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Abstract. Recognizing human interactions is a challenging
task due to the multiple body parts of interacting persons and
the concomitant occlusions. This paper presents a method for
the recognition of two-person interactions using a hierarchical
Bayesian network (BN). The poses of simultaneously tracked
body parts are estimated at the low level of the BN, and the
overall body pose is estimated at the high level of the BN.
The evolution of the poses of the multiple body parts are pro-
cessed by a dynamic Bayesian network (DBN). The recogni-
tion of two-person interactions is expressed in terms of seman-
tic verbal descriptions at multiple levels: individual body-part
motions at low level, single-person actions at middle level,
and two-person interactions at high level. Example sequences
of interacting persons illustrate the success of the proposed
framework.

Keywords: Surveillance – Event recognition – Human inter-
action – Motion – Bayesian network

1 Introduction

The recognition of human interaction has many applications
in video surveillance, video-event annotation, virtual reality,
human-computer interaction, and robotics. Recognizing hu-
man interactions, however, is a challenging task due to the
ambiguity caused by body articulation, loose clothing, and
mutual occlusion between body parts. This ambiguity makes
it difficult to track moving body parts and to recognize their
interaction. The recognition task depends on the reliable per-
formance of low-level vision algorithms that include segmen-
tation and tracking of salient image regions and extraction of
object features. Involving more than one person makes the
task more complicated since the individual tracking of mul-
tiple interacting body parts needs to be maintained along the
image sequence.

In our previous paper [19], we presented a method to seg-
ment and track multiple body parts in two-person interactions.
Our method is based on multilevel processing at pixel level,
blob level, and object level.At the pixel level, individual pixels
are classified into homogeneous blobs according to color. At

a b

Fig. 1.An example frame of the “hugging” sequence: the input image
(a) and its tracked body parts indexed by different colors (b)

the blob level, adjacent blobs are merged to form large blobs
according to a blob similarity metric. At the object level, sets
of multiple blobs are labeled as human body-part regions ac-
cording to domain knowledge. The multiple body-part regions
are tracked along the image sequence. As shown in Fig. 1, the
body parts lack information about their poses, such as the ori-
entation of the head, the hand position of the upper body, the
foot position of the lower body, etc.

In this paper, we present a methodology that estimates
body-part pose and recognizes different two-person interac-
tions including pointing, punching, standing hand-in-hand,
pushing, and hugging. The recognition algorithm is preceded
by a feature extraction algorithm that extracts body-pose fea-
tures from the segmented and tracked body-part regions. We
use ellipses and convex hulls to represent body parts and build
a hierarchical Bayesian network to estimate individual body
poses at each frame. Including the dynamics of the body-pose
changes along the sequence leads us to the recognition of two-
person interactions.

Figure 2 shows the overall system diagram. Our system
processes multiple levels of analysis. Body-part features about
the ellipses and convex hulls are extracted from our already
developed segmentation and tracking system. With the body
features, we estimate body poses using a Bayesian network.
The pose estimation results are then concatenated to form a
sequence, and sequence classification is performed by a dy-
namic Bayesian network. Then we generate a user-friendly
verbal semantic description of the interaction. In the body-
pose-estimation step, the left panel shows a tree structure that
represents the individual body part regions of a person; the root
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Fig. 2. System diagram

node represents the whole body region, and its children nodes
represent head, upper body, and lower body, respectively. Each
body part is subdivided into skin and nonskin parts such as face
and hair, hand and torso, etc. The right panel shows a Bayesian
network to estimate the overall body pose in each frame in-
cluding the poses of torso, head, arm, and leg. In the sequence
classification stage, the left panel shows the image sequence
represented by the concatenation of two tree structures for
two interacting persons at each frame. The right panel shows
a dynamic Bayesian network that recognizes the two-person
interactions. The result of recognition of the two-person in-
teractions is provided in terms of semantic description with
“subject + verb + object” format for a user-friendly verbal
interface.

The contributions of this paper are as follows. (1) A new
hierarchical framework is proposed for the recognition of two-
person interactions at a detailed level using a hierarchical
Bayesian network. (2) Ambiguity in human interaction due to
occlusion is handled by inference with the Bayesian network.
(3) A human-friendly vocabulary is generated for high-level
event description. (4) A stochastic graphical model is pro-
posed for the recognition of two-person interactions in terms
of “subject + verb + object” semantics.

The rest of the paper is organized as follows. Section 2
summarizes research related to the representation of human
body and the recognition paradigms for event recognition.
Section 3 presents the formulation of hierarchical Bayesian
network and the extraction of observed features. Section 4
shows the estimation of the individual body-part poses as well
as the overall body pose. Section 5 presents the method of
recognizing sequences using dynamic Bayesian network and
verbal description of events. Section 6 addresses the need to
process relative information about constraints between inter-
acting persons. Results and conclusions follow in Sects. 7 and
8, respectively.

2 Previous work

In the last decade, the computer vision community has con-
ducted extensive research on the analysis of human motion
in general. The many approaches that have been developed
for the analysis of human motion can be classified into two
categories: model-based [4] and appearance-based [20]. See
[1,8,15] for reviews. We will discuss appearance-based meth-
ods below.

Early research on human motion has focused on analyzing
a single person in isolation [3,24] or on tracking only a subset
of body parts such as head, torso, and hands [7,26], while re-
search on analyzing the motion of multiple people has focused
on silhouettes [10,16,25], stick figures [6], contours [18,28],
or color [19].

In addition, research has used a coarse-level representa-
tion of the human body such as a moving bounding box or
silhouette or has focused on the detection of specific interac-
tions predefined in terms of head or hand velocity. However,
a coarse-level representation of a human body using a bound-
ing box is not powerful enough for detailed recognition of
human interactions involving body parts. Silhouette-based or
contour-based representation may be hampered by mutual oc-
clusion caused by moving body parts in human interactions.
Model-based representation is not robust due to ambiguities
in body shape caused by loose clothing.

Many approaches have been proposed for behavior recog-
nition using various methods including hidden Markov mod-
els, finite state automata, context-free grammar, etc. Oliver et
al. [16] presented a coupled hidden Markov model (CHMM)
for gross-level human interactions between two persons such
as approach, meet, walk together, and change direction from
bird’s-eye-view sequences. Sato et al. [25] presented a method
to use the spatiotemporal velocity of pedestrians to classify
their interaction patterns. Hongeng et al. [11] proposed proba-
bilistic finite state automata (FA) for gross-level human inter-
actions. Their system utilized user-defined hierarchical multi-
ple scenarios of human interaction. Park et al. [18] proposed a
string-matching method using a nearest-neighbor classifier for
detailed-level recognition of two-person interactions such as
hand-shaking, pointing, and standing hand-in-hand. Wada et
al. [29] used nondeterministic finite state automata (NFA) us-
ing state product space. Kojima et al. [14] presented a natural-
language-based description of single-person activities. Park et
al. [21] presented a recognition method that combines model-
based tracking and deterministic finite state automata.
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3 Hierarchical Bayesian network

3.1 Inference in a Bayesian network

Understanding events in video requires a representation of
causality among random variables. Causal relations and con-
ditional dependencies among the random variables are effi-
ciently represented by a directed acyclic graph (DAG) in a
Bayesian Network (BN) [5,12,13,22,27]. The network is com-
posed of nodes and directed links. The nodes represent ran-
dom variables, whereas the directed links point from causal
to dependent variables. The conditioning variables and the
dependent variables are called parent nodes and child nodes,
respectively. For a link between two variables, X −→ Y , the
overall joint distribution is specified by the product of the prior
probability P (X) and the conditional probability P (Y | X).
The dependencies are specified a priori and used to create the
network structure. The distributions P (x) and P (y | x) must
be specified beforehand to form the network from domain
knowledge.

In general, given a set of N variables H1:N =
H1, . . . , HN , the joint probability distribution P (H1:N ) =
P (H1, H2, . . . , HN ) can be factored into a sparse set of con-
ditional probabilities as follows according to the conditional
independency:

P (H1:N ) =
N∏

i=1

P (Hi | pa(Hi)) , (1)

where pa(Hi) is the set of parent nodes of node Hi in the
DAG.

A video sequence of human interactions will exhibit oc-
clusion caused by articulated body parts. Occlusion may re-
sult in incomplete values for the random variables. Occlusion
problems caused by human interaction are well suited to the
BN, which can perform inference with a partially observed
set e of variables referred to as “evidence”. With the evidence
provided, the set of beliefs is established and updated and
established to reflect both prior and observed information de-
pending on the evidence:

B(h) = P (h | e) , (2)

where B(h) is the belief in the value h of variable H given
the evidence e.

The most probable explanation h� of the hidden variable
H given the evidence e is determined by:

h� = arg maxh B(h) (3)

= arg maxh P (h | e) .

The belief update is achieved by a message-passing process
distributed along the network through the exploitation of local
dependencies and global independencies of various variables.
Therefore, the estimation of evidence to update the beliefs is
performed to achieve a globally consistent evaluation of the
situation.

We use the junction-tree algorithm [12, 13] for the infer-
ence of belief revision given evidence. This inference algo-
rithm transforms the Bayesian network to a join tree, each
node of which contains a subset of variables called a clique.
The locally dependent joint probabilities of the network are
represented by the clique potentials, and the global indepen-
dency in the network is insured by distinct cliques in the join

tree. The transformation to the join tree is performed only once
offline, and the inference proceeds on the join tree via a mes-
sage passing mechanism similar to the method proposed by
Pearl [22].

3.2 Feature extraction for a Bayesian network

Understanding semantic events from video requires the incor-
poration of domain knowledge combined with image data. A
human body model is introduced as the domain knowledge
to group free-form blobs into meaningful human body parts:
head, upper body, and lower body, each of which is recursively
subdivided into skin and nonskin parts. The body model is
appearance-based and represents image regions correspond-
ing to each body part.

We need body-part features such as arm tip, leg tip, torso
width, etc. to estimate the body poses. In this paper we pro-
pose a method to model human body parts by combining an
ellipse representation and a convex hull-based polygonal rep-
resentation of the interacting human body parts.

An ellipse is defined by the major and minor axes and their
orientations in a two-dimensional (2D) space and optimally
represents the dispersedness of an arbitrary 2D data (i.e., an
image region in our case.)The direction and length of the major
and minor axes are computed by principal component analysis
(PCA) of the 2D data; the two eigenvectors of the image region
define the center positions and directions of the axes, and the
eigenvalues define the lengths of the axes. Suppose image pixel
X = [x1, x2]T is distributed as N2(µ, Σ). The density of X
is described by an ellipsoid centered at µ as follows:

(x − µ)T Σ(x − µ) = c2 . (4)

The major and minor directions e = [ea, eb] and their exten-
sions λ = diag(λ1, λ2) of the ellipsoid are obtained by:

Σe = λe . (5)

The principal axes y = [ya, yb] of the ellipsoid are determined
by:

ya = eT
a x , (6)

yb = eT
b x . (7)

A convex hull is defined as the minimum convex closure of an
arbitrary image region specified by a set of vertex points and
represents the minimum convex area containing the region.
We use the set of contour points of the individual body-part
region segmented in Fig. 1b to generate the convex hull of the
corresponding body part. There are many efficient algorithms
to compute convex hull. See [17] for details. We use Graham’s
algorithm [9].

The maximum curvature points of the convex hull indicate
candidate positions of limb tips such as hand or foot and are
used as extra observation evidence for the BN.

Note that the ellipse and the convex hull representations
have tradeoffs. The advantage of the ellipse representation is
its robustness against outlier pixels due to image noise; how-
ever, it is not sensitive enough to detect a hand position (i.e.,
the arm tip) located at an extreme position of the upper-body
distribution, resulting in false negative detection. In contrast,
the convex hull representation of the upper body effectively
detects a candidate arm tip as one of the maximum curvature
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a b

Fig. 3. Body-part parameterization for Fig. 1b. Each body part is
parameterized by both an ellipse (a) and a convex hull (b)

points of the convex hull. However, the convex hull represen-
tation is prone to false positive detection of the arm tip when
the hand is nearer than the elbow to the trunk or when a thin
long region is attached to the upper body due to image noise.
In order to cope with the problem, we choose as the candidate
hand positions the maximum curvature points that coincide
with a skin blob. We use the skin detector described in [19].

We introduce a hierarchical Bayesian network that infers
body pose. The Bayesian network estimates the configura-
tion of the head, hand, leg, and torso in a hierarchical way
by utilizing partial evidence (i.e., the ellipse parameters and
convex hull parameters) observed in each frame. Our method
uses color- and region-based segmentation of body parts and
is effective in handling mutual occlusion. Mutual occlusion
inevitably involves uncertainty in estimation of body pose.

All the observation node states are initially continuous,
but they are normalized and discretized to generate codebook
vectors by vector quantization, as follows:

A freely moving human figure is captured by a camera
and the image is divided horizontally and vertically into a
grid of L histogram bins as shown in Fig. 4. The individual
configuration of the head, hand, leg, and torso is recorded
in terms of a random variable v in each dimension of the
image coordinates. Let v ∈ R be a random variable with
a uniform prior probability distribution in the range [va, vb].
Assume that V = {1, . . . , L} is the discretized space of R
and has L clusters. Then v is converted to a codebook vector
vk ∈ V by multiple thresholding as follows:

vk = arg mini

{
v − va

vb − va
− i

L

}
for all i ∈ [1, L] . (8)

The frequency in each histogram bin for an individual body
part is accumulated along the overall sequences of the training
data. The histogram process is illustrated in Fig. 4.

Fig. 4. Diagram of histogram process

The vector quantization leads to a Bayesian network with
discrete hidden and observation nodes. The discrete version
of the BN uses conditional probability tables as an approx-
imation of conditional probability distributions. We assume
that the conditional probability distribution of each of the ob-
servation variables is a triangular distribution centered at the
most probable state. The most probable state is determined by
training data.

A two-person interaction is represented in terms of the
configuration changes of the individual body parts and is rec-
ognized by a dynamic Bayesian network (DBN) that utilizes
the hierarchical information of the body pose. The recogni-
tion results are expressed in terms of semantic motion de-
scriptions. Example sequences illustrate the success of the
proposed framework. The body parts are represented by el-
lipses and convex hulls (Fig. 3) and then processed by a hier-
archical Bayesian network.The hierarchical Bayesian network
estimates the configuration of the head, hand, leg, and torso
by utilizing partial evidence observed in the frame, analyzes
temporal changes of the body poses along the sequence, and
interprets human interactions.

4 Pose estimation using a hierarchical Bayesian network

4.1 Head-pose estimation

A Bayesian network for estimating the head pose of a person is
constructed as shown in Fig. 5a with a geometric transforma-
tion parameter α, an environmental setup parameter β, head
pose H2 as a hidden node, and head appearance V1 and V2 as
observation nodes. The geometric transformation, which may
include camera geometry, determines the imaging process.
The environmental setup, which may include lighting condi-
tions, determines the reflectance of light from the head. The
head pose, which may include the head’s three-dimensional
rotation angles, determines which part of the head is visible.

The legend for Fig. 5 is as follows:

α: Geometric transformation parameter such as camera model
β: Environmental setup parameter such as lighting condition
H2: Head pose
V1: Index for angle of vector from head center to face center
V2: Index for ratio of face area to head area

An example of the observations (i.e., evidence) of the head
appearance in Fig. 3a is shown in Fig. 6. For each head, the
large ellipse represents the overall head region and the small
ellipse represents the face region. Arrows represent the vector
from the head center to the face center. The angle of the vec-
tor corresponds to the value of observation node V1, and the

α β H2

V1 V2

H2

V1 V2

a b

Fig. 5. Bayesian network for head-pose estimation of a person. See
legend below for node labels
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Fig. 6. Observations for head pose estimation. For each head, the
large ellipse represents the overall head region and the small ellipse
represents the face region. Arrows represent the vector from head
center to face center

ratio of the two ellipses in a head corresponds to the value of
observation node V2 in Fig. 5.

The observations of the head appearance are determined
by the generative model parameters α, β, and H2. The causal
relations between the generative model parameters and ob-
servations are represented by the arrows between the hidden
nodes and the observation nodes in Fig. 5.

In this paper we assume, for simplicity, that the geometric
transformation parameter α and the environmental setup pa-
rameter β are fixed and known. This assumption is based on
our experience that the detailed recognition of human interac-
tions requires that body-part information be available or able
to be inferred from image data. That is, we assume that a fixed
camera is used with a viewing axis parallel to the ground (i.e.,
horizon) and that the people are in an indoor setting with con-
stant lighting conditions. (Note that this assumption may be
relaxed by learning the parameters α and β, with enough train-
ing data.) Currently, this assumption allows the nodes α and
β to be omitted from computation and simplifies the structure
of the Bayesian network, as shown in Fig. 5b.

The hidden node’s states are defined as

H2 = {front view, left view, right view, rear view}.

The visible nodes’ state labels are defined as follows:

V1 = {−45◦, −90◦, −135◦, null}
V2 = {0, 1/2, 1}

where null angle in V1 and 0 ratio in V2 indicate that no
face ellipse was detected by the occlusion.

The joint probability of the BN in Fig. 5b is factored into
conditional probabilities and prior probabilities according to
(1) as follows:

P (V1:2, H2) = P (V1:2|H2)P (H2)
= P (V1|H2)P (V2|H2)P (H2) (9)

Our task is to estimate the belief of the state of the hidden node
H2 given the evidence V1:2:

P (H2|V1:2) =
P (V1:2, H2)

P (V1:2)
, (10)

=
P (V1:2, H2)∑

allH2,n
P (V1:2, H2)

, (11)

=
P (V1|H2)P (V2|H2)P (H2)∑

allH2,n
P (V1|H2)P (V2|H2)P (H2)

,

where the summation is over all possible configurations of
values on the parent node H2. Here H2,n denotes a particular
value for state n on node H2.

The factors of Eq. 10, i.e., the conditional probability table
(CPT) and the prior probability table (PPT) for Fig. 5b, are

Table 1. Conditional probability table (CPT) for P (V1|H2)

P (V1|H2)
A B C D

A 0.11 0.09 0.7 0.1
B 0.05 0.72 0.18 0.05
C 0.05 0.05 0.21 0.69
D 0.8 0.1 0.02 0.08

Table 2. CPT for P (V2|H2)

P (V2|H2)
A B C

A 0.12 0.08 0.8
B 0.06 0.8 0.14
C 0.03 0.8 0.17
D 0.78 0.12 0.1

Table 3. Prior probability table (PPT) for P (H2)

P (H2)
A B C D

0.25 0.25 0.25 0.25

trained by the histogram procedure in Fig. 4 and specified in
Tables 1–3.

Each row of the tables in this paper represents a state of a
conditional variable expressed in terms of the alphabetical in-
dex (i.e.,A, B, C, etc.), and each column of the tables represent
a state of a dependent variable expressed in terms of another al-
phabetical index. For example, in Table 1 the cell value 0.18 for
row B and column C represents P (V1 = C|H2 = B) = 0.18.
Here, the distinct indices B and C of the distinct variables V1
and H2 are independent of each other. For example, given that
we are in a certain head pose (i.e., at a certain row), we must
have some observation (i.e., at a certain column). Each row in
a CPT corresponds to a cause and each column to an effect;
thus, each row sums to 1.

4.2 Arm pose estimation

Another Bayesian network is built for estimating the pose of
the salient arm. The salient arm is defined to be the arm that is
involved in human interaction. Usually, the salient arm is the
outermost arm stretching toward the opposite person. The BN
for the arm pose is shown in Fig. 7.

The geometric transformation parameter α and the
environment-setup parameter β are dropped from computa-
tion, as in Sect. 4.1.

The legend for Fig. 7 is as follows:

H3: Vertical pose of outermost arm

H3 H4

V4 V5 V6 V7

Fig. 7. Bayesian network for arm-pose estimation of a person. See
legend below for node labels
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a b

Fig. 8. Observation for arm-pose estimation. The individual upper
body is represented by ellipse A or B in a and the corresponding
convex hull in b. The maximum curvature points C and D in b are
detected as candidate hand positions

H4: Horizontal pose of outermost arm
V4: Index for the vertical position of maximum curvature point

of upper-body convex hull
V5: Index for torso ellipse aspect ratio of major to minor axes
V6: Index for torso ellipse rotation on image plane
V7: Index for horizontal position of maximum curvature point

of upper-body convex hull

An example of the observation data for estimating the arm
pose is shown in Fig. 8. The ellipse and the convex hull rep-
resentations of the torso region are used for each person.

Ellipse A in Fig. 8a represents the degree of spatial distri-
bution of the upper-body region of the left person and is sum-
marized in terms of the major and minor axes and their orien-
tations computed from principal component analysis (PCA).
The torso ellipse’s aspect ratio and rotation angle on the image
plane are used as observation evidence V5 and V6 of the BN.
A convex hull represents the maximal area of the region. The
image coordinate of the maximum curvature point C of the
convex hull of the left person in Fig. 8b is detected as a candi-
date hand position and is used as extra observation evidence
V4 and V7 for the BN. The same computations apply to the
right person in Fig. 8 with ellipse B and maximum curvature
point D. A separate BN is used for the right person.

If multiple maximum curvature points exist for a candi-
date hand position, we choose the maximum curvature point
that coincides with a skin blob detected by the skin detector
described in [19]. However, the skin blob can be occluded by
articulation, and it is not guaranteed that the maximum curva-
ture point of a convex hull actually represents an arm tip. Our
solution to this ambiguity is to estimate the arm pose based on
the observations using the BN in Fig. 7.

The hidden node’s states are defined below:

H3 = {high, mid-high,mid-low, low}
H4 = {withdrawn, intermediate, stretching}

The visible nodes’ state labels are defined as follows:

V4 = {0, 0.2, 0.35,0.5}
V5 = {0.3, 0.6, 0.9}
V6 = {30◦, 60◦, 90◦}
V7 = {0, 0.1, 0.15, 0.23}

Table 4. Conditional probability table for P (V4|H3)

P (V4|H3)
A B C D

A 0.89 0.05 0.03 0.03
B 0.03 0.8 0.13 0.04
C 0.04 0.02 0.91 0.03
D 0.03 0.04 0.03 0.9

The joint probability of the BN in Fig. 7 is factored into
conditional probabilities and prior probabilities as follows:

P (V4:7, H3:4) = P (V4:7|H3:4)P (H3:4) ,

= P (V4:7|H3:4)P (H3)P (H4) ,

= P (V4|H3:4)P (V5|H3:4)P (V6|H3:4) ,

× P (V7|H3:4)P (H3)P (H4) ,

= P (V4|H3)P (V5|H3:4)P (V6|H3:4) ,

× P (V7|H4)P (H3)P (H4) . (12)

In this case our goal is to estimate the belief of the states of
the hidden nodes H3:4 given the evidence V4:7:

P (H3:4|V4:7) =
P (V4:7, H3:4)

P (V4:7)
, (13)

=
P (V4:7, H3:4)∑

allH3,m

∑
allH4,n

P (V4:7, H3:4)
, (14)

=
Numer2

Denom2
,

where the numerator Numer2 is

Numer2 = P (V4|H3)P (V5|H3:4)P (V6|H3:4)
× P (V7|H4)P (H3)P (H4) (15)

and the denominator Denom2 is

Denom2 =
∑

allH3,m

∑
allH4,n

[P (V4|H3)P (V5|H3:4)

× P (V6|H3:4)P (V7|H4)P (H3)P (H4)] . (16)

The summations are over all possible configurations of values
on the parent nodesH3 andH4. HereH3,m denotes a particular
value for state m on node H3, and H4,n denotes a particular
value for state n on node H4.

The factors of Eq. 13, i.e., the conditional probability ta-
ble (CPT) and the prior probability table (PPT) for Fig. 7,
are specified in Tables 4–7. In the left panel of Table 5,
the cell value 0.34 of row CA and column B represents
P (V5 = B|H3 = C, H4 = A) = 0.34.

4.3 Leg-pose estimation

A Bayesian network similar to that in Sect. 4.2 is built for
estimating the leg pose of a person as shown in Fig. 9, with
hidden nodes H5 and H6 and observation nodes V8 − V11.

The legend for Fig. 9 is as follows:

H5: Vertical pose of outermost leg
H6: Horizontal pose of outermost leg
V8: Index for vertical position of maximum curvature

point of lower-body convex hull
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Table 5. CPT for P (V5|H3:4) and P (V6|H3:4)

P (V5|H3:4) P (V6|H3:4)
A B C A B C

AA 0.45 0.35 0.2 AA 0.45 0.33 0.22
BA 0.17 0.43 0.4 BA 0.21 0.39 0.4
CA 0.26 0.34 0.4 CA 0.33 0.27 0.4
DA 0.8 0.09 0.11 DA 0.33 0.29 0.38
AB 0.3 0.5 0.2 AB 0.31 0.3 0.39
BB 0.31 0.29 0.4 BB 0.32 0.28 0.4
CB 0.24 0.35 0.41 CB 0.31 0.3 0.39
DB 0.27 0.33 0.4 DB 0.28 0.31 0.41
AC 0.31 0.25 0.44 AC 0.31 0.31 0.38
BC 0.3 0.31 0.39 BC 0.32 0.27 0.41
CC 0.31 0.28 0.41 CC 0.25 0.34 0.41
DC 0.32 0.27 0.41 DC 0.31 0.29 0.4

Table 6. CPT for P (V7|H4)

P (V7|H4)
A B C D

A 0.39 0.41 0.11 0.09
B 0.12 0.43 0.37 0.08
C 0.1 0.1 0.42 0.38

Table 7. PPT for P (H3) and P (H4)

P (H3) P (H4)
A B C D A B C
0.2 0.1 0.3 0.4 0.6 0.25 0.15

H5 H6

V8 V9 V10 V11

Fig. 9. Bayesian network for pose estimation of an interacting person.
The BN is composed of 6 hidden nodesH1:6 and 11 observation nodes
V1:11. See legend below for node labels

V9: Index for lower-body ellipse aspect ratio of major
to minor axes

V10: Index for lower-body ellipse rotation on image plane
V11: Index for horizontal position of maximum curvature

point of lower-body convex hull

The hidden node’s states are defined below:

H5 = {low, middle, high}
H6 = {withdrawn, intermediate, out-reached}

The visible nodes’ state labels are defined as follows:

V8 = {0.5, 0.75, 1}
V9 = {0.3, 0.6, 0.9}
V10 = {30◦, 60◦, 90◦}
V11 = {0, 0.15, 0.3}

The lower body of each person represented by an ellipse
and a convex hull is shown in Fig. 10. The BN for leg pose has
a similar structure to the BN for arm pose, but the prior proba-
bility distribution and the conditional probability distribution
may differ significantly.

a b

Fig. 10. Observation for leg-pose estimation. The individual lower
body is represented by ellipse A or B in a and corresponding convex
hull in b. The maximum curvature points C and D in b are detected
as candidate foot positions

Table 8. CPT for P (V8|H5) and P (V11|H6)

P (V8|H5) P (V11|H6)
A B C A B C

A 0.12 0.13 0.75 A 0.7 0.2 0.1
B 0.11 0.74 0.15 B 0.1 0.6 0.3
C 0.81 0.09 0.1 C 0.09 0.21 0.7

The joint probability of the BN in Fig. 9 is factored into
conditional probabilities and prior probabilities as follows:

P (V8:11, H5:6) = P (V8:11|H5:6)P (H5:6)
= P (V8:11|H5:6)P (H5)P (H6)
= P (V8|H5:6)P (V9|H5:6)

× P (V10|H5:6)P (V11|H5:6)P (H5)P (H6)
= P (V8|H5)P (V9|H5:6)

× P (V10|H5:6)P (V11|H6)P (H5)P (H6) .(17)

In this case our goal is to estimate the belief of the states of
the hidden nodes H5:6 given the evidence V8:11:

P (H5:6|V8:11) =
P (V8:11, H5:6)

P (V8:11)

=
P (V8:11, H5:6)∑

allH5,m

∑
allH6,n

P (V8:11, H5:6)

=
Numer3

Denom3
, (18)

where the numerator Numer3 is

Numer3 = P (V8|H5)P (V9|H5:6)P (V10|H5:6)
× P (V11|H6)P (H5)P (H6) (19)

and the denominator Denom3 is

Denom3 =
∑

allH5,m

∑
allH6,n

[P (V8|H5)P (V9|H5:6)

× P (V10|H5:6)P (V11|H6)P (H5)P (H6)] . (20)

The summations are over all possible configurations of values
on the parent nodesH5 andH6. HereH5,m denotes a particular
value for state m on node H5, and H6,n denotes a particular
value for state n on node H6.

The conditional probability table (CPT) and the prior prob-
ability table (PPT) for Fig. 9 are specified in Tables 8–10.

4.4 Overall body-pose estimation

The individual Bayesian networks are integrated in a hierar-
chy to estimate the overall body pose of a person, as shown
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H1

H2 H3 H4 H5 H6

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11

head
upper
body

lower
bodytorso

Fig. 11. Hierarchical composition of the
Bayesian networks for pose estimation of a
person. The BN is composed of 6 hidden
nodes H1:6 and 11 visible nodes V1:11. See
legend below for node labels

Table 9. CPT for P (V9|H5:6) and P (V10|H5:6)

P (V9|H5:6) P (V10|H5:6)
A B C A B C

AA 0.77 0.11 0.12 AA 0.42 0.38 0.2
AB 0.19 0.41 0.4 AB 0.23 0.38 0.39
AC 0.21 0.4 0.39 AC 0.31 0.3 0.39
BA 0.11 0.3 0.59 BA 0.29 0.31 0.4
BB 0.1 0.5 0.4 BB 0.3 0.3 0.4
BC 0.31 0.29 0.4 BC 0.32 0.28 0.4
CA 0.28 0.31 0.41 CA 0.31 0.3 0.39
CB 0.31 0.32 0.37 CB 0.3 0.3 0.4
CC 0.09 0.31 0.6 CC 0.28 0.32 0.4

Table 10. PPT for P (H5) and P (H6)

P (H5) P (H6)
A B C A B C
0.6 0.25 0.15 0.59 0.26 0.15

in Fig. 11. The proper hierarchy depends on domain-specific
knowledge. It is also possible to learn the structure of the BN
given enough training data. However, in the video surveillance
domain, there is usually not enough training data available.
Therefore, we manually constructed the BN.

The overall BN is specified by the prior probability
distribution of H1 and the conditional probability distri-
butions of the rest of the nodes. The prior probabilities
P (H2), P (H3), P (H4), and P (H5) are replaced by the corre-
sponding conditional probabilities P (Hi|pa(Hi)) in the over-
all BN, where pa(Hi) is the set of parent nodes of node Hi in
the directed acyclic graph (DAG). The BN has discrete hidden
nodes and discrete observation nodes that are discretized by
vector quantization in Sect. 3. The probability distributions are
approximated by discrete tabular form and trained by count-
ing the frequency of co-occurrence of states in a node and its
parent nodes using training sequences.

We introduce an additional hidden node, H1, for the torso
pose as a root node of the hierarchical BN and an additional
observation node, V3, the median width of the torso in an im-
age. The torso pose is inferred from the poses of the head, arm,
and leg, as well as the additional observation of the median
width of the torso.

The states of the hidden node H1 are defined as H1 =
{front view, left view, right view, rear view}.

The joint probability of the BN in Fig. 11 is factored into
conditional probabilities and prior probabilities as follows:

P (V1:11, H1:6) =
N∏

i=1

P (Xi|pa(Xi)),

X ∈ {H, V }, N = 6 + 11

= [
11∏

i=1

P (Vi|pa(Vi))] × [
6∏

j=1

P (Hj |pa(Hj))]

= FactorsV × FactorsH (21)

where

FactorsV = [
11∏

i=1

P (Vi|pa(Vi))]

= P (V1|H2)P (V2|H2)P (V3|H1)P (V4|H3)
× P (V5|H3:4)P (V6|H3:4)P (V7|V4)P (V8|H5)
× P (V9|H5:6)P (V10|H5:6)P (V11|H6) (22)

and

FactorsH = [
6∏

j=1

P (Hj |pa(Hj))]

= P (H2|H1)P (H3|H1)P (H4|H1)
× P (H5|H1)P (H6|H1)P (H1) . (23)

Our overall goal is to estimate the belief of the states of
the hidden nodes H1:6 given the evidence V1:11:

P (H1:6|V1:11) =
P (V1:11, H1:6)

P (V1:11)

=
Numer4

Denom4
, (24)

where the denominator Denom4 is the marginalized version
of Eq. 21 along H1:6:

Denom4 =
∑
H1

∑
H2

∑
H3

∑
H4

∑
H5

∑
H6

P (V1:11, H1:6) . (25)

Some of the factors of Eq. 24 were presented in Sects. 4.1–
4.3, and the others are specified in Tables 11–14.

Our hierarchical Bayesian network efficiently decomposes
the overall task of estimating the beliefs of the overalll body
pose into individual beliefs, as described in Sects. 4.1 through
4.4. Depending on the available evidence values of the obser-
vation nodes, the actual computation for the belief estimation
varies accordingly.

At this stage, we have the pose of a person at a given frame
represented in terms of the hidden state indices of H1:6. For
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Table 11. CPT for P (H2|H1) and P (V3|H1)

P (H2|H1) P (V3|H1)
A B C D A B

A 0.7 0.16 0.14 0 A 0.1 0.9
B 0.13 0.72 0 0.15 B 0.6 0.4
C 0.17 0 0.69 0.14 C 0.58 0.42
D 0 0.15 0.14 0.71 D 0.11 0.89

Table 12. CPT for P (H3|H1) and P (H4|H1)

P (H3|H1) P (H4|H1)
A B C D A B C

A 0.1 0.2 0.2 0.5 A 0.7 0.21 0.09
B 0.21 0.31 0.29 0.19 B 0.5 0.3 0.2
C 0.22 0.28 0.3 0.2 C 0.5 0.28 0.22
D 0.11 0.2 0.19 0.5 D 0.71 0.19 0.1

Table 13. CPT for P (H5|H1) and P (H6|H1)

P (H5|H1) P (H6|H1)
A B C A B C

A 0.8 0.09 0.11 A 0.78 0.12 0.1
B 0.5 0.31 0.19 B 0.49 0.31 0.2
C 0.52 0.28 0.2 C 0.51 0.28 0.21
D 0.8 0.08 0.12 D 0.81 0.09 0.1

Table 14. Prior probability table for P (H1)

P (H1)
A B C D

0.25 0.25 0.25 0.25

example, given the evidence of observation e1
t of the first (i.e.,

left) person at frame t, the body pose of the person at frame t in
Fig. 1 is represented as the n-tuple (n = 6) of the alphabetical
indices of the hidden state values φ1

t as:

e1
t = [v1:11]

= [DBACDBAACCB]T ,

φ1
t = [H1:6]

= [CCCCAA]T . (26)

whereas given the evidence of observation e2
t of the second

(i.e., right) person at frame t, the body pose of the person at

frame t is represented as φ2
t :

e2
t = [V1:11]

= [CBADCBBBCCB]T ,

φ2
t = [H1:6]

= [BBDBAB]T , (27)

5 Recognition by DBN

We model human interaction as a sequence of state changes
that represents the configuration and movement of individual
body parts (i.e., torso, arms, and legs) in the spatiotemporal
domain. This model requires a representation of 6 interacting
processes (3 body parts × 2 persons) for a two-person interac-
tion. Involving multiple people and multiple body parts makes
it difficult to apply a simple HMM model that has a state space
composed of a single random variable. Because the overall
state space is very large, the joint probability distribution be-
comes intractable, and a prohibitively large amount of data
is required to train the model. It is well known that the ex-
act solution of extensions of the basic HMM to three or more
processes is intractable [16].

Our solution to overcoming the exponential growth of the
parameter space is to represent human behavior at multiple
levels in a hierarchy. We utilize the hierarchy of our BN and
abstract the states and the events at multiple levels. Individual
body-part motions are analyzed at the low level, and the whole-
body motion of a person is processed at the middle level by
combining the individual body-part motions. The two-person
interaction patterns are recognized at the high level by incorpo-
rating the whole-body motion and spatiotemporal constraints
about relative positions and causal relations between the two
persons.

5.1 Body-part pose evolution

Our dynamic Bayesian network (DBN) is constructed by es-
tablishing temporal links between the identical hidden nodes
of the BN in Fig. 11 at time t and t + 1. This means that
we model the hidden state evolutions based on the first-order
Markov process. We use a DBN equivalent of HMM for each
body part – legs, torso, and arms – as shown in Fig. 12. For
simplicity, we assume that the evolution of Hi is independent
of the evolution of Hj if i �= j. The difference between a
DBN and an HMM is that a DBN represents the hidden state
in terms of a set of random variables, 1qt, ...,

Nqt, i.e., it uses

Ht+1
1

Ht
1

Ht+1
2 Ht+1

3 Ht+1
4 Ht+1

5 Ht+1
6

Ht
2 Ht

3 Ht
4 Ht

5 Ht
6

Fig. 12. Hidden nodes’evolution from frame t to frame
t + 1. The BN structure is specified by dotted arrows
at frame t and by solid arrows at frame t + 1. The
evolution of each node state is represented by double
solid arrows
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jq1
jq2

jq3
jq4

Fig. 13. DBN equivalent of HMM for jth body part unrolled for T =
4. Nodes represent states, and arrows represent allowable transitions,
i.e., transitions with nonzero probability. The self-loop on state i
means P (qt = i|qt−1 = i) = A(i, i) > 0

a distributed representation of state. By contrast, in an HMM,
the state space consists of a single random variable qt. The
DBN is a stochastic finite state machine defined by initial state
distribution π, observation probability B, and state transition
probability A:

A = {aij | aij = P (qt+1 = j | qt = i)} ,

B = {bj(k) | bj(k) = P (vt = k | qt = j)} ,

π = {πi | πi = P (q1 = i)} ,

where qt is the state value of the hidden node H at time t and
vt is the observation value of the observation node V at time t.

The observation probability B and the initial state distri-
bution π specify the DBN at a given time t and are already
established in our Bayesian network, as described in Sect. 3.
Therefore, our DBN only needs the state transition probabil-
ity A that specifies the state evolution from time t to time
t + 1. Figure 13 shows a DBN equivalent of HMM unrolled
for T = 4 time slices, where jqt are the hidden node states
for the jth body part at time t: 1q for the leg, 2q for the torso,
and 3q for the arm. We use the Baum-Welch algorithm for
training the DBN and the Viterbi algorithm for decoding the
network [23].

The DBN hidden states correspond to the progress of the
gesture with time.

1Q is the set of DBNs for legs: 1Q = {“both legs are to-
gether on the ground”, “both legs are spread on the ground”,
and “one foot is moving in the air while the other is on the
ground”.}

Similarly, 2Q is the set of DBNs for the torso: 2Q =
{“stationary”, “moving forward”, and “moving backward”.}

3Q is the set of DBNs for arms: 3Q = {“both arms stay
down”, “at least one arm stretches out”, and “at least one arm
gets withdrawn”.}

The assumption of independence between the individual
DBNs in our network structure drastically reduces the size
of the overall state space and the number of relevant joint
probability distributions.

5.2 Whole-body pose evolution

The evolution of a person’s body pose is defined by the three
results, 1q, 2q, and 3q, of the DBNs in Sect. 5.1 and forms the
description of the overall body pose evolution of the person.
Examples of the description include {“stand still with arms
down”, “move forward with arm(s) stretched outward”, “move
backward with arm(s) raised up”, “stand stationary while kick-
ing with leg(s) raised up”, etc.}

Instead of using an exponentially increasing number of all
possible combinations of the joint states of the DBN, we focus

only on a subset of all states to register the semantically mean-
ingful body motions involved in two-person interactions. We
observe that a typical two-person interaction usually involves
a significant movement of either arm(s) or leg(s), but not both.
This means that we assume the joint probability distribution of
meaningless combinations of 1q, 2q, and 3q has a probability
virtually equal to 0 in the usual body-part pose combinations.

5.3 Two-person interaction

One of the ultimate goals of recognizing visual events is the au-
tomatic generation of user-friendly descriptions of the events.
At the high level, we consider the recognition of human be-
havior from the viewpoint of language understanding in terms
of “subject + verb + (object)”. The subject corresponds to the
person of interest in the image, the verb to the motion of the
subject, and the object to the optional target of the motion (i.e.,
usually the other person’s body part). The proximal target of
the arm motion (i.e., the torso or head) is regarded as an object
term in our semantic verbal description of the interaction. Our
body-part-segmentation module provided a set of meaningful
body-part labels as a vocabulary for the object term.

Subject = {torso, arm, leg}
Verb = {raise, lower, stretch, withdraw, stay, move forward,

move backward}
Object = {head, upper body, hand, lower body}

Our language-based framework is similar to that of [14],
but our interest is in the interaction between two autonomous
persons.

To recognize an interaction pattern between two persons,
we incorporate the relative poses of the two persons. We jux-
tapose the results of the mid-level description of the individual
person along a common time line and add spatial and tempo-
ral constraints of a specific interaction type based on domain
knowledge about causality in interactions.

6 Relative constraints

The pose estimation of individual body parts is based on the
single person’s posture in terms of an object-centered coordi-
nate system. However, knowing the body poses is not enough
for the recognition of interaction between people. Recogniz-
ing two-person interactions requires information about the
relative positions of the two persons’ individual body parts.
For example, in order to recognize “approaching”, we need
to know the relative distance and direction of torso movement
with respect to that person. This fact leads us to the notion of
the dynamics of body movements: the evolution of body-part
motion along the sequence under spatiotemporal constraints.

6.1 Spatial constraints

The spatial constraints are defined in terms of the relative po-
sition and orientation. For example, “standing hand-in-hand”
requires that the torsos of the two persons be side by side and
facing in the same direction, while “pointing at the opposite
person” requires that the torsos face one another. The “pointing
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a b

Fig. 14. Gross-level estimation of proximity between two persons
using a Gaussian-based tracker [19]. a Input image, its 1D projection,
and 1D Gaussian approximation from top to bottom, respectively. b
Estimated horizontal positions of the torso centers of two persons

at the opposite person” interaction also involves a systematic
increase of proximity between a person’s moving arm and the
torso or head of the opposite person.

We represent the interacting persons’ relative position at
multiple levels of detail: gross level, intermediate level, and de-
tailed level. The gross-level estimation of proximity between
two persons in the “pushing” sequence shown in Fig. 1 are
shown in Fig. 14. Each person’s foreground silhouette is verti-
cally projected and modeled by a one-dimensional (1D) Gaus-
sian (Fig. 14a).A mixture of the 1D Gaussians is used to model
multiple people. Two Gaussians are fitted, each of which mod-
els a single person without occlusion. Frame-to-frame update
of these Gaussian parameters along the sequence (Fig. 14b)
amounts to tracking the whole-body translation of each person
in the horizontal image dimension. The plot in Fig. 14b shows
the estimated horizontal position of torso center with vertical
bars representing uncertainty in terms of standard deviation of
the Gaussian tracker. The x-axis represents the frame number
and the y-axis the pixel coordinate of the horizontal image
dimension. We can see that the left person (i.e., the first per-
son) approaches the right person (i.e., the second person), who
stands still up to frame 17; then the second person moves back
while the first person stands still. However, we do not know
what kind of event happens between the two persons; does the
first person push the second person, or does the first person
meet the second person and the second person turn back and
depart?

At the intermediate level of representation for relative po-
sition, we determine the relative orientations of the torso poses
between the two persons. Examples of different relative torso
poses are shown in Fig. 15; the top panel shows the cam-
era setup viewing individual persons from distance, and the
bottom panel shows the corresponding appearance. An inter-
action between two persons facing each other (Fig. 15a) may
have a very different connotation from a similar interaction
in which one faces the other’s back (Fig. 15c). The relative
orientations may constrain possible interactions; that is, it is
unlikely that the two persons in Fig. 15b shake hands with
each other. In the example, the left person is in front view
(i.e., azimuth1 = 0◦), and the right person is in left view
(i.e., azimuth2 = 90◦). The relative azimuth Ra defines the
relative torso poses between the two persons as follows:

Fig. 15. Diagram for the intermediate-level estimation of relative
poses between two persons. a Seeing the face of the left person.
b Seeing the side of the left person. c Seeing the back of the left
person. Upper panels depict geometric setup of camera and persons,
and lower panels show appearance of the persons

Ra = azimuth2 − azimuth1 . (28)

At the detailed level of representation for relative posi-
tion, we analyze further the relative configuration of individ-
ual body parts in order to recognize the specific interaction.
An example of detailed information about the relative position
of the interacting body parts in Fig. 8 is shown in Fig. 16a. It
represents the position of the estimated hand, C, of the left per-
son and the estimated ellipse, B, of the upper body of the right
person. The proximity between the estimated arm tip and the
estimated upper body is measured. The proximity relations are
computed for all combinations of the body parts (i.e., the head,
arm, leg, and torso) of the left person with respect to those of
the right person, resulting in a 4 × 4 matrix format. The most
significant combination is chosen as the salient proximity in a
given frame of a specific interaction type. For example, in the
pushing interaction, the proximity relation of the pushing per-
son’s arm with respect to the nearest body part of the pushed
person is chosen as the salient proximity in the interaction.

6.2 Temporal constraints

The temporal constraints of two-person interactions are de-
fined by two events in terms of causal and coincident relations
of the two persons’ body-pose changes.

a b

Fig. 16. Detailed-level estimation of proximity between body parts. a
Relative distance between the left person’s hand C and the right per-
son’s upper-body ellipse B of Fig. 8. b Ellipse-based representation
and convex-hull-based representation of the body parts
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Fig. 17. Temporal constraints between events A and B for a causal
relations (1: before, 2: meet, 3: overlap) and b coincident relations
(4: start, 5: during, 6: finish)

We adopt Allen’s interval temporal logic [2] to represent
the causal and coincident relations in the temporal domain
(i.e., before, meet, overlap, start, during, and finish etc.), as
shown in Fig. 17. For example, a pushing interaction involves
event A of “a person moving forward with arm(s) stretched
outward toward the second person” followed by event B of
“move-backward of the second person” as a result of pushing.

a b c

Fig. 18. Example frames of the “pointing” sequence. a Input image
frame. b Segmented and tracked body parts. c Ellipse parameteriza-
tion of each body part

We introduce appropriate spatial/temporal constraints for
each of the various two-person interaction patterns as do-
main knowledge. The satisfaction of specific spatial/temporal
constraints gates the high-level recognition of the interaction.
Therefore, the mid-level and high-level recognitions are char-
acterized by the integration of domain-specific knowledge,
whereas the low-level recognition is more closely related to
the pure motion of a body part.

a d

b e

c f

Fig. 19. BN’s beliefs about the arm poses of the two persons in the pointing sequence of Fig. 22a. The plots in the left and right columns show
the results for the left and right person in the sequence, respectively. See text for details
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7 Experimental results

We have tested our system for various human interaction
types including (1) approaching, (2) departing, (3) pointing,
(4) standing hand-in-hand, (5) shaking hands, (6) hugging,
(7) punching, (8) kicking, and (9) pushing. The images used
in this work are 320 ×240 pixels in size, obtained at a rate
of 15 frames/s. Six pairs of different interacting people with
various clothing were used to obtain the total 56 sequences
(9 interactions × 6 pairs of people), in which a total of 285,
293, 232, 372, 268, 281, 220, 230, 264 frames are contained
in each of the above interaction types (1)–(9), respectively.

We first evaluated the performance of the BN using the test
sequences of the pointing interaction (Fig. 18). Figure 22a
shows more frames of the pointing interaction sequence,
where the left person stands stationary while the right person
raises and lowers his arm to point at the left person. The de-
sired performance of the BN is that stationary posture should
be recognized as “stationary” and moving posture should be
recognized as “moving”. Our BN showed the corresponding
results (Fig. 19).

Figure 19 shows the values of the observation nodes V1–
V7 before quantization and the corresponding beliefs (i.e.,
the posterior probability) for the two persons in Fig. 22a. In
Figs. 19a and d, the angle of vector from the head ellipse cen-
ter to the face ellipse center (V1) and the angle of rotation
of the torso ellipse (V6) refer to the left y-axis, while all the
other values of the visible nodes are normalized in terms of the
height of the person and refer to the right y-axis. The normal-
ization makes the system robust against the height variation
of different people. We can incorporate a validation procedure
in the Bayesian network in a straightforward manner to check
whether an observation is valid in a given situation. For ex-
ample, if the first person’s hand is occluded, its observation is
nullified and removed from the evidence.

Figures 19b and c show the BN’s belief about each state
of the hidden nodes for the horizontal and vertical poses of
the salient arm for the left persons in the sequence, given the
evidence in Fig. 19a. The BN’s belief shows that the horizontal
pose of the arm of the left person stays in the withdrawn state
and the vertical pose of the arm stays in the low or the mid-low
state. These results demonstrate that the belief of the BN for
the left person is stable for stationary poses in the sequence.

Corresponding data for the right person are shown in
Figs. 19d–f. Figure 19d shows the systematic change of hand
position (V4, V7) and torso ellipse (V5, V6) as the second per-
son points at the first person. Figures 19e and f show the BN’s
belief about each state of the hidden nodes for the horizontal
and vertical poses of the salient arm for the right persons in
the sequence, given the evidence in Fig. 19d. The BN’s belief
shows that the horizontal pose of the arm of the right person
changes from intermediate → stretching → intermediate →
withdrawn states, and that the vertical pose of the arm changes
from mid-low → mid-high → high → mid-high → mid-low
→ low as he moves his arm. This result corresponds well to
the human interpretation of the input sequence. These results
demonstrate that the belief of the BN for the right person prop-
erly detects the state changes as the person moves his arm for
the interaction.

Figure 20 shows other examplar poses of positive inter-
actions: standing hand-in-hand, shaking hands, hugging; and

a b c

d e f

Fig. 20. Example frames of different interactions including positive
interactions: a standing hand-in-hand, b shaking hands, c hugging;
and negative interactions: d punching, e kicking, f pushing. Degree
of occlusion increases from the left to the right examples in each row

negative interactions: punching, kicking, pushing. The degree
of occlusion increases from the left to the right examples in
each row

The results of the BN of the individual sequences are pro-
cessed by the dynamic Bayesian network for the sequence in-
terpretations. The dynamic BN generates verbal descriptions
of the interactions at the body-part level, the single-person
level, and the mutual interaction level. The overall description
is plotted over a time line.

A cross-validation procedure is used to classify the 6 se-
quences for each interaction type; that is, among the 6 se-
quences obtained from different pairs of people, 5 sequences
were used as training data to test the other one sequence. All
6 sequences were tested in the same way for each of the 9
interaction types. The accuracies of the sequence classifica-
tion are 100, 100, 67, 83, 100, 50, 67, 83, 50% for the above
interaction types (1)-(9), respectively. The overall average ac-
curacy is 78%. The low recognition accuracy of the hugging
interactions is due to the occlusion involved in the interaction.
The low recognition accuracies of the pointing, punching, and
pushing interactions are due to the similarity of those inter-
actions. For example, we observed that none of the subjects
in the punching interaction actually hit the opponent person.
The opponent person escapes before the actual hitting occurs.
It makes the punching interaction appear more similar to the
pointing or pushing interactions. The subjects in the experi-
ments were aware of the interactions they were supposed to
perform, which makes the escape behavior possible. It is ex-
pected that in real situations people would behave in the man-
ner that conforms to the definition of the interactions. Figure 21
shows examples of the time line of the interaction behaviors
pointing, punching, standing hand-in-hand, pushing, and hug-
ging, represented in terms of events and simple behaviors.
Figure 22 shows subsampled frames of various interaction se-
quences. Note that the degree of occlusion increases from top
to bottom rows.

8 Conclusion

This paper has presented a method for the recognition of
two-person interactions using a hierarchical Bayesian network
(BN). The poses of simultaneously tracked body parts are es-
timated at the low level, and the overall body pose is estimated
at the high level. The evolution of the poses of the multiple
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a
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d

e

Fig. 21. Semantic interpretation of two-person interactions: a pointing, b punching, c standing hand-in-hand, d pushing, and e hugging
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e

Fig. 22. Subsampled frames of various interaction sequences: pointing, punching, standing hand-in-hand, pushing, and hugging interactions
from top to bottom rows
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body parts during the interaction is analyzed by a dynamic
Bayesian network. The recognition of two-person interactions
is achieved by incorporating domain knowledge about relative
poses and event causality.

The key contributions of this paper are as follows. (1) A
new hierarchical framework is proposed for the recognition
of two-person interactions at a detailed level using a hierar-
chical Bayesian network. (2) Ambiguity in human interaction
due to occlusion is handled by inference with the Bayesian
network. (3) A human-friendly vocabulary is generated for
high-level event description. (4) A stochastic graphical model
is proposed for the recognition of two-person interactions in
terms of “subject + verb + object” semantics.

Our experiments show that the proposed method effi-
ciently recognizes detailed interactions that involve the mo-
tions of the multiple body parts. Our plans for future research
include the exploration of the following aspects: (1) extending
the method to crowd behavior recognition, (2) incorporating
various camera-view points, and (3) recognizing more diverse
interaction patterns.
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