
Combinatorial problems in high-performance

computing: partitioning

(EXTENDED ABSTRACT)

Rob H. Bisseling, Tristan van Leeuwen,

Mathematical Institute, Utrecht University

Ümit Çatalyürek

Department of Biomedical Informatics, The Ohio State University

Partitioning is of fundamental importance in high-performance comput-
ing: partitioning the data and the associated computational work in an
optimal manner leads to good load balance and minimal communication in
parallel computations on modern architectures. Often, the computation is
irregular and the data set is described by a sparse matrix, a graph, or a
hypergraph. This results in a combinatorial partitioning problem. Here, we
will focus on partitioning a sparse matrix for parallel computation as the
core problem. We survey various partitioning methods for the parallel com-
putation of a sparse matrix–vector multiplication and study two methods in
particular, called fine-grain and Mondriaan, by highlighting their similarities
and differences, and combining them in a hybrid method.

Sparse matrices can be partitioned by one-dimensional or two-dimensional
methods. In a 1D approach, complete rows (or columns) are assigned to
parts (processors). One-dimensional row partitioning has traditionally been
used in the sparse matrix–vector multiplication kernel of iterative linear
system solvers and eigenvalue solvers. More recently, two-dimensional parti-
tioning of sparse matrices has been shown to be more effective in distributing
the work and minimising communication.

Two types of 2D methods are particularly promising: (i) the fine-grained
approach by Çatalyürek and Aykanat [1] which partitions the nonzero ma-
trix elements looking at individual elements, thereby allowing for the most
general solution; (ii) the Mondriaan approach by Vastenhouw and Bisseling
[2] which recursively bipartitions the sparse matrix into two (not necessarily
contiguous) submatrices, trying splits in both the row and column directions
and each time choosing the best. Both methods use a multilevel hypergraph
partitioner as their splitting engine. This greedily minimises the exact met-
ric of communication volume.

A natural question to ask is whether combining the two methods in a
hybrid method would lead to savings in communication volume. We present

1

Dagstuhl Seminar Proceedings 09061 
Combinatorial Scientific Computing 
http://drops.dagstuhl.de/opus/volltexte/2009/2081



Figure 1: Split of the 59 × 59 matrix impcol b with 312 nonzeros into four
parts. The first split (left) is by the fine-grain method; the second split (top
right) is by rows; and the third split (bottom right) is again by the fine-grain
method.

a hybrid method which tries to split the current subset in three possible
ways: by rows, by columns, and by individual nonzeros. The advantage
is that this automatically detects the best method for the type of matrix
involved, and adjusts this decision to the current submatrix as the parti-
tioning procedure progresses, at the cost of an additional splitting attempt
for each bipartitioning. Fig. 1 illustrates the hybrid method.

Using the fine-grained method to split a submatrix leads to a much larger
hypergraph Hf , with nz vertices instead of n, for an n × n matrix with nz
nonzeros. The total amount of information contained in the hypergraph
is the same, however, as for a hypergraph Hr induced by taking rows as
vertices, or for a hypergraph Hc induced by taking columns as vertices. Each
vertex of Hf is contained in only two hyperedges. This special property can
be used to speed up the coarsening part of the multilevel bipartitioning of
Hf .

We studied the different partitioning methods by numerical experiments
on the test set of sparse matrices displayed in Table 1. The results of par-
titioning by the Mondriaan, fine-grain, and hybrid method are given in Ta-
ble 2. The results were obtained on a 2.4 GHz AMD Opteron 250 processor
with 8 Gbyte RAM. The table shows the quality of the resulting partitioning
expressed as the communication volume, i.e., the total number of communi-
cated data words. The allowed load imbalance is 3%. The table also shows
the time (in seconds) taken by the partitioning procedure. The statistics
given are the average over 100 runs. The software used is version 2.0 of

2



Name Rows Columns Nonzeros Application area

dfl001 6071 12230 35632 Linear programming
cre b 9648 77137 260785 Linear programming
tbdmatlab 19859 5979 430171 Information retrieval
nug30 52260 379350 1567800 Linear programming
c98a 56243 56274 2075889 Cryptology
tbdlinux 112757 20167 2157675 Information retrieval
stanford 281903 281903 2312497 Web searching
polyDFT 46176 46176 3690048 Polymer simulation
cage13 445315 445315 7479343 DNA electrophoresis
stanford-berkeley 683446 683446 7583376 Web searching

Table 1: Properties of the test matrices.

Mondriaan1 for the sparse matrix partitioner, but with Mondriaan’s inter-
nal hypergraph bipartitioner replaced by the hypergraph partitioner from
version 3.0 of PaToH2 and used for splitting hypergraphs into two parts.
This combination of software was found to perform best.

Table 2 shows that both the Mondriaan and the fine-grain methods
have their favourite matrices with regard to communication volume. The
fine-grain methods performs better than Mondriaan on 2 matrices (dfl001,
cage13); Mondriaan performs better on 6 matrices; the results are incon-
clusive for 2 matrices (tbdlinux, stanford). In 26 out of 30 problem in-
stances (matrix/p) the hybrid method is better than the best of the two
pure methods. In the remaining 4 instances (tbdmatlab/64, tbdlinux/64,
polyDFT/16, cage13/16), the hybrid method performs close to the best
method. On average, the communication volume of the hybrid method is
3% less than that of the best of fine-grain and Mondriaan. The fine-grain
method takes in general 2–4 times longer than the Mondriaan method to
compute a partitioning. The time taken by the hybrid method is about
equal to the sum of the partitioning times of the fine-grain and Mondriaan
methods.

The pure fine-grained method has the advantage of allowing the most
general solution and this gives the best result in some cases. Apparently,
this advantage is not always realised in practice; the positive effect of forcing
the nonzeros of a row (or column) to stay together, which is built into the
Mondriaan approach, is in many cases stronger.

We conclude that both 2D approaches, the Mondriaan and the fine-grain
approach have their advantages. It is difficult to predict which method is
better for a given sparse matrix. The hybrid method automatically finds
the best choice at each step of the partitioning and in most cases improves
upon both pure methods.

1http://www.math.uu.nl/people/bisseling/Mondriaan
2http://bmi.osu.edu/̃ umit/software.html

3



Name p Mondriaan Fine-Grain Hybrid

vol time vol time vol time
dfl001 4 1387 0.2 1379 0.2 1358 0.4

16 3579 0.4 3563 0.4 3502 0.8
64 6017 0.7 5973 0.6 5870 1.2

cre-b 4 1183 2.4 1228 4.3 1142 6.3
16 3490 3.7 3647 6.3 3391 9.5
64 7812 5.0 8145 7.6 7562 12.2

tbdmatlab 4 10708 4.2 11013 19.5 10392 19.0
16 26629 7.1 33273 26.9 26319 30.1
64 49124 9.2 68456 29.4 50653 33.2

nug30 4 55935 20.0 73594 26.1 52580 40.2
16 115771 36.2 159579 40.0 105325 146.8
64 194667 48.3 283847 50.9 183660 88.4

c98a 4 100128 36.8 125370 108.0 97188 137.0
16 227298 65.9 330724 182.6 225418 220.5
64 417670 84.5 588012 226.5 407192 272.7

tbdlinux 4 33759 40.6 26123 162.9 25734 191.9
16 77230 66.1 87537 269.4 74637 290.5
64 145759 82.8 200252 308.2 151205 339.3

stanford 4 886 19.8 935 36.1 845 75.2
16 3226 33.8 3398 63.0 3039 130.5
64 9668 45.5 9296 85.4 8307 167.1

polyDFT 4 8772 20.8 8841 99.9 8582 122.8
16 34099 38.7 36480 143.5 34867 219.1
64 73337 53.8 82544 188.8 73292 285.5

cage13 4 117124 52.3 89540 110.4 89337 140.5
16 250480 93.1 189084 171.3 189110 246.2
64 436944 125.9 333876 228.1 333562 330.1

stanford-berkeley 4 1128 24.7 1482 116.7 1010 134.6
16 4598 51.9 5161 249.6 4190 259.9
64 14734 81.1 14739 388.2 13003 383.5

Table 2: Communication volume (in data words) and partitioning time (in
seconds) of three different partitioning methods, using the Mondriaan sparse
matrix partitioning package with PaToH as hypergraph bipartitioner. The
results are given for partitioning into p parts of the 10 test matrices from
Table 1.

4



References

[1] Ümit V. Çatalyürek and Cevdet Aykanat. A fine-grain hypergraph model
for 2D decomposition of sparse matrices. In Proceedings Eighth Interna-
tional Workshop on Solving Irregularly Structured Problems in Parallel
(Irregular 2001), page 118. IEEE Press, Los Alamitos, CA, 2001.

[2] Brendan Vastenhouw and Rob H. Bisseling. A two-dimensional data dis-
tribution method for parallel sparse matrix-vector multiplication. SIAM
Review, 47(1):67–95, 2005.

5




