Should We Add Repair Time to an Unfixed Bug?

An Exploratory Study of Automated Program Repair on 2980 Small-Scale Programs

Chuangi Xu, Yisen Xu, Yingqi Zhang, Jifeng Xuan
School of Computer Science
Wuhan University
Wuhan, China
{legendxu, xuyisen, 2016301500318, jxuan}@whu.edu.cn

Abstract—The goal of automated program repair is to auto-
mate patch generation for buggy programs to reduce the manual
effort by developers. A generate-and-validate method, such as
GenProg, is a kind of typical repair methods that continuously
generate potential patches and then validate the patches with a
given test suite. A generate-and-validate method can accumulate
patches when the execution time of repair methods increases.
However, how many buggy programs can be newly patched when
the time increase? In this paper, we conducted an exploratory
study of repairing 2980 small-scale buggy programs from the
CODEFLAWS benchmark with three repair methods GENPROG,
SPR, and PROPHET. The aim of this study is to understand the
execution time of repair methods via investigating four research
questions. Experimental results show that the time of patch
generation correlates with the number of executable lines of code
and the Cyclomatic complexity. That is, a complex program is
difficult to be repaired. This motivates us to explore a new repair
method that can weaken such correlation with the lines of code
and the complexity. We designed VANFIX, a simple and effective
repair method for small-scale C programs. VANFIX leverages the
probability of exploring the search space to conduct a variable
search neighborhood for potential patches, rather than patching
suspicious statements one by one. The comparison among repair
methods shows that VANFIX can generate patches for 653 buggy
programs, which contains 408 correctly patched buggy programs.
This makes VANFIX achieve 24% to 30% better precision than
GENPROG, SPR, and PROPHET.

Index Terms—program repair, execution time, exploratory
study, correlation, Codeflaws

I. INTRODUCTION

Automated program repair has been proposed to automate
patch generation for buggy programs to reduce the effort of
manual debugging by developers. In program repair, generate-
and-validate methods, such as GENPROG [16], are a kind of
typical repair methods that are widely studied in the research
community. A generate-and-validate method continuously gen-
erates patches and validates the patches with a given test
suite until a patch that makes the whole test suite pass is
found. GENPROG [53]], a pioneering repair method since 2009,
converts the buggy program into Syntax Abstract Trees (ASTs)
and searches a potential patch by mutating the AST to pass
the test suite. In this paper, we focus on the study of generate-
and-validate repair methods [[10], [13], [16], [24], [25], [28]],
[52]], 1541, [56]-

Increasing the execution time of a generate-and-validate
repair method can increase the opportunity of finding a patch.
In this paper, we refer to the execution time of a repair method
as repair time. On the one hand, given a limited time budget,
a repair method may fail in patch generation due to the huge
search space of patches; on the other hand, exhausting all
patches is expensive and requires extremely long execution
time. For generate-and-validate repair methods, longer repair
time may lead to more generated patches for buggy programs.

In this paper, we conducted an exploratory study on the
repair time of automated program repair. If a buggy pro-
gram is not fixed in short time, should we add repair time
to enlarge the probability of generating new patches? This
question reveals whether we should spend long repair time
in applying an automated repair method. This study evaluates
the repair time of repairing 2980 small-scale buggy programs
from the CODEFLAWS benchmark with three off-the-shelf
methods, GENPROG, SPR, and PROPHET. We do not aim
at comparing which repair method generates patches in the
shortest time since existing repair tools are diversely designed
and implemented. Instead, for a particular repair method, we
investigate the incremental number of patched buggy programs
over time.

We leveraged the experimental results to understand the
repair time via four research questions. We find out the
following results: 1) The number of newly patched buggy
programs does not highly increase when the execution time
increases; after the execution of 600 seconds, correctly patches
buggy program are hardly increased. 2) The repair time of
generating plausible or correct patches for buggy programs
correlates with the number of executable lines of code, the
Cyclomatic complexity, and the mutation score; the repair time
of finding out a correct patch can be affected by the scale and
the complexity of the source code as well as the test suite. 3)
Three repair methods GENPROG, SPR, and PROPHET under
evaluation correctly patched 32% to 38% of plausibly patched
buggy programs. Among all buggy programs, GENPROG cor-
rectly patched 2% while SPR and PROPHET correctly patched
around 11%.

The correlation between the repair time and the number
of executable lines of Code (called ExecLoC) and the Cyclo-
matic complexity motivates us to explore a new method of
program repair. We designed VANFIX, a simple and effective

repair method for small-scale C programs. Different from
patching suspicious statements one by one, VANFIX leverages
the probability of exploring the search space to conduct
a variable search neighborhood for potential patches. The
variable search neighborhood can help VANFIX avoid to be
caught by exhausting one suspicious statement and reduce the
dependency between the repair time and the LoC and the code
complexity. The comparison among repair methods shows that
VANFIX can generate patches for 653 buggy programs, which
contains 408 correctly patched buggy programs. This makes
VANFIX achieve 24% to 30% of improvement of precision
over GENPROG, SPR, and PROPHET.
This paper makes the following major contributions:

o We conducted an exploratory study of repair time on 2980
buggy programs in the CODEFLAWS dataset.

o« We empirically compared existing repair tools on C
programs, including GENPROG, SPR, and PROPHET, via
analyzing generated patches and correct patches.

o We designed a new and effective method, VANFIX, which
can achieve the precision of 0.62, i.e., 408 correct patches
out of 653 generated patches.

The remainder of this paper is organized as follows. Sec-
tion [[I] presents the background and motivation. Section [III|
presents the experimental setup, including research questions,
data preparation, and evaluation setup. Section [[V| reports the
experimental results in our study. Section [V] describes a new
repair approach, VANFIX, as well as the evaluation. Section
discusses the threats to the validity. Section lists the
related work and Section concludes this paper.

II. BACKGROUND

We present the terminology, the background, and the moti-
vation of this study.

A. Terminology

A generate-and-validate repair method is a method that
aims to continuously generate patches and validate the patches
with a given test suite [|37].

A plausible patch is a patch that passes the whole test suite
of validation [26], [43]].

A correct patch is a plausible patch that do not introduce
any latent or new defect. Existing works identify the correct
patch as a semantically equivalent patch to the manual patch
that was written by human developers [27], [S7]]. If a generated
patch is exact the same as the manual one, the patch is labeled
as correct; if not, validating the correctness requires the manual
analysis by human developers [43]], [62], [63].

The repair time is the execution time that is used to generate
a patch with a limited time budget (also called timeout) for
a given repair method. Note that we do not limit repair time
to particular plausible patches or correct patches. The repair
time relates the actual execution time of a repair method.

B. Background

Automated program repair. Automated program repair
has attracted many attentions since the birth of GENPROG

[53]. GENPROG, as well as other existing repair methods, aims
at fixing a buggy program via generating a potential patch that
can pass a manually designed test suite. Such repair methods
are also called test suite based repair [27], [37]. Existing
methods of test suite based repair can be roughly divided
into two categories: generate-and-validate repair methods or
synthesis-based repair methods [60]]. In this study, we focus
on the category of generate-and-validate methods, which em-
ploy continuously heuristic or rule-based search to generate
candidate patch lists and then validate whether a patch passes
the test suite or not. Besides generate-and-validate methods,
synthesis-based repair methods transform patch generation
into the problem of constraint solving and convert back the
solution into a code patch [34], [38], [57], [60].

Search space for patches. Long and Rinard [26] have
analyzed the search space of generate-and-validate repair
methods on 69 buggy C programs. They found that correct
patches are sparse in the search space and plausible patches
are relatively abundant. Thus, it is challenging to find out
a correct patch among plausible ones. The fact that correct
patches is sparse leads to the expansion of the current search
space. Nguyen et al. [39] leveraged test input generation to
enlarge the possibility of patch generation. Hua et al. [6]]
translated buggy programs into partial programs with holes
that may consists of thousands of candidate patches. Martinez
and Monperrus [29]] conducted patches with parametrized fix
ingredients and led to the explosion of the search space. Their
approach finds out over 8900 patches for the Astor tool for
Java patch generation [30]]. The rich search space provides
the potential of finding out correct patches as well as hiding
correct patches among plausible ones.

Correlation analysis. Yi et al. [59] have investigated the
correlation between program repair and test suite metrics on
142 buggy C programs. Test suite metrics under evaluation
include statement coverage, branch coverage, the size of the
test suite, the mutation score, and the ratio of capable test
cases. Their experiments show that the reliability of patches
generally tends to increase when the test suite metrics increase.
Correlation with the repair time is also involved: inconclusive
results about the correlation between test suites and the repair
time [59]].

C. Motivation

Fig. [I] presents an excerpt of a buggy program in the
CODEFLAWS benchmark [50] with ID 109-A-bug-13092782-
13092815. The source code is expected to find out an integer
that contains the digits of 4 and 7 and the sum of all digits
equals to a given number z. The buggy program fails to output
the parsed digits due to the lack of exiting the loop. The
manually written patch is at Line 28, i.e., adding a break
statement. An existing repair method SPR [24]] can modify
Line 21 into if (i%4==0 && flag==0), which is equivalent
to the manual patch. Our trials show that SPR failed in
patching the program.

According to the design and implementation, SPR [24]]
could correctly patched the example in Fig. However,

15 |if(z%7 !'= 0 && flag == 0)

16

17 k = 2/7;

18 for(i = z—(k—=7); k != 0; k —)
19

20 i =z—(kx7);

21 if(i%4 == 0)

22

23 flag = 1;

24 for(b = 1; b <= i/4; b ++)
25 printf (74”);

26 for(j = 1; j <= k; j ++)
27 printf(”7”);

28 |+ break ;

29)

30 }

31|}

32 [if (2%4 == 0 && flag == 0)

33 [...]

34 |if(flag == 0)

35 [...1]

Fig. 1. Excerpt of a buggy program (ID 109-A-bug-13092782-13092815) in
the CODEFLAWS benchmark.

SPR conducts patches according to its ranking of faulty
statements: statements are examined and patched one by one.
The statement at Line 21 is ranked over half the ranking list,
which makes SPR caught by other statements which may not
provide patches. Even the repair time is increased, SPR cannot
further generate patches for the buggy program.

This example motivates our study: given a repair method,
should we add repair time to a not-patched buggy program?
Which factor can affect the repair time and how can we reduce
the repair time? In this paper, we conducted an exploratory
study on the repair time of GENPROG, SPR, and PROPHET
on 2980 buggy C programs from the CODEFLAWS benchmark.

ITII. EXPERIMENTAL SETUP

We present the experimental setup of our study, including
the research questions, the data preparation, the studied repair
methods, and the evaluation setup

A. Research Questions

Our work aims to investigate the repair time of generate-
and-validate methods of patch generation. We designed the
following four Research Questions (RQs) to understand the
repair time.

RQ1. How Many Buggy Programs are Newly Patched When
the Repair Time Increases? A generate-and-validate method of
patch generation can try to find out different patches over time.
In RQ1, we aim at studying the incremental number of newly
patched buggy programs when the repair time increases.

RQ2. Which Metric Correlates with the Time of Plausibly
Patching a Buggy Program? In automated program repair, a
generate-and-validate method is to generate a patch that makes
all given test cases pass. The number of generated patches can
be used to measure the repairability of repair methods. We

1 Experimental data, tools, and results in our study, as well as patch
correctness, are publicly available at http://cstar.whu.edu.cn/p/vanfix/,

evaluate the correlation between repair time and metrics for
patched buggy programs in RQ2.

RQ3. Which Metric Correlates with the Time of Correctly
Patching a Buggy Program? A generated patch may be
inconsistent with the manually written patch by developers.
This leads to the manual evaluation of automatically generated
patches. We investigate RQ3 to evaluate the repair time of
correctly patched buggy programs.

RQ4. How Effective can Existing Methods Patch Buggy
Programs in an Hour? A developer cannot allow a repair
method to exhaustively generate all patches. In a given limited
time, how many buggy programs can be patched or correctly
patched? In RQ4, we investigate the number of patched buggy
programs in one hour.

B. Experimental Dataset Preparation

We evaluate the repair time on CODEFLAWS, a defect
benchmark of C programsE] The CODEFLAWS dataset consists
of 3902 defects, which are derived from the submitted source
code by 1653 users of an online programming contest [50].
Buggy programs in CODEFLAWS are categorized into 39
defect classes, including defects relating to control flows,
function calls, arithmetics, arrays, etc. The growth of research
on program repair benefits from the publicly available defect
benchmarks, such as IntroClass with 998 C defects and
ManyBugs with 185 C defects [15]], Defects4] with 438 Java
defects [9], [27], bugs.jar with 1158 Java defects [46], and
Bears with 251 Java defects [2].

Two major reasons for choosing CODEFLAWS as the dataset
are as follows. First, CODEFLAWS provides 3902 buggy pro-
grams, which diversifies the evaluation. To date, it may be
impossible to directly understand the nature of repair time.
Thus, we leverage a large number of buggy programs to
support the observation. Second, the correctness evaluation
of patch generation requires manual check by developers. In
CODEFLAWS, the number of executable lines of code buggy
programs is less than 322. The small-scale source code can
ease the check of generated patches and reduce the threat of
bias that derives from the manual check.

In program repair, several repair methods share the assump-
tion that the patch locates inside one line. Since the time
evaluation of program repair is computationally expensive,
we compared each buggy program with its manually-written
patch and filtered out the bug, whose patch crosses multiple
lines. Finally, 2980 buggy programs that contain patches inside
one line of code are kept as the experimental dataset. Fig. 2]
presents the violin-plots of the number of executable lines of
code and the number of test cases in each buggy programs.
Since our study is to investigate the repair time, we used the
whole test suite to maximize the potential of repair methods.

C. Repair Methods under Evaluation

To evaluate the repair time of generate-and-validate methods
on C programs, we selected three off-the-shelf repair methods
in the experiments, i.e., GENPROG, SPR, and PROPHET.

2 CODEFLAWS, http://codeflaws.github.io/,

http://cstar.whu.edu.cn/p/vanfix/
http://codeflaws.github.io/

0 50 100 150

200 250 300

(a) Number of executable lines of code in buggy programs. The most
common value is 21 lines of code, which appears in 94 buggy programs.
The minimum, the median, and the maximum lines of code are 2, 29, and

322.
0 50 100 150

200 250 300 350

(b) Number of test cases in the test suite in buggy programs. The most
common value is 25 test cases, which appears in 111 buggy programs. The
minimum, the median, and the maximum numbers of test cases are 1, 33,
and 320.

Fig. 2. Violin-plots of the number of executable lines of code and the number
of test cases in each buggy programs.

o GENPROG [14], [16] is a pioneering repair tool that
evolves the Abstract Syntax Tree (AST) of a buggy
program via genetic programming. The implementation
of GENPROG returns the first found patch as output [16].

e SPR [24] is a staged repair method with condition
synthesis that can find patches from a rich search space.
The implementation of SPR can return more than one
plausible patches. We refer to such SPR as SPR-ALL.
Meanwhile, we define another version of SPR, called
SPR-FIRST, which only counts the first plausible patch
if SPR-ALL returns two or more patches; that is, for one
buggy program, SPR-FIRST outputs zero or one plausible
patch, which may be correct or not. Given a buggy
program, SPR-ALL can provide no less than plausible
or correct patches than SPR-FIRST.

o PROPHET [25] is a probabilistic repair model that learns
patch generation from successful human patches. Similar
to SPR, PROPHET return more than one plausible patches
for one buggy program. We similarly defined PROPHET-
ALL and PROPHET-FIRST, respectively.

Existing studies have evaluated the effectiveness of these
selected methods [11]], [26], [31], [47], [S9]. In our study, we
followed the same parameter configuration of each selected
method [[16], [24], [25].

D. Evaluation Setup

Testbed and repair time. The experiment was conducted
on four servers with the processor of Intel Core i7 3.60GHz
and the memory of 16GB. For all methods under evaluation,
we set the execution timeout to one hour, i.e., 3600 seconds.

If a method returns its patch before reaching the timeout, we
recorded the execution time as the repair time.

Implementation. Besides three off-the-shelf tools of GEN-
PRrROG, SPR, and PROPHET, all the experiments are imple-
mented with LLVM 4.0.1E] The Spearman’s rank correlation
coefficient and Kullback—Leibler divergence are implemented
with the Python Scipy library 1.2.1. E] The mutation score is
calculated with Mull[]

Labeling of patch correctness. A repair method can
generate and output a patch that makes the whole test suite
pass. However, the correctness of a generated patch cannot
be automatically checked. In our study, three of the authors,
called checkers, have manually checked the correctness of
each generated patches by all repair methods. The protocol
of manually patch checking consists the following steps.
First, we automatically compared each generated patch with
the manual patch that was recorded in CODEFLAWS. We
labeled the exactly same patch as a correct patch (177 correct
patches in this step). Second, the rest of generated patches
are sent to three checkers; the manual patches are also sent
as reference. Each checker is required to individually examine
the correctness of generated patches. Then each checker should
label the generated patches with one of three candidate labels:
correct, incorrect, or unknown. The timeout of labeling one
patch is set to 10 minutes: a patch is labeled as unknown
if the checker cannot make a decision before the timeout.
Third, for each generated patch, if three checkers labeled the
same correct or incorrect, we set the final label accordingly;
if not, we required the three checkers to discuss and make the
decision. After the discussion, if checkers cannot agree with
each other or the patch is labeled with unknown, we finally
labeled the patch with incorrect.

Spearman’s rank correlation coefficient. We employ
Spearman’s rank correlation coefficient to measure the correla-
tion between the repair time and a metric of buggy programs,
such as the number of test cases or the mutation score. Spear-
man’s rank correlation coefficient is widely used to measure
the correlation between the rankings of two variables [51]].
Spearman’s rank correlation coefficient is a nonparametric
statistical method that can be configured to be robust to tied
valuesE] In the following experimental result, we presented the
correlation coefficient and the p-value between each metric and
the repair time.

Kullback-Leibler divergence. We used Kullback—Leibler
divergence to calculate the distance between two discrete one-
dimensional probability distributions, i.e., the relative entropy
[51]]. The Kullback—Leibler divergence equals to zero indicates
that two distributions are identical.

3LLVM, http://llvm.org/.

4Scipy, http://www.scipy.org/.

SMull, http://github.com/mull-project/mull,

%Note that we have not followed Yi et al. [59] to use the Kendall’s ranking
correlation coefficient. Compared with the Spearman’s method, the major
difference with the Kendall’s method is the support of categorical variables,
which are not involved in our study.

http://llvm.org/
http://www.scipy.org/
http://github.com/mull-project/mull

320

=}
2 280 1,
g
o 240 {%
=
2 4
2 2 200
& S
28 w0 o GenProg
o a
> -fi -
é g 2 SPR-first (SPR-all)
= .

2° A x Prophet-first (Prophet-all)
- 80

X
3
I
(=]
£ 9

0 % "

0 10 20 30 40 50 70 80 90 100 110 120

60
Time slot

Fig. 3. Increased number of plausibly patched buggy programs when the
execution time of a repair method increases. Each plot denotes the number
of newly patched buggy programs in a new period of 30 seconds. We omit
the result of SPR-ALL (or PROPHET-ALL) since its result is identical with
SPR-FIRST (or PROPHET-FIRST).

IV. EXPERIMENTAL RESULTS

A. RQI. How Many Buggy Programs are Newly Patched When
the Repair Time Increases?

In generate-and-validate methods, the accumulation of exe-
cution time leads to the increase of trials for patch generation.
We investigate how many buggy programs can be newly
patched if the execution time of a repair method increases.

As mentioned in Section [II-Dl we set the timeout of
executing a repair method to one hour. Fig. [3] illustrates the
number of newly patched buggy programs by three repair
methods, GENPROG, SPR, and PROPHET. To simplify the
explanation, we set one time slot to 30 seconds; that is, each
plot in the figure denotes the number of newly patched buggy
programs in a new period of 30 seconds.

As shown in Fig. all three methods under evaluation,
GENPROG, SPR-FIRST, and PROPHET-FIRST, can increase
the number of plausibly patched buggy programs when the
repair time increases. In the first time slot (30 seconds),
GENPROG plausibly patched 40 buggy programs; SPR-FIRST
and PROPHET-FIRST plausibly patched 273 buggy programs
and 294 buggy programs, respectively. In the second time
slot, the increased numbers for GENPROG, SPR-FIRST, and
PROPHET-FIRST are 18, 244, and 245, respectively; in the
third time slot, the increased numbers are 10, 141, and 111.
However, after 10 time slots (executing for 300 seconds), the
increased number of plausibly patched buggy programs sharp
decreased to nine or less; after 30 time slots, the increased
number is two, one, or zero.

From the illustration in Fig. adding more repair time
has not highly increased the number of newly patched buggy
programs. For a limited time budget, even executing for 10
time slots, i.e., 5 minutes, can lead to a high proportion of
plausibly patched buggy programs, which reaches 62.4% (=
116/186), 94.4% (= 883/935), and 94.5% (= 831/879) for
GENPROG, SPR-FIRST, and PROPHET-FIRST, respectively.

A plausible patch may not be correct due to the inadequacy
of test oracle in test suite based repair [43]], [55]. Thus, we

120

T F

100

B

<

S

g i o GenProg
z, 0] & SPR-first
= %

£5 o SPR-all

o g’ .
58 x Prophet-first
S >

23 @ + Prophet-all
ES 4 B

2 o

o

&

s+

<

Q

=

Bl Q0 W i Q Q
0 10 20 30 40 50 60 70 8 90 100 110 120
Time slot

Fig. 4. Increased number of correctly patched buggy programs when the
execution time of a repair method increases. Each plot denotes a time slot of
30 seconds.

TABLE I
ACCUMULATED PERCENT OF PATCHED BUGGY PROGRAMS BY EACH
REPAIR METHOD WITH INCREASING TIME SLOTS (%)

Method Percent of patched buggy programs

Top-1|Top-5 | Top-10|Top-15 | Top-20

Plausibly GENPROG 21.51(45.70| 62.37 | 72.04 | 74.19
patched SPR-FIRST [[29.20(85.45] 94.44 | 97.22 | 98.18
buggy programs|PROPHET-FIRST||33.4587.14| 94.54 | 96.81 | 98.07
GENPROG 30.43(53.62| 69.57 | 82.61 | 82.61

Correctly SPR-FIRST 31.13[85.76] 93.71 | 97.02 | 97.35
patched SPR-ALL 31.07[86.69| 94.08 | 97.34 | 97.63
buggy programs | PROPHET-FIRST|[32.01[86.80| 93.73 | 96.70 | 97.69
PROPHET-ALL [[33.1487.87] 94.08 | 97.04 | 97.93

further illustrate the increased number of correctly patched
buggy programs over time in Fig. [

In the first time slot (30 seconds), GENPROG correctly
patched 21 buggy programs; SPR-FIRST and SPR-ALL cor-
rectly patched 94 and 105 buggy programs, respectively;
PROPHET-FIRST and PROPHET-ALL correctly patched 97 and
112 buggy programs. In the second time slot, the increased
numbers of correctly patched buggy programs are 5, 73,
84, 76, and 83, respectively. However, after 15 time slots
(executing for 450 seconds), the increased number in each
time slot of correctly patched buggy programs for all repair
methods decreased to one or zero; in the final 60 time slots
(after 1800 seconds), GENPROG correctly patched two buggy
programs while the other four methods only correctly patched
one buggy programs.

Table [I| presents the accumulated percent of patched buggy
programs by each repair method. For plausibly patched buggy
programs, the first time slot has contributed to over 20%. In
top-10 time slots, i.e., 300 seconds, GENPROG accumulates
62% of plausibly patched ones; SPR-FIRST and PROPHET-
FIRST contributed to 94%. After the top-20 time slots, i.e., 600
seconds, the percent of plausibly patched buggy programs has
accumulated to 98%. For correctly patched buggy programs,
top-10 time slots have contributed to 70% to 94% while top-
20 time slots have contributed to 83% to 98%. As shown in
Table [I, increasing the execution time of a repair methods
under evaluation cannot highly improve the percent of patched

TABLE II
SPEARMAN’S RANK CORRELATION COEFFICIENT BETWEEN REPAIR TIME AND METRICS FOR PLAUSIBLY PATCHED BUGGY PROGRAMS

Method #Tests |#FailingTests |FailingRatio [ExecLoC | Complexity | MutationScore Ochiai Tarantula
Score JAbsPos[RelPos | Score [AbsPos|RelPos
GENPROG |[Correlation||0.1303| 0.0837 -0.0075 |0.0853 | 0.1287 0.0242 [-0.1013]0.0917 | 0.0696 [-0.0981] 0.0890 | 0.0703
p-value [[0.0763] 0.2560 0.9190 [0.2470 | 0.0800 0.7430 [0.1690]0.2130(0.3450 | 0.1830 [0.2270 [0.3410
SPR-FIRST |Correlation||0.2185| 0.1344 0.0323 [0.3769 | 0.3518 0.2280 [-0.0259]0.0943 [-0.1013 0.0272 | 0.0847 |-0.0905
p-value [[1.4e-11| 3.8e-05 0.3230 [6.3e-33| 1.3e-28 1.7e-12 [0.4280 [3.9¢-03]1.9¢-03[0.4070 [9.6e-03[5.6e-03
PROPHET-FIRST |Correlation || 0.2212 | 0.1342 0.0219 [0.3333 | 0.3186 0.1971 |-0.0257{0.0943 |-0.0816{ 0.0315 | 0.0648 |-0.0913
p-value [[3.3e-11| 6.5e-05 0.5170 |[3.0e-24| 3.4e-22 3.8e-09 [0.4470|5.1e-03]{ 0.0155 [0.3510 | 0.0548 |6.8e-03
TABLE IIT
SPEARMAN’S RANK CORRELATION COEFFICIENT BETWEEN REPAIR TIME AND METRICS FOR CORRECTLY PATCHED BUGGY PROGRAMS
Method #Tests |#FailingTests |FailingRatio | ExecLoC|Complexity | MutationScore Ocbhiai Tarantula
Score [AbsPos[RelPos | Score [AbsPos| RelPos
GENPROG |Correlation|| 0.4027 | 0.2177 -0.0337 [-0.0263| 0.1406 -0.0557]-0.1079|0.0244 | 0.0630 |-0.1225|-0.0108{ 0.0215
p-value |[6.0e-04| 0.0723 0.7835 [0.8300 | 0.2491 0.6495 0.377710.8420 [0.6073 | 0.3161 | 0.9297 | 0.8607
SPR-ALL Correlation|| 0.1978 | 0.2349 0.1564 |0.4449 | 0.3731 0.2305 0.1220 | 0.1396 |-0.0969| 0.0381 | 0.0420 |-0.1562
p-value |[[2.5e-04| 1.3e-05 4.0e-03 |7.9e-18| 1.3e-12 1.9e-05 [0.024910.0102{0.0751 | 0.4846 | 0.4420 |4.0e-03
SPR-FIRST |Correlation||0.1939| 0.2744 0.2036 | 0.4746 | 0.4066 0.2480 0.1629 | 0.1612 |-0.0983| 0.0210 | 0.0357 |-0.1793
p-value |[[7.1e-04| 1.3e-06 3.7e-04 [2.3e-18| 1.9e-13 1.3e-05 [4.5e-03]5.0e-03| 0.0882 [0.7156 [0.5362 |1.8e-03
PROPHET-ALL |Correlation|| 0.2078 | 0.2205 0.1411 | 0.4411 | 0.3978 0.2342 0.1426 | 0.1535 |-0.0868| 0.0674 | 0.0601 |-0.1429
p-value |[1.2e-04| 4.3e-05 9.4e-03 |1.6e-17| 2.9e-14 1.4e-05 |[8.7e-03]4.7e-03| 0.1113 [0.2165 | 0.2704 |8.5¢-03
PROPHET-FIRST|Correlation || 0.2071 | 0.2615 0.1841 |0.4647 | 0.4088 0.2387 0.1934] 0.1577 |-0.1061| 0.0733 | 0.0599 |-0.1565
p-value [[2.8e-04| 3.9e-06 1.3e-03 |1.2e-17| 1.2e-13 2.7e-05 |7.1e-04[5.9¢-03] 0.0652 | 0.2034 | 0.2991 |6.3e-03

buggy programs.

Finding 1. The number of newly patched buggy programs
does not highly increase when the execution time increases.
For the repair methods under evaluation, after top 20 time
slots, i.e., 600 seconds, correctly patches buggy program are
hardly increased.

B. RQ2. Which Metric Correlates with the Time of Plausibly
Patching a Buggy Program?

We explored which factor correlates to the repair time
of plausible patched buggy programs. To examine potential
factors, we introduce 12 metrics that may relate the repair
time as follows:

o #Iests is the number of test cases in a given test suite.
#FailingTests is the number of failing test cases in the test
suite. FailingRatio is the ratio that #FailingTests divides
#Tests.

e ExecLoC is the number of executable lines of source
code in a buggy program. Blank lines or lines with only
comments are removed from the calculation of ExecLoC.

o Complexity of the buggy program is measured with the
Cyclomatic complexity, which is a software metric of
linearly independent paths [32].

o MutationScore measures how many versions of mutated
programs can be detected by the given test suite [7].

e Two widely used techniques of fault localization,
Ochiai [44] and Tarantula [8]] are used. For either Ochiai
or Tarantula, we explored the impact of Score (i.e., the
suspicious score of the faulty statement) and AbsPos and

RelPos (the absolute position and the relative position of
the faulty statement in the ranking, respectively). For two
or more statements with the same suspicious scores in the
ranking, we followed existing techniques [[12], [[19], [58]
to use the median position.

Table [LI] present the Spearman’s rank correlation coefficient
(see Section between the repair time of plausibly
patched buggy programs with 12 defined metrics. As shown in
Table [II, the repair time of SPR-FIRST and PROPHET-FIRST
correlates with ExecLoC and Complexity with the coefficient
over 0.30 and the statistically significance (we consider p-
value < 0.05 statistically significant in this paper). The repair
time of SPR-FIRST and PROPHET-FIRST also correlates with
#Test and MutationScore the coefficient between 0.20 to 0.30.
In the correlation result of GENPROG, there exist coefficients
for #Test, #Complexity, and Ochiai score over 0.10.

Finding 2. The repair time of generating plausible patches
for buggy programs correlates with the number of executable
lines of code and the Cyclomatic complexity. The number of
test cases in the given test suite also correlates with the repair
time.

C. RQ3. Which Metric Correlates with the Time of Correctly
Patching a Buggy Program?

We further investigate the correlation between the repair
time of correctly patched buggy programs and the 12 met-
rics. Table shows the correlation of five methods under
evaluation. The repair time of SPR-FIRST, PROPHET-FIRST,
SPR-ALL, and PROPHET-ALL correlates with ExecLoC and
Complexity with the coefficient over 0.35 and the statistically

TABLE IV
KULLBACK-LEIBLER DIVERGENCE OF METRIC DISTRIBUTIONS
BETWEEN PLAUSIBLY PATCHED AND UNPATCHED BUGGY PROGRAMS

[Method [[#Tests [#FailingTests|FailingRatio [ExecLoC] Complexity|MutationScore|
GENPROG 0.4714| 0.3457 0.5523 | 0.3962 | 0.2626 0.3522
SPR-FIRST {{0.3207| 0.3783 0.2859 | 0.4289 | 0.2161 0.1403

PROPHET-FIRST|[0.2685| 0.3821 0.2719 |0.4614 | 0.2221 0.1099

TABLE V

KULLBACK-LEIBLER DIVERGENCE OF METRIC DISTRIBUTIONS
BETWEEN CORRECTLY AND INCORRECTLY PATCHED BUGGY

PROGRAMS
‘ Method H #Tests ‘#FailingTests‘FailingRatio‘ExecLoC‘Complexity‘MulalionScore‘
GENPROG 3.4039| 3.9393 5.0790 |2.9518 | 0.5854 0.6781
SPR-ALL 0.6162] 1.2074 0.7855]0.5745| 0.2841 0.4462
SPR-FIRST {|0.6386| 0.7255 0.7143 10.5991 | 0.2753 0.4959
PROPHET-ALL ||0.8835| 1.2314 0.7078]0.6252 | 0.2768 0.4630
PROPHET-FIRST|[0.9315] 0.9200 0.6413] 0.6569 | 0.2648 0.5109

significance; The repair time of GENPROG correlates with the
number of test cases with the coefficient of 0.40. In GENPROG,
#FailingTests also correlates with the repair time with the
coefficient of 0.22. Besides GENPROG, the other four methods
correlate with #7est, #FailingTests, and MutationScore with the
coefficient over 0.20.

The correlation analysis between the repair time and the
mutation score is -0.06 for GENPROG and 0. 23 to 0.25
for SPR and PROPHET. This result is inconsistent with the
correlation in existing work [59]]. Yi et al. indicated that there
is no conclusive result about the correlation between mutation
score and the repair time (RQ4, p. 2966, in [59]]). One possible
reason for such inconsistency is the number of buggy programs
under evaluation: our work used 2980 buggy programs and the
work by Yi et al. [59] used 142 buggy programs. Different
datasets may result in the change of correlation analysis.

Finding 3. The repair time of generating correct patches for
buggy programs correlates with the number of executable
lines of code, the Cyclomatic complexity, the number of test
cases, the number of failing tests, and the mutation score. We
conclude that the repair time of finding out a correct patch
can be affected by the scale and the complexity of the source
code as well as the test suite.

The observation in Table [and Table [II motivates us to
further investigate the difference between plausibly patched
buggy programs and unpatched ones. We evaluate whether
the distribution of each metric between plausibly patched
buggy programs and unpatched ones are different. Table
presents the distance between plausibly patched unpatched
buggy programs based on Kullback-Leibler divergence (see
Section [[II-D). A smaller divergence (no less than zero)
indicates that a lower distance; the divergence of zero means
two distributions are the same. For all methods under evalu-
ation, plausibly patched buggy programs and the unpatched
buggy programs have different distributions for each given
metric, such as #Tests. The values for MutationScore in SPR-
FIRST and PROPHET-FIRST are the lowest. This observation

TABLE VI
EFFECTIVENESS OF REPAIR METHODS UNDER EVALUATION

[Method [[#Plausible[#Correct[Precision[Recall [F-measure]
GENPROG 186 71 0.3817 |0.0238| 0.04489
SPR-FIRST 935 302 0.3230 |0.1013| 0.15416
SPR-ALL 935 338 0.3615 |0.1133| 0.17254

PROPHET-FIRST 879 303 0.3447 |0.1016| 0.15691

PROPHET-ALL 879 338 0.3845 |0.1133| 0.17504

reveals that it is possible to directly isolate patchable buggy
programs with unpatchable ones with specific metrics or their
combinations.

We further explore the difference between the distributions
of correctly and incorrectly patched buggy programs among all
plausibly patched ones. Table |V|presents whether the distribu-
tion of each metric between correctly patched buggy programs
and incorrectly ones are identical. Only plausible patched
buggy programs are considered in this table. Table [V| shows
similar results to Table among all plausibly patched buggy
programs, correctly patched buggy programs and uncorrectly
patched buggy programs have different distributions for each
given metric. The distribution distance for each metric of SPR
or PROPHET is lower than that of GENPROG.

Finding 4. We employed Kullback-Leibler divergence to
measure the distribution difference of a specific metric
between plausibly patched buggy programs and unpatched
ones (or between correctly patched buggy programs and
incorrectly ones. We observed that selected metrics in our
study could be used to isolate the plausible ones or the correct
ones. This requires further study in the future.

D. RQ4. How Effective can Existing Methods Patch Buggy
Programs in an Hour?

The calculation of repair time highly relates to the effec-
tiveness of a repair method, i.e., how many plausible patches
are actually correct.

Table shows the effectiveness of patch generation with
#Plausible, i.e., the number of plausibly patched buggy pro-
grams, #Correct, i.e., the correctly patched buggy programs,
and the precision, recall, F-measure measurements [56] that

are defined accordingly.

#Correct .
#Plausible’

e Recall is defined as %, where # All denotes the
number of all buggy programs under evaluation;

o F-measure is defined as 2Xprecisionxrecall
precision+recall

As shown in Table the precision value of all five
methods under evaluation ranges from 0.32 to 0.38; that
is, all methods can find out over 30% of correctly patched
buggy programs from plausibly ones. The recall value, i.e.,
the ratio of correctly patched ones among all buggy programs,
ranges from 0.02 to 0.11. SPR-ALL can correctly patched
more buggy programs than SPR-FIRST because SPR-FIRST
identifies the first output patch as its only output (in Sec-
tion [[IlI-C); PROPHET-ALL and PROPHET-FIRST behave in a

e Precision is defined as

similar way. Thus, the F-measure ranges from 0.04 to 0.18.
We can observe that SPR-FIRST and PROPHET-FIRST reach
the similar effectiveness with F-measure of 0.17; SPR-ALL
and SPR-ALL also behave similarlym

Finding 5. Each of repair methods under evaluation correctly
patched 32% to 38% of plausibly patched buggy programs.
Among all buggy programs, GENPROG correctly patched 2%
while SPR and PROPHET correctly patched around 11%.

V. PROPOSED REPAIR METHOD — VANFIX

As mentioned in Table [[Il and Table the repair time
correlates with ExecLoC (i.e., the number of executable lines
of code) and the Cyclomatic complexity of a buggy program.
That is, a buggy program with long and complex source code
may require long time for patch generation. Motivated by such
correlations, we designed a new repair method VANFIX.

A. Design of VANFIX

The key idea of the proposed repair method VANFIX is to
reduce the correlation between repair time and the ExecLoC or
the complexity. Similar to GENPROG, VANFIX is a pool-based
search algorithm that iteratively mutates the program until
generating a plausible patch. The major difference with GEN-
PROG is that VANFIX leverages the probability of exploring
the search space to conduct a variable search neighborhood for
potential patches, rather than patching suspicious statements
one by one. Algorithm [l| shows the steps of VANFIX. The
output of VANFIX is one or zero plausible patch for the buggy
program. We present three major techniques in the design of
VANFIX as follows.

1) Probability guided search: VANFIX does not focus on
one statement in each iteration of program mutation; instead,
VANFIX leverages the probability distribution of suspicious
scores to select different statements inside one iteration. As
shown at Line 8 in Algorithm |1} in each iteration, VANFIX
selects the i-th statement stmt; according to the probability
p;. Comparing with mutating statements case by case [16],
VANFIX can randomly walk through different statements to
explore potential patches for each candidate statement. Since
existing techniques of fault localization may not rank the
actually faulty position to the top [22]], [61]], the probability
guided search can enhance the chance of finding patches in
the early stage.

2) Variable search neighborhood: In Section [V-AT] crossly
searching patches for each statement can result in the possi-
bility of failing in generating patches for the statement with
the highest suspicious score. Therefore, VANFIX updates the
probability of mutating the program based on the current
search result. We referred to the set of potential patches as
the neighborhood [4]. Then updating probabilities of patch
generation can dynamically change the search space. We
employ such dynamic change to enhance the chance of finding

7 We note that GENPROG is open available since 2009 [53]], SPR is since
2015 [24], and PROPHET is since 2016 [25]. The comparison of execution
time among repair methods may be unfair to methods since the early stage.

Input: buggy program prog, test suite suite, fault
localization technique F'L, change step step
(0 < step < 1), size of the variant pool size
Qutput: patch
/+ Preparation. */
1 Execute fault localization on prog with suite and
compute suspicious score s; with F'L for each
statement stmt; in prog (1 < i < n);
2 Compute probability p; for stmt;, p; = s;/> -y Sis
3 Uniformly generate probability ¢; of selecting
available mutation operator oper; (1 < j < m),
g =1/m;
4 while not timeout and patch is not found do
/* Initialization. */
5 pool = P;
6 Clean binary flags flag;"™" =0, flag;""" = 0;
/+ Patch generation. */
7 while |pool| < size and patch is not found do
8 Select stmt; according to probability p;;
9 Generate variant v; ; by applying oper; to
stmt; according to probability g;;
10 flagi'™ =1, flag*" = 1;
11 Execute test suite suite on v; ;;
12 if v; ; passes suite them patch = v; ; ;
13 end
/* Probability update. */
14 for i < 1 to n do
15 pi = p; — step x flagst™*;
16 if p; < 0 then p] = 0;
17 end
18 | fori< 1tondo p,=p,/> " i
19 end

Algorithm 1: Algorithm of VANFIX, a repair method
based on variable search neighborhood.

patches. This conducts the variable search neighborhood of
patch generation via probability updating [36]], [40].

Each statement is mutated based on the probability of
selecting statements, i.e., p; at Line 15 in Algorithm (1| The
probability p; is reduced by a pre-defined constant step if the
statement has been selected but fails in patch generation. Note
that p} is then normalized at Line 18. The reason for reducing
the probability of selected statements is that a statement is tried
without patch generation should be tentatively abandoned.

3) Mutation on both statements and expressions: VANFIX
employs two types of mutation operators to generate patches:
statement mutation and expression mutation.

Statement mutation. We followed GENPROG [17] to con-
figure STMTINSERT, STMTREMOVE, and STMTREPLACE oper-
ators of statements in VANFIX (STMT and EXPR are short
for the operator for statements and expressions, respectively).
To speed up the processing of statements, we also added a
STMTMOVE operator, which is the directly combination of
STMTREMOVE and STMTINSERT.

TABLE VII
SPEARMAN’S RANK CORRELATION COEFFICIENT BETWEEN REPAIR TIME OF VANFIX AND METRICS FOR PLAUSIBLY AND CORRECTLY PATCHED
BUGGY PROGRAMS

VANFIX #Tests |#FailingTests|FailingRatio|ExecLoC|Complexity|MutationScore Ochiai Tarantula
Score JAbsPos[RelPos [Score [AbsPos[RelPos
Plausibly patched [Correlation|[0.1140| -0.1415 -0.2221 | 0.3131| 0.2764 0.2246 |-0.1275[0.0794 |-0.0741{0.1842{0.1892|0.0387
buggy programs | p-value [[3.6e-03] 2.9e-04 | 9.9e-09 [2.7e-16| 6.8e-13 6.7e-09 [1.1e-03{0.0427 [0.0587 [2.2e-06(1.1e-06[0.3243
Correctly patched|Correlation||0.0577| -0.1087 -0.1649 10.3288 | 0.2918 0.2205 |-0.1223|0.0687 |-0.0852{0.1453 {0.1664 |0.0119
buggy programs | p-value [[0.2451] 0.0281 8.3e-04 [9.6e-12| 1.9¢-09 6.9¢-06 [0.0134]0.1662 [0.0856 |3.3e-03|7.4e-04|0.8099
TABLE VIII
EFFECTIVENESS OF VANFIX AND DIFFERENCE WITH OTHER REPAIR METHODS UNDER EVALUATION
Method #Patched | #Correct | Precision | Recall | F-measure
VANFIX 653 408 0.6248 0.1368 0.2244
‘é VANFIX - GENPROG 467 337 0.2431 0.1130 0.1796
£ VANFIX - SPR-FIRST -282 106 0.3018 0.0355 0.0703
g VANFIX - SPR-ALL -282 70 0.2633 0.0235 0.0519
5, | VANFIX - PROPHET-FIRST -226 105 0.2801 0.0352 0.0675
£ VANFIX - PROPHET-ALL -226 70 0.2403 0.0235 0.0494

Expression mutation. We configured mutation operators
for expressions, including EXPRREPLACE (e.g., replacing a &&
b with a || b), EXPRREVERSE (e.g., reversing ¢ >= 0 with
! (¢ >= 0)), TYPEEXPAND (e.g., expanding int d with long
d), and SIZEEXPAND (e.g., expanding int e[10] with int
e[1001]).

In VANFIX, given one statement, several mutation operators
may be not available and have the probability of zero. For
instance, for a statement a = 0;, the expression mutation
operator of EXPRREVERSE is not available and its probability
can be set to zero. Each mutation operator with the probability
over zero is set to g; at Line 3 in Algorithm

B. Evaluation on VANFIX

We evaluate VANFIX based on the experimental setup in
Section We set parameters of VANFIX as follows: step
is set to 0.01 and size is set to 40, and F'L is Ochiai [44].

In Table |[VIIL we followed Table |lI] to show the correlation
between each metric and the repair time. The repair time of
plausibly and correctly patched buggy programs are listed.
VANFIX has lower correlations with ExecLoC and Complexity
than SPR and PROPHET in Table [l VANFIX also has lower
correlations with ExecLoC and Complexity than SPR and
PROPHET in Table

We also evaluated the effectiveness under the same experi-
mental setup as Section Table shows the precision,
recall, and F-measure of VANFIX. VANFIX can generate
plausible patches for 653 buggy programs, which contains 408
patched buggy programs. This leads to the precision of 0.62.
That is, VANFIX reaches the highest precision, which achieves
24% to 30% better than existing methods GENPROG, SPR,
and PROPHET. We can conclude that 62% of patched buggy
programs by VANFIX are correct.

As shown in Table [VITI} the recall of VANFIX is 0.13, which
is 0.02 to 0.11 better than other methods. The F-measure of
VANFIX is 0.22, which achieves 0.05 to 0.18 better than other
methods.

Finding 6. VANFIX correctly patched 408 out of 653 plau-
sibly patched buggy programs. This leads to the precision of
0.62; that is, 62% of patched buggy programs by VANFIX
are correct.

VI. THREATS TO VALIDITY

We present the threats to the validity of our study in three
categories.

Threats to construct validity. We manually examined
all plausible patches to evaluate the correctness of patch
generation (Section [[II-D). This manual examination consists
of three major steps: automatically matching, individually
labeling, and final discussion. However, similar to any manual
labeling of patch correctness [26]], [27]], there exists a threat
that the manual labeling involves mistakes due to the bias of
human knowledge. Meanwhile, we have extracted 12 metrics
to evaluate the correlation with the repair time. Among soft-
ware metrics, there is a large number of metrics that may
relate to the program repair, e.g., the statement coverage or
the capable ratio of test cases in [59]]. We cannot exhaustively
examine all potential metrics. In our study, the 12 selected
metrics can be viewed as a subset of factors under evaluation.

Threats to internal validity. In our evaluation, three exist-
ing repair methods are employed to evaluated the repair time
of C programs, including GENPROG, SPR, and PROPHET.
Existing methods such as AE [52] and TrpAutoRepair [41]]
can also be used to evaluate the repair method. Our future
work will include other existing methods to extend the study.
In this study, repair methods GENPROG and VANFIX relies on
the iterative search based on random seeds. The experiment
should be conducted for several times to avoid the disturbance
by the random seeds. However, our experiment sets the timeout
of repairing one buggy program to one hour; that is, a repair
method continuously executes for an hour on a server (in
Section unless a plausible patch is generated before
reaching the timeout. This leads to extremely long time of

execution, i.e., around 45 days on four servers. As mentioned
in Section [l we do not aim at comparing the repair time
among different methods. Therefore, the number of 2980
buggy programs can reduce the disturbance of randomness.

Threats to external validity. This study is conducted on
buggy programs from the CODEFLAWS benchmark. As shown
in Fig. 2] the median of the number of executable lines of code
is 29; that is, most of buggy programs are small-scale ones.
In Section [[II-B] we have claimed two reasons for choosing
such small-scale programs: leveraging the large number of
buggy programs to support the statistics and to reduce the
risk in manual evaluation of patch correctness. This adds the
threat that our experimental result may be not generalized to
other datasets. Since our study has no theoretical guarantee,
changing repair methods or datasets may lead to different
observation or results.

VII. RELATED WORK

We list the related work to our study in three categories:
program repair methods, empirical studies, and search space
of patch generation.

Program repair methods. In this paper, we have introduced
many existing works of automated program repair, including
generate-and-validate methods [[10]], [[16]], [24], [25], [30], [42],
[52]], [54], [56] and synthesis-based methods [34]], [38]], [|57].

For the sake of space, we introduced several recent works
on program repair as follows. Liu et al. [23]] have proposed
the Avatar system to generate patches via leveraging the fix
pattern of static analysis violations as fix ingredients in the
generation process. Avatar generates correct patches to fix 36
out of 39 buggy programs in Defects4]J. Hua et al. [5]] designed
the SketchFix approach, which utilizes lazy candidate patch
generation to reduce the number of re-compilations and re-
executions of candidate fixes. SketchFix can correctly fix 19
out of 357 buggy programs within 23 minutes on average in
Defects4]. To automatically fix concurrency buggy programs,
Lin et al. [20] proposed PFix to fix concurrency buggy pro-
grams by inferring locking policies. PFix can fix 19 out of 23
concurrency buggy programs and achieves better results than
the state-of-the-art tool in concurrency bug fixing. Recent work
by Lee et al. [18] presents MemFix, an automated technique
for fixing memory deallocation errors in C programs. MemFix
can fix all errors related to the memory leak in the Juliet
dataset. Gopinath et al. 3] presented a data-driven approach
for automatically repairing buggy programs in the selection
condition of database. Tan et al. [49]] employed the evolution-
ary search to generate patches for Android crashes. Stocco
et al. [48] focused on visual analysis of web applications
and designed Vista to support automated repair of web test
breakages.

Empirical studies. Empirical studies are widely conducted
to understand the repair behaviors of automated program
repair. Martinez et al. [31] and Barr et al. [I] examined
the redundancy of patch generation to investigate whether
generate-and-validate methods can be applied to real-world
patch generation. Le Goues et al. [15] have conducted two

datasets of buggy programs and evaluated the performance of
existing repair methods. Martinez et al. [27] have employed the
Defects4] dataset to empirically explore the results of fixing
Java bugs. Liu et al. [21] examined real-world patches with a
detailed analysis. Saha et al. [45] have conducted a study to
understand the process of assigning and fixing the long lived
bugs.

Many studies have focus on the patch overfitting problem in
generation process. Yu et al. [60] have analyzed the overfitting
problem and classified the issues into incomplete fixing and
regression introduction. Xiong et al. [55] proposed a novel
method to automatically identify the overfitting issues of
generated patches. As mentioned in Section Yi et al.
[59] have investigated the correlation between the reliability
of patch generation and test suite metrics.

This paper leverages the correlation techniques to analyze
the execution time of existing repair methods. Different from
the correlation with patch generation in [59], we aim at
understanding factors that affect the repair time and have
designed a simple and effective method, VANFIX.

Search space of patch generation. As mentioned in Sec-
tion the search space of generate-and-validate methods
leads to the potentials of patch generation [6]], [28], [29], [39].
Mechtaev et al. [33]] proposed a method of patch generation
based on the test-equivalence relation to reduce the number of
test executions. Wen et al. [54] propose CapGen, a context-
aware patch generation technique to reduce the huge search
space. Mehne et al. [35] have recently proposed two tech-
niques, location selection and test case pruning to accelerating
the generate-and-validate repair.

Our proposed method VANFIX also leverage the expansion
of the search space to enlarge the probability of finding
out correct patches. VANFIX can be considered as searching
patches in variable search neighborhood of expressions and
statements.

VIII. CONCLUSION

In this paper, we investigated the execution time of patch
generation by existing automated program repair methods,
including GENPROG, SPR, and PROPHET. Our experimental
results on 2980 buggy programs in the CODEFLAWS bench-
mark indicate that adding the repair time cannot highly enlarge
the number of patched buggy programs. Meanwhile, the re-
pair time of plausibly or correctly patched buggy programs
correlates to ExecLoC, i.e., the number of executable lines of
code and the code complexity. To weaken such correlation,
we designed a new repair method with variable search neigh-
borhood, which can dynamically update the search probability
for effective patch generation.

In future work, we plan to investigate the repair time and the
design of repair methods to enhance existing repair methods.
We aim to further analyze the program behavior to understand
the drawbacks and the potentials of current generate-and-
validate repair methods. Conducting a large dataset based on
continuous code changes is also one of the future works.

[1]

[2]

[6]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

REFERENCES

E. T. Barr, Y. Brun, P. T. Devanbu, M. Harman, and F. Sarro. The
plastic surgery hypothesis. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pages
306-317, 2014.

F. M. Delfim, S. Urli, M. de Almeida Maia, and M. Monperrus. BEARS:
an extensible java bug benchmark for automatic program repair studies.
In 26th IEEE International Conference on Software Analysis, Evolution
and Reengineering, SANER 2019, Hangzhou, China, February 24-27,
2019, pages 468-478, 2019.

D. Gopinath, S. Khurshid, D. Saha, and S. Chandra. Data-guided repair
of selection statements. In 36th International Conference on Software
Engineering, ICSE ’14, Hyderabad, India - May 31 - June 07, 2014,
pages 243-253, 2014.

P. Hansen, N. Mladenovic, and J. A. Moreno-Pérez. Variable neighbour-
hood search: methods and applications. Annals OR, 175(1):367-407,
2010.

J. Hua, M. Zhang, K. Wang, and S. Khurshid. Sketchfix: a tool for
automated program repair approach using lazy candidate generation. In
Proceedings of the 2018 ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA,
November 04-09, 2018, pages 888-891, 2018.

J. Hua, M. Zhang, K. Wang, and S. Khurshid. Towards practical program
repair with on-demand candidate generation. In Proceedings of the
40th International Conference on Software Engineering, ICSE 2018,
Gothenburg, Sweden, May 27 - June 03, 2018, pages 12-23, 2018.

Y. Jia and M. Harman. An analysis and survey of the development
of mutation testing. [EEE Transactions on Software Engineering,
37(5):649-678, 2011.

J. A. Jones and M. J. Harrold. Empirical evaluation of the tarantula
automatic fault-localization technique. In 20th IEEE/ACM International
Conference on Automated Software Engineering ASE 2005, November
7-11, Long Beach, CA, USA, pages 273-282, 2005.

R. Just, D. Jalali, and M. D. Ernst. Defects4j: a database of existing faults
to enable controlled testing studies for java programs. In International
Symposium on Software Testing and Analysis, ISSTA 2014, San Jose,
CA, USA - July 21 - 26, pages 437-440, 2014.

D. Kim, J. Nam, J. Song, and S. Kim. Automatic patch generation
learned from human-written patches. In Proceedings of the 35th Inter-
national Conference on Software Engineering, pages 802-811, 2013.
X. Kong, L. Zhang, W. E. Wong, and B. Li. Experience report:
How do techniques, programs, and tests impact automated program
repair? In 26th IEEE International Symposium on Software Reliability
Engineering, ISSRE 2015, Gaithersbury, MD, USA, November 2-5, 2015,
pages 194-204, 2015.

T. B. Le, D. Lo, C. Le Goues, and L. Grunske. A learning-to-rank based
fault localization approach using likely invariants. In Proceedings of the
25th International Symposium on Software Testing and Analysis, ISSTA
2016, Saarbriicken, Germany, July 18-20, 2016, pages 177-188, 2016.
X. D. Le, D. Lo, and C. Le Goues. History driven program repair. In
IEEE 23rd International Conference on Software Analysis, Evolution,
and Reengineering, SANER 2016, Suita, Osaka, Japan, March 14-18,
2016 - Volume 1, pages 213-224, 2016.

C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer. A systematic
study of automated program repair: Fixing 55 out of 105 bugs for $8
each. In Proceedings of the 34th International Conference on Software
Engineering, pages 3—13, 2012.

C. Le Goues, N. Holtschulte, E. K. Smith, Y. Brun, P. T. Devanbu,
S. Forrest, and W. Weimer. The ManyBugs and IntroClass benchmarks
for automated repair of C programs. [EEE Trans. Software Eng.,
41(12):1236-1256, 2015.

C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer. Genprog: A generic
method for automatic software repair. IEEE Transactions on Software
Engineering, 38(1):54-72, 2012.

C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer. Genprog: A
generic method for automatic software repair. Software Engineering,
IEEE Transactions on, 38(1):54-72, 2012.

J. Lee, S. Hong, and H. Oh. Memfix: static analysis-based repair of
memory deallocation errors for C. In Proceedings of the 2018 ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2018,

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(27]

(28]

[29]

[30]

(31]

(32]

[33]

(34]

[35]

(36]

(371

[38]

Lake Buena Vista, FL, USA, November 04-09, 2018, pages 95-106,
2018.

X. Li and L. Zhang. Transforming programs and tests in tandem for
fault localization. PACMPL, 1(OOPSLA):92:1-92:30, 2017.

H. Lin, Z. Wang, S. Liu, J. Sun, D. Zhang, and G. Wei. Pfix: fixing
concurrency bugs based on memory access patterns. In Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software
Engineering, ASE 2018, Montpellier, France, September 3-7, 2018,
pages 589-600, 2018.

K. Liu, D. Kim, A. Koyuncu, L. Li, T. F. Bissyandé, and Y. L. Traon.
A closer look at real-world patches. 1In 2018 IEEE International
Conference on Software Maintenance and Evolution, ICSME 2018,
Madrid, Spain, September 23-29, 2018, pages 275-286, 2018.

K. Liu, A. Koyuncu, T. F. Bissyandé, D. Kim, J. Klein, and Y. L.
Traon. You cannot fix what you cannot find! An investigation of fault
localization bias in benchmarking automated program repair systems. In
Proceedings of ICST 2019, Xi’an, China, 2019, 2019.

K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandé. AVATAR: fixing
semantic bugs with fix patterns of static analysis violations. In 26th
IEEE International Conference on Software Analysis, Evolution and
Reengineering, SANER 2019, Hangzhou, China, February 24-27, 2019,
pages 456-467, 2019.

F. Long and M. Rinard. Staged program repair with condition synthesis.
In Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30 -
September 4, 2015, pages 166-178, 2015.

F. Long and M. Rinard. Automatic patch generation by learning correct
code. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2016, St.
Petersburg, FL, USA, January 20 - 22, 2016, pages 298-312, 2016.

F. Long and M. C. Rinard. An analysis of the search spaces for generate
and validate patch generation systems. In Proceedings of the 38th
International Conference on Software Engineering, ICSE 2016, Austin,
TX, USA, May 14-22, 2016, pages 702-713, 2016.

M. Martinez, T. Durieux, R. Sommerard, J. Xuan, and M. Monperrus.
Automatic repair of real bugs in java: a large-scale experiment on the
defects4j dataset. Empirical Software Engineering, 22(4):1936-1964,
2017.

M. Martinez and M. Monperrus. Mining software repair models for
reasoning on the search space of automated program fixing. Empirical
Software Engineering, 20(1):176-205, 2015.

M. Martinez and M. Monperrus. Ultra-large repair search space with
automatically mined templates: The cardumen mode of astor. In Search-
Based Software Engineering - 10th International Symposium, SSBSE
2018, Montpellier, France, September 8-9, 2018, Proceedings, pages 65—
86, 2018.

M. Martinez and M. Monperrus. Astor: Exploring the design space
of generate-and-validate program repair beyond genprog. Journal of
Systems and Software, 151:65-80, 2019.

M. Martinez, W. Weimer, and M. Monperrus. Do the fix ingredients
already exist? an empirical inquiry into the redundancy assumptions of
program repair approaches. In Proceedings of the 36th International
Conference on Software Engineering, pages 492-495, 2014.

T. J. McCabe. A complexity measure. [EEE Trans. Software Eng.,
2(4):308-320, 1976.

S. Mechtaev, X. Gao, S. H. Tan, and A. Roychoudhury. Test-equivalence
analysis for automatic patch generation. ACM Trans. Softw. Eng.
Methodol., 27(4):15:1-15:37, 2018.

S. Mechtaev, J. Yi, and A. Roychoudhury. Directfix: Looking for simple
program repairs. In Proceedings of the 37th International Conference
on Software Engineering. IEEE, 2015.

B. Mehne, H. Yoshida, M. R. Prasad, K. Sen, D. Gopinath, and
S. Khurshid. Accelerating search-based program repair. In Iith
IEEE International Conference on Software Testing, Verification and
Validation, ICST 2018, Viisteras, Sweden, April 9-13, 2018, pages 227—
238, 2018.

N. Mladenovié, J. Petrovi¢, V. Kovacevi¢-Vujci¢, and M. éangalovic’.
Solving spread spectrum radar polyphase code design problem by
tabu search and variable neighbourhood search. European Journal of
Operational Research, 151(2):389-399, 2003.

M. Monperrus. Automatic software repair: A bibliography. ACM
Comput. Surv., 51(1):17:1-17:24, 2018.

H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra. Semfix:
Program repair via semantic analysis. In Proceedings of the 2013

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

International Conference on Software Engineering, pages 772-781.
IEEE Press, 2013.

T. Nguyen, W. Weimer, D. Kapur, and S. Forrest. Connecting program
synthesis and reachability: Automatic program repair using test-input
generation. In Tools and Algorithms for the Construction and Analysis
of Systems - 23rd International Conference, TACAS 2017, Held as Part
of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, Part I,
pages 301-318, 2017.

J. Pei, Z. Drazi¢, M. Drazi¢, N. Mladenovié¢, and P. M. Pardalos.
Continuous variable neighborhood search (c-vns) for solving systems
of nonlinear equations. INFORMS Journal on Computing, 2019.

Y. Qi, X. Mao, and Y. Lei. Efficient automated program repair
through fault-recorded testing prioritization. In 2013 IEEE International
Conference on Software Maintenance, pages 180-189, 2013.

Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang. The strength of
random search on automated program repair. In Proceedings of the
36th International Conference on Software Engineering, pages 254-265.
ACM, 2014.

Z. Qi, F. Long, S. Achour, and M. C. Rinard. An analysis of patch
plausibility and correctness for generate-and-validate patch generation
systems. In Proceedings of the 2015 International Symposium on
Software Testing and Analysis, ISSTA 2015, Baltimore, MD, USA, July
12-17, 2015, pages 24-36, 2015.

A. Rui, P. Zoeteweij, and A. J. C. V. Gemund. On the accuracy of
spectrum-based fault localization. In Testing: Academic and Industrial
Conference Practice and Research Techniques - Mutation. Taicpart-
Mutation, pages 89-98, 2007.

R. K. Saha, S. Khurshid, and D. E. Perry. Understanding the triaging and
fixing processes of long lived bugs. Information & Software Technology,
65:114-128, 2015.

R. K. Saha, Y. Lyu, W. Lam, H. Yoshida, and M. R. Prasad. Bugs.jar:
a large-scale, diverse dataset of real-world java bugs. In Proceedings
of the 15th International Conference on Mining Software Repositories,
MSR 2018, Gothenburg, Sweden, May 28-29, 2018, pages 10-13, 2018.
E. K. Smith, E. Barr, C. Le Goues, and Y. Brun. Is the cure worse than
the disease? overfitting in automated program repair. In Proceedings of
the 10th Joint Meeting of the European Software Engineering Confer-
ence and ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE), Bergamo, Italy, September 2015.

A. Stocco, R. Yandrapally, and A. Mesbah. Visual web test repair.
In Proceedings of the 2018 ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA,
November 04-09, 2018, pages 503-514, 2018.

S. H. Tan, Z. Dong, X. Gao, and A. Roychoudhury. Repairing crashes
in android apps. In Proceedings of the 40th International Conference
on Software Engineering, ICSE 2018, Gothenburg, Sweden, May 27 -
June 03, 2018, pages 187-198, 2018.

S. H. Tan, J. Yi, Yulis, S. Mechtaev, and A. Roychoudhury. Codeflaws: a
programming competition benchmark for evaluating automated program
repair tools. In Proceedings of the 39th International Conference on
Software Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-
28, 2017 - Companion Volume, pages 180-182, 2017.

R. E. Walpole, S. L. Myers, K. Ye, and R. H. Myers. Probability and
statistics for engineers and scientists. Pearson, 2007.

W. Weimer, Z. P. Fry, and S. Forrest. Leveraging program equivalence
for adaptive program repair: Models and first results. In 2013 28th
IEEE/ACM International Conference on Automated Software Engineer-
ing, ASE 2013, Silicon Valley, CA, USA, November 11-15, 2013, pages
356-366, 2013.

W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest. Automatically
finding patches using genetic programming. In Proceedings of the
31st International Conference on Software Engineering, pages 364-374,
2009.

M. Wen, J. Chen, R. Wu, D. Hao, and S. Cheung. Context-aware patch
generation for better automated program repair. In Proceedings of the
40th International Conference on Software Engineering, ICSE 2018,
Gothenburg, Sweden, May 27 - June 03, 2018, pages 1-11, 2018.

Y. Xiong, X. Liu, M. Zeng, L. Zhang, and G. Huang. Identifying
patch correctness in test-based program repair. In Proceedings of the
40th International Conference on Software Engineering, ICSE 2018,
Gothenburg, Sweden, May 27 - June 03, 2018, pages 789-799, 2018.

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

Y. Xiong, J. Wang, R. Yan, J. Zhang, S. Han, G. Huang, and L. Zhang.
Precise condition synthesis for program repair. In 39th International
Conference on Software Engineering, ICSE 2017, Buenos Aires, Ar-
gentina, May 2017, 2017.

J. Xuan, M. Martinez, F. Demarco, M. Clement, S. R. L. Marcote,
T. Durieux, D. L. Berre, and M. Monperrus. Nopol: Automatic repair
of conditional statement bugs in java programs. [EEE Trans. Software
Eng., 43(1):34-55, 2017.

J. Xuan and M. Monperrus. Learning to combine multiple ranking
metrics for fault localization. In 30th IEEE International Conference
on Software Maintenance and Evolution, Victoria, BC, Canada, 2014,
pages 191-200, 2014.

J. Yi, S. H. Tan, S. Mechtaev, M. Bohme, and A. Roychoudhury.
A correlation study between automated program repair and test-suite
metrics. Empirical Software Engineering, 23(5):2948-2979, 2018.

Z. Yu, M. Martinez, B. Danglot, T. Durieux, and M. Monperrus.
Alleviating patch overfitting with automatic test generation: a study
of feasibility and effectiveness for the nopol repair system. Empirical
Software Engineering, 24(1):33-67, 2019.

Y. Yuan and W. Banzhaf. Arja: Automated repair of java programs via
multi-objective genetic programming. IEEE Transactions on Software
Engineering, pages 1-1, 2018.

L. Zemin, S. G. Brida, A. Godio, C. Cornejo, R. Degiovanni, G. Regis,
N. Aguirre, and M. F. Frias. An analysis of the suitability of test-based
patch acceptance criteria. In /0th IEEE/ACM International Workshop
on Search-Based Software Testing, SBST@ICSE 2017, Buenos Aires,
Argentina, May 22-23, 2017, pages 14-20, 2017.

H. Zhong and Z. Su. An empirical study on real bug fixes. In 37t
IEEE/ACM International Conference on Software Engineering, ICSE
2015, Florence, Italy, May 16-24, 2015, Volume 1, pages 913-923, 2015.

