
The Past, Present and Future of High
Performance Computing

Ruud van der Pas1

Sun Microsystems, Technical Developer Tools
16 Network Circle, Mailstop MK16-319, Menlo Park, CA 94025, USA

ruud.vanderpas@sun.com

Abstract. In this overview paper we start by looking at the birth of
what is called “High Performance Computing” today. It all began over
30 years ago when the Cray 1 and CDC Cyber 205 “supercomputers”
were introduced. This had a huge impact on scientific computing. A very
turbulent time at both the hardware and software level was to follow.
Eventually the situation stabilized, but not for long.
Today, there are two different trends in hardware architectures and have
created a bifurcation in the market. On one hand the GPGPU quickly
found a place in the marketplace, but is still the domain of the expert. In
contrast to this, multicore processors make hardware parallelism avail-
able to the masses. Each have their own set of issues to deal with.
In the last section we make an attempt to look into the future, but this
is of course a highly personal opinion.

Keywords. High Performance Computing, HPC, MPI, OpenMP, GPGPU,
Multicore

1 Introduction

In this paper we review the past and present of “High Performance Computing”,
(HPC), followed by an outlook into the future.

The next section fairly extensively explores the past of HPC. This is not
only because it allows us to better understand the current situation, but also
anticipate what the future might bring.

In section 3 we summarize the present situation, but make a distinction in
time here. Until not so long ago, the HPC landscape was fairly stable. Recent
changes caused quite a disruption, giving rise to two different and diverging
trends.

In the last section we try to project how these trends might evolve and what
the future could bring.

2 The Past

High Performance Computing (commonly abbreviated as “HPC“) started in the
mid 1970’s. Those days, certain computer systems were specifically designed

Dagstuhl Seminar Proceedings 09061 
Combinatorial Scientific Computing 
http://drops.dagstuhl.de/opus/volltexte/2009/2083



2 Ruud van der Pas

for scientific computing and their performance was so impressive that the term
“supercomputer” was coined and stuck for a relatively long time.

The two most well-known initial representatives were the CDC Cyber 205
and Cray 1 [1] systems, very expensive, but extremely powerful, mainframes.
Their peak performance was 200 Mflop/s (“Million Floating Point Operations
per Second”) and 160 Mflop/s respectively. This is very low compared to what
is available today, but a revolution a little over 30 years ago.

These designs were optimized for operations on vectors, but there were vast
architectural differences. In both systems, vector processing was tightly inte-
grated to perform basic operations on entire vectors very fast and efficiently.
The vector units could, for example, add two vectors or perform an update on a
vector using one or two instructions. An instruction that could not be handled
by the vector hardware was executed in the more conventional and much less
powerful scalar unit. Due to the need to quickly move the data in and out, the
memory subsystem had a very high bandwidth.

Given vector based algorithms are rather dominant in scientific computing,
the choice to optimize the design for these kind of operations should not come
as a surprise.

This design choice was not only a strength, but also a weakness. In order
to get good performance out of these systems, a very significant portion of the
execution time had to be spent in the vector hardware.

This was relatively easy to find in certain classes of algorithms, in particular
numerical linear algebra methods. Even in these favorable cases, achieving near
peak performance could however still be hard and often required non-portable
extensions to be used.

In a certain way, life was easy. For a while, there were two main architec-
tures to choose from. The programming language was Fortran, but in some cases
assembly coding was needed to get the full performance benefit. Certainly com-
pared to more modern processors, these vector processors were fairly simple and
straightforward. The performance was often even predictable by just analyzing
the assembly code.

There was also another side of this coin though. Tapping the full performance
potential was very hard in many cases. In order to obtain a substantial percentage
of the peak performance, a significant portion of the execution time had to be
spent in the vector units, not the scalar part of the system. The common phrase
for this was “the application had to be well vectorized”. Unfortunately, Amdahl’s
Law is hard to beat. This law states that the fraction of the execution time that
is not significantly optimized, limits the performance gains. For example, if 20%
of the total time is not vectorized, the program can never be more than 5 times
faster, regardless how fast the vector units are.

The software environment was very bare bones compared to what is available
today. Compiler technology was in its infancy, forcing users to resort to all sorts
of low level and often non-portable tricks. Batch queues had to be used to submit
jobs, sometimes even with an architecturally different front-end system, making



The Past, Present and Future of High Performance Computing 3

it very hard to develop and test the application prior to running the production
job(s).

A few years later the landscape started to change. Several Japanese vector
systems became more widely commercially available. Not only did they deliver
impressive performance, the software had also improved. Meanwhile companies
like CDC and Cray also continued to innovate and improve their designs, as well
as improve the development environment.

At the same time, attached co-processors gained popularity in certain mar-
kets. Although much lower in cost, it was not easy to program these systems.

Then something interesting happened. The first “mini supercomputers” ap-
peared. Often they were architecturally very similar to the Cray design and that
is why they were also sometimes referred to as “Baby Crays”.

Although not as powerful as their bigger counterpart, they offered an at-
tractive alternative to many. Not only were they much cheaper, they also used
an interactive (Unix) Operating System. This was augmented by easier to use
software for application development and performance tuning. It is therefore
no surprise these systems were quite successful, although they never entirely
replaced the more powerful vector systems.

At about the same time, the first parallel systems appeared. The vector
processors from Cray, but also from mini supercomputer vendor Convex for
example, were turned into a shared memory architecture with 2-8 processors.

An interesting architecture was developed and marketed by Alliant. It did not
use vector technology, but had a shared memory architecture based on Motorola
processors. Transparent to the user, the system had both interactive, as well as
execution processors.

Also distributed memory parallel systems became commercially available.
The most well-known examples of the this type of computer are probably the
Intel Hypercube and the Connection Machine series (“CM”) manufactured and
sold by Thinking Machines.

Market acceptance of parallelism was however, and unfortunately, low to
poor. In a way the hardware technology was very much ahead of its time. To
make matters worse, the parallel programming models were all different and
proprietary, greatly inhibiting application portability.

By the mid 80’s a very disruptive change took place. The “killer micro”
appeared on the supercomputing stage and never left again.

Initially, the commodity microprocessors of those days were no match for the
dedicated and highly tuned vector systems in particular.

Soon however, this situation started to change. New and improved designs
came to market in rapid succession. The vector processors could not keep up
with this pace. Although still substantially faster, the performance gap slowly,
but steadily, reduced. The volume element also started to play a role. For the
same amount of money, one could purchase significantly more microprocessors.

On top of that, these processors were used in small shared memory systems.
With the MIPS R8000 processor and Power Challenge system, Silicon Graphics
was a clear leader in this area.



4 Ruud van der Pas

Thanks to the relatively low price, it was attractive to cluster microprocessor
based systems to form a parallel computer.

The emerging architectures were sufficiently different to warrant a new de-
scription of this part of the market. The more general, but still specific, “High
Performance Computing” (HPC) term was increasingly used and is common
terminology to the present day.

Although by this time substantial improvements in compiler technology had
been made, especially regarding serial performance and vectorization, paralleliza-
tion was still lagging behind.

Automatically parallelizing compilers for shared memory systems were avail-
able, but their use and capabilities were limited. In addition to this, compilers
supported proprietary extensions to explicitly express and control parallelization
both for shared memory, as well as distributed memory programming.

Although there were many common features, the differences in functionality
and syntax were substantial enough to seriously hinder portability.

3 The Present

For a while, HPC has been going through a stabilizing period. Until very recently,
the landscape converged to a fairly standard set of components, both at the
hardware, as well as software level. Then things started to change in a rather
disruptive way. This is why we would like to distinguish between two notions of
“the present” in the next two subsections.

3.1 The Previous Present

Over time, market forces and the realization that parallel programming models
should be standardized, created a more stable situation.

At the hardware level, the majority of HPC systems were eventually based
on microprocessors, no longer on vector technology. As one might expect, the
main features of the latter crept into commodity hardware, although substantial
differences remained. Especially regarding the memory subsystem.

A significant feature all HPC systems have in common is that they all consist
of clusters of systems. The size and architecture of the “nodes” may be vastly
different, but the choice regarding the interconnect is limited.

Aside from the microprocessor taking over, the biggest revolution took place
at the software level. In addition to Fortran and C, C++ became a supported
and more commonly used programming language in HPC for example.

The real breakthrough was in the area of parallel programming, however.
The first big step forward was made through the “Parallel Virtual Machine”

(PVM) library. For the first time, one could use a portable library to write and
execute a parallel program on a distributed memory system. Many platforms
were supported through PVM and it quickly became very popular as the pro-
gramming model of choice for a cluster of relatively small sized nodes, like a
cluster of PCs.



The Past, Present and Future of High Performance Computing 5

Despite this success, PVM has its limitations and there were still competing
programming models around.

The “Message Passing Interfacing” (MPI) [2] project addressed this. Several
groups and individuals joined forces to define a complete, powerful and portable
standard for distributed memory parallel computing. The first specification was
released in 1994, three years later followed by MPI-2. MPI has been extremely
successful and remains the distributed memory programming model of choice in
HPC.

Luckily, very good progress was made on the shared memory side as well.
In particular, OpenMP [3] has established itself as the main programming

model for shared memory parallel systems. Similar to the situation for dis-
tributed memory systems, acceptance of shared memory parallel programming
was seriously hindered by portability issues, as well as significant differences in
functionality.

From the first specification in 1997, OpenMP provided a small, yet power-
ful and portable, programming model for shared memory systems. The tasking
concept introduced with the 3.0 specification released in 2008 makes it possible
to more conveniently parallelize a wider range of applications.

3.2 The Current Present

The reasonably stable situation sketched in the previous section did not last
very long however. Two trends in hardware development create a bifurcation in
today’s trend in HPC.

The increasingly powerful graphics co-processor in systems attracted atten-
tion to be used as an additional compute device. In just a few years, interest
in this technology increased dramatically. These kind of processors are usually
referred to as “GPGPU“ (General Purpose Graphics Processing Unit) or ”GPU”
for short. They have several restrictions, but a huge performance potential. En-
couraging results are realized. As getting the data in and out is relatively slow,
they are currently more suitable for algorithms and applications that are more
CPU than I/O dominated.

This trend does not stop with a single accelerator card. These processors
can be used as a building block in a massively parallel system with a primarily
distributed memory architecture. For performance reasons there could also be
a relatively small portion of shared memory. This can, for example, be used for
fast data exchange across the parallel system.

Several such products are available on the market today and have found their
own place in the HPC market.

The programming model is still an issue. Although the recent OpenCL [4]
standard may help, programming for such systems is still specific to the target
architecture and the application can not be used on a general purpose system.
Tapping the potential also requires quite a lot of low level detail at the application
and architecture level for the developer to consider. Therefore, this is still the
domain of a small group of expert HPC developers.



6 Ruud van der Pas

At about the same time, the opposite trend also occurred. Thanks to advances
in process technology, chip designers were able to put multiple cores onto one
processor.

Simply said, a core is a piece of hardware that can execute an application.
There are vast differences across the various designs, but for our purpose it is suf-
ficient that a multicore processor can be seen as a (small) parallel system. Under
the hood a fairly complex cache subsystem can be found, consisting of caches
exclusive to the core, as well as shared caches accessible to all cores. Thanks
to cache coherence, this is transparent to the developer, turning a multicore
processor into a shared memory parallel system.

This has huge implications, however. Multicore even makes a laptop or PC, a
small parallel computer. After two decades, parallelism has reached the masses.

What is equally important is that the existing software environment can be
used to program such systems. A native threading model, OpenMP, or MPI, are
all available and at the program development level there is no need for changes.
This means that previous parallelization efforts are preserved.

There is, however, one major difference compared to a single core system:
parallel programming requires a new set of skills and most developers lack this
background. It will take some time before a large number of developers “think
parallel”, but the arrow points in one direction only. An increasing number
of applications will take advantage of the parallelism made available through
multicore technology.

4 The Future

In the final section of this paper we try to look into the future, but obviously
this outlook is limited by the personal view of the author.

For some time, it can be expected that the gap in the bifurcation continues
to widen.

The GPUs will increase in computational power and lift restrictions over
time, although the relatively slow connection with the main processor will remain
to be a bottleneck. As more and more developers are attracted to this platform,
there will be more of an incentive to ease the application development cycle.
Already the first encouraging signs of an easier to use development environment
appear, but this is still in its infancy.

Meanwhile, hardware alternatives are explored, for example by combining
a very fast special purpose compute device with a multicore architecture. This
provides a much tighter hardware integration with the associated performance
benefits. There are several serious hurdles to be taken still though. In particular
there are challenges at the software level, but these are not insurmountable and
might provide a very viable alternative to the current GPGPU based parallel
systems.

Regardless of this, and recalling history, it is probably inevitable that the
current situation will evolve to a much more integrated architecture. This will



The Past, Present and Future of High Performance Computing 7

lower cost, improve performance and accelerate wider adoption. It is not hard
to see the benefits of these features and therefore this is likely to happen.

The multicore trend forces developers to think about parallelization, but
parallel programming remains hard. Admittedly, tool support has improved,
but identifying the parallelism, getting the correct results and realizing scalable
performance are challenges not to be underestimated.

Interestingly, these are the same problems the GPGPU developer is faced
with. The key difference is that this person often has some, or substantially,
more experience parallelizing an application. Eventually, the less experienced
developer for multicore will get there too though.

As has always been the case, the leapfrog model ensures that architectures
and software converge. Tighter hardware integration will address the bottlenecks
of today and disjoint programming models converge to a unified standard. This
is when the two trends will start to grow towards each other, eliminating the
current bifurcation.

In the mean time, parallel programming has never been as exciting as it is
today. By the time the bifurcation is closed again, there are undoubtedly new
and very complicated challenges to address, because that is probably the best
definition of “High Performance Computing”.

References

1. The Supermen: The Story of Seymour Cray and the Technical Wizards Behind the
Supercomputer, John Wiley and Sons, ISBN: 978-0-471-04885-5, 1997.

2. http://www.mcs.anl.gov/mpi
3. http://www.openmp.org
4. http://www.khronos.org/opencl

http://www.mcs.anl.gov/mpi
http://www.openmp.org
http://www.khronos.org/opencl

	The Past, Present and Future of High Performance Computing
	Ruud van der Pas 



