ui) ⊆ R jk(u j) or R jk(u j) ⊆ Rik(ui). For any fixed k > 2, we can therefore apply
Lemma 2.4 to every pair of variables occurring before k in the ordering to establish that the set {Rik(ui) | i < k} is totally
ordered by subset inclusion, and hence has a minimal element

Ri0k(ui0) =
⋂

i<k

Rik(ui) (2)

for some i0 < k. Since the instance is arc consistent, Ri0k(ui0) ≠ ∅. By the definition of Rik(ui), it follows from Eq. (2) that
⟨u1, . . . , uk⟩ is a consistent assignment for the first k variables, for any choice of uk ∈ Ri0k(ui0).

The time taken to calculate the intersections in (2) is at most O (ed) overall, since each value in the domain must be
checked against each relevant constraint. ✷

Theorem 3.2. Given a binary CSP instance I , there is a polynomial-time algorithm to find a variable ordering <, such that I satisfies
the broken-triangle property with respect to < (or to determine that no such ordering exists).

Proof. Given a binary CSP instance I , we define an associated CSP instance P I that has a solution precisely when there
exists a suitable variable ordering for I .

To construct P I , let O 1, . . . , O n be variables taking values in {1, . . . ,n} representing positions in the ordering. We impose
the ternary constraint

O k < max{O i, O j} (3)

for all triples of variables i, j,k in I such that the broken-triangle property fails to hold for some u ∈ Di , v ∈ D j , and
a,b ∈ Dk when the variables are ordered i < j < k. The instance P I then has a solution precisely if there is an ordering
of the variables 1, . . . ,n of I which satisfies the broken-triangle property. Note that if the solution obtained represents a
partial order (for instance, if O i and O j are assigned the same value for some i ≠ j), then it can be extended to a total
order which still satisfies all the constraints by using a linear-time topological sort.

For each triple of variables in I , the construction of the corresponding constraints in P I requires O (d4) steps to check
which constraints to add. There are O (n3) such triples, so constructing instance P I takes O (n3d4) steps, which is polynomial
in the size of I .

The constraints in P I are all of the form (3), and such constraints have the property that they are max-closed1 [28].
Max-closed constraints are a tractable constraint language [28]: any CSP instance with max-closed constraints can be solved
by establishing generalized arc consistency [29] and then choosing the maximum element which remains in each variable
domain. Since the size of P I is polynomial in the size of I , it follows that the instance P I can be solved in time polynomial
in the size of I . ✷

In Section 7 we describe an alternative, more efficient, approach to finding a suitable variable ordering, or determining
that no such ordering exists (see Corollary 7.5).

4. Related tractable classes

In this section we will show that the broken-triangle property generalizes several other known tractable classes, some
of which have unbounded tree-width.

Definition 4.1. A binary relation Rij on the sets Di and D j , where D j is totally ordered, is said to be right monotone if
∀a ∈ Di , ∀b, c ∈ D j ,

(a,b) ∈ Rij ∧ b < c ⇒ (a, c) ∈ Rij.

A commonly-used right monotone constraint is the inequality constraint: “value of variable i ! value of variable j”. The
complete relation, which allows every combination of values, is also right monotone.

1 To verify that a constraint is max-closed we need to show that if we take any 2 tuples which satisfy the constraint, and then compute the maximum
of the 2 values in each co-ordinate position of these tuples, then we always obtain a tuple that satisfies the constraint [28]. To verify that this holds for all
the constraints in P ′ , we simply note that if p1 < max{q1, r1} and p2 < max{q2, r2} then max(p1, p2) < max{max(q1,q2),max(r1, r2)}.

M.C. Cooper et al. / Artificial Intelligence 174 (2010) 570–584 575

Definition 4.2. A binary CSP instance is renamable right monotone with respect to a variable ordering < if each set Dk , for
k ∈ {2, . . . ,n}, can be ordered (separately), such that Rik is right monotone for every i < k.

Proposition 4.3. If a binary CSP instance is renamable right monotone with respect to a variable ordering <, then it satisfies the
broken-triangle property with respect to <.

Proof. Suppose the CSP instance is renamable right monotone with respect to variable ordering <, and let k be any variable.
Since the instance is renamable right monotone with respect to <, there is an ordering of Dk such that whenever i < k then
Rik is right monotone. Now suppose i < j < k are variables in this ordering. Then each of Rik and R jk is right monotone.
Now suppose that (u, v) ∈ Rij , (u,a) ∈ Rik and (v,b) ∈ R jk . If a < b, then (u,b) ∈ Rik (since Rik is right monotone); if a > b,
then (v,a) ∈ R jk (since R jk is right monotone). Hence, by Definition 2.2, the broken-triangle property is satisfied for the
triple i, j,k. Since the choice of k was arbitrary, it follows that the instance satisfies the BTP. ✷

Using Lemma 2.4 we can obtain another simple sufficient condition for the broken-triangle property to hold.

Lemma 4.4. A binary CSP instance satisfies the broken-triangle property with respect to a variable ordering < if, for all triples of
variables i < j < k, either Rik or R jk is a complete relation.

Proof. If Rik is a complete relation, then Rik(u) = Dk , while if R jk is a complete relation, then R jk(v) = Dk . In either case,
by Lemma 2.4, the instance satisfies the BTP. ✷

Proposition 4.5. If a binary CSP instance has a tree structure, then it satisfies the broken-triangle property with respect to any variable
ordering in which each node occurs before its children.

Proof. If we order the nodes of a tree from any designated root to the leaves, then each node is connected to at most one
node earlier in the ordering. Hence, if a CSP instance has a tree structure, then any variable ordering < of this kind has the
property that, for each variable k, there is at most one variable i, with i < k, such that Rik is not a complete relation. Hence,
by Lemma 4.4, the instance satisfies the BTP with respect to any such ordering. ✷

To obtain a further class of examples we note that with any CSP instance P (of arbitrary arity) we can associate a binary
CSP instance I P which is called the dual of P [30]: the instance I P has a variable for each constraint of P , and a binary
constraint between each pair of variables associated with overlapping constraints of P . The binary constraints in I P are
defined to ensure that the variables in I P can only take values which agree on the corresponding shared variables of P
(see [30] for details).

Lemma 4.6. Let P be a CSP instance (of arbitrary arity) with constraint scopes E1, E2, . . . , Em, where the constraints allow all combi-
nations of values from some fixed domain D. The dual instance I P , with corresponding variables 1,2, . . . ,m, has the BTP with respect
to some ordering < if, and only if, for all triples Ei, E j, Ek with i < j < k we have

(Ei ∩ Ek ⊆ E j ∩ Ek) ∨ (E j ∩ Ek ⊆ Ei ∩ Ek). (4)

Moreover, if this condition holds, then the dual of any instance P ′ with the same constraint scopes also has the BTP with respect to <.

Proof. By Lemma 2.4, I P has the BTP with respect to < if and only if for all triples i < j < k, and for all (u, v) ∈ Rij ,
(Rik(u) ⊆ R jk(v)) ∨ (R jk(v) ⊆ Rik(u)). But, by the definition of the dual [30], for any fixed pair u, v , the range Rik(u) is
determined purely by the overlap of Ei and Ek , and the range R jk(v) is determined purely by the overlap of E j and Ek .
Hence, I P has the BTP with respect to < if and only if the given condition holds on Ei ∩ Ek and E j ∩ Ek .

Finally, we note that the dual of any other instance P ′ with the same constraint scopes can be obtained from the dual
of such an instance P , for an appropriate choice of D , by imposing restrictions on the domains. Hence, by Lemma 2.6, the
dual of P ′ will also have the BTP with respect to <. ✷

The edges of any tree can be ordered so that they satisfy the condition given in Lemma 4.6, so we obtain the following
corollary of this result.

Corollary 4.7. The dual of any tree-structured binary CSP instance has the BTP with respect to some ordering.

Now let TREE be the constraint satisfaction problem consisting of all instances that have tree structure, RRM be the
CSP consisting of all instances that are renamable right monotone with respect to some variable ordering, and DUAL-TREE
be the CSP consisting of all instances which are duals of instances with tree structure. Note that these three classes are
incomparable, for example an instance consisting of a single equality constraint belongs to TREE and DUAL-TREE but not to

576 M.C. Cooper et al. / Artificial Intelligence 174 (2010) 570–584

Fig. 2. An instance in BTP that is not in RRM, TREE or DUAL-TREE.

RRM. Moreover, both RRM and DUAL-TREE contain instances of arbitrary tree-width; for example, RRM contains instances
where the constraint structure is a grid of arbitrary size, and DUAL-TREE contains instances where the constraint structure
is a clique of arbitrary size (such as the dual of any instance whose structure is a star). Finally, let BTP be the CSP consisting
of all instances which have the broken-triangle property with respect to some variable ordering. We now show that the
class BTP properly includes the other 3 classes.

Theorem 4.8. RRM ! BTP, TREE ! BTP, and DUAL-TREE ! BTP.

Proof. The inclusions follow from Propositions 4.3, 4.5 and Corollary 4.7; the instance shown in Fig. 2 establishes the strict
separations. ✷

5. An alternative characterization of the BTP

In this section we consider the broad class of properties which are both conservative and preserved by taking sub-
problems. We show that the broken-triangle property is the only such property which ensures that the following desirable
behaviour can be guaranteed simply by achieving a certain level of arc consistency:

Definition 5.1. A CSP instance is universally backtrack-free with respect to an ordering < of its n variables if ∀k ∈ {2, . . . ,n},
any consistent assignment for the first k − 1 variables can be extended to a consistent assignment for the first k variables.

Definition 5.2. Given a CSP instance I on variables 1, . . . ,n, the induced subproblem I({i1, . . . , im}), where 1 ! i1 < i2 <
· · · < im ! n, is the m-variable CSP instance with domains Di1 , . . . , Dim and exactly those constraints of I whose scopes are
subsets of {i1, . . . , im}.

Definition 5.3. A set Σ of CSP instances is inclusion-closed if ∀I ∈ Σ , all subproblems I(M) on subsets M of the variables
of I also belong to Σ .

Definition 5.4. (See [2].) A binary CSP instance is directional arc consistent with respect to a variable ordering <, if for all
pairs of variables i < j, for every a in Di , there exists some b ∈ D j such that (a,b) ∈ Rij .

Given any binary CSP instance I , we can remove values from the domains of the variables to achieve directional arc
consistency, without changing the set of solutions [2]. The result of applying such an algorithm is unique, and is called the
directional arc-consistency closure of I .

Proposition 5.5. Let Σ be a conservative inclusion-closed set of binary CSP instances. The directional arc-consistency closure DAC(I)
of every I ∈ Σ with respect to a variable ordering < is universally backtrack-free with respect to < if, and only if, ∀I ∈ Σ , DAC(I)
satisfies the broken-triangle property with respect to <.

Proof. The argument used in the proof of Theorem 3.1 shows that if any binary CSP instance satisfies the broken-triangle
property then its directional arc-consistency closure is universally backtrack-free.

To prove the converse, suppose that Σ is a conservative inclusion-closed set of CSP instances and consider any I ∈ Σ .
Since Σ is conservative, DAC(I) also belongs to Σ , since it is obtained from I by a sequence of domain reductions. In the
following, we let Di denote the domain of variable i in DAC(I). Consider three variables i < j < k and four domain values
u ∈ Di , v ∈ D j , a,b ∈ Dk such that (u, v) ∈ Rij , (u,a) ∈ Rik and (v,b) ∈ R jk . Denote by I ′ the induced subproblem of DAC(I)
on variables i, j,k and with reduced domain {a,b} for variable k. Establishing directional arc consistency in I ′ may reduce
the domains of variables i and j, but cannot delete v from the domain of variable j (since it has a support, namely b,

M.C. Cooper et al. / Artificial Intelligence 174 (2010) 570–584 577

at k) nor can it delete u from the domain of variable i (since it has supports at variables j and k). If DAC(I ′) is universally
backtrack-free, then the consistent assignment ⟨u, v⟩ for the variables ⟨i, j⟩ can be extended to a consistent assignment for
⟨i, j,k⟩, which must be either ⟨u, v,a⟩ or ⟨u, v,b⟩. This corresponds exactly to the definition of the broken-triangle property,
and so DAC(I) satisfies the BTP. ✷

6. Generalizing the BTP

In this section we show that a weaker form of the broken-triangle property also implies backtrack-free search. This
leads to a strictly larger, but non-conservative, tractable class of CSP instances. Throughout this section, we assume that all
variable domains are totally ordered.

Definition 6.1. A binary CSP instance is min-of-max extendable (MME) with respect to the variable ordering <, if for all
triples of variables i, j,k such that i < j < k, if (u, v) ∈ Rij , then ⟨u, v, c⟩ is a consistent assignment for ⟨i, j,k⟩, where

c = min
(
max

(
Rik(u)

)
,max

(
R jk(v)

))
.

The symmetrically equivalent property max-of-min extendability is defined similarly, but with c = max(min(Rik(u)),
min(R jk(v))).

Lemma 6.2. A binary CSP instance satisfies the broken-triangle property with respect to a variable ordering < if, and only if, it is
min-of-max extendable with respect to < for all possible domain orderings.

Proof. Suppose that a CSP instance satisfies the broken-triangle property with respect to <, and consider an arbitrary
ordering of each of the domains. To prove min-of-max extendability, it suffices to apply the broken-triangle property to
a = max(Rik(u)) and b = max(R jk(v)). If a = b then clearly ⟨u, v,min(a,b)⟩ is a consistent assignment for ⟨i, j,k⟩. Otherwise,
since a and b are maximal, ⟨u, v,max(a,b)⟩ is not a consistent assignment; hence by the BTP, ⟨u, v,min(a,b)⟩ is a consistent
assignment.

To prove the converse, suppose that a CSP instance is min-of-max extendable for all possible domain orderings. For any
distinct a,b ∈ Dk , consider an ordering of Dk for which a = max(Dk) and b = max(Dk − {a}). The broken-triangle property
then follows from the definition of min-of-max extendability. ✷

Theorem 6.3. If a binary CSP instance is min-of-max extendable with respect to some known variable ordering < and some (possibly
unknown) domain orderings, and is also directional arc consistent with respect to <, then it is universally backtrack-free with respect
to <, and hence can be solved in polynomial time.

Proof. Suppose that ⟨u1, . . . , uk−1⟩ is a consistent assignment for the variables ⟨1, . . . ,k − 1⟩. By directional arc consistency,
∀i < k, Rik(ui) ≠ ∅. This means that

c = min
{

max
(

Rik(ui)
)
: 1 ! i ! k − 1

}

is well-defined. Let j ∈ {1, . . . ,k − 1} be such that c = max(R jk(u j)). Let i be any variable in {1, . . . ,k − 1} − { j}. Applying
the definition of min-of-max extendability to variables i, j,k allows us to deduce that (ui, c) ∈ Rik . It follows that ∃uk ∈ Dk
(namely uk = c) such that ⟨u1, . . . , uk⟩ is a consistent assignment for the variables ⟨1, . . . ,k⟩. This establishes that the
instance is universally backtrack-free.

Note that we used the ordering of domain Dk only to prove the existence of at least one consistent extension ⟨u1, . . . , uk⟩
of ⟨u1, . . . , uk−1⟩. A search algorithm can find some consistent value for uk , without any information about the domain
orderings, simply by checking each possible value from Dk . Hence the instance can be solved in polynomial time, even
when the domain orderings are unknown. ✷

Theorem 6.4. The problem of finding a variable ordering for a binary CSP instance with ordered domains such that it is min-of-max
extendable with respect to that ordering (or determining that no such ordering exists) is solvable in polynomial time.

Proof. The requirements for the ordering are a subset of the requirements for establishing the broken-triangle property.
Hence the result can be proved exactly as in the proof of Theorem 3.2. ✷

We can use Theorem 6.4 in the following way: given a CSP instance with ordered domains, compute its arc consistency
closure, and then test (in polynomial time) whether this reduced instance is min-of-max extendable for some ordering of
its variables. If we find such an ordering, then the instance can be solved in polynomial-time, by Theorem 6.3.

However, this approach is not guaranteed to find all possible useful variable orderings achieving min-of-max extendabil-
ity, because min-of-max extendability is not conservative, as the following example shows.

578 M.C. Cooper et al. / Artificial Intelligence 174 (2010) 570–584

Fig. 3. An example of a CSP instance which is directional arc consistent and min-of-max extendable, but which fails to be min-of-max extendable when
made arc consistent.

Example 6.5. Fig. 3 shows a binary CSP instance in which a dashed line between values p ∈ Di and q ∈ D j represents the
fact that ⟨p,q⟩ /∈ Rij . All pairs of values not joined by a dashed line are consistent. This instance is directional arc consistent
and min-of-max extendable with respect to the variable ordering 1 < 2 < 3 < 4 and the ordering a > b > c of domain D4
(and any orderings of the other domains). However, this instance does not satisfy the BTP (consider the “broken triangle”
b − u − v − c).

If we establish arc consistency, the value a is deleted from D4 since it has no support in D1. The resulting CSP instance
is arc consistent but no longer min-of-max extendable, since ⟨u, v⟩ ∈ R23 but cannot be extended to a consistent assignment
for variables 2,3,4.

Since min-of-max extendability is not a conservative property, it can be the case that, for some variable orderings, the
directional arc-consistency closure is min-of-max extendable but the full arc-consistency closure is not, as in Example 6.5.

Finally, we show that min-of-max extendability is a strict generalization of a previously-identified hybrid tractable class.

Definition 6.6. (See [31].) A CSP instance is row-convex (with respect to a fixed variable ordering and fixed domain order-
ings) if for all pairs of variables i < j, ∀u ∈ Di , Rij(u) is the interval [a,b] for some a,b ∈ D j .

It is known that a directional path-consistent row-convex binary CSP instance is universally backtrack-free and hence
tractable [31]. (However, it should be noted that establishing directional path consistency may destroy row-convexity.) Our
interest in this hybrid tractable class is simply to demonstrate that it is a special case of min-of-max extendability.

Proposition 6.7. If a binary CSP instance is directional path-consistent and row-convex, then it is min-of-max extendable (and max-
of-min extendable).

Proof. Consider the triple of variables i < j < k and suppose that (u, v) ∈ Rij . By directional path consistency, ∃c ∈ Dk
such that (u, c) ∈ Rik and (v, c) ∈ R jk . By row-convexity, Rik(u) and R jk(v) are intervals in the ordered domain Dk . The
existence of c means that these intervals overlap. Both end-points of this overlap provide extensions of (u, v) to a consistent
assignment for the variables ⟨i, j,k⟩. One end-point is given by min(max(Rik(u)),max(R jk(v))) which ensures min-of-max
extendability. (The other ensures max-of-min extendability.) ✷

On the other hand, it is perfectly possible for a binary CSP instance to be min-of-max extendable without being row-
convex, as shown by Example 6.5 (consider R34(v)).

7. Variable elimination using the BTP

Classical techniques for reducing the search space of a CSP are based on domain reduction via value elimination. In this
section we will show that the BTP can be used to define a novel strategy for variable elimination in binary CSPs. We will
investigate the time complexity of applying this variable elimination strategy, and explore the interaction between variable
and value eliminations.

In contrast to bucket elimination, which requires space exponential in the tree-width of the constraint network [32],
our scheme for variable elimination using the BTP can be applied in polynomial time even to classes of CSP instances with
unbounded tree-width.

M.C. Cooper et al. / Artificial Intelligence 174 (2010) 570–584 579

Existing techniques for choosing good variable orderings have focused on variants of the smallest domain heuristic [33],
probabilistic estimates of the most likely assignments [34], and dynamic variable orderings together with a local search
criterion [35]. Our scheme could be used as part of input preprocessing, or even during search, together with the usual
enforcement of arc or path consistency. Existing variable ordering heuristics can then be applied during search after some
variables have been eliminated.

We first define a local broken-triangle property for a single variable k.

Definition 7.1. A variable k in a binary CSP instance satisfies the local broken-triangle property (lBTP) if for all pairs of
distinct variables i, j ≠ k, ∀a,b ∈ Dk , ⟨u, v⟩ ∈ Rij , ⟨u,a⟩ ∈ Rik and ⟨v,b⟩ ∈ R jk implies that ⟨u,b⟩ ∈ Rik or ⟨v,a⟩ ∈ R jk .

Let [n]−k denote the set {1, . . . ,n} \ {k} = {1, . . . ,k − 1,k + 1, . . . ,n}.

Proposition 7.2. Let I be an arc-consistent binary CSP instance on variables [n] such that variable k satisfies the lBTP, and let I ′ be the
induced subproblem of I on variables [n]−k. Then I ′ has a solution if and only if I has a solution. Indeed, the set of solutions of I ′ is
exactly the projection of the set of solutions of I onto the variables [n]−k.

Proof. Since I ′ is a subproblem of I , we only need to prove that every solution of I ′ can be extended to a solution of I . Let
⟨a1, . . . ,ak−1,ak+1, . . . ,an⟩ be a solution of I ′ . By arc consistency, ∀i ≠ k, Rik(ai) ≠ ∅. Since k satisfies the lBTP, by the same
argument as in the proof of Lemma 2.4, any two elements of {Rik(ai) | i ∈ [n]−k} are ordered by subset inclusion, so this set
is totally ordered by subset inclusion, and hence has a non-empty intersection. This implies that every solution of I ′ can be
extended to a solution of I , which completes the proof. ✷

Proposition 7.2 tells us that the solvability of any CSP instance is invariant under the elimination of any variables that
satisfy the lBTP.

The following proposition gives a concrete example of the application of this form of variable elimination.

Proposition 7.3. In a path consistent binary CSP instance, all variables k such that |Dk| = 2 satisfy the lBTP and hence can be elimi-
nated.

Proof. Consider a variable k such that |Dk| = 2. Suppose for a contradiction that for some i, j ≠ k, we have ⟨u, v⟩ ∈ Rij ,
⟨u,a⟩ ∈ Rik , ⟨v,b⟩ ∈ R jk , ⟨u,b⟩ /∈ Rik and ⟨v,a⟩ /∈ R jk . Then a ≠ b, and we can deduce that Dk = {a,b}. But then ⟨u, v⟩ ∈ Rij
has no support at variable k, which contradicts the assumption of path consistency. ✷

Theorem 7.4. The closure of a binary CSP instance under the elimination of all variables that satisfy the lBTP is unique and can be
found in O (ned3) time.

Proof. By Definition 7.1, if variable k satisfies the lBTP in a binary CSP instance I , then k satisfies the lBTP in any subproblem
of I that includes k. Thus, if variables j and k both satisfy the lBTP, then variable j will still satisfy the lBTP after elimination
of variable k. It follows that the result of eliminating all variables that satisfy the lBTP is unique, since a variable elimination
cannot invalidate another variable elimination. However, as with value eliminations by arc consistency, variable eliminations
can provoke new variable eliminations; if variable i did not satisfy the lBTP before elimination of k, it may satisfy the lBTP
after the elimination of k.

A variable k satisfies the lBTP and can be eliminated if, for all distinct i, j ∈ [n]−k , (u, v) ∈ Rij implies that

Rik(u) ⊆ R jk(v) ∨ Rik(u) ⊇ R jk(v). (5)

If for some u ∈ Di and some v ∈ D j , Eq. (5) does not hold, then we say that {i, j} is an lBTP obstruction-pair for k. Let
Obk be the set of lBTP obstruction-pairs {i, j} for k. We can assume that the set Rik(u) (for each i ∈ [n]−k and each u ∈ Di)
is stored in a direct access data structure, so that the test a ∈ Rik(u) is an O (1) operation. Furthermore, Eq. (5) trivially
holds if there is no constraint with scope {i,k} or no constraint with scope { j,k}. It follows that Obk can be determined by
checking whether Eq. (5) holds for each pair of constraints whose scopes contain k, and each possible choice of the values
u and v , by checking each possible a ∈ Dk . This can be completed in O (e2

kd3) time, where d is the maximum domain size
and ek is the number of binary constraints whose scope contains k.

Hence, the sets Obk (for all k ∈ [n]) can be calculated in O (ned3) time since
∑n

k=1 e2
kd3 ! ∑n

k=1 nekd3 = 2ned3.
If any set Obk is empty, then variable k satisfies the lBTP and can be eliminated. When a variable k is eliminated, the

sets Obi (i ≠ k) must be updated by deleting all obstruction-pairs containing k. If any other Obi now becomes empty, then
variable i can also be eliminated, and the same updating procedure must be applied again. Since each obstruction-pair
{i, j} is deleted at most once from each Obk , the total number of deletions is bounded above by

∑n
k=1 |Obk| ! ∑n

k=1 e2
k

! ∑n
k=1 nek = 2ne. Therefore, using appropriate indexing, the total time complexity to determine the variable elimination

closure by lBTP is O (ned3 + ne) = O (ned3). ✷

580 M.C. Cooper et al. / Artificial Intelligence 174 (2010) 570–584

Corollary 7.5. The problem of finding a variable ordering for which a binary CSP instance I satisfies the BTP (or determining that no
such order exists) can be solved in O (ned3) time.

Proof. To determine whether there exists a variable ordering for which I satisfies the BTP, we can simply test whether its
closure under the elimination of all variables that satisfy the lBTP is empty. If so, then the reverse of the order in which
variables were eliminated is a variable ordering for which I satisfies the BTP. Otherwise, no such ordering exists. ✷

Theorem 7.6. If the binary CSP instance I satisfies the BTP for some possibly unknown variable order ≺, then MAC (Maintaining Arc
Consistency during search) solves I in O (ned3) time whatever the instantiation order < of the variables during search.

Proof. Since I satisfies the BTP, and the BTP is a conservative property, any restriction I ′ of I produced by domain reduc-
tions (whether the result of instantiation of variables or arc consistency operations) also satisfies the BTP. By the proof of
Theorem 3.1, any arc consistent CSP instance that satisfies the BTP either has a solution or an empty domain. It follows
that MAC will be backtrack-free when applied to I , provided an assignment of a value to a variable is only accepted if the
resulting arc-consistency closure has non-empty domains. In the worst case, for each variable i, MAC will have to try all
values in Di . This makes a total of O (nd) times that arc consistency will have to be established. The complexity of O (ned3)
follows assuming that MAC uses an O (ed2) arc consistency algorithm such as AC-2001 [27]. ✷

Corollary 7.5 shows that the class of binary CSP instances satisfying the BTP for some possibly unknown variable ordering
can be recognized in O (ned3) time. Combining this with Theorem 7.6, it is possible to detect whether a binary CSP instance
I satisfies the BTP, and if the result is positive, to actually solve I , in O (ned3) time. The advantage of this approach, rather
than simply running MAC, is that we know in advance (in polynomial time) whether the BTP is satisfied and hence that
search will terminate in polynomial time.

In general, we would expect that some but not all variables can be eliminated using lBTP. An important question is
how variable elimination by lBTP interacts with classical value elimination techniques. Eliminating values (for example,
by arc consistency, path inverse consistency or neighbourhood substitution) cannot invalidate a variable elimination by
lBTP but can provoke new variable eliminations by lBTP. Similarly, a variable elimination by lBTP cannot invalidate value
eliminations by any of these techniques but can provoke a new value elimination by neighbourhood substitution. However,
a variable elimination by lBTP cannot destroy any form of consistency, and hence cannot provoke new value eliminations
by consistency operations. It is known that eliminating values by any convergent sequence of neighbourhood substitution
or consistency operations produces a CSP instance which is unique up to isomorphism [24]. It follows from the above
discussion that a similar result holds for any convergent sequence of variable eliminations by lBTP and value eliminations
by neighbourhood substitution or consistency operations.

8. Variable elimination using min-of-max extendability

As with the BTP, min-of-max extendability can also be used to eliminate variables. The important difference is that min-
of-max extendability is defined relative to an ordering of the domains. In this section, we first assume that orderings are
given for all domains, which allows us to generalize in a straightforward way the results of Section 7. Finally, we study the
case in which suitable domain orderings must be calculated.

We first define a local form of min-of-max extendability for a single variable k.

Definition 8.1. A variable k in a binary CSP instance is locally min-of-max extendable (lMME) for some ordering of Dk , if for
all pairs of distinct variables i, j ≠ k, (u, v) ∈ Rij implies that ⟨u, v, c⟩ is a consistent assignment for ⟨i, j,k⟩, where

c = min
(
max

(
Rik(u)

)
,max

(
R jk(v)

))
.

Proposition 8.2. Let I be an arc-consistent binary CSP instance on variables {1, . . . ,n} such that variable k is lMME for some ordering
of Dk, and let I ′ be the induced subproblem of I on variables [n]−k. Then I ′ has a solution if and only if I has a solution. Indeed, the set
of solutions to I ′ is exactly the projection of the set of solutions to I onto variables [n]−k.

Proof. Since I ′ is a subproblem of I we only need to prove that every solution of I ′ can be extended to a solution of I . Let
⟨a1, . . . ,ak−1,ak+1, . . . ,an⟩ be a consistent labelling of [n]−k , i.e., a solution of I ′ . By arc consistency, ∀i ≠ k, Rik(ai) ≠ ∅. Let
c = min{max(Rik(ai)): i ∈ [n]−k} and suppose that c = max(Ri0k(ai0)) where i0 ∈ [n]−k . Since variable k is lMME, ∀ j /∈ {i0,k},
⟨ai0 ,a j, c⟩ is a consistent assignment for ⟨i0, j,k⟩. Hence ⟨a1, . . . ,ak−1, c,ak+1, . . . ,an⟩ is a consistent assignment for variables
{1, . . . ,n}, i.e., a solution of I . ✷

An important, although obvious, property of any form of variable elimination is that it preserves arc consistency, since
eliminating a variable cannot invalidate arc consistency.

M.C. Cooper et al. / Artificial Intelligence 174 (2010) 570–584 581

Theorem 8.3. Given orderings of all domains, the closure of an arc-consistent binary CSP under the elimination of all variables that are
lMME is unique and can be found in O (ned2) time.

Proof. By Definition 8.1, if variables j and k are both lMME, then variable j will still be lMME after elimination of variable k.
It follows that the result of eliminating all variables that are lMME is unique, and can be obtained by eliminating such
variables (in any order) until convergence.

Call {i, j} an lMME obstruction-pair for k if ∃(u, v) ∈ Rij such that ⟨u, v, c⟩, where c = min(max(Rik(u)),max(R jk(v))),
is not a consistent assignment for ⟨i, j,k⟩. The maximum value in each Rij(u), for all i, j, u, can be precomputed in O (ed2)

time. Using these precomputed values we can calculate Obk , the set of lMME obstruction-pairs for k, in O (e2
kd2) time, where

ek is the number of binary constraints whose scope includes k. Summing over all variables k, we obtain a complexity of
O (

∑n
k=1 ekd2) = O (ned2).

As in the proof of Theorem 7.4, we require O (ne) additional time to propagate deletions of variables. Hence the total
time complexity to calculate the closure under eliminations of variables that are lMME is O (ed2 + ned2 +ne) = O (ned2). ✷

If a variable satisfies the lBTP, then it is lMME (but the converse is not always true). It follows that eliminating variables
that are lMME is both stronger and (asymptotically) faster than eliminating variables that satisfy the lBTP.

Corollary 8.4. For given domain orderings, the problem of finding a variable ordering for which an arc-consistent binary CSP instance
is min-of-max extendable (or determining that no such variable ordering exists) can be solved in O (ned2) time.

Proof. Similar to the proof of Corollary 7.5. An arc-consistent binary CSP instance is min-of-max extendable if, and only if,
each of its variables can be eliminated in turn (in some order) because they are lMME. ✷

For a given ordering of Dk , we can clearly test whether the variable k is lMME in polynomial time. We call such an
ordering of the values of k a min-of-max ordering. If |Dk| is bounded by a constant, then we can test all possible orderings
of Dk in polynomial time. An obvious question is, in the case that |Dk| is not bounded by a constant, whether determining
the existence of a min-of-max ordering of Dk is tractable or not. We complete our study of min-of-max extendability by
showing below that this problem is, in fact, NP-complete.

Min-of-Max Ordering (MMO)
Input: a binary CSP instance I and a variable k
Question: does there exist a min-of-max ordering of Dk in I?

Theorem 8.5. The MMO problem for the class of CSP instances with finite but unbounded domain size is NP-complete.

Proof. MMO ∈ NP since checking that k is lMME for a given ordering of Dk is polynomial-time. To prove NP-completeness
we will construct a polynomial reduction from SAT to MMO. Consider an instance ISAT of SAT with n variables v1, . . . , vn .
We will construct a 3-variable binary CSP instance I in which D3 = {1, . . . ,2n + 2} and for which there exists a min-of-max
ordering of Dk if, and only if, ISAT is satisfiable.

Let D1 = D2 and place an equality constraint on variables ⟨1,2⟩. For each i ∈ {1, . . . ,n}, we add distinct values ai,bi, ci
to D1 = D2 and tuples to the constraints with scopes ⟨1,3⟩, ⟨2,3⟩ such that R13(ai) = {i,2n + 1}, R23(ai) = {n + i,2n + 1},
R13(bi) = {i,2n + 2}, R23(bi) = {n + i,2n + 2}, R13(ci) = {i,n + i,2n + 1}, R23(ci) = {i,n + i,2n + 2} (for i ∈ {1, . . . ,n}). This is
illustrated in Fig. 4. This construction ensures that, in any min-of-max ordering ≺ of D3, for each i ∈ {1, . . . ,n}, exactly one
of i, n + i is less than both of 2n + 1, 2n + 2: the assignment ⟨ai,ai⟩ (respectively ⟨bi,bi⟩) to variables ⟨1,2⟩ ensures that
min(i,n + i) is less than 2n + 1 (respectively 2n + 2), while the assignment ⟨ci, ci⟩ to variables ⟨1,2⟩ ensures that at most
one of i, n + i is less than both of 2n + 1, 2n + 2.

For any min-of-max ordering ≺ of D3, we associate the truth value false with vi precisely when i ≺ 2n + 1 and
i ≺ 2n + 2. Clearly, n + i can be associated with ¬vi , since by the construction in Fig. 4 exactly one of i, n + i is less than
both of 2n + 1, 2n + 2. For each clause C j = vi1 ∨ · · · ∨ vir in ISAT , we add a distinct value d j to D1 = D2 and tuples to the
constraints with scopes ⟨1,3⟩, ⟨2,3⟩ such that R13(d j) = {i1, . . . , ir,2n + 1}, R23(d j) = {i1, . . . , ir,2n + 2}. This is illustrated
in Fig. 4 for the clause vi1 ∨ vi2 ∨ vi3 . In any min-of-max ordering of D3, not all of i1, . . . , ir can be less than both 2n + 1
and 2n + 2; this corresponds to imposing the constraint that one of the variables vi1 , . . . , vir is true. (If the clause involves
a negated variable ¬vi , then we replace the value i by n + i in R13(d j) and R23(d j).) It follows that there is a min-of-max
ordering of D3 if, and only if, ISAT is satisfiable. This reduction can clearly be completed in polynomial time. ✷

9. Variable ordering heuristics based on the BTP

Even when it is not possible to eliminate any variable from an instance I using the lBTP, as described in Section 7, it
may still be true that some induced subproblem of I , on some subset of variables S , satisfies the BTP for some ordering of

582 M.C. Cooper et al. / Artificial Intelligence 174 (2010) 570–584

(a)

(b)

Fig. 4. (a) The construction which codes vn+i = ¬vi , since it implies that exactly one of the values i, n + i is less than both of 2n + 1, 2n + 2 in an MMEP
ordering of D3. (b) The construction which codes the clause vi1 ∨ vi2 ∨ vi3 since it implies that not all of i1, i2, i3 are less than both of 2n + 1, 2n + 2 in
an MMEP ordering of D3.

its variables. In this case, by ordering the whole set of variables X of I so that the variables in S all occur after the variables
in X − S , the subproblem on variables S obtained after the instantiation of the variables in X − S satisfies the BTP, since the
BTP is conservative. In this case, we know by Theorem 7.6 that MAC will be backtrack-free on the variables S . This implies
that the maximum number of leaf nodes visited in the MAC search tree will be dn−|S| . (Note that the same argument does
not apply to min-of-max extendability, as it is not conservative.)

Hence, to limit the size of the search tree explored by the MAC algorithm, it is desirable to find a large set of variables
S on which the BTP is satisfied. Once we have found such a set of variables S , then standard variable-ordering heuristics
[33–35] can be used to order the variables in X − S .

Unfortunately, finding the largest possible set of variables on which the BTP is satisfied is an NP-hard problem, as we
now show.

Theorem 9.1. Given a binary CSP instance I on variables X, it is NP-hard to determine the maximum size of a subset S ⊆ X such that
the induced subproblem of I on S satisfies the BTP.

Proof. The problem MAX-ONES is the problem of finding a solution to a problem SAT which maximizes the number of
boolean variables assigned the value true. It is known [36] that MAX-ONES is NP-hard (in fact, APX-complete) even when
restricted to instances whose clauses are all of the form φ(xi, x j, xk), where φ(x, y, z) = ¬x ∨ ¬y ∨ ¬z. We will show that
any instance I1 of MAX-ONES whose clauses are all of this form can be expressed as a problem of finding the maximum
size of a subset of variables of a binary CSP instance I2 such that the induced subproblem of I2 on S satisfies the BTP.

M.C. Cooper et al. / Artificial Intelligence 174 (2010) 570–584 583

We say that there is a BTP obstruction (i, j,k,a, u, v,b) with respect to variable ordering < if there exist i < j < k such
that u ∈ Di , v ∈ D j , a,b ∈ Dk and (u,a) ∈ Rik , (u, v) ∈ Rij , (v,b) ∈ R jk , (u,b) /∈ Rik , and (v,a) /∈ R jk .

For each variable xi in I1, we create a variable i in I2. For each clause φ(xi, x j, xk) in I1, we create three BTP obstructions
which imply O i < max(O j, O k), O j < max(O k, O i) and O k < max(O i, O j). For example, creating a BTP obstruction which
implies O k < max(O i, O j) means adding values a,b to Dk , u to Di and v ∈ D j satisfying (u, v) ∈ Rij , (u,a) ∈ Rik , (v,b) ∈
R jk , (u,b) /∈ Rik and (v,a) /∈ R jk . The inequality constraints implied by the three BTP obstructions are inconsistent, but any
subset of two of these constraints is consistent. Therefore at most two of i, j,k can belong to S . Associating xi = true with
i ∈ S , these three BTP obstructions therefore impose the constraint φ(xi, x j, xk) on the corresponding variables in I1. This
reduction is polynomial-time (and in fact log-space), which demonstrates that finding the maximum induced subproblem
of I2 which satisfies the BTP is NP-hard. ✷

10. Conclusion

We have described new tractable classes of binary CSP instances which significantly generalize tree-structured problems
as well as previously-identified language-based classes. These new classes are obtained by imposing requirements on the
sets of constraints imposed on all ordered triples of variables. Moreover, we have shown that the problem of determining a
variable ordering for which these properties hold is solvable in polynomial time.

We see this work as a first step towards a complete characterization of all hybrid tractable classes of constraint satisfac-
tion problems, that is, all tractable classes which are obtained by restricting the combined properties of both the constraint
relations and the way in which they interact.

From a practical point of view, we have shown that the properties which define the tractable classes introduced in
this paper can also be used to eliminate variables in binary CSPs. This provides us with a reduction technique which is
orthogonal and complementary to classical value elimination techniques such as arc consistency.

Furthermore, one of the local properties (the BTP) can be used to improve variable-ordering heuristics by instantiating
last a subset of variables on which the BTP holds. An interesting area for future research would be to investigate variable
ordering heuristics which try to minimize the number of times the BTP is not satisfied.

Acknowledgements

We would like to thank Chris Jefferson for pointing out Theorem 7.6.

References

[1] E.C. Freuder, A sufficient condition for backtrack-free search, Journal of the ACM 29 (1) (1982) 24–32, doi:10.1145/322290.322292.
[2] R. Dechter, J. Pearl, Network-based heuristics for constraint-satisfaction problems, Artificial Intelligence 34 (1) (1987) 1–38, doi:10.1016/0004-

3702(87)90002-6.
[3] A. Bulatov, P. Jeavons, A. Krokhin, Classifying the complexity of constraints using finite algebras, SIAM Journal on Computing 34 (3) (2005) 720–742,

doi:10.1137/S0097539700376676.
[4] T. Feder, M.Y. Vardi, The computational structure of monotone monadic SNP and constraint satisfaction: A study through Datalog and group theory,

SIAM Journal on Computing 28 (1) (1998) 57–104, doi:10.1137/S0097539794266766. Available from: http://link.aip.org/link/?SMJ/28/57/1.
[5] D. Cohen, P. Jeavons, M. Gyssens, A unified theory of structural tractability for constraint satisfaction problems, Journal of Computer and System

Sciences 74 (5) (2008) 721–743, doi:10.1016/j.jcss.2007.08.001.
[6] P. Jeavons, On the algebraic structure of combinatorial problems, Theoretical Computer Science 200 (1–2) (1998) 185–204, doi:10.1016/S0304-

3975(97)00230-2.
[7] A.A. Bulatov, Tractable conservative constraint satisfaction problems, in: Proceedings of 18th IEEE Symposium on Logic in Computer Sci-

ence (LICS 2003), Ottawa, Canada, 22–25 June 2003, IEEE Computer Society, 2003, pp. 321–330. Available from: http://csdl.computer.org/comp/
proceedings/lics/2003/1884/00/18840321abs.htm.

[8] T.J. Schaefer, The complexity of satisfiability problems, in: STOC ’78: Proceedings of the Tenth Annual ACM Symposium on Theory of Computing, 1978,
pp. 216–226.

[9] A.A. Bulatov, A dichotomy theorem for constraint satisfaction problems on a 3-element set, Journal of the ACM 53 (1) (2006) 66–120,
doi:10.1145/1120582.1120584.

[10] M. Grohe, The structure of tractable constraint satisfaction problems, in: Proceedings of the 31st Symposium on Mathematical Foundations of Computer
Science, in: Lecture Notes in Computer Science, vol. 4162, Springer-Verlag, 2006, pp. 58–72.

[11] V. Dalmau, P.G. Kolaitis, M.Y. Vardi, Constraint satisfaction, bounded treewidth, and finite-variable logics, in: CP ’02: Proceedings of the 8th International
Conference on Principles and Practice of Constraint Programming, in: Lecture Notes in Computer Science, vol. 2470, Springer-Verlag, 2002, pp. 310–326.

[12] M. Grohe, The complexity of homomorphism and constraint satisfaction problems seen from the other side, Journal of the ACM 54 (1) (2007) 1–24,
doi:10.1145/1206035.1206036.

[13] R. Dechter, Constraint Processing, Morgan Kaufmann, 2003.
[14] D. Cohen, P. Jeavons, The complexity of constraint languages, in: F. Rossi, P. van Beek, T. Walsh (Eds.), Handbook of Constraint Programming, Elsevier,

2006, pp. 245–280.
[15] D.A. Cohen, M.J. Green, Typed guarded decompositions for constraint satisfaction, in: F. Benhamou (Ed.), CP ’06: Proceedings of the 12th International

Conference on Principles and Practice of Constraint Programming, in: Lecture Notes in Computer Science, vol. 4204, Springer-Verlag, 2006, pp. 122–136.
[16] T.K. Kumar, A framework for hybrid tractability results in boolean weighted constraint satisfaction problems, in: CP ’08: Proceedings of the 14th

International Conference on Principles and Practice of Constraint Programming, in: Lecture Notes in Computer Science, vol. 5202, Springer-Verlag,
2008, pp. 282–297.

[17] E.C. Freuder, A sufficient condition for backtrack-bounded search, Journal of the ACM 32 (4) (1985) 755–761, doi:10.1145/4221.4225.

http://dx.doi.org/10.1145/322290.322292
http://dx.doi.org/10.1016/0004-3702(87)90002-6
http://dx.doi.org/10.1137/S0097539700376676
http://dx.doi.org/10.1137/S0097539794266766
http://link.aip.org/link/?SMJ/28/57/1
http://dx.doi.org/10.1016/j.jcss.2007.08.001
http://dx.doi.org/10.1016/S0304-3975(97)00230-2
http://csdl.computer.org/comp/proceedings/lics/2003/1884/00/18840321abs.htm
http://csdl.computer.org/comp/proceedings/lics/2003/1884/00/18840321abs.htm
http://dx.doi.org/10.1145/1120582.1120584
http://dx.doi.org/10.1145/1206035.1206036
http://dx.doi.org/10.1145/4221.4225
http://dx.doi.org/10.1016/0004-3702(87)90002-6
http://dx.doi.org/10.1016/S0304-3975(97)00230-2

584 M.C. Cooper et al. / Artificial Intelligence 174 (2010) 570–584

[18] H.L. Bodlaender, A linear-time algorithm for finding tree-decompositions of small treewidth, SIAM Journal on Computing 25 (6) (1996) 1305–1317,
doi:10.1137/S0097539793251219. Available from: http://link.aip.org/link/?SMJ/25/1305/1.

[19] J. Pearson, P. Jeavons, A survey of tractable constraint satisfaction problems, Tech. Rep. CSD-TR-97-15, Royal Holloway, University of London, July 1997.
Available from: ftp://ftp.cs.rhul.ac.uk/pub/constraints/survey.ps.

[20] P. van Beek, R. Dechter, Constraint tightness and looseness versus local and global consistency, Journal of the ACM 44 (4) (1997) 549–566,
doi:10.1145/263867.263499.

[21] P. Jégou, On the consistency of general constraint-satisfaction problems, in: AAAI, 1993, pp. 114–119. Available from: http://www.aaai.org/Library/AAAI/
1993/aaai93-018.pdf.

[22] E.C. Freuder, C.D. Elfe, Neighborhood inverse consistency preprocessing, in: Proc. AAAI/IAAI-96, Portland, OR, vol. 1, 1996, pp. 202–208. Available from:
http://www.aaai.org/Library/AAAI/1996/aaai96-030.php.

[23] E.C. Freuder, Eliminating interchangeable values in constraint satisfaction problems, in: Proc. AAAI-91, Anaheim, CA, 1997, pp. 227–233. Available from:
http://www.aaai.org/Library/AAAI/1991/aaai91-036.php.

[24] M.C. Cooper, Fundamental properties of neighbourhood substitution in constraint satisfaction problems, Artificial Intelligence 90 (1–2) (1997) 1–24,
doi:10.1016/S0004-3702(96)00018-5.

[25] M. Cooper, D. Cohen, P. Jeavons, Characterising tractable constraints, Artificial Intelligence 65 (1994) 347–361, doi:10.1016/0004-3702(94)90021-3.
[26] C. Bessiere, Constraint propagation, in: F. Rossi, P. van Beek, T. Walsh (Eds.), Handbook of Constraint Programming, Elsevier, 2006, pp. 29–83.
[27] C. Bessière, J.-C. Régin, Refining the basic constraint propagation algorithm, in: Proc IJCAI’01, Seattle, WA, 2001, pp. 309–315. Available from:

http://www.lirmm.fr/%7Ebessiere/stock/ijcai01.ps.
[28] P.G. Jeavons, M.C. Cooper, Tractable constraints on ordered domains, Artificial Intelligence 79 (2) (1995) 327–339, doi:10.1016/0004-3702(95)00107-7.
[29] R. Mohr, G. Masini, Good old discrete relaxation, in: Y. Kodratoff (Ed.), Proceedings of the 8th European Conference on Artificial Intelligence—ECAI’88,

Pitman, 1988, pp. 651–656.
[30] R. Dechter, J. Pearl, Tree clustering for constraint networks (research note), Artificial Intelligence 38 (3) (1989) 353–366, http://dx.doi.org/10.1016/0004-

3702(89)90037-4.
[31] P. van Beek, R. Dechter, On the minimality and decomposability of row-convex constraint networks, Journal of the ACM 42 (3) (1995) 543–561,

doi:10.1145/210346.210347.
[32] R. Dechter, Bucket elimination: A unifying framework for reasoning, Artificial Intelligence 113 (1–2) (1999) 41–85, doi:10.1016/S0004-3702(99)00059-4.
[33] B.M. Smith, The Brélaz heuristic and optimal static orderings, in: CP ’99: Proceedings of the 5th International Conference on Principles and Prac-

tice of Constraint Programming, in: Lecture Notes in Computer Science, vol. 1713, Springer-Verlag, 1999, pp. 405–418. Available from: http://www.
springerlink.com/content/3dgkv9kgvc4h340w/.

[34] J.C. Beck, P. Prosser, R.J. Wallace, Toward understanding variable ordering heuristics for constraint satisfaction problems, in: Proceedings of the Four-
teenth Irish Artificial Intelligence and Cognitive Science Conference, 2003, pp. 11–16. Available from: http://tidel.mie.utoronto.ca/pubs/promise.aics.pdf.

[35] C. Bessière, A. Chmeiss, L. Saïs, Neighborhood-based variable ordering heuristics for the constraint satisfaction problem, in: CP ’01: Proceedings of the
7th International Conference on Principles and Practice of Constraint Programming, in: Lecture Notes in Computer Science, vol. 2239, Springer-Verlag,
2001, pp. 565–569.

[36] N. Creignou, S. Khanna, M. Sudan, Complexity Classification of Boolean Constraint Satisfaction Problems, SIAM Monographs on Discrete Mathematics
and Applications, vol. 7, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2001.

http://dx.doi.org/10.1137/S0097539793251219
http://link.aip.org/link/?SMJ/25/1305/1
ftp://ftp.cs.rhul.ac.uk/pub/constraints/survey.ps
http://dx.doi.org/10.1145/263867.263499
http://www.aaai.org/Library/AAAI/1993/aaai93-018.pdf
http://www.aaai.org/Library/AAAI/1993/aaai93-018.pdf
http://www.aaai.org/Library/AAAI/1996/aaai96-030.php
http://www.aaai.org/Library/AAAI/1991/aaai91-036.php
http://dx.doi.org/10.1016/S0004-3702(96)00018-5
http://dx.doi.org/10.1016/0004-3702(94)90021-3
http://www.lirmm.fr/%7Ebessiere/stock/ijcai01.ps
http://dx.doi.org/10.1016/0004-3702(95)00107-7
http://dx.doi.org/10.1016/0004-3702(89)90037-4
http://dx.doi.org/10.1145/210346.210347
http://dx.doi.org/10.1016/S0004-3702(99)00059-4
http://www.springerlink.com/content/3dgkv9kgvc4h340w/
http://www.springerlink.com/content/3dgkv9kgvc4h340w/
http://tidel.mie.utoronto.ca/pubs/promise.aics.pdf
http://dx.doi.org/10.1016/0004-3702(89)90037-4

	Generalizing constraint satisfaction on trees: Hybrid tractability and variable elimination
	Introduction
	The broken-triangle property
	Tractability of BTP instances
	Related tractable classes
	An alternative characterization of the BTP
	Generalizing the BTP
	Variable elimination using the BTP
	Variable elimination using min-of-max extendability
	Variable ordering heuristics based on the BTP
	Conclusion
	Acknowledgements
	References

