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Abstract

Combining the logic of hereditary Harrop formulas HH with a constraint sys-
tem, a logic programming language is obtained that extends Horn clauses in two
different directions, thus enhancing substantially the expressivity of Prolog. This
new language is parametric over the constraint system. A constraint solver for
a particular instance will test the satisfiability of formulas built up by means
of terms and predicates belonging to the particular domain, and by the connec-
tives and quantifiers usual in first-order logic. We introduced a useful constraint
system called RH, which is a hybrid domain mixing Herbrand terms and real
numbers. For such system, a procedure to simplify constraints was provided. It
is based on the combination of two different eliminating quantifiers mechanisms,
one used for solving unification and disunification problems, the other used to
solve the part of the formulas that only contains real predicates. In this paper we
review and extend the presentation of the language as well as of the simplifica-
tion procedure. Moreover a novel algorithm to check the satisfiability of a class
of simplified constraints is introduced. In this way, we have provide a procedure
to solve RH-constraints in the context of HH with constraints.

Keywords: constraint systems, hereditary Harrop formulas, real numbers, finite
symbolic trees, first-order logic.

1 Introduction

Constraint logic programming CLP [10] arises as an extension of the traditional logic
programming, in which only Horn clauses are allowed, with the purpose of overcoming
its inherent limitations in dealing efficiently with elements of domains different from
Herbrand terms. In order to build an implementation, it is necessary to find a com-
bination of the goal solving procedure, concerning the logic part of the language (e.g.
SLD-resolution [14] for Horn clauses), with a decision mechanism for constraint satis-
fiability, capable of generating a set of answers that somehow captures the whole set
of valid answer constraints for any goal, which will depend on the specific domain of
the constraint system.
∗The authors have been supported by the Spanish National Project TIC 2002-01167 MELODIAS
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This kind of extension is also dealt with in [13, 12]. However, in both cases, the
base language is the logic of Hereditary Harrop formulas HH (first-order and higher-
order, respectively). Such logic is in addition an extension of the logic of Horn clauses
in which implications and universal quantification are allowed in goals [16]. SLD-
resolution, which deals with equality between Herbrand terms by means of unification,
is no longer a choice for this extension, mainly due to the existence of prefixes with
mixed quantifications, i. e. prefixes containing both ∃ and ∀ arbitrarily ordered. In
[17], a method based on labeled unification is used for HH. However, in HH(C), which is
the extension of HH including constraints, the technique to obtain answer substitutions
by means of unification is replaced by a test of the satisfiability of constraints under
a mixed prefix. As a consequence, the specific mechanism to decide the satisfiability
should be able to deal with complex formulas, which may contain occurrences of any
connective in first-order logic, equations between Herbrand terms and, moreover, other
relations belonging to the constraint signature applied to terms of the instance domain.

Following one of the open research lines mentioned in [13], we have searched for
decidable theories which lead to useful first-order constraint systems, in order to use
them as instance domains for the abstract logic programming language HH(C). The
natural domain, traditionally used in declarative programming, is the Herbrand uni-
verse, which consists of symbolic terms built up with constants and the application of
function symbols to other terms. Constraints in the latter domain involve equalities
and disequalities between such terms, which may occur embedded in expressions to-
gether with several connectives and quantifiers, as reasoned before. This domain has
been axiomatized and decision mechanisms have been described for the corresponding
theory [15, 6]. However, since our approach can be considered as a CLP language, a
wider domain is demanded, for which the tests of the satisfiability will be independent
of the general goal solving procedure. The fields of application of CLP with constraint
domains comprising the field of real numbers are abundant and very well known [10, 11].
In addition, thanks to the results due to Tarski about the decidability of the theory
of real closed fields [19], this domain becomes a good choice as a constraint system in-
stance. The present paper is an extended version of [7]. There we mixed the theory of
real closed fields and the one of Herbrand terms, producing a constraint system called
RH and the induced instance HH(RH) of the programming language based on HH
with constraints. A partial algorithm to solve such RH-constraints was also described.
Now those notions are reviewed, performing slight, suitable modifications, and the pre-
sentation of the algorithms has been simplified and improved, as well as enriched with
proofs that state their correctness. In addition, new results are also included, mainly
a procedure responsible for the RH-satisfiability decision of a subclass of constraints
denominated elemental constraints.

There are other works in the literature which also introduce mixed numeric and
symbolic domains (see e.g. [2, 5, 9]), but as far as we know all of them deal with
the logic of Horn clauses, which implies that quantifiers in the goals are limited to
be existential. Other approaches of decision procedures for combined theories, as [18],
apply only to universal quantified formulas.

The structure of the rest of this paper is as follows. In Section 2, the constraint
system RH is introduced in the context of the logic of hereditary Harrop formulas with
constraints, and the expressive power of HH(RH) is illustrated. Section 3 is dedicated
to present some preliminary definition and simple algorithms, useful to describe the
procedure solving RH-constraints. The first phase of this solver is explained in Section
4. The main results show up in two steps. In the first one, two rules that constitute
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the core of a procedure to transform RH-constraints into simpler ones are presented,
together with the definitions and technical results needed to argue their foundations.
In the second one, the algorithm that constitutes this procedure is detailed. Finally,
its behavior is shown through examples. The second phase of the solver consists on
the decision of the satisfiability of the output of the first phase. An algorithm to
solve this problem for a subclass of RH-constraints is carefully explained in Section
5. Finally, Section 6 contains a summary of the contributions of our work and states
future research.

2 The Constraint System RH
The logic of Hereditary Harrop formulas HH [16] arises when extending the logic of
Horn clauses, on which the traditional logic programming language is based, relaxing
the conditions over the structure of clauses and goals. Specifically, the connectives ⇒
and ∀ are allowed in goals. A logic programming language called HH(C) is defined
in [13], incorporating constraints of a generic constraint system C to HH. In it, the
language and the conditions over a system C to be a valid choice as constraint system
are specified, but no constraint solver for any particular system is studied. HH(C) may
be briefly presented as the logic programming language whose clauses D and goals G
are given by the following rules:

D ::= A |G⇒ A |D1 ∧D2 | ∀xD,

G ::= A |C |G1 ∧G2 |G1 ∨G2 |D ⇒ G |C ⇒ G | ∃xG | ∀xG,

where A stands for atomic formulas, and C for constraints of the system C.
The present paper focuses on a specific constraint systemRH = 〈LRH,`RH〉, which

mixes Real numbers and finite symbolic trees (or Herbrand terms). LRH denotes
the set of formulas allowed as constraints, and `RH is the entailment relation that
represents deducibility of a constraint C from a set of constraints Γ. LRH is a set of
first-order formulas whose terms and atoms are built up using typed symbols belonging
to a signature ΣRH. We agree on the existence of two sorts: r for real numbers, and
h for Herbrand terms. Combining these basic types, types τ1 × . . . × τn for predicate
symbols and τ1 × . . . × τn → τ for function symbols are built, where τ, τi ∈ {r, h},
1 ≤ i ≤ n. τ will stand for any type, and o : τ specifies that object o is of type τ . ΣRH
will contain:

• Constants, denoted by c. Some of them represent real numbers (−4.32, 1/2, . . .),
and there is also a denumerable set of symbolic constants.

• Arithmetical operators +,−, ∗ : r × r → r, and a finite or denumerable set of
symbolic functions f : τ1 × . . .× τn → h, where τi ∈ {r, h}, 1 ≤ i ≤ n.

• The predicate symbol ≈: τ × τ , where τ ∈ {r, h}, for equality between terms of
the same type.

• The symbols <,>,≤,≥: r × r, for the classical order between real numbers.

Let V = Vh ∪ Vr be the set of variables ν, where Vh is a denumerable set of
variables of sort h, called symbolic variables, denoted with uppercase letters, and Vr
is a denumerable set of variables of sort r, denoted with lowercase letters. The set of
terms TRH, with elements denoted t, is defined by the rule:
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t ::= ν | c | f(t1, . . . , tn) | t1 + t2 | t1 − t2 | t1 ∗ t2

where f : τ1 × . . .× τn → h and ti : τi, 1 ≤ i ≤ n. Notice that infix notation is used for
arithmetical operators, and that the included terms t1 and t2 must be of type r.

The atoms of LRH are built up using the predicate symbols in ΣRH (with infix
notation) and the terms in TRH. It also contains the constraints > and ⊥, which stand
for true and false, respectively. The existence of different connectives and quantifiers in
goals forces the constraint system to be able to express and deduce complex constraints
during the goal solving process, which specifically contain a mixed prefix of quantifiers.
So, LRH must be enforced to be closed under ∧,∨,∃,∀ and ¬. For instance, if the
signature contains the symbols cons : r×h→ h and nil : h for the list constructor and
the empty list, respectively, the formula

∀x∃X(X ≈ cons(x ∗ (2− z), cons(−10.3, cons(z, nil))) ∧ ∃y(z ≥ x+ y))

is an RH-constraint. The constraints with the form t1 ≈ t2, where t1, t2 : h, will be
referred to as equalities, and the ones with the form ¬(t1 ≈ t2) as disequalities. A
polynomial, denoted by p, is a quantifier-free constraint such that its atomic subfor-
mulas are built up exclusively by means of predicate symbols and terms of type r. For
instance, the constraint

(x ≈ z ∗ z − (x ∗ (2.5 + (1/5) ∗ y)) ∨ z ≥ x)⇒ y ∗ y > 4.24

is a polynomial. The notation t(ν) or p(ν) will specify that ν is a set of variables
comprising the ones occurring in t, or p, respectively. The substitution of a list of
different variables ν by a list of terms t of the same cardinality and corresponding types
will be denoted by [t/ν], and its application to a term or formula, denoted F [t/ν], is
defined in the usual way, avoiding the capture of free variables. [t/ν] is said to be a
symbolic ground substitution if t contains no symbolic variables. It must be understood
in the sequel that, given two lists of terms s ≡ s1 . . . sn and t ≡ t1 . . . tn, where n ≥ 0,
s ≈ t stands for s1 ≈ t1 ∧ . . . ∧ sn ≈ tn.

The deducibility relation between constraints, `RH, is defined as the result of com-
bining the classical deducibility relation with equality, `≈, with the axiomatization
AxR for the real closed fields due to Tarski [19], plus the axiomatization AxH for the
Herbrand universe due to Clark [4]. I. e., given any set of constraints Γ and any con-
straint C, Γ `RH C if and only if Γ ∪ AxR ∪ AxH `≈ C. The relation `RH satisfies
that C1 `RH C2, if and only if, for any symbolic ground substitution σ, C1σ `RH C2σ
holds.

C is said to be RH-satisfiable if ∅ `RH ∃C, where ∃C stands for the existential
closure of C. We say that C and C ′ are RH-equivalent, denoted by C ≡RH C ′, when
C `RH C ′ and C ′ `RH C. `RH satisfies that if C1 ≡RH C2 and C `RH C ′[C1] (C1 is
a subformula of C ′), then C `RH C ′[C2] (C1 is replaced by C2 in C ′).

Using this mixed constraint system as parameter, we obtain the instance HH(RH)
of the logic programming language of hereditary Harrop formulas with constraints. As
in CLP, the result of solving a goal using a program will be an answer constraint.
Any goal solving procedure for HH(RH) (such as the general one defined in [13] for
HH(C)) should incorporate a constraint solver capable of dealing with the satisfiability
of partially or totally calculated answer constraints. Therefore, our goal has been to
deal with the RH-satisfiability problem for RH-constraints. As far as we know, such
task has not yet been proven decidable nor undecidable. It is important to notice
that due to the fact that mixed quantifier prefixes may bind both real and symbolic
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variables, no separate solvers dealing with Herbrand terms and reals, respectively,
can be used. Specifically, it does not seem possible to take advantage directly of the
mechanism defined in [18] for combining decision procedures for several theories into a
single solver for their combination. The procedure presented in this paper is a partial
solver, only suitable for a subclass of RH-constraints.

Before going down into the details of the solving procedure, a simple example
is shown in order to give evidence of the expressivity and syntactic components of
HH(RH).

Example 1 The RH-constraints used in this example are polynomials, equalities or
disequalities between lists of real numbers. The notation is that adopted in the language
prolog, plus ⇒ for implication and ∃, ∀ for existential and universal quantifiers in
goals.

Let us consider a students database, and suppose that the students taking a specific
course must solve several exercises, which are graded. The number of exercises is not
fixed. In order to pass, any student should obtain marks between 0 and 10, and an
average grade of at least 5.0. In addition, any student with marks higher than 9.0 in
at least the half of the exercises gets a scholarship. The grades of some students are
stored in the database. Other can be temporarily introduced in order to formulate
hypothetical queries. One of the problems that students may tackle is to calculate the
marks required in future exercises in order to get a scholarship.

The available information is gathered in the following program in HH(RH). The
grades obtained by the student named juan are stated by the first fact of this program.
We assume standard prolog definitions for the predicates sumelem(L,S), that given
a list L succeeds if S is the sum of its elements, and numelem(L,N), which succeeds if
N is the number of elements of L.

grades(juan,[10,9.3,5]).
pass(X,L) :- grades(X,L), suitable(L), average(L,N), N>=5.
average(L,S) :- numelem(L,N), sumelem(L,N * S).
suitable([]).
suitable([X|L]) :- 0 <= X <= 10, suitable(L).
scholarship(X) :- pass(X,L),numelem(L,M),greatereq9(L,N),N>=(1/2)*M.
greatereq9([],0).
greatereq9([X|L],N+1) :- X >= 9, greatereq9(L,N).
greatereq9([X|L],N) :- X < 9, greatereq9(L,N).
convenient(X,L) :- grades(X,L) ⇒ scholarship(X).

The last clause allows to stablish hypothetical queries to the database and inves-
tigate the possible marks that a student should obtain in order to get a scholarship.
When a goal convenient(S, L) must be solved, for a student S with a list L of grades,
the fact grades(S, L) is temporarily introduced into the database during the solving
of the goal.

Let us suppose that the student pedro wishes to know which mark he should try
to get in the first two exercises, knowing that in the last his mark is 5, and he wants
to get a scholarship, but not with the same grades as juan. This question may be
expressed by the following goal, that includes a disequality between lists os reals.

∃L(grades(juan,L), convenient(pedro,[X,Y,5]), [X,Y,5]6=L).
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The goal solver procedure should call a RH-constraint solver in order to produce the
expected answer constraint, namely:

(9 ≤ X < 10 ∧ 9 ≤ Y ≤ 10) ∨ (9 ≤ X ≤ 10 ∧ 9 ≤ Y ≤ 10 ∧ Y 6= 9.3).

Note that the variable L does not appear in the answer, because it is quantified in the
goal.

Now, suppose that pedro wants to know if he may pass, knowing that his grade is
the third part of juan’s grade in the second exercise and the half of juan’s grade in
the first one. The answer to his dilemma should be yes and can be obtained by solving
the existential goal:

∃A ∃B ∃L1 ∃L2(grades(juan,[2*A, 3*B |L1]), grades(pedro, [A,B|L2])
⇒pass(pedro, [A,B|L2])).

The following sections are devoted to describe a solving procedure for RH-cons-
traints.

3 Classifying RH-Constraints

The mechanism we will introduce to solve RH-constraints is founded on a transfor-
mation of constraints into simpler RH-equivalent ones, called elemental constraints, in
which the real and symbolic parts are arranged in such a way that we are able to decide
its RH-satisfiability. Some steps in this simplification make use exclusively of proper-
ties of the connectives in first-order logic; others are based on the axiomatizations of
the algebra of finite trees and real closed fields; the essential part is that dealing with
quantifier elimination. The transformation mechanism combines the techniques due to
Maher [15] for symbolic quantified variables, with the elimination of quantifiers over
real variables using of Cylindrical Algebraic Decompositions (CAD) [3].

Several definitions are needed prior to the presentation of the procedure.

3.1 Solved Forms, Basic Formulas and Elemental Constraints

In order to define the concept of elemental constraints, whose RH-satisfiability we are
able to decide, we previously introduce some notions regarding some constraints that
play a special role during the description of the procedure presented later.

Definition 1 A system of equalities E is a finite conjunction of equalities. A system
of equalities and polynomial E is a conjunction of a system of equalities and one
polynomial.

Definition 2 E is said to be a solved form if E ≡ X ≈ t(U, x) ∧ p(x), where each
variable in X appears exactly once. The variables in U will be referred to as parameters
of the system, and the ones in X as its eliminable variables. If X ≈ t appears in E
and V occurs in t, we say that X depends on V . Given two systems of equalities and
polynomial, E1 and E2, E2 is said to be a solved form of E1 if E1 ≡RH E2 and E2 is
a solved form.

Definition 3 A basic formula is a constraint of the form ∃UE, where E is a system of
equalities in solved form and U its set of parameters. The constraint > is also regarded
as basic.
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The set of boolean combinations of basic formulas is defined as the least set that
contains every basic formula and is closed under ∨, ∧ and ¬.

In the sequel, basic formulas will be denoted by b, possibly with sub or superscripts.

Definition 4 An RH-normal form is a constraint of the form C1 ∨ . . . ∨ Cn, n ≥ 1,
where Ci ≡ bi∧¬bi1∧ . . .∧¬bik ∧pi, k ≥ 0, 1 ≤ i ≤ n. A quantified RH-normal form is
a constraint of the form ΠC, where C is an RH-normal form and Π is a sequence of
quantifications. An elemental constraint is a quantified RH-normal form Π1Π2C, in
which Π1 is a sequence of existential quantifications and Π2 binds only real variables.

In the search process forRH-equivalent elemental constraints, there are two ways of
eliminating real quantifiers, one of them simplifies constraints containing polynomials
following the definition below.

Definition 5 A solved polynomial on x is a polynomial of the form (x ≈ t1 ∧ p1) ∨
. . . ∨ (x ≈ tl ∧ pl), where x does not appear in t1, . . . , tl, p1, . . . , pl.

The idea behind this definition is that the variable x can be represented as a func-
tion of the others, by means of a finite number of equations that can be seen as real
substitutions. Then it is allowed to replace the existential quantifier over x by the
disjunction of the application of the different substitutions.

3.2 The Algorithm Solve-Tree

In this subsection an algorithm is described whose purpose is to find a solved form of
a system of equalities and polynomial. It is based on the standard rules for equality
solving in the algebra of finite trees [8]. The algorithm, designated by solve-tree,
simply consists on the sequential, nondeterministic application of the rules below, until
none of them can be applied. Such rules are written in the form E1

E2
, which means that

the system of equalities and polynomial E1 may be transformed by this rule into the
system E2.

solve-tree:

1) f(t1,...,tn)≈f(t′1,...,t
′
n)∧E

t1≈t′1∧...∧tn≈t′n∧E
for any symbolic function symbol f .

2) f(t1,...,tn)≈g(t′1,...,t
′
m)∧E

⊥ if f and g are different symbolic function symbols.

3) c≈c′∧E
⊥ if c and c′ are different symbolic constants.

4) X≈X∧E
E

5) t≈X∧E
X≈t∧E if t is not a variable.

6) X≈t∧E
X≈t∧E[t/X] if X does not occur in t, and X occurs in some equality in E.

7) X≈t∧E
⊥ , if t is not a variable and X occurs in t.

In the rule 1), the expressions ti ≈ t′i, ti, t
′
i : r, obtained by decomposition, are con-

junctively added to the polynomial of E.
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Properties of solve-tree:
• Every rule in solve-tree is sound, in the sense that, if it transforms a system
E1 into E2, then both systems are RH-equivalent.

• For any E used as input, solve-tree terminates, producing a solved form for E
if there is any, or ⊥ otherwise. In the latter case, we say that it fails.

• A system of equalities and polynomial X ≈ t∧p is a solved form if and only if no
rule can be applied to it. It is RH-satisfiable if and only if it has a solved form
X ≈ t ∧ p and p is RH-satisfiable.

• solve-tree provides for a solved form E′ of a system E, if there is any. However,
E may have other solved forms, characterized as follows. Let Θ(E′) be the set of
variable renames θ with domain and range exactly the set of symbolic variables
free in E, and such as, if V θ = V ′ 6= V , then V ≈ V ′ or V ′ ≈ V is in E′.
Then, for every θ ∈ Θ(E′), E′θ is another solved form of E. Conversely, for
every other solved form E′′ of E, there exists θ ∈ Θ(E′) such that E′θ has the
same eliminable variables that E′′. The elements of Θ(E′) can be regarded as
permutations, in the classical algebraic sense, of the set of symbolic variables free
in E. Particularly, if θ ∈ Θ(E′) is the permutation of exactly two variables V1

and V2, then we say that E′θ is obtained by swapping the equality V1 ≈ V2 of E′,
i.e., if E′ ≡ V1 ≈ V2 ∧E′′ the swapping which interchanges V1 and V2 transforms
E′ into V2 ≈ V1 ∧ E′′[V1/V2].

3.3 The Algorithm for RH-Normalization

We are able to decide the RH-satisfiability of elemental constraints (see Subsection
5). Therefore, the first aim of the RH-constraint solver will be to reach elemental
constraints by eliminating quantifiers of quantified RH-normal forms. During the
process, it will often be necessary to transform boolean combinations of basic formulas
and polynomials into RH-equivalent normal forms. Such normalization can be easily
accomplished using the algorithm described below.

normalize:

1) Distribute every negation, until the scope of all of them is a unique basic formula.
Transform the result into a disjunction of constraints of the form b1 ∧ . . . ∧ bn ∧
¬b′1 ∧ . . . ∧ ¬b′m ∧ p under a quantifier prefix.

2) Each constraint C ≡ b1 ∧ . . . ∧ bn ∧ ¬b′1 ∧ . . . ∧ ¬b′m ∧ p in such disjunction with
n > 1 must be replaced by b ∧ ¬b′1 ∧ . . . ∧ ¬b′m ∧ (p ∧ p′), where b and p′ are
obtained as follows:

2.1) Let bi ≡ ∃U
i
(Xi ≈ ti), 1 ≤ i ≤ n, and let E ∧ p′ be the solved form of

X1 ≈ t1 ∧ . . . ∧ Xn ≈ tn, produced by solve-tree, if it does not fail.
Otherwise, C is simply removed from the original disjunction.

2.2) Let U = U
1 ∪ . . . ∪ Un. Let E′ be the result of eliminating in E all the

equalities concerning the eliminable variables of E belonging to U , and let
W be the set of variables of U not appearing in E′. Then, b ≡ ∃U\WE′.

In the special case in which all the constraints C in the disjunction were removed,
the output is defined as ¬>, that is the negation of a basic formula, hence a RH-
normal form.
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4 Eliminating Quantifiers

The procedure that transforms aRH-constraint into a simpler one proceeds performing
quantifier elimination in quantified RH-normal forms. The goal of that procedure is
to find an elemental constraint RH-equivalent to the initial one. Nevertheless, some
conditions on the form of the constraint are needed in order to guarantee that the
elimination of a quantifier could be performed. We have found a condition, with respect
to the type and order on the occurrence of the real and symbolic quantifications. In
addition, a real quantifier may be removed in some other cases for which that condition
is not fulfilled. This is the case when the included polynomials are equivalent to others
that are solved on the variable whose quantifier will be eliminated. Linear polynomials
are an example of such case. See for instance the works included in [1], that show
techniques capable to find such solved forms.

Now the transformation algorithm as well as its theoretical foundations will be
presented.

4.1 Theoretical Foundations of the Transformation Algorithm

Quantifiers over real variables are eliminated using algebraic methods as CAD, [3]. The
elimination of symbolic quantifiers is based on two rules, (Pair) and (Elim), which
transform constraints into RH-equivalent simpler ones that are boolean combinations
of basic formulas. Such rules will be presented, together with the theorems that consti-
tute the foundations of their soundness. The theorem upon which the first rule relies
is similar to that presented in [15] for symbolic terms because, in some sense, the poly-
nomial has been isolated. Nevertheless, we have elaborated an original proof, based on
the entailment relation `RH instead of on the semantics, as it was done in [15], since
that specific semantics is not suitable for RH-constraints because the presence of real
terms inside symbolic functions. The following lemma is required in such proof.

Lemma 1 Let t be a term of type h, with free symbolic variables X, and let Γ be a set
of RH-constraints, with no free symbolic variables in X. Let t1, t2 be terms with no
free symbolic variables, and such that t2 results from t1, replacing one or more symbolic
subterms by new terms whose principal function symbol, or constant, does not appear
in t, t1,Γ. Then, if there is no substitution σ with domain X such that Γ `RH tσ ≈ t1,
there is also no substitution θ with domain X such that Γ `RH tθ ≈ t2.

Theorem 2 (Pair) Let b, b1, . . . , bn be basic formulas, n ≥ 1. Then,

F1 ≡ ∃Y (b ∧ ¬b1 ∧ . . . ∧ ¬bn) ≡RH ∃Y (b ∧ ¬b1) ∧ . . . ∧ ∃Y (b ∧ ¬bn) ≡ F2.

Proof: Without loss of generality, we can suppose that the sets of parameters in the
basic formulas b ∧ b1 ∧ . . . ∧ bn are disjoint, not containing occurrences of the variable
Y . It can also be supposed that Y appears as eliminable in all of them, since, for any
basic formula b? not containing occurrences of Y , b? ≡ ∃Y ′(b? ∧ Y ≈ Y ′), where Y ′ is
a variable not occurring in b?. Thereafter, b? may be replaced by ∃Y ′(b? ∧ Y ≈ Y ′),
and conversely. Let us write b ≡ ∃U,W E, where E ≡ X ≈ t(U, x) ∧ Y ≈ s(V ,W, x).
U is the set of symbolic variables in t. x is the set of variables of sort r in E. The set
of symbolic variables in the term s is divided in two, V and W , depending on whether
variables belong to U or not, respectively. Thus, V ⊆ U , and W ∩ U = ∅. For each
1 ≤ i ≤ n, we write bi in an analogous way, adding the superscripts i to every set of
symbolic variables. Let X

?
= (X ∪X1 ∪ . . . ∪Xn

)/Y .
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F1 `RH F2 is trivial. We will prove F2 `RH F1. Let σ be a symbolic ground
substitution with domain X

?
and let σ? be a symbolic ground substitution, extending

σ to U,W, Y , and such that for U it is defined in such a way that F2σ `RH (X ≈ t)σ?
holds; for each W ∈ W , let Wσ? be a term whose principal function symbol, or
constant, does not appear in F1σ, F2σ. Finally, let Y σ? = sσ?. Our goal is to prove
that F2σ `RH (E ∧ ¬b1 ∧ . . . ∧ ¬bn)σ?. Once this is proved, F2σ `RH F1σ will be
straightforward, and F2 `RH F1 is followed by the properties of RH.

Due to the definition of σ?, F2σ `RH Eσ? holds trivially. Therefore, it only remains
to provide a proof for

F2σ `RH ¬biσ?, 1 ≤ i ≤ n (†).

Let i, 1 ≤ i ≤ n, then F2σ `RH (∃Y (b ∧ ¬bi))σ holds. Hence, the entailment relation
`RH satisfies that there is a ground symbolic substitution σi, extending σ to U,W, Y
such that:

F2σ `RH (E ∧ ¬bi)σi (‡).

Let σ′i be a substitution that extends σi to U
i

for which F2σ `RH (X
i ≈ ti)σ′i, if there

is any. Otherwise, F2σ `RH (¬Xi ≈ t
i)σ′ for every substitution σ′ extending σ, and

(†) is straightforward. But if such σ′i exists, since (‡) implies F2σ `RH ¬biσi, there can
be no further extension σ′′i of it to W

i
such that

F2σ `RH Y σi ≈ si(V
i
σ′i,W

i
σ′′i , x) (]).

Now, in order to prove (†), we will show that there is no extension θ of σ? to U
i
,W

i

such that F2σ `RH Eiθ. Let us suppose that there is an extension θ′ of σ? to U
i

such
that F2σ `RH (X

i ≈ t
i)θ′. We conclude if we show that there is no such θ extending

θ′ to W
i
, for which F2σ `RH Y σ? ≈ si(V

i
θ′,W

i
θ, x) holds.

From (‡) we deduce that F2σ `RH (X ≈ t)σi, but σ? is a substitution for U
satisfying F2σ `RH (X ≈ t)σ?, thus F2σ `RH Uσi ≈ Uσ? holds. On the other hand σ′i
is a substitution for U

i
satisfying F2σ `RH (X

i ≈ ti)σ′i, and we are supposing F2σ `RH
(X

i ≈ t
i)θ′, hence F2σ `RH U

i
σ′i ≈ U

i
θ′. Therefore, it will be enough to prove

that there is no such extension θ for which F2σ `RH Y σ? ≈ si(V
i
σ′i,W

i
θ, x) holds.

From (‡) we obtain F2σ `RH Y σi ≈ s(V σi,Wσi, x), and using (]) we deduce that
there is no substitution σ′′i extending σ′i to W

i
such that F2σ `RH s(V σi,Wσi, x) ≈

si(V
i
σ′i,W

i
σ′′i , x). Hence, since s(V σ?,Wσ?, x) can be obtained from s(V σi,Wσi, x)

by replacing some subterms by terms whose principal symbol function, or constant, does
not appear in the previous formulas, Lemma 1 can be applied, and states that there
is no extension θ of θ′ to W

i
satisfying F2σ `RH s(V σ?,Wσ?, x) ≈ si(V

i
σ′i,W

i
θ, x),

concluding the proof since F2σ `RH V
i
σ′i ≈ V

i
θ′, and F2σ `RH s(V σ?,Wσ?, x) ≈

Y σ?, by definition of σ?.

We are finally ready to define the rule (Pair), whose purpose is to eliminate con-
junctions of negated basic formulas under the same existential quantifier.

Definition 6 The rule (Pair) replaces a formula of the form ∃Y (b ∧ ¬b1 ∧ . . . ∧ ¬bn)
by the RH-equivalent formula provided by Theorem 2.
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Now, we present several definitions and technical results useful to justify the rule
(Elim), which is the responsible for the elimination of symbolic quantifiers, together
with a proof of its correctness in Theorem 11.

Definition 7 Given two sets of symbolic variables V and W , and a system of equalities
and polynomial E, we say that E constrains V w.r.t. W if and only if, for every solved
form of E, either some V ∈ V is eliminable, or some W ∈W is eliminable and depends
on some V ∈ V . Otherwise, we say that E does not constrain V w.r.t. W .

It is straightforward to check that if E1 and E2 are two solved forms such that
E1 ≡RH E2, then E1 constrains V w.r.t. W if and only if E2 constrains V w.r.t. W .
This definition involves to check a property for every solved form of E, which is difficult
to check directly. However, it is possible to provide for a characterization of this notion
very easy to use. Some technical lemmas must be previously introduced.

Lemma 3 Let E(V ,W,Z, x) be a system of equalities and polynomial in solved form.
Then, E does not have the form W e ≈ t(W p, Zp, x) ∧ Ze ≈ s(W p, Zp, V , x) ∧ p(x), if
and only if, at least one of the conditions below holds:

1) E contains an equality W ≈ t, where W ∈ W and some variable in V occurs in
t.

2) E contains an equality V ≈ t, where V ∈ V and t is not a variable.

3) E contains an equality V ≈ X, where V ∈ V ,X ∈ V ∪W .

4) E contains an equality V ≈ Z, where V ∈ V , Z ∈ Z, and the parameter Z
appears also in an equality X ≈ t, where X ∈ V ∪W .

5) E contains an equality V ≈ Z, where V ∈ V , Z ∈ Z, and the parameter Z does
not appear in any equality X ≈ t, where X ∈ V ∪W .

Proof: If E is in solved form, it has the form W e ≈ t(W p, Zp, x)∧Ze ≈ s(W p, Zp, V , x)
∧p(x) iff (a) no variable V ∈ V is eliminable and (b) no variable W ∈ W depends on
any V ∈ V . (a) holds iff 2), 3), 4) and 5) do not hold. (b) holds iff 1) does not hold.

Lemma 4 Let E(V ,W,Z, x) be a system of equalities and polynomials in solved form.
If E constrains V w.r.t W , then at least one of the conditions 1) to 4) of Lemma 3
holds for E.

Proof: By reductio ad absurdum. Let us suppose that none of the conditions 1) to 4)
holds for E. Now, we must face two different cases:

a) Condition 5) does not hold for E. Then, by virtue of Lemma 3, E has the form
W e ≈ t(W p, Zp, x)∧Ze ≈ s(W p, Zp, V , x)∧ p(x), therefore E does not constrain
V w.r.t W .

b) Condition 5) holds for E. Then, swapping all the equalities in E of the form
V ≈ Z, where V ∈ V ,Z ∈ Z, a new solved form E′ is produced, for which
conditions 1) to 5) do not hold. Thus, E′ does not constrain V w.r.t W and,
since E ≡RH E′, neither does E.

11



Lemma 5 Let E be a system of equalities, and E1(V ,W,Z, x), E2(V ,W,Z, x) two
solved forms of E. Then, one of the conditions 1) to 4) in Lemma 3 holds for E1, if
and only if one of the conditions 1) to 4) holds for E2.

Proof: Given two RH-equivalent solved forms with the same set of eliminable vari-
ables, any of the conditions 1) to 5) holds for one of them if and only if it holds for
the other. Let us suppose that one of the conditions 1) to 4) holds for E1, and let
θ ∈ Θ(E1) be the permutation for which E1θ has the same eliminable variables that
E2. Notice that any θ ∈ Θ(E1) can be seen as the composition of a finite number of
swaps. Therefore it suffices to prove that if E′1 is obtained by swapping E1, then one
of the conditions 1) to 4) holds for E1 if and only if one of the conditions 1) to 4) holds
for E′1. In the present proof we only analyze those swaps that change the equalities
which cause that some of the conditions 1) to 4) holds for E1, since for the other swaps
the same condition still holds for E′1, obviously.

• E1 satisfies 1), i.e., E1 contains an equality W ≈ t, where W ∈ W and some
variable in V occurs in t. Relevant swaps:

– If t ≡ V and E′1 is obtained by swapping W ≈ t. Then V ≈ W is in E′1,
and thus condition 3) holds for E′1.

– E′1 is obtained by swapping X ≈ V , for some variable X. Then, E′1 contains
the equalities V ≈ X and W ≈ t[X/V ]. Again, different cases may arise,
depending on the nature of X.

∗ If X ∈ V ∪W , condition 3) holds for E′1.
∗ If X ∈ Z, condition 4) holds for E′1.

• E1 satisfies 2), i.e., E1 contains an equality V ≈ t, where V ∈ V and t is not
a variable. Then, trivially, any E′1 obtained by swapping any equality will still
contain an equality with this form, and therefore condition 2) will hold for E′1.

• E1 satisfies 3), i.e., E1 contains an equality V ≈ Y , where V ∈ V , Y ∈ V ∪W .
Relevant swaps:

– E′1 is obtained by swapping V ≈ Y . Then, if Y ∈ V condition 3) still holds,
otherwise condition 1) holds.

– E′1 is obtained by swapping one equality of the form X ≈ Y , for some
variable X. Then, it contains the equalities V ≈ X and Y ≈ X. Possible
cases:

∗ If X ∈ V ∪W , condition 3) holds for E′1.
∗ If X ∈ Z, condition 4) holds for E′1.

• E1 satisfies 4), therefore, E1 contains the equalities V ≈Z,X≈ t, where V ∈ V ,
Z ∈ Z, and some variable in V ∪W appears in t. There are basically two relevant
swaps.

– E′1 is obtained by swapping the equality V ≈ Z. Therefore, it contains the
equalities Z ≈ V and X ≈ t[V/Z]. Possible cases:

∗ If X ∈ V , conditions 2) or 3) hold for E′1.
∗ If X ∈W , condition 1) holds for E′1.

12



– E′1 is obtained by swapping one equality of the form Y ≈ Z, for some
variable Y . Then, it contains the equalities V ≈ Y and X ≈ t[Y/Z], and
hence condition 4) also holds for E′1.

Now, we are ready to prove the syntactic characterization that decides whether a
solved form constrains a set of variables with respect to another. It will be required in
the proof of Theorem 11 (Elim).

Proposition 6 (Characterization) Let E(V ,W,Z, x) be a solved form. E con-
strains V w.r.t. W if and only if one of the conditions below holds for E.

1) E contains W ≈ t, where W ∈W and some variable in V occurs in t.

2) E contains V ≈ t, where V ∈ V and t is not a variable.

3) E contains V ≈ X, where V ∈ V ,X ∈ V ∪W .

4) E contains V ≈ Z and X ≈ t, where V ∈ V , Z ∈ Z, X ∈ V ∪W and X depends
on Z.

Proof: One direction is proved just re-stating Lemma 4. For the other, let us assume
that one of the conditions 1) to 4) holds for E. Then, by virtue of Lemma 5, the same
happens to any other solved form of E, and therefore, thanks to Lemma 3, no solved
form of E can be written in the form W e ≈ t(W p, Zp, x)∧Ze ≈ s(W p, Zp, V , x)∧p(x),
i.e. E constrains V w.r.t W .

Lemma 7 Let X1, X2 and U be disjoint sets of symbolic variables, and let V be such
that V ⊆ U . Then, for any set x of real variables and vectors of terms t1, t2, the
equivalence below holds:

∃X1∃V (X1 ≈ t1(U, x) ∧X2 ≈ t2(U, x) ∧ p(x)) ≡RH ∃V (X2 ≈ t2(U, x) ∧ p(x)).

Proof: (sketch) This result is a consequence of the fact that `RH is founded on
`≈, the classical logic deduction with equality. Specifically, it follows from the more
general equivalence between formulas presented below. Notice that it is presented in
the context of unsorted classical logic, therefore all variables are denoted with lowercase
letters.

Let F1 ≡ ∃x∃y(x1 ≈ t1 ∧ . . . ∧ xn ≈ tn ∧ F ) and F2 ≡ ∃yF , where

• F1, F2, F are formulas in any signature.

• x and y are disjoint sets of variables.

• t1, . . . tn are any terms in which the variables x ∈ x do not occur.

• F is any formula in which the variables x ∈ x do not occur.

Then, it is straightforward to check that F1 and F2 are equivalent according to `≈.

Lemma 8 Let F1 be an equality system with set of parameters U1, and let ∃U2 F2 be
another constraint where F2 is quantifier-free. Then, the following equality holds:

∃U1(F1 ∧ ¬∃U2 F2) ≡RH ∃U1 F1 ∧ ¬∃U1, U2(F1 ∧ F2).
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Proof: (sketch) The claim the latter lemma is forced by the axioms for finite trees,
together with the properties of `≈. Specifically, it follows from the more general
equivalence between formulas presented below, again in the context of unsorted classical
logic.

Let F1 ≡ ∃y(x1 ≈ t1 ∧ . . . ∧ xn ≈ tn ∧ ¬∃zF ) and F2 ≡ ∃y(x1 ≈ t1 ∧ . . . ∧ xn ≈
tn) ∧ ¬∃y∃zF , where

• F1, F2, F are formulas in any signature.

• x and y and z are disjoint sets of variables.

• t1, . . . tn are any terms in which only variables y ∈ y occur.

• F is any formula.

Then, it is easy to check that AxH, F1 `≈ F2 and AxH, F2 `≈ F1 hold.

The following lemma is an important one, that justifies by itself the notion of
systems of equalities and polynomial constraining a set of variables with respect to an-
other. It states that, under certain conditions, an RH-equivalent constraint is obtained
when replacing an initial prefix of existential quantifiers by a universal one. Intuitively,
this allows us to replace ¬∃V ∃ZF by ¬∀V ∃ZF and therefore by ∃V ¬∃ZF . The proof
of Theorem 11 (Elim) will take advantage of this fact.

Lemma 9 For any system of equalities E(V ,W,Z, x), the following statements hold:

a) If E does not constrain V w.r.t W , then ∃V ∃Z E ≡RH ∀V ∃Z E.

b) Otherwise, ∀V ∃Z E ≡RH ⊥.

Proof: Let F1 ≡ ∃V ∃Z E and F2 ≡ ∀V ∃Z E.

a) Let us suppose that E does not constrain V w.r.t W , so there exists a solved
form E′ ≡ Ze ≈ t(Zp,W p, V , x) ∧ W e ≈ s(Zp,W p, x) ∧ p(x) of E. We now
prove the RH-equivalence between F1 and F2. F2 `RH F1 is straightforward.
For F1 `RH F2, it is enough to prove that, for any ground symbolic substitution
σ, F1σ `RH F2σ holds. Since E and E′ are RH-equivalent, F1σ `RH ∃V ∃Z E′σ
also holds, thus there is a substitution σ∗ that extends σ to Zp, such that
F1σ `RH ∃V ∃ZeE′σ∗. In fact for every substitution θ extending σ∗ to V ,
F1σ `RH ∃ZeE′θ, because the variables in V are parameters only in equali-
ties of the form Ze = t. That implies F1σ `RH ∀V ∃ZeE′σ∗. Thus, we conclude
F1σ `RH ∃Zp∀V ∃ZeE′σ, and therefore F1σ `RH ∀V ∃Z Eσ, by the properties
of `RH and the RH-equivalence between E and E′.

b) Let us suppose that E constrains V w.r.t W . Now, if E has no solved form, then
it is not RH-satisfiable, hence F2 ≡RH ⊥. Otherwise, let E′ be a solved form of
E. In virtue of Proposition 6, one of the conditions 1)–4) in Lemma 3 holds for
E′. In the following, we analyze all cases.

1) E′ contains an equality W ≈ t, where W ∈ W and some variable in V

occurs in t. Obviously, if t contains only the parameters V
′ ⊆ V , then

∅ `RH ∃V
′
(W 6≈ t). This fact can be generalized, as follows. Let V

′ ∪Z ′ be
the set of parameters that appear in t, where Z

′ ⊆ Z and V
′ ⊆ V . Then,

is easy to check that ∅ `RH ∃V
′∀Z ′(W 6≈ t). Hence, ∀V ′∃Z ′(W ≈ t) ≡RH ⊥.

Therefore, F2 ≡RH ⊥, because F2 `RH ∀V
′∃Z ′(W ≈ t).
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2) E′ contains an equality V ≈ t, where V ∈ V and t is not a variable. Let
us assume that V

′
and Z

′
are defined as in the previous case. Then, clearly

∅ `RH ∃V, V
′∀Z ′(V 6≈ t), therefore ∀V, V ′∃Z ′(V ≈ t) ≡RH ⊥. Again, this

implies F2 ≡RH ⊥.

3) If E′ contains an equality V1 ≈ V2, where V1, V2 ∈ V , then, since ∀V (V1≈
V2) ≡RH ⊥, we can again conclude F2 ≡RH ⊥. Otherwise, if E′ contains
an equality V ≈ W , where V ∈ V and W ∈ W , since ∅ `RH ∃V (V 6≈ W ),
∀V (V ≈W ) ≡RH ⊥ holds, and thereafter the same conclusion is reached.

4) E′ contains an equality V ≈ Z, where V ∈ V , Z ∈ Z, and the parameter Z
appears also in some other equality for some variable in V ∪W . We must
deal with two cases.

i) Z appears as parameter in another equality for V , i.e, there is another
equality V2 ≈ t, and Z appears in t. If t 6≡ Z, also condition 2) holds,
and the proof is concluded. Otherwise, ∀V V2∃Z(V ≈ Z∧V2 ≈ Z) ≡RH
⊥ holds, and thereafter F2 ≡RH ⊥.

ii) Z appears as parameter in another equality for W , i.e, there is another
equality W ≈ t, and Z appears in t. ∅ `RH∃V (¬(V ≈Z ∧W ≈ t)), then
∀V (V≈Z ∧W ≈ t)≡RH⊥ holds, so F2 ≡RH ⊥.

Thus, in all cases, F2 ≡RH ⊥ is concluded.

The following corollary, which is an immediate consequence of the previous lemma,
is useful to deal with formulas in the form ∃X¬b, where b is a basic formula. These
are not boolean combinations of basic formulas but, according to the corollary, an
equivalent boolean combination of basic formulas can be easily found.

Corollary 10 Let E(V ,W,Z, x) be a system of equalities, and F ≡ ∃V ¬∃Z E. If E
constrains V w.r.t W , then F ≡RH >. Otherwise, F ≡RH ¬∃V ∃Z E.

Proof: It is an immediate consequence of Lemma 9 and the RH-equivalence between
∃U¬∃V E and ¬∀U∃V E, for any system of equalities E.

Finally, once all the previous machinery has been duly developed, it is possible to
provide a proof for the theorem which is directly responsible for the symbolic quantifier
elimination, namely:

Theorem 11 (Elim) Let b and b′ be basic formulas. Let Y be a variable that may
appear in them only as eliminable variable. Then, the formula F ≡ ∃Y (b ∧ ¬b′) is
RH-equivalent to one of the following constraints, depending on the case:

1. Y does not appear in b nor in b′. Then, trivially F ≡RH b ∧ ¬b′.

2. Y appears in b, but not in b′. Let us write b ≡ ∃U(X ≈ t(U, x) ∧ Y ≈ s(U, x)).
Then, F ≡RH ∃U(X ≈ t(U, x)) ∧ ¬b′.

3. Y appears in b′, but not in b. Let us write b′ ≡ ∃U(X ≈ t(U, x) ∧ Y ≈ s(U, x)).
If X ≈ t(U, x) ∧ Y ≈ s(U, x) constrains Y w.r.t. X, then F ≡RH b. Otherwise,
F ≡RH b ∧ ¬∃U(X ≈ t(U, x)).

4. Y appears in both b and b′, written b ≡ ∃U, V (X≈ t(U, x) ∧ Y ≈s(U, V , x)) and
b′ ≡ ∃U1

(X
1 ≈ t1(U

1
, x) ∧ Y ≈ s1(U

1
, x)).
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a) IfX ≈ t(U, x)∧X1 ≈ t1(U
1
, x)∧ s(U, V , x) ≈ s1(U

1
, x) constrains V w.r.t.

X. Then F ≡RH ∃U(X ≈ t(U, x)).

b) IfX ≈ t(U, x) ∧X1 ≈ t1(U
1
, x) ∧ s(U, V , x) ≈ s1(U

1
, x) does not constrain

V w.r.t. X. Then, if the algorithm solve-tree fails when processing X ≈
t(U, x)∧X1 ≈ t1(U

1
, x)∧ s(U, V , x) ≈ s1(U

1
, x), F ≡RH ∃U(X ≈ t(U, x)).

Otherwise, F ≡RH ∃U(X≈ t(U, x)) ∧ ¬∃V U U1\WE, where E is obtained
by removing in the result produced by solve-tree all the equalities corre-
sponding to the eliminable variables belonging to V ∪ U ∪ U1

, and W is the
subset of V ∪ U ∪ U1

of the variables not occurring in E.

Proof: The previous four cases must be considered.

1. Y does not appear in b nor in b′. Then, trivially F ≡RH b ∧ ¬b′.

2. Y appears in b, but not in b′. Thanks to Lemma 7, F ≡RH∃U(X≈ t(U, x))∧¬b′.

3. Y appears in b′, but not in b. Obviously, F ≡RH b∧ ∃Y ¬b′. The second formula
in the conjunction can be simplified using Corollary 10, as follows. If X ≈
t(U, x) ∧ Y ≈ s(U, x) constrains Y w.r.t X, then F ≡RH b. Otherwise, F ≡RH
b ∧ ¬∃U(X ≈ t(U, x)).

4. Y appears in both b and b′. First, we state that ∃Y (b ∧ ¬b′) ≡RH ∃U, V (X ≈
t(U, x) ∧ ¬∃U1

(X
1 ≈ t

1(U
1
, x) ∧ s(U, V , x) ≈ s1(U

1
, x))). Using Lemma 8

this is RH-equivalent to ∃V (∃U(X ≈ t(U, x)) ∧ ¬∃U,U1
(X ≈ t(U, x) ∧ X1 ≈

t
1(U

1
, x) ∧ s(U, V , x) ≈ s1(U

1
, x))). V does not appear in the first formula of

the conjunction, hence the whole formula can be simplified to ∃U(X ≈ t(U, x))∧
∃V ¬∃U,U1

(X ≈ t(U, x) ∧X1 ≈ t1(U
1
, x) ∧ s(U, V , x) ≈ s1(U

1
, x)). The second

formula in this conjunction can be transformed by the application of Corollary
10, in the following way. If X ≈ t(U, x)∧X1 ≈ t1(U

1
, x)∧ s(U, V , x) ≈ s1(U

1
, x)

does not constrain V w.r.t X, then F ≡RH ∃U(X ≈ t(U, x)) ∧ ¬∃V ,U, U1
(X ≈

t(U, x) ∧ X1 ≈ t
1(U

1
, x) ∧ s(U, V , x) ≈ s1(U

1
, x)) (otherwise, F ≡RH ∃U(X ≈

t(U, x)), and the proof is concluded). This formula is not yet a boolean combina-
tion of basic formulas and polynomials, but it can be easily transformed into an
RH-equivalent one. This is performed by using the algorithm solve-tree for
the set of equalities X ≈ t(U, x)∧X1 ≈ t1(U

1
, x)∧ s(U, V , x) ≈ s1(U

1
, x). If we

denote by E′ the resulting solved form, then in virtue of Lemma 7, ∃V ,U, U1
E′

is simplified to the constraint ∃(V ,U, U1\W )E in the heading of the theorem.

Definition 8 The rule (Elim) replaces a formula in the form ∃Y (b∧¬b′) by the RH-
equivalent boolean combination of basic formulas with a polynomial provided by Theorem
11.

Notice that the resulting polynomial is a conjunction of real equalities that is ob-
tained only in the case 4.b) of Theorem 11. The rule (Elim) will be also applied when
b′ does not exist, since that can be considered as a particular case of 2).
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4.2 The Transformation Algorithm

As we have mentioned before, the algorithm that checks RH-satisfiability should be
classified as a quantifier elimination technique. Such elimination can be performed only
in some cases, depending on the order of the symbolic and real quantifications, and
under some conditions of solvability over the included polynomials, which will be shown
during the description of the algorithm. The process requires a prior manipulation
that converts the initial constraint into a quantified RH-normal form, for which the
elimination quantifier techniques can be applied. In the following, we detail the whole
algorithm. Its input is an arbitrary constraint C, its output is an RH-equivalent
elemental constraint.

Phase I: Preprocessing.
Input: An arbitrary constraint C
Output: A constraint RH-equivalent to C in quantified RH-normal form.
Procedure: The sequential applications of the following steps should be carried out.

1) Produce a constraint in prenex form RH-equivalent to C. In this way, a formula
ΠC ′ is obtained so that C ≡RH ΠC ′, where Π is a sequence of quantifiers and
C ′ is quantifier-free.

2) Transform ΠC ′ into Π(C1∨. . .∨Cn), where, for each 1 ≤ i ≤ n, Ci is a conjunction
of equalities, disequalities and polynomials.

3) Transform Π(C1 ∨ . . . ∨Cn) into an RH-equivalent quantified RH-normal form,
modifying each Ci, 1 ≤ i ≤ n, as follows.

3.1) If the system of equalities and polynomial in Ci has no solved form E, remove
Ci from the disjunction. Otherwise, replace it by p ∧ b, defined as follows.
Let W be the set of parameters of E and let W

′
be a set of fresh variables in

bijection with W . Let p∧ b be the result of moving the polynomials outside
the scope of the quantification ∃W ′ in ∃W ′(E[W/W

′
]). If E boils down to

a polynomial, take b ≡ >.

3.2) For each disequality in Ci remove the outermost negation and proceed as in
step 3.1). Add conjunctively the result, preceded by the negation symbol,
to p ∧ b.

3.3) At this stage, Ci has been removed or transformed into p ∧ b ∧ ¬(p1 ∧ b1) ∧
. . . ∧ ¬(ps ∧ bs), s ≥ 0, which is finally RH-normalized.

Phase II: Quantifier elimination algorithm.
The goal of this stage is to decrease the length of the quantifier sequence Π as much as
possible, replacing ΠC ′′ by another RH-equivalent constraint whose quantifier prefix
is shorter than Π. We can choose the length of their sequence of quantifiers as a
complexity measure for quantifier RH-normal forms, and therefore such goal may be
viewed as a simplification algorithm, which we will refer to as simplify. Essentially, it
works repeatedly applying another procedure named eliminate, which eliminates the
innermost quantifier of a given quantifier RH-normal form. However, such elimination
can only be performed under certain conditions, that will be previously checked. These
algorithms are presented below.
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simplify: It transforms a quantified RH-normal form into a simpler constraint.
Input: Any quantified RH-normal form ΠC ≡ Π(D1 ∨ . . .∨Dm), where Di ≡ pi ∧ bi ∧
¬bi1 ∧ . . . ∧ ¬biki , 1 ≤ i ≤ m.
Output: A simpler RH-equivalent constraint.

Π? := reord(Π);
while(Π? 6= ∅) do

Π′Qν := element(Π?);
C ′ := eliminate(Qν(D1 ∨ . . . ∨Dm));
if (C ′ 6= ⊥)

then
C := normalize(C ′);
Π := Π′;
Π? := reord(Π)

else Π? := Π? − {Π′Qν}
end if

end while;
return ΠC.

Where if Π = Π1Π2, and Π2 = Qν1 . . . Qνk is the maximal existential (or universal)
suffix of Π, then reord(Π) = {Π1Qν1Qν2 . . . Qν1−iQν1+i . . . QνkQνi, 1 ≤ i ≤ k}.
element selects an element from a set.

The termination of the transformation algorithm simplify is guaranteed, because
the number of elements of reord(Π) decreases in every loop.
eliminate: It eliminates Qν in Qν(D1 ∨ . . . ∨Dm), when it is possible.
Input: QνC ≡ Qν(D1 ∨ . . . ∨Dm). Each Di with the form pi ∧ bi ∧ ¬bi1 ∧ . . . ∧ ¬biki .
Output: An RH-equivalent boolean combination of basic formulas, or ⊥ if Qν is not
eliminable.

1: if (Q = ∃) then C := ∃ν D1 ∨ . . . ∨ ∃ν Dm;
1.1: if (ν = x : r) then i := 1; B := true;

while (i ≤ m and B) do
1.1(a): if (x occurs in pi and x does not occur in bi1, . . . , b

i
ki

)
then Replace in C, ∃xDi by pi′ ∧ bi ∧ ¬bi1 ∧ . . . ∧ ¬biki , where pi′

is a quantifier-free Tarski formula RH-equivalent to ∃x pi,
obtained by applying a CAD-based algorithm to it

end if 1.1(a);
1.1(b): if (x occurs in bi ∧ ¬b′i1 ∧ . . . ∧ ¬b′ik, and a polynomial of

the form (x ≈ ti1 ∧ qi1) ∨ . . . ∨ (x ≈ tili ∧ q
i
li

),
solved for x, RH-equivalent to pi, can be found)
then Replace in C, ∃xDi by the RH-equivalent constraint

(qi1 ∧ (bi ∧ ¬bi1 ∧ . . . ∧ ¬biki)[t
i
1/x]) ∨ . . .∨

(qili ∧ (bi ∧ ¬bi1 ∧ . . . ∧ ¬biki)[t
i
li
/x])

end if 1.1(b);
1.1(c): if (x occurs in bi ∧ ¬b′i1 ∧ . . . ∧ ¬b′ik, and a polynomial of the

form (x ≈ ti1 ∧ qi1) ∨ . . . ∨ (x ≈ tili ∧ q
i
li

),
solved for x, RH-equivalent to pi, is not found)
then B := false

end if 1.1(c);
i := i +1
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end while;
if B then return C else return ⊥ end if

end if 1.1;
1.2: if (ν = X : h) then

for i := 1 to m do Di
′ := bi ∧ ¬bi1 ∧ . . . ∧ ¬biki ;

Replace ∃XDi in C by the RH-equivalent constraint pi ∧ ∃XD′i;
if (ki = 0)

then Transform ∃XD′i into a basic formula
else Apply the rule (Pair), replacing ∃XD′i by
∃X (bi ∧ ¬bii) ∧ . . . ∧ ∃X (bi ∧ ¬biki);
Transform each member of this conjunction,
by means of the rule (Elim),
into a boolean combination of polynomials and basic formulas

end if;
end for;
return C

end if 1.2
end if 1;
2: if (Q = ∀) then

return ¬ eliminate (∃ν normalize (¬(D1 ∨ . . . ∨Dm)))
end if 2

Note that the conditions to eliminate an existential quantifier are determined by
the steps 1.1(a), 1.1(b) and 1.2 of eliminate. Universal quantified constraints are
considered in 2 and are transformed into the negation of an existential quantified
one, prior to the elimination. The condition of 1.1(b) can be determined for certain
polynomials using techniques based on Gröebner bases [1]. For these polynomials, the
wanted solved form can be built from intermediate steps of the quantifier elimination
CAD methods.

We propose a partial constraint solver for the CLP programming language HH(RH),
based on the transformation algorithm just described. The first phase of the solving
procedure consists on the application of the algorithm simplify to a given constraint.
The next phase should be to decide the RH-satisfiability of the output of the trans-
formation. If such output is an elemental constraint, then the solver will proceed with
the algorithm elemental-sat described in Section 5. If not, this solver cannot decide
the satisfiability of the initial constraint.

4.3 Examples

The aim of this subsection is to provide examples of the usage of the simplification
algorithm. Examples of programs in HH(RH), such as the one introduced in Section
2, can be found in [13], together with the description of the goal solving procedure.
The latter needs to make use of the constraint solver described in the present paper,
in order to check RH-satisfiability of answer constraints.

Example 2 Let C1 be the constraint below, where f : r → h, g : h× h→ h.

C1 ≡ ∃X(∃x, y(g(X,Y ) ≈ g(f(x), f(y)) ∧ x+ y ≈ 1) ∧ ∀Z ¬(g(X,Y ) ≈ g(Z,Z))).
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The algorithm would transform C1 as follows. The preprocessing phase yields:

∃X∃x, y∀Z
(

(X≈f(y) ∧ Y ≈f(x)) ∧ ¬∃Z1(X≈Z1 ∧ Y ≈Z1 ∧ Z≈Z1) ∧ x+ y≈1
)
.

simplify is used now. In the first loop, Qν = ∀Z is chosen, and eliminate.2
transforms the quantification ∀Z is transformed into ∃Z, and then RH-normalization
is carried out, rendering:

∃X∃x, y¬∃Z
(
¬(X≈f(y)∧Y ≈f(x))∨∃Z1(X≈Z1∧Y ≈Z1∧Z≈Z1)∨¬(x+y≈1)

)
,

and eliminate is recursively called with ∃ν = ∃z. According eliminate.1 ∃Z must
be distributed, the subconstraint ∃Z,Z1(X ≈ Z1 ∧ Y ≈ Z1 ∧ Z ≈ Z1) is simplified by
eliminate.1.2 into ∃Z1(X ≈ Z1 ∧ Y ≈ Z1). Notice that (k = 0).

The RH-normalization in the loop simplify yields:

∃X∃x∃y
(

(X ≈ f(y) ∧ Y ≈ f(x)) ∧ ¬∃Z1(X ≈ Z1 ∧ Y ≈ Z1) ∧ x+ y ≈ 1
)
.

In the next loop Qν = ∃X is chosen, and step eliminate.1.2 is applied. The rule
(Elim) produces:

∃x∃y((Y ≈ f(x)) ∧ ¬(Y ≈ f(x) ∧ x ≈ y) ∧ x+ y ≈ 1).

This transformation comprises several steps, immediately detailed. First, the constraint

∃x∃y
(

(Y ≈f(x)) ∧ ¬∃Z1(Y ≈f(x) ∧ Y ≈Z1 ∧ f(y)≈Z1) ∧ x+ y≈1
)

is obtained, which does not already contain quantifiers over X. Then, solve-tree

must be applied to Y ≈ f(x)∧Y ≈ Z1∧f(y) ≈ Z1. The result is simplified eliminating
the equality for Z1 and its quantifier.

Now, normalize produces the quantified RH-normal form below:

∃x∃y
(

(x+ y ≈ 1 ∧ Y ≈ f(x) ∧ ¬Y ≈ f(x)) ∨ (x+ y ≈ 1 ∧ Y ≈ f(x) ∧ ¬x ≈ y)
)
.

Following eliminate.1, it is transformed into:

∃x
(
∃y(x+ y ≈ 1 ∧ Y ≈ f(x) ∧ ¬Y ≈ f(x)) ∨ ∃y(x+ y ≈ 1 ∧ Y ≈ f(x) ∧ ¬x ≈ y)

)
.

For the first constraint in the disjunction, eliminate.1.1(a) can be now applied, trans-
forming ∃y(x + y ≈ 1) into >. The second one, following eliminate.1.1(a) again,
∃y(x+ y ≈ 1 ∧ ¬(x ≈ y)) is transformed into ¬(x ≈ 1/2). Therefore,

C1 ≡RH ∃x
(

(Y ≈ f(x) ∧ ¬Y ≈ f(x)) ∨ (Y ≈ f(x) ∧ ¬(x ≈ 1/2))
)
.

At this stage elemental-sat is used in order to the decide the RH-satisfiability
of the latter (elemental) constraint, which turns out to be RH-satisfiable.

Example 3 In this example, we will deal with symbolic terms built up using the list
constructor to handle lists of reals. For the sake of readability, the usual prolog

notation for lists is adopted. Let us begin with the constraint C2:
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∃L(∃x2, L2(L ≈ [x1, x2|L2] ∧ x1 + x2 ≈ 4) ∧ ¬∃x3, L3(L ≈ [x3|L3] ∧ x3 × x3 ≈ 1)).

The preprocessing phase yields:

∃x2∃L∀x3(x1 + x2 ≈ 4 ∧ ∃L2(L ≈ [x1, x2|L2]) ∧ ¬(x3 × x3 ≈ 1 ∧ ∃L3(L ≈ [x3|L3])).

The negation was not distributed because the next step will be to transform the quan-
tifier ∀ into the corresponding ∃, and this would imply to undo this distribution.

simplify is applied. In the first loop, Qν = ∀x3 is the only possible choice, and
according to eliminate.2, after the RH-normalization and the distribution of the
existential quantification ∃x3 the constraint obtained is:

∃x2∃L¬(∃x3(x1 + x2 6≈ 4) ∨ ∃x3(¬∃L2(L ≈ [x1, x2|L2]))∨
∃x3(x3 × x3 ≈ 1 ∧ ∃L3(L ≈ [x3|L3]))).

The quantification ∃x3 is trivially removed in the first two cases by eliminate1.1(a).
For the last one, the polynomial x3×x3 ≈ 1 can be transformed into x3 ≈ 1 ∨ x3 ≈ −1,
which is solved for x. Therefore, step eliminate.1.1(b), followed by the execution of
normalize, renders:

∃x2∃L(x1 + x2 ≈ 4 ∧ ∃L2(L ≈ [x1, x2|L2])∧
¬∃L3(L ≈ [1|L3]) ∧ ¬∃L3(L ≈ [−1|L3])).

At this stage, a new loop of simplify is carried out, taking Qν = ∃L. Step elimi-

nate.1.2 is considered, and the application of the rule (Pair) yields:

∃x2(x1 + x2 ≈ 4 ∧ ∃L(∃L2(L ≈ [x1, x2|L2]) ∧ ¬∃L3(L ≈ [1|L3]))∧
∃L(∃L2(L ≈ [x1, x2|L2]) ∧ ¬∃L3(L ≈ [−1|L3]))).

The rule (Elim) must be applied to

∃L(∃L2(L ≈ [x1, x2|L2]) ∧ ¬∃L3(L ≈ [1|L3])),

producing ¬x1 ≈ 1. This constraint is obtained applying solve-tree to [x1, x2|L2] ≈
[1|L3], and simplifying trivial equalities and quantifiers. Analogously, applying (Elim)
to

∃L(∃L2(L ≈ [x1, x2|L2]) ∧ ¬∃L3(L ≈ [−1|L3])),

it is reduced to ¬x1 ≈ −1. Thus the constraint produced in this step is

∃x2(x1 + x2 ≈ 4 ∧ ¬x1 ≈ 1 ∧ ¬x1 ≈ −1).

The last loop of simplify is carried out now, using eliminate.1.1(a), the current
constraint is transformed into:

¬x1 ≈ 1 ∧ ¬x1 ≈ −1.

The procedure elemental-sat, described in Section 5, can be used now to prove
that the latter constraint is in fact RH-satisfiable, and therefore so is C2.

Example 4 This example shows a simple subclass of quantifierRH-normal constraints
for which the procedure simplify is useless. Let us consider the constraint

C3 ≡ ∀X∃x[∃U(X ≈ f(U, x)) ∧ s(x) ≥ 0],
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where s(x) is any term of type r in which only the variable x occurs. The procedure
eliminate cannot perform the elimination of the quantifier ∃x, since x occurs in the
basic formula ∃U(X ≈ f(U, x)) and the polynomial s(x) ≥ 0 is not RH-equivalent to
any polynomial with the form x ≈ t1 ∨ . . . ∨ x ≈ tn. However, it is easy to check that
C3 ≡RH ⊥ holds for any s(x).

We can see here that the order among quantifiers plays a critical role. If ∃x and
∀X are swapped, then simplify promptly returns the expected result ⊥.

5 Satisfiability of Elemental Constraints

The purpose of this section is the description of a RH-satisfiability decision procedure
for elemental constraints, which is called elemental-sat. It should be regarded as the
second phase of the solving procedure forRH-constraints. Two versions of elemental-

sat are presented. The first one is able to deal with a particularly simple subclass of
elemental constraints. The second one is an enhancement that can be used with any
elemental constraint. The section begins with the theoretical foundations for such
procedures, and it ends with an example of the usage and limitations of elemental-

sat.

5.1 Theoretical Foundations of the Procedure Elemental-Sat

Let us begin introducing some definitions and lemmas that will be useful to prove the
soundness of elemental-sat.

Definition 9 We define the relation ≡h between terms as the least one for which the
conditions below hold.

1. t ≡h t for any symbolic term t : h.

2. t1 ≡h t2 for any real terms t1 : r, t2 : r.

3. f(t1, . . . , tn) ≡h f(s1, . . . , sn) iff ti ≡h si for every i, 1 ≤ i ≤ n.

If t1 ≡h t2 we say that t1 is equal on its symbolic part to t2. Trivially, ≡h is an
equivalence relation.

Definition 10 A substitution σ is a symbolic unifier for the system of equalities
s1 ≈ t1∧ . . . ∧ sn ≈ tn if siσ ≡h tiσ, for every i, 1 ≤ i ≤ n. A symbolic unifier
is said to be a non-arithmetical-operators unifier ( n.a.o–unifier) if no arithmetical op-
erators nor real constants occur in its range. A n.a.o–unifier σ is most general if
for any other n.a.o–unifier σ′, there is a substitution τ such that tστ ≡h tσ′ for any
symbolic term t : h.

Trivially, if σ is a symbolic unifier for E and σ′ results from replacing in σ any real
subterm in its range by any other, σ′ is also a symbolic unifier for E.

The soundness of the algorithm elemental-sat, which will be described later on,
is based on the following results and technicalities.

The algorithm works with quantified RH-normal forms such that every basic for-
mula occurring in them has the same set of eliminable variables. If a constraint C in
RH-normal form does not satisfy the previous condition, its completion is computed
as follows:
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• Let X be the union of the sets of eliminable variables of the basic formulas
occurring in C.

• Rename the parameters in all basic formulas occurring in C with fresh variable
names, taking care that the renaming is also performed in the quantifier prefix.

• Later, replace the basic formulas b by ∃U(b ∧ X ≈ U), where U is a new fresh
parameter for b and X ∈ X is not eliminable for b, until all basic formulas share
a common set of eliminable variables.

Lemma 12 The completion of a quantified RH-normal form C is RH-equivalent to
C.

This lemma follows from the fact that the renaming of parameters and the replace-
ment of basic formulas b by expressions described in the previous paragraph preserve
the RH-equivalence.

Lemma 13 Let C ≡ X ≈ t ∧ ¬∃V (X ≈ s), where the variables in X are all distinct
not occurring in s nor in t, the sets of variables in s and t are disjoint, and ∃V (X ≈ s)
is a basic formula. Then:

1. If E is the result of applying solve-tree to s ≈ t, then C ≡RH X ≈ t ∧ ¬∃V E.

2. If solve-tree fails in the previous case, then C ≡RH X ≈ t.

Proof: C ≡ X ≈ t ∧ ¬∃V (X ≈ s) is equivalent to X ≈ t ∧ ¬∃V (t ≈ s) in the
classical logic with equality, so they are RH-equivalent. Then, since solve-tree

preserves RH-equivalence, they are RH-equivalent to X ≈ t ∧ ¬∃V E. In case that
solve-tree does not fail, 1. has been proved. Otherwise E ≡ ⊥, and therefore
X ≈ t ∧ ¬∃V E ≡RH X ≈ t, proving 2.

Lemma 14 Let C ≡ Π1 ∃X Π2 ∃ν Π3(X ≈ t(ν)∧C ′), where the variables in X are all
distinct, no arithmetical operator occurs in t and no variable in X occurs in C ′ nor in
t. Then, C ≡RH Π1 ∃ν Π2Π3(C ′).

Intuitively this lemma holds because, once the variablesX are interpreted by specific
values, the values interpreting the variables ν are already fixed.

Lemma 15 Let C ≡ ∃XΠ(¬(b1∧p1)∧ . . .∧¬(bn∧pn)∧p), where the set of eliminable
variables of each basic formula bi is a subset of X and Π binds no symbolic variable.
Let {j1, . . . , js} ⊆ {1, . . . , n} be the set of indexes of those bi with the form ∃U(Y ≈ U),
where U contains no repetition of variables. Then, C ≡RH Π(¬pj1 ∧ . . . ∧ ¬pjs ∧ p).

Proof: Let C ′ ≡ Π(¬pj1 ∧ . . .∧¬pjs ∧ p). Our goal is to prove both a) C `RH C ′ and
b) C ′ `RH C.

a) C `RH Π(¬(bj1 ∧ pj1) ∧ . . . ∧ ¬(bjs ∧ pjs) ∧ p) is clear, since the formula in the
right hand side is just the result of removing some members of the conjunction
in C. But bjl ≡RH > for each 1 ≤ l ≤ s, therefore C `RH C ′.
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b) Let {k1, . . . , kn−s} = {1, . . . , n}\{j1, . . . , js}, and let bi have the form ∃U i(Xi ≈
t
i). The way in which {j1, . . . , js} has been defined, together with the fact that a

denumerable set of symbolic constants is available, guarantees that there exists a
t with the following property. For every 1 ≤ i ≤ n−s, (X

i ≈ ti∧X ≈ t) ≡RH ⊥.
That is to say, intuitively, that t and t

i cannot be unified. A possible choice for
t is a vector of distinct symbolic constants not occurring in C. Then

C ′ `RH Π(¬pj1 ∧ . . . ∧ ¬pjs ∧ p ∧ ¬∃U
k1(X

k1 ≈ tk1 ∧X ≈ t ∧ pk1) ∧ . . .

∧¬∃Ukn−s(Xkn−s ≈ tkn−s ∧X ≈ t ∧ pkn−s)).

Such t plays the role of a witness, and using the properties of `RH it follows that

C ′ `RH ∃XΠ(¬pj1 ∧ . . . ∧ ¬pjs ∧ p ∧ ¬(bk1 ∧ pk1) ∧ . . . ∧ ¬(bkn−s ∧ pkn−s)),

which is exactly what needed to be proved.

Lemma 16 Let C ≡ ∃XΠr((∃U
1
(X ≈ t1) ∧E1) ∨ . . . ∨ (∃Um(X ≈ tm) ∧Em)) be the

completion for an elemental constraint, where Πr binds every real variable in the body
of C. Let

IS =
{
∅ 6= S⊆{1, . . . ,m}| there is a symbolic unifier for {ti ≈ tj}i,j∈S

}
,

and for each S ∈ IS let CS ≡
∨
j∈S

(X ≈ tj ∧ Ej).

Then, C ≡RH
∨
S∈IS
∃X∃wSΠr∃U(CSµS), where U = U1 . . . Um, and µS is any most

general n.a.o–unifier for {ti ≈ t
j}i,j∈S such that no variable of the set wS of real

variables in the range of µS occurs in C.

Proof: (sketch) Let C ′ ≡
∨
S∈IS
∃X∃wSΠr∃U(CSµS). As C and C ′ are both sentences,

in order to prove C ≡RH C ′ it is enough to prove that `RH C iff `RH C ′. Let us show
`RH C implies `RH C ′ (the other implication is easier).
`RH C implies that there exists a ground symbolic substitution µ for X such that

`RH ∃zΠr((∃U
1
(Xµ ≈ t

1) ∧ E1µ) ∨ . . . ∨ (∃Um(Xµ ≈ t
m) ∧ Emµ)), where z is the

set of variables in the range of µ. Let S be the set of indexes i such that Xµ ≈ t
i is

not RH-equivalent to ⊥. I.e., solve-tree does not fail if it is applied to Xµ ≈ t
i.

It is clear that `RH ∃zΠr(
∨
i∈S(∃U i(Xµ ≈ t

i) ∧ Eiµ)). Let U ≡ U1 . . . Um. Then
`RH ∃zΠr∃U(

∨
i∈S(Xµ ≈ t

i) ∧ Eiµ). Let µS be any most general n.a.o–unifier for
{ti ≈ tj}i,j∈S . Then, `RH ∃z∃wSΠr∃U(

∨
i∈S(Xµ ≈ tiµS) ∧ Eiµ). So finally

`RH ∃X∃wSΠr∃U(
∨
i∈S

(X ≈ tiµS) ∧ Ei) ≡RH ∃X∃wSΠr∃U(CSµS).

Thus `RH
∨
S∈IS
∃X∃wSΠr∃U(CSµS) ≡ C ′.
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5.2 The Procedure Elemental-Sat

For the sake of a better understanding, before dealing with the algorithm that is able
to decide the RH-satisfiability of any elemental constraint Π(D1∨. . .∨Dm), we present
a more simple procedure that may be used when m = 1.

elemental-sat (case m = 1)
Input: An elemental constraint C ≡ ΠD1.
Output: > if C is RH-satisfiable. ⊥ otherwise.
Procedure: The sequential application of the following steps should be carried out.

1) Replace C by its completion.

Now C has the form ΠD1, where D1 ≡ b ∧ ¬b1 ∧ . . . ∧ ¬bn ∧ p. Let Πr be the
sequence of real quantifications in Π, and y be the set of variables bound by Πr.
Let X be the eliminable variables of D1, and x the set of free real variables in C.
Let C1 ≡ ∃X∃xΠrD1 be the existential closure of C.

2) If no symbolic variable occurs in C, then C ′ is already a Tarski sentence, so go
directly to step 5).

Otherwise, let b ≡ ∃U(X ≈ t(U, x, y)). Replace in t(U, x, y) each real subterm
s(x, y) by a new real variable z, obtaining t′(U, z).

Build C2 ≡ ∃X∃xΠr∃z∃U(X ≈ t′(U, z) ∧ ¬b1 ∧ . . . ∧ ¬bn ∧ p ∧ z ≈ s(x, y)).

3) For each 1 ≤ i ≤ n proceed as follows. Write bi ≡ ∃U
i
(X ≈ ti), and apply

solve-tree to ti ≈ t
′(U, z), obtaining the output E ∧ p′i, and let b′i ≡ ∃U

i
E.

Remove in b′i the equalities with left hand side in U
i
, together with the existential

quantifiers over them.

Build C3 ≡ ∃U∃z∃xΠr(¬(b′1 ∧ p′1) ∧ . . . ∧ ¬(b′n ∧ p′n) ∧ p ∧ z ≈ s(x, y)).

If for j solve-tree failed, then ¬(b′j ∧ p′j) is not included in C3.

4) Let {j1, . . . , js} ⊆ {1, . . . , n} be the set of indexes of those bi with the form
∃U(Y ≈ U) occurring in C3, where U contains no variable repetition.

Build C4 ≡ ∃z∃xΠr(¬p′j1 ∧ . . . ∧ ¬p
′
js
∧ p ∧ z ≈ s(x, y)).

5) Use a CAD-based procedure to eliminate the quantifiers of C4, producing C5 ∈
{>,⊥}.

Proposition 17 (Total Correctness) For a given input elemental constraint C, the
algorithm elemental-sat (case m = 1) terminates and the output produced is > if C
is RH-satisfiable, and ⊥ otherwise.

Proof: C is RH-equivalent to its completion thanks to Lemma 12, and thus it is RH-
satisfiable if and only if C1 ≡RH >. Therefore in order to prove the claim it is enough
to show that the formulas Ci, 1 ≤ i ≤ 5, are pairwise RH-equivalent.

• C1 ≡RH C2, due to the properties of `RH.
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• By virtue of Lemma 13, C2 ≡RH

∃X∃xΠr∃z∃U(X ≈ t′(U, z) ∧ ¬(b′1 ∧ p′1) ∧ . . . ∧ ¬(b′n ∧ p′n) ∧ p ∧ z ≈ s(x, y)).

It must be noticed that, for 1 ≤ i ≤ n, the constraint b′i ∧ p′i does not contain
any occurrences of X. Hence the conditions in Lemma 14 hold, and so the latter
constraint is RH-equivalent to C3.

• By virtue of Lemma 15, C3 ≡RH C4.

• The CAD-based quantifier-elimination methods preserve RH-equivalence, so C4

≡RH C5.

At this stage we are ready to present the general procedure elemental-sat. Its
first steps are analogous to those in the case m = 1, and many of the ideas applied in
it are still useful.

elemental-sat

Input: An elemental constraint C ≡ Π(D1 ∨ . . . ∨Dm).
Output: > if C is RH-satisfiable. ⊥ otherwise.
Procedure: The sequential application of the following steps should be carried out.

1) Replace C by its completion. C has the form Π(D1 ∨ . . . ∨ Dm), where Dj ≡
bj ∧ ¬bj1 ∧ . . . ∧ ¬bjnj ∧ p

j for every j, 1 ≤ j ≤ m. Let Πr be the sequence of
real quantifications in Π, and y be the set of variables bound by Πr. Let X be
the eliminable variables of D1, and x the set of free real variables in C. Let
C1 ≡ ∃X∃xΠr(D1 ∨ . . . ∨Dm) be the existential closure of C.

2) For each 1 ≤ j ≤ m, proceed with the following steps:

2.1) Let bj ≡ ∃U j(X ≈ t
j(U

j
, x, y)). Replace in t

j(U
j
, x, y) each real subterm

sj(x, y) by a new real variable zj , obtaining tj
′
(U

j
, z).

Build the constraint

Cj2.1 ≡ ∃zj(X ≈ t
j ′(U

j
, zj) ∧ ¬bj1 ∧ . . . ∧ ¬bjn ∧ pj ∧ zj ≈ sj(x, y)).

2.2) For 1 ≤ i ≤ nj , write bji ≡ ∃U
j

i (X ≈ t
j
i ), and apply solve-tree to t

j
i ≈

t
j ′(U

j
, zj), producing Ei ∧ pji

′
. Let bji

′
≡ ∃U jiEi.

Remove in bji
′

the equalities with left hand side in U
j

i , together with the
existential quantifiers over them. Build the constraint

Cj2.2 ≡ ∃zj(X ≈ t
j ′(U

j
, zj)∧¬(bj1

′
∧pj1

′
)∧. . .∧¬(bjnj

′∧pjnj
′
)∧pj∧zj ≈ sj(x, y)).

3) Compute

IS =
{
∅ 6= S ⊆ {1, . . . ,m}| there is a symbolic unifier for {ti

′
≈ tj

′
}i,j∈S

}
.

4) For every S ∈ IS, set checkS = ⊥. Let C4 = ⊥.
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5) While C4 = ⊥ and there is S ∈ IS such that checkS = ⊥ proceed with the
following steps.

5.1) Select S ∈ IS such that checkS = ⊥.
For the sake of simplicity, let us assume that S = {1, . . . , l}, where l ≤ m.
Calculate a most general n.a.o–unifier µS associated to S, and let w be
the set of real variables occurring in its range. For every i, 1 ≤ i ≤ l,
t
i′(U

i
, zi)µ ≡h t

1′(U
1
, z1)µ. Build the polynomial piunif that consists on

the conjunction of all polynomials s1 ≈ s2, where s1 : r is a subterm of
t
i′(U

i
, zi)µ and s2 : r is the subterm of t1

′
(U

1
, z1)µ in the same position.

Build the constraint

CS5.1 ≡ ∃X∃w∃xΠr∃U∃z(X ≈ t
1′(U

1
, z1)µS∧

(¬(b11
′ ∧ p1

1
′
) ∧ . . . ∧ ¬(b1n1

′ ∧ p1
n1

′
) ∧ p1 ∧ z1 ≈ s1(x, y) ∧ p1

unif ) ∨ . . .

∨(¬(bl1
′ ∧ pl1

′
) ∧ . . . ∧ ¬(blnl

′ ∧ plnl
′
) ∧ pl ∧ zl ≈ sl(x, y) ∧ plunif )),

where U = U
1
. . . U

m
and z = z1 . . . zm.

5.2) Move the quantifiers ∃U and ∃z and place it next to ∃X. Eliminate ∃X
and remove the equalities in which such variables occur. In each bkj

′ replace

X by t
1′(U

1
, z1)µS . Use solve-tree with each bkj

′ ∧ pkj
′ (excluding the

quantifiers prefix), and let ¬(bkj
′′ ∧ pkj

′′) be the constraint produced. Thus,
the following constraint must be built:

CS5.2 ≡ ∃U∃z∃w∃xΠr(

(¬(b11
′′ ∧ p1

1
′′
) ∧ . . . ∧ ¬(b1n1

′′ ∧ p1
n1

′′
) ∧ p1 ∧ z1 ≈ s1(x, y) ∧ p1

unif ) ∨ . . .

∨(¬(bl1
′′ ∧ pl1

′′
) ∧ . . . ∧ ¬(blnl

′′ ∧ plnl
′′
) ∧ pl ∧ zl ≈ sl(x, y) ∧ plunif )).

If for j, k solve-tree failed, then ¬(bkj
′′∧pkj

′′) must not be included in C5.2.

5.3) Proceed as in step 4) of the case m = 1, removing every basic formula
and symbolic quantifier, leaving only those polynomials associated to basic
formulas whose right hand sides are different variables. Let C5.3 be the
result:

CS5.3 ≡ ∃z∃w∃xΠr((¬p1
j11

′′ ∧ . . . ∧ ¬p1
j1n1

′′ ∧ p1 ∧ z1 ≈ s1(x, y) ∧ p1
unif ) ∨ . . .

∨(¬pljl1
′′ ∧ . . . ∧ ¬pljlnl

′′ ∧ pl ∧ zl ≈ sl(x, y) ∧ plunif )).

5.4) Apply a CAD-based method to eliminate the quantifiers in C5.3, producing
> or ⊥. Store the result in C4, and set checkS = >.

6) Return C4.

Proposition 18 (Total Correctness) For a given input elemental constraint C, the
algorithm elemental-sat terminates and the output produced is > if C is RH-
satisfiable, and ⊥ otherwise.
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Proof: C is RH-equivalent to its completion thanks to Lemma 12, and thus it is
RH-satisfiable if and only if C1 ≡RH >. Analogously as it was argued in the proof
for the case m = 1, Dj ≡RH Cj2.1 ≡RH Cj2.2, 1 ≤ j ≤ m, thanks to Lemma 13.
Therefore, C1 ≡RH ∃X∃xΠr(∃U

1
C1

2.2 ∨ . . . ∨ ∃U
m
Cm2.2). By virtue of Lemma 16, that

is RH-equivalent to ∨
S∈IS
∃X∃xΠr∃U(CSµS), (†)

where CS ≡
∨
j∈S
Cj2.2 for each S ∈ IS and U = U1 . . . Um. Let us prove now that

(†) ≡RH
∨
S∈IS

CS5.4 ≡RH C4. We know that (†) ≡RH > if and only if there is S ∈ IS such

that ∃X∃xΠr∃U(CSµS) ≡RH >. It must be noticed that the loop in step 5) is defined
in such a way that C4 ≡RH > if and only if there is S ∈ IS such that CS5.3 ≡RH >.
The latter holds because the CAD-method used preserves RH-equivalence. Therefore,
it is enough to prove that ∃X∃xΠr∃U(CSµS) ≡RH CS5.3 for every S ∈ IS, which can
be shown as follows:

• For any fixed S, ∃X∃xΠr∃U(CSµS) ≡RH CS5.1, mainly because piunif `RH
t
i′(U

i
, zi)µS ≈ t

1′(U
1
, z1)µS .

• Analogously as in the proof for the case m = 1, CS5.1 ≡RH CS5.2 by virtue of
Lemmas 13 and 14.

• The constraint CS5.3 is obtained from CS5.2 in an analogous way as in the step 4) of
the proof for the case m = 1. Again, by virtue of Lemma 15, such transformation
preserves RH-equivalence.

The following example illustrates the usage of elemental-sat with a non-trivial
constraint.

Example 5 Suppose that we need to decide whether the elemental constraint C below
is RH-satisfiable.

C ≡ ∃X∃Y ∃y∀x(D1 ∨D2 ∨D3),

where
D1 ≡ ∃U1V1(X ≈ f(0) ∧ Y ≈ g(U1, V1)) ∧ ¬∃W1(X ≈ f(x) ∧ Y ≈W1),

D2 ≡ ∃U2V2(X ≈ U2 ∧ Y ≈ g(f(1), V2)) ∧ ¬∃W2(X ≈ f(0) ∧ Y ≈ g(f(x),W2)),

D3 ≡ ∃U3V3(X ≈ U3 ∧ Y ≈ V3) ∧ x(x− 1) ≈ y.

So, in this example m = 3. Steps 1) is not needed this time, since the input is
already the completion of a quantified RH-normal form. Step 2) replaces D1 by

∃U1V1(X ≈ f(z1) ∧ Y ≈ g(U1, V1)) ∧ ¬∃W1(X ≈ f(x) ∧ Y ≈W1) ∧ z1 ≈ 0

and D2 by

∃U2V2(X ≈ U2 ∧ Y ≈ g(f(z2), V2)) ∧ ¬∃W2(X ≈ f(0) ∧ Y ≈ g(f(x),W2)) ∧ z2 ≈ 1.

D3 does not have any real constants or operators in its positive basic formula, so step
2) is not applied to it.

In step 3) IS is found to be

IS = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.
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Suppose that the first S selected in step 5.1) is S = {1}. Then the procedure works as
follows.

Initial constraint, ∃(Csµs):
∃X∃Y ∃z1∃y∀x(∃U1V1(X ≈ f(z1)∧Y ≈ g(U1, V1))∧¬∃W1(X ≈ f(x)∧Y ≈W1)∧z1 ≈ 0).

5.1) Since there is only one formula in the disjunction, no change is performed.

5.2) Reordering quantifiers, removing X and Y , and applying solve-tree:

∃z1U1V1y∀x(¬(∃U ′1V ′1(U1 ≈ U ′1 ∧ V1 ≈ V ′1) ∧ z1 ≈ x) ∧ z1 ≈ 0).

5.3) Removing basic formulas RH-equivalent to >:

∃z1y∀x(¬z1 ≈ x ∧ z1 ≈ 0).

5.4) Using a CAD-based quantifier-elimination method with the previous Tarski sen-
tence, it turns out to be RH-equivalent to ⊥.

Therefore, C4 is still false, and another S ∈ IS must be tried. For example, let us
assume that S = {1, 2} is selected.

Initial constraint ∃(Csµs):

∃X∃Y ∃y∃x∀x[

(∃U1V1(X ≈ f(z1) ∧ Y ≈ g(U1, V1)) ∧ ¬∃W1(X ≈ f(x) ∧ Y ≈W1) ∧ z1 ≈ 0)∨

(∃U2V2(X ≈ U2 ∧ Y ≈ g(f(z2), V2)) ∧ ¬∃W2(X ≈ f(0) ∧ Y ≈ g(f(x),W2)) ∧ z2 ≈ 1)].

5.1) Applying a most general symbolic unifier for the right hand sides of the equalities
for X,Y .

∃XY V1z1z2y∀x[z1 ≈ 0 ∧ z2 ≈ 1 ∧ (X ≈ f(z1) ∧ Y ≈ g(f(z2), V1))∧
(¬∃W1(X ≈ f(x) ∧ Y ≈W1) ∨ ¬∃W2(X ≈ f(0) ∧ Y ≈ g(f(x),W2))].

5.2) Elimination of X,Y . Application of solve-tree:

∃V1z1z2y∀x[z1 ≈ 0 ∧ z2 ≈ 1 ∧ (¬(∃V ′1(V1 ≈ V ′1) ∧ x ≈ z1)∨
¬(∃V ′′1 (V1 ≈ V ′′1 ) ∧ z1 ≈ 0 ∧ z2 ≈ x))].

5.3) Removing basic formulas RH-equivalent to >:

∃z1z2y∀x[z1 ≈ 0 ∧ z2 ≈ 1 ∧ (¬x ≈ z1 ∨ ¬(z1 ≈ 0 ∧ z2 ≈ x))].

5.4) Using a CAD-based quantifier-elimination method with the previous Tarski sen-
tence, it turns out to be RH-equivalent to >. That is in fact easy to see, since a
straightforward simplification renders ∀x(¬x ≈ 0 ∨ ¬x ≈ 1).

Therefore, C4 is set to >, and that is the output of elemental-sat.
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6 Conclusion

The constraint system RH has been defined joining the axiomatization of the algebra
of finite trees together with the axiomatization for real closed fields. Both theories are
decidable, and our interest was to find a decision procedure for their combination. The
framework of the constraint system RH is the CLP scheme, and it can be considered
as a domain that produces a particular instance. In this field, there is a variety of
works dealing with different constraint domains [11, 2, 5, 9]. Our contribution relies
on the fact that we have dealt with a harder, more general satisfiability problem,
because, having the domain in the context of a logic programming language based on
hereditary Harrop formulas, any occurrence of existential and universal quantifiers is
allowed in the constraints, instead of only existential ones as in Horn clauses. On the
other hand, comparing our method with the decision procedure for combined theories
proposed in [18], it is important to realize that the latter applies only to quantifier-free
formulas, and therefore the technique of propagation of equalities on which it relies
does not seem useful for the purpose of the present paper. This is due to the fact that
such propagation incorporates equalities implied by polynomials, but does not replace
them, which does not help to the elimination of quantifiers. However, it may be used
to check RH-satisfiability of constraints with no mixed quantifier prefix, although the
solving procedure described in this paper is also able to do it.

Choosing as starting point the decision procedure due to Maher [15] for the theories
of the algebras of finite, rational and infinite trees, based on elimination of quantifiers,
we have extended it to dealing with quantifiers over real variables, using CAD based
techniques [19, 3]. The incorporation of real variables and polynomials to the formulas
to be treated is not trivial at all, and its effect on the original algorithm due to Maher
has been studied. A procedure to solve a subclass of the set of RH-constraints has been
defined based on the reduction of the original constraints to simpler ones, for which a
satisfiability decision method has also been described. Such procedure can be regarded
as the basis of a solver for the constraint logic programming language HH(RH). In
this paper we have focused on its foundations, which are proved in an original way.
We tried to provide procedures as simple and natural as possible, in order to make
it more understandable and easy to study. However, for a particular implementation,
many refinements and improvements, including the incorporation of heuristics, would
be most convenient. With respect to the efficiency, the algorithm is very näıve, since
it incorporates parts like the solve-tree algorithm, whose complexity is exponential.
The tasks concerning elimination of real quantifiers computing a CAD have polyno-
mial complexity [3], but some calculations may be reused when the next real quantifier
is being eliminated. Another desirable feature concerning the implementation of the
solver in the context of HH(RH) is the incrementality. The goal-solving procedure
presented in [13] handles prenex constraints as partial calculated answers, which evi-
dently benefits the phase of preprocessing, although it must be studied how that may
be useful for the quantifier elimination phase, in order to profit the calculus performed
for the constraints of previous steps.

Our interest as future related research consists in the dealing, if possible, with a
greater class of RH-constraints (including such of Example 3), as well as to formally
analyze the complexity of the algorithm simplify. We are working in the implementa-
tion of a RH-constraint solver; with that propose, we are looking for techniques that
could improve the efficiency of our theoretical solver, and for particular implementa-
tions dealing with certain classes of polynomials.
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