
Formalizing Two Fixed Point Semantics for HH(C)

Miguel Garćıa-Dı́az and Susana Nieva ?

Departamento de Sistemas Informáticos y Programación
Universidad Complutense de Madrid, Spain
{miguel,nieva}@sip.ucm.es

Abstract. The scheme HH(C) emerged as a double extension of traditional Logic Program-
ming. On one hand, extending Horn logic to hereditary Harrop formulas (HH), in order to
improve the expressive power; on the other, incorporating constraints, in order to increase the
efficiency. The behavior of such extended CLP programs was explained by means of a sequent
calculus that, from every program and set of constraints, exclusively generates uniform proofs
—i. e. goal-oriented proofs— for any goal, as well as by means of a goal solving procedure.
Hence HH(C) was provided for an operational semantics.

Recently, some attempts to define more declarative semantics for HH(C) has been done
by the authors. Here such works are enlarged and improved. Two declarative semantics for
HH(C) based on fixed point techniques are revisited. They are proved to be equivalent and
the corresponding theorems of soundness and completeness, that relate the sequent calculus
(and so the operational semantics) with these semantics, are stated and formally proved. Non
trivial proofs are included in the current paper, and every technical aspect is developed.

1 Introduction

In Constraint Logic Programming (LP) as well as in Constraint Logic Program-
ming (CLP), the operational (algorithmic) interpretation and the declarative
(mathematical) meaning agree with each other, in the sense that the declarative
meaning of a logic or constraint logic program can be interpreted operationally
as a goal-oriented search for solutions. In [14] the notion of abstract logic pro-
gramming language is formulated as a formalization of this idea. There, the
declarative meaning of a program is identified with the set of goals that can
be proved from it by means of uniform proofs in a deduction system. Several
logic extensions of traditional LP, enhancing the weak expressive power of logic
programs based on Horn clauses, have been proved to be abstract logic pro-
gramming languages ([14,15]). This is also the case of the language HH(C), on
which the present paper focuses. It was introduced and proved to be an abstract
logic programming language in [11].

HH(C) is a combination of the logic of Hereditary Harrop formulas (HH)
and CLP, it can be considered as an scheme HH(X) that may be particularized
with any constraint system C, providing for an instance HH(C). This language
is not only an extension of traditional LP (based on Horn logic) improving its
expressivity, but also incorporating the efficiency advantages of CLP [8]. HH
extends Horn logic allowing disjunction, intuitionistic implications and univer-
sal quantifiers in goals. These constructions are essential for capturing module
? The authors are partially supported by the Spanish project TIC2002-01167 ‘MELODIAS’.

structure, hypothetical queries and data abstraction. On the other hand, the
purpose of the incorporation of the CLP approach is to overcome the inherent
limitations in dealing efficiently with elements of domains different from Her-
brand terms. Satisfiability of constraints of particular domains may be checked
in an efficient way, apart from the logic. For example, in [5] a constraint solver
for an interesting and useful instance of our scheme with a constraint system
which combines real numbers with Herbrand terms is described.

A proof system, called UC, that exclusively generates uniform proofs was
defined in [11] showing that HH(C) is in fact an abstract logic programming
language. In addition a goal solving procedure was presented as an operational
semantics for the scheme HH(C), and it was proved to be sound and complete
w.r.t. the intuitionistic deduction system UC.

Although an operational interpretation is needed in order to specify pro-
grams that can be executed with certain efficiency, a clear declarative seman-
tics would indeed simplify the programmer’s work. The use of provability as
declarative interpretation is still too close to the operational behavior. The
proof system, which is a syntactic tool, should be supported by model-theoretic
semantics involving more abstract elements.

The attempts to provide declarative semantics for LP languages based on
mathematical foundations are extensive and fruitful (see v.g. [12,1,2]). This is
also the case of CLP [9,4]. In both, LP and CLP, most of the studies are based
on fixed point theories. The semantics presented in this paper are inspired by
the fixed point semantics for the fragment of HH that incorporates intuitionistic
implication in goals, described in [13]. We extended it in two directions in order
to interpret the whole HH logic: one to deal with universal quantifiers, and
second to manage the presence of constraints.

A model must be found, such that for any program ∆, finite set of constraints
Γ and goal G, G can be proved, from ∆ and Γ , in the deduction system UC,
if and only if, G is satisfied in that model. However, in order to build such
model it is important to realize that, during the search of a proof of a goal
from a program ∆ and a set of constraints Γ , both ∆ and Γ may grow. Having
this condition in mind, we have introduced a new notion of interpretation. A
interpretation I will be a function that associates to every pair 〈∆, Γ 〉 a set
of “true” atoms, in such a way that, if ∆ or Γ are augmented, the set of true
atoms that I associates to the augmented pair cannot decrease. The model
we are looking for will be the least fixed point of a continuous operator that
transforms such kind of interpretations.

The main difference between the two semantics we provide is the way in
which constraint interpretation is dealt with. For the first one, the denotation of
constraints is given in terms of the entailment relation of the constraint system.
For the second, a class of constraint systems is considered for which the logical
inference based on classical model theory can be used to interpret constraints.
The fixed point semantics is reformulated incorporating the logical inference for

2

constraints, instead of the entailment relation. That way, the sets of constraints
are replaced by their denotations and the interpretations are applied to pairs
〈∆, ν〉, where ν is an assignment of the variables into the constraint domain.

This work enhances [6] and [7]. In [6] only the first fixed point semantics
described here is included. [7] includes both, but some technical aspects and
many of the proofs are omitted or sketched there.

The rest of this paper is organized as follows: Section 2 gathers the syntactic
aspects of HH(C), such as the syntax of the constraints, programs and goals,
as well as the definition of constraint systems. In Section 3the rules of the
proof system UC are presented. Some examples of the use of HH(C) as logic
programming language are also shown. Section 4 is devoted to formalize the
two fixed point semantics for HH(C). They are rigorously proved to be sound
and complete w.r.t. provability in UC. The first semantics is directly connected
with the calculus. The second one is proved to be equivalent to the first. In
Section 5 related works are commented.

2 The Language HH(C)

HH(C) can be regarded as a constraint logic programming language, not founded
in Horn logic, as usual, but in the extended logic of hereditary Harrop formulas
[11]. As most CLP languages, it is in fact a parameterized scheme that can
be instantiated by particular constraint systems. The requirements imposed to
such generic constraint systems are gathered below.

2.1 A general constraint system C

Given a signature Σ containing constants, function symbols and predicate sym-
bols including the equality predicate ≈, a constraint system C over Σ is a pair
(LC ,`C), where LC is the set of formulas that play the role of constraints, and
`C⊆ P(LC) × LC1 is the entailment or deduction relation between sets of con-
straints Γ and constraints C. C must fulfill the following conditions:

• LC is set of first-order formulas built up using the signature Σ, which must
specifically include > (true), ⊥ (false), and the equations t ≈ t′ for any
Σ-terms t and t′.
• LC is closed under ∧,⇒,∃,∀ and the application of substitutions of terms

for variables.
• `C is compact, i.e., Γ `C C iff Γ0 `C C for some finite Γ0 ⊆ Γ . `C is also

generic, i.e., Γ `C C implies Γσ `C Cσ for any substitution σ2.
• All the inference rules related to ∧,⇒,∃,∀ and ≈ valid in the intuitionistic

fragment of first-order logic are also valid in `C .
1 Here and in the rest of the paper, given a set S, P(S) denotes its power set.
2 Γσ is the result of applying the substitution σ to each formula in Γ , avoiding the capture

of variables.

3

The preceding conditions are minimal requirements for a C to be a constraint
system, but in many useful cases C satisfies additional properties. For instance,
if AxCFT is Smolka and Treinen’s axiomatization of the domain of feature trees
[16], the constraint system CFT can be defined considering the whole set of
first-order formulas as constraints, and Γ `CFT C iff Γ ∪ AxCFT ` C, where
` is the entailment relation of classical first-order logic with equality. Another
example is the constraint system R that can be defined analogously to CFT ,
but using AxR, the Tarski’s axiomatization of the closed field of real numbers
[17]. See also the system RH, that combines the field of real numbers with finite
trees, defined in [5].

Hereafter, we will consider a fixed signature Σ and a constraint system C
over Σ. Γ will stand for finite sets of constraints. A set of constraints Γ is said
to be C-satisfiable if ∅ `C ∃(

∧
Γ), where ∃ denotes existential closure and

∧
Γ

the conjunction of constraints in Γ .
Constraints can be found embedded in goals and clauses as described in the

following subsection.

2.2 Clauses and goals

Let the set of program predicate symbols ΠP be a set of predicate symbols such
that Σ ∩ΠP = ∅. In the rest of the paper Σ and ΠP are assumed fixed. Let At
be the set of atomic formulas over ΠP and Σ-terms. The set G of goals G, and
the set D of clauses D over Σ and ΠP are defined by the mutually-recursive
rules below:
G ::= A | C | G1 ∧G2 | G1 ∨G2 | D ⇒ G | C ⇒ G| ∃xG | ∀xG,

D ::= A | G⇒ A | D1 ∧D2 | ∀xD,
where A ∈ At , C ∈ LC .

Definition 1. A program, noted ∆, over Σ and ΠP is a finite subset of D.
Let W be the set of programs over Σ and ΠP .

The following definition will be useful in order to simplify the usage of
program clauses.

Definition 2. Given a set of clauses S, the elaboration of S is the set of clauses

elab(S)
def=

⋃
D∈S elab(D), where elab(D) is defined by the following rules:

- elab(A)
def={> ⇒ A}.

- elab(D1 ∧D2)
def= elab(D1) ∪ elab(D2).

- elab(G⇒ A)
def={G⇒ A}.

- elab(∀xD)
def={∀xD′ |D′ ∈ elab(D)}.

An elaborated clause is a clause of the form ∀x(G⇒ A)3.
3 ∀x is an abbreviation for ∀x1 . . .∀xn, and analogously for ∃x.

4

In order to simplify the notation, in this paper we will identify a program
with its elaboration. And we will write ∆, to refer to elab(∆). In this way,
programs can be understood as sets of elaborated clauses.

A variant of ∀x(G ⇒ A) is a clause ∀y((G ⇒ A)[y/x]), where no y ∈ y
occurs in G ⇒ A. F [y/x] is the result of applying to F the substitution that
replaces xi by yi for each xi ∈ x.

One of the outstanding features of the logic programming language HH(C)
is its high expressive power. In order to illustrate it, a couple of examples is
presented here, for the instance HH(R).

Example 1. Taking ΠP = {triangle, isosceles}, let us consider the program
∆1, in a prolog-like notation, enriched with constraints and the logic connectives
∀ and ⇒:

triangle(A, B, C):- A > 0, B > 0, C > 0, A < C + B,
B < A + C, C < A + B.

The predicate triangle(A,B,C) becomes true when it is possible to build a
triangle with sides of lengths A, B and C. Let ∆2 be the program:

isosceles(A, A, C):- triangle(A, A, C).
isosceles(A, B, A):- triangle(A, B, A), A 6= B.
isosceles(A, B, B):- triangle(A, B, B), A 6= B.

Suppose that, from ∆1, we want to know which conditions over a variable y
guarantee that, for any x > 1, it is possible to build an isosceles triangle with
sides 〈x, x, y〉. ∆1 must import the clauses of ∆2, and the goal which captures
that query is:

G ≡ (∆2 ⇒ ∀x(x > 1⇒ isosceles(x, x, y))),

where ∆2 means here the conjunction of its clauses. Similarly as in [13], the first
implication of G should mean that the right hand side must be solved loading
the program ∆2 as a module.

Example 2. Consider the program below, borrowed from [11].

fib(N,X):- memfib(0, 1) ⇒
(memfib(1, 1) ⇒ getfib(N, X, 1)).

getfib(N, X, M):- 0 <= N, N <= M, memfib(N, X).
getfib(N, X, M):- N > M, memfib(M-1, F1), memfib(M, F2),

(memfib(M + 1, F1 + F2) ⇒ getfib(N, X, M + 1)).

It is a reversible program to compute Fibonacci numbers. Reversibility is also
obtained in a pure CLP version, but with a program that runs in exponential
time and that recalculates Fibonacci numbers. The HH(R) version is more
efficient since none Fibonacci number must be recalculated, and goals of the
form fib(n, x), n given, run in linear time.

Other examples can be found in [11,10,5]. The ones in [10] belong to the higher-
order version of HH(C), and those in [5] to the instance HH(RH).

5

3 The Sequent Calculus UC

We follow the ideas of Miller et al. [14], in which logic programming languages
are identified with those such that non-uniform proofs of goals in a deduction
system can be discarded. Those languages are called abstract logic program-
ming languages. The goal solving procedure of any of these languages and its
respective deduction system agree, and in both (goal solving and deduction sys-
tem) the search of a proof for a goal is directed by the structure of such goal.
For the case of HH(C), the calculus that guarantees uniform proofs, called UC,
was defined in [11], and it is briefly described now.
UC is a sequent calculus which combines intuitionistic rules for the logic

connectives with the entailment relation `C . For any program ∆, finite set of
constraints Γ , and goal G, ∆;Γ `UC G means that there is a proof for the
sequent ∆;Γ |— G using, in a bottom-up fashion, the rules of the calculus UC
that appear below. So UC-proofs will be regarded as trees.

UC-Rules

Rules for constraints and atomic goals:

Γ `C C

∆;Γ |— C
(CR)

∆;Γ |— ∃x(A ≈ A′ ∧G)
∆;Γ |— A

(Clause)

where ∀x(G ⇒ A′) is a variant of some clause in ∆; the variables of x do not
occur free in the lower sequent; A ≡ P (t1, . . . , tn), A′ ≡ P (s1, . . . , sn), and
A ≈ A′ denotes the conjunction t1 ≈ s1 ∧ . . . ∧ tn ≈ sn.

Rules introducing connectives:

∆;Γ |— G1 ∆;Γ |— G2

∆;Γ |— G1 ∧G2
(∧R)

∆;Γ |— Gi

∆;Γ |— G1 ∨G2
(∨R)

∆, D;Γ |— G

∆;Γ |— D ⇒ G
(⇒R)

∆;Γ,C |— G

∆;Γ |— C ⇒ G
(⇒CR

)

∆;Γ,C |— G[y/x] Γ `C ∃yC

∆;Γ |— ∃xG
(∃R)

∆;Γ |— G[y/x]
∆;Γ |— ∀xG

(∀R)

In rules (∃R) and (∀R) the variable y does not occur free in any formula of the
lower sequent, and i ∈ {1, 2} in rule (∨R).

When ∆;C `UC G holds, C is said to be a correct answer constraint for G
from ∆. In [11] a goal solving procedure for HH(C) is introduced and proved to
be sound and complete w.r.t the `UC-deduction.

Example 3. From the program ∆1 of example 1, solving the goal

G ≡ (∆2 ⇒ ∀x(x > 1⇒ isosceles(x, x, y))),

6

in accordance with the rule (⇒R), the clauses of ∆2 are in fact locally added to
∆1, as a module. Hence, according to the proof system UC, C ≡ 0 < y ∧ y ≤ 2
is a correct answer constraint for G from ∆1.

Example 4. Consider the program of example 2 to compute Fibonacci numbers.
For instance, both the goals fib(9, x) or fib(x, 55) can be solved, obtaining the
constraint answers x ≈ 55 and n ≈ 9, respectively.

The goal getfib(n, x, m) computes the n-th Fibonacci number in x, assuming
that the Fibonacci numbers fibi, with 0 ≤ i ≤ m, are stored in the local
program as atoms for memfib. During the computation, atoms memfib for fibi,
with m < i ≤ n, are locally memorized.

4 Declarative Semantics for HH(C)

The goal solving procedure defined in [11] may be regarded as an operational
semantics for HH(C). However, from the theoretical point of view, the program-
ming language HH(C) presented lacks a model semantics. The only meanings
that we may associate to programs, so far, are sets of proofs.

In this section, alternative semantics based on fixed point constructions —
widely utilized in LP and CLP— are introduced.

4.1 A fixed point semantics approach

For the traditional LP language, given a program P there is a continuous oper-
ator TP transforming interpretations (sets of atoms) such that G can be proved
from P , if and only if, G “is true” in the least fixed point of TP [19]. As an-
alyzed in [13], for the fragment of HH that includes implications in goals, the
situation is more complex, since while building a proof for a goal G the program
∆ may be augmented. Therefore programs play the role of contexts, and inter-
pretations become monotonous functions mapping each program into a set of
atoms. Instead of a family {T∆}∆∈W of continuous operators, there is a unique
operator T , and the main result is that G can be proved from ∆, if and only
if, G “is true” in the least fixed point of T at the context ∆. New difficulties
arise extending this approach to HH(C), since the universal quantifier, as well
as constraints, are allowed in goals, and then embedded into programs. When
proving a goal G from a program ∆ there is also the presence of a set of con-
straints Γ ; both ∆ and Γ may result augmented, therefore the notion of context
is extended to pairs 〈∆, Γ 〉. So an interpretation of 〈∆, Γ 〉 should depend on
interpretations of 〈∆′, Γ ′〉 with ∆′ ⊆ ∆, Γ ′ ⊆ Γ .

Interpretations and forcing relation We have extended the model theory
presented in [13] in order to interpret full HH(C). The semantics there defined is
based on a forcing relation between programs and goals that represents whether

7

an interpretation makes true a goal in the context of a program. For the reasons
explained before, in our language contexts must be extended to be pairs 〈∆, Γ 〉,
and interpretations are defined as monotonous functions able to interpret every
pair 〈∆, Γ 〉.

Let us assume that Σ, ΠP , a Σ-constraint system C and a set ΠP of program
predicates have been chosen.

Definition 3. An interpretation I is a monotonous function I :W×P(LC)→
P(At), i.e. for any ∆1,∆2 and Γ1, Γ2 such that ∆1 ⊆ ∆2 and Γ1 ⊆ Γ2,
I(∆1, Γ1) ⊆ I(∆2, Γ2) holds. Let I denote the set of interpretations.

A continuous operator transforming such interpretations will be defined and
proved that for any ∆, Γ and G, ∆;Γ `UC G if and only if G is forced by the
least fixed point of this operator at the context 〈∆, Γ 〉.

The definition of such operator is founded on previous concepts and results,
that are formulated now.

Definition 4. For any I1, I2 ∈ I, I1 v I2 if for each ∆ and Γ , I1(∆, Γ) ⊆
I2(∆, Γ) holds.

It is straightforward to check that (I,v) is a poset, i.e. v is a partial order.
In addition, (I,v) is a complete lattice.

Lemma 1. The poset (I,v) is a complete lattice.

Proof. It must be checked that, for any S ⊆ I, the least upper bound and
greatest lower bound of S, denoted by

⊔
S and

d
S respectively, exist. It can

be proved that they are characterized by the following equations:

(
⊔

S)(∆, Γ) =
⋃

I∈S I(∆, Γ) for any ∆ and Γ ,
(
d

S)(∆, Γ) =
⋂

I∈S I(∆, Γ) for any ∆ and Γ,

which in fact define interpretations. We now prove those facts for the case of⊔
S, since the proof for

d
S is analogous. The following elemental facts must

be proved:

-
⊔

S ∈ I. For ∆1,∆2 and Γ1, Γ2, assuming that ∆1 ⊆ ∆2, Γ1 ⊆ Γ2 and A ∈
(
⊔

S)(∆1, Γ1) hold, let us prove that A ∈ (
⊔

S)(∆2, Γ2). A ∈ (
⊔

S)(∆1, Γ1) =⋃
I∈S I(∆1, Γ1), so there exists IA ∈ S such that A ∈ IA(∆1, Γ1). Since

each IA is an interpretation, IA(∆1, Γ1) ⊆ IA(∆2, Γ2), and therefore A ∈
IA(∆2, Γ2). But IA(∆2, Γ2) ⊆

⋃
I∈S I(∆2, Γ2) = (

⊔
S)(∆2, Γ2), so we obtain

that A ∈ (
⊔

S)(∆2, Γ2).
-

⊔
S is an upper bound for S. Let I ∈ S. For any ∆ and Γ , we have that

I(∆, Γ) ⊆
⋃

I∈S I(∆, Γ) = (
⊔

S)(∆, Γ). Therefore, I v
⊔

S for any I ∈ S.
-

⊔
S v I ′ for any I ′ ∈ I upper bound of S. Let us assume that I ′ is an

upper bound for S. For each I ∈ S, I v I ′ implies I(∆, Γ) ⊆ I ′(∆, Γ) for
any ∆ and Γ . Therefore,

⋃
I∈S I(∆, Γ) ⊆ I ′(∆, Γ) for any ∆ and Γ . Thus,⊔

S v I ′. ut

8

As a particular case, (I,v) has an infimum
d
I, denoted by I⊥, which is

the constant function ∅. Moreover, for any chain of interpretations {Ii}i≥0, such
that I0 v I1 v I2 v . . .,

⊔
i≥0 Ii(∆, Γ) =

⋃
i≥0 Ii(∆, Γ) for any ∆ and Γ .

The following definition formalizes the notion of a goal G being “true” for
an interpretation I in a context 〈∆, Γ 〉.

Definition 5. Given I ∈ I, G, ∆ and Γ , G is said to be forced by I,∆ and Γ ,
written I,∆, Γ �� G, where �� is the relation recursively defined by the rules
below:

I,∆, Γ �� C⇐⇒def
Γ `C C.

I,∆, Γ �� A⇐⇒def
A ∈ I(∆, Γ).

I,∆, Γ �� G1 ∧G2⇐⇒
def

I, ∆, Γ �� Gi for each i ∈ {1, 2}.
I,∆, Γ �� G1 ∨G2⇐⇒

def
I, ∆, Γ �� Gi for some i ∈ {1, 2}.

I,∆, Γ �� D ⇒ G⇐⇒def
I, ∆ ∪ {D}, Γ �� G.

I,∆, Γ �� C ⇒ G⇐⇒def
I, ∆, Γ ∪ {C} �� G.

I,∆, Γ �� ∃xG⇐⇒def there is a constraint C and a variable y such that:
- y does not occur free in ∆, Γ , ∃xG.
- Γ `C ∃yC.
- I,∆, Γ ∪ {C} �� G[y/x].

I,∆, Γ �� ∀xG⇐⇒def there is a variable y such that:
- y does not occur free in ∆, Γ , ∀xG.
- I,∆, Γ �� G[y/x].

Now, we are ready to define the operator over interpretations whose least
fixed point supplies the expected version of truth.

Definition 6. The operator T : I −→ I transforms interpretations as follows.
For any I ∈ I, ∆, Γ and A ∈ At , A ∈ T (I)(∆, Γ) if there is variant ∀x(G⇒ A′)
of a clause in ∆ such that the variables x do not occur free in ∆, Γ , A, and
I,∆, Γ �� ∃x(A ≈ A′ ∧G).

In order to establish the existence of a fixed point of T , it will be proved
to be monotonous and continuous. The following lemmas are required in those
proofs.

Lemma 2. If I1, I2 ∈ I and I1 v I2, then for any goal G, ∆, and Γ ,

I1,∆, Γ �� G =⇒ I2,∆, Γ �� G.

Proof. The proof is inductive on the structure of G:

C ∈ LC I1,∆, Γ �� C ⇐⇒ Γ `C C ⇐⇒ I2,∆, Γ �� C.
A ∈ At I1,∆, Γ �� A ⇐⇒ A ∈ I1(∆, Γ). I1 v I2 implies that I1(∆, Γ) ⊆ I2(∆, Γ),

so A ∈ I2(∆, Γ) and therefore I2,∆, Γ �� A.

9

G1 ∧G2 I1,∆, Γ �� G1 ∧ G2 ⇐⇒ I1,∆, Γ �� Gi for each i ∈ {1, 2}. In both cases
the induction hypothesis can be used, so I2,∆, Γ �� Gi for each i ∈ {1, 2},
which implies that I2,∆, Γ �� G1 ∧G2.

G1 ∨G2 I1,∆, Γ �� G1 ∨ G2 ⇐⇒ there is i ∈ {1, 2} such that I1,∆, Γ �� Gi. By
induction hypothesis, I2,∆, Γ �� Gi, hence I2,∆, Γ �� G1 ∨G2.

D ⇒ G′ I1,∆, Γ �� D ⇒ G′ ⇐⇒ I1,∆ ∪ {D}, Γ �� G′. By induction hypothesis,
I2,∆ ∪ {D}, Γ �� G′ holds, so I2,∆, Γ �� D ⇒ G′.

C ⇒ G′ I1,∆, Γ �� C ⇒ G′ ⇐⇒ I1,∆, Γ ∪ {C} �� G′. By induction hypothesis,
I2,∆, Γ ∪ {C} �� G′ holds, which implies that I2,∆, Γ �� C ⇒ G′.

∃xG′ I1,∆, Γ �� ∃xG′ ⇐⇒ there is a C-constraint C and a variable y such that:
– y does not occur free in ∆, Γ , ∃xG′.
– Γ `C ∃yC.
– I1,∆, Γ ∪ {C} �� G′[y/x].

By induction hypothesis I2,∆, Γ ∪ {C} �� G′[y/x], hence I2,∆, Γ �� ∃xG′.
∀xG′ I1,∆, Γ �� ∀xG′ ⇐⇒ there is a variable y such that:

– y does not occur free in ∆, Γ , ∀xG′

– I1,∆, Γ �� G′[y/x].
By induction hypothesis I2,∆, Γ �� G′[y/x], therefore I2,∆, Γ �� ∀xG′. ut

Lemma 3. Let {Ii}i≥0 be a denumerable family of interpretations such that
I0 v I1 v I2 v Then, for any ∆, G and Γ ,

⊔
i≥0 Ii,∆, Γ �� G ⇐⇒ there

exists k ≥ 0 such that Ik,∆, Γ �� G.

Proof. The implication to the left is a consequence of Lemma 2, since Ik v⊔
i≥0 Ii holds for any k. The converse is proved by induction on the structure

of G. We will use that (
⊔

i≥0 Ii)(∆, Γ) =
⋃

i≥0 Ii(∆, Γ).

C ∈ LC
⊔

i≥0 Ii,∆, Γ �� C ⇐⇒ Γ `C C ⇐⇒ Ik,∆, Γ �� C is true independently
of k ≥ 0.

A ∈ At
⊔

i≥0 Ii,∆, Γ �� A ⇐⇒ A ∈ (
⊔

i≥0 Ii)(∆, Γ) =
⋃

i≥0 Ii(∆, Γ). Therefore,
there exists k ≥ 0 such that A ∈ Ik(∆, Γ), hence, for that k, Ik,∆, Γ �� A.

G1 ∧G2
⊔

i≥0 Ii,∆, Γ �� G1 ∧ G2 ⇐⇒
⊔

i≥0 Ii,∆, Γ �� Gj for each j ∈ {1, 2}. In
both cases the induction hypothesis can be used, so there exist k1, k2 ≥ 0
such that Ikj

,∆, Γ �� Gj for each j ∈ {1, 2}. Let k = max(k1, k2). Then
Ik,∆, Γ �� Gj for each j ∈ {1, 2} in virtue of Lemma 2, and therefore
Ik,∆, Γ �� G1 ∧G2.

G1 ∨G2
⊔

i≥0 Ii,∆, Γ �� G1∨G2 ⇐⇒ there is j ∈ {1, 2} such that
⊔

i≥0 Ii,∆, Γ �� Gj .
The induction hypothesis can be used, so there exist k ≥ 0 such that
Ik,∆, Γ �� Gj , and therefore Ik,∆, Γ �� G1 ∨G2.

D ⇒ G′
⊔

i≥0 Ii,∆, Γ �� D ⇒ G′ ⇐⇒
⊔

i≥0 Ii,∆ ∪ {D}, Γ �� G′ =⇒ there is k ≥ 0
such that Ik,∆ ∪ {D}, Γ �� G′, by induction hypothesis =⇒ there is k ≥ 0
such that Ik,∆, Γ �� D ⇒ G′.

C ⇒ G′
⊔

i≥0 Ii,∆, Γ �� C ⇒ G′ ⇐⇒
⊔

i≥0 Ii,∆, Γ ∪ {C} �� G′ =⇒ there is k ≥ 0
such that Ik,∆, Γ ∪ {C} �� G′, by induction hypothesis =⇒ there is k ≥ 0
such that Ik,∆, Γ �� C ⇒ G′.

10

∃xG′
⊔

i≥0 Ii,∆, Γ �� ∃xG′ ⇐⇒ there is a C-constraint C and a variable y such
that:
– y does not occur free in ∆, Γ , ∃xG′.
– Γ `C ∃yC.
–

⊔
i≥0 Ii,∆, Γ ∪ {C} �� G′[y/x].

By induction hypothesis, it holds that there is a k ≥ 0 such that Ik,∆, Γ ∪
{C} �� G′[y/x]. Therefore Ik,∆, Γ �� ∃xG′ for some k ≥ 0.

∀xG′
⊔

i≥0 Ii,∆, Γ �� ∀xG′ ⇐⇒ there is a variable y such that:
– y does not occur free in ∆, Γ , ∀xG′.
–

⊔
i≥0 Ii,∆, Γ �� G′[y/x].

By induction hypothesis, it happens that there exists k ≥ 0 such that
Ik,∆, Γ �� G′[y/x]. Hence Ik,∆, Γ �� ∀xG′ for some k ≥ 0. ut

Lemma 4 (Monotonicity of T). Let I1, I2 ∈ I such that I1 v I2. Then,
T (I1) v T (I2).

Proof. Let us consider any ∆, Γ and A ∈ T (I1)(∆, Γ). The latter implies that
there is a variant ∀x(G ⇒ A′) of a clause of ∆, such that the variables x
do not occur free in ∆, Γ , A, and I1,∆, Γ �� ∃x(A ≈ A′ ∧ G). Using Lemma
2 and the fact that I1 v I2, we obtain I2,∆, Γ �� ∃x(A ≈ A′ ∧ G), which
implies A ∈ T (I2)(∆, Γ). Since no particular choice was made for A, ∆, Γ ,
this argument proves T (I1)(∆, Γ) ⊆ T (I2)(∆, Γ) for any ∆ and Γ , therefore
T (I1) v T (I2). ut

Lemma 5 (Continuity of T). Let {Ii}i≥0 be a denumerable family of inter-
pretations such that I0 v I1 v I2 v Then T (

⊔
i≥0

Ii) =
⊔
i≥0

T (Ii).

Proof. Let us deal with both inclusions.

⊇) This inclusion is always a consequence of the monotonicity of T .
⊆) Consider any ∆, Γ and A ∈ T (

⊔
i≥0 Ii)(∆, Γ). Due to the definition of T ,

there is a variant ∀x(G ⇒ A′) of a clause in ∆ such that the variables x
do not occur free in ∆, Γ , A, and

⊔
i≥0 Ii,∆, Γ �� ∃x(A ≈ A′ ∧G). Thanks

to Lemma 3, there exists k ≥ 0 such that Ik,∆, Γ �� ∃x(A ≈ A′ ∧ G),
and therefore A ∈ T (Ik)(∆, Γ). As a consequence, T (

⊔
i≥0 Ii)(∆, Γ) ⊆⋃

i≥0 T (Ii)(∆, Γ) = (
⊔

i≥0 T (Ii))(∆, Γ). This happens for every ∆ and Γ ,
thus T (

⊔
i≥0 Ii) v

⊔
i≥0 T (Ii). ut

Theorem 1. The operator T has a least fixed point, which is
⊔

i≥0 T i(I⊥).

Proof. The claim is an immediate consequence of Lemmas 4, 5 and the Knaster-
Tarski fixed point theorem [18]. ut

From now on, lfp(T) denotes the least fixed point of T .

11

〈∆, Γ 〉 T (I⊥) T 2(I⊥) T 3(I⊥) T 4(I⊥)

〈∆, Γ 〉 mf (0, 1)⇒ fib(2, x)
. (mf (1, 1)⇒ gf (2, x, 1)) . . .

〈∆′, Γ 〉 mf (0, z1), mf (2, z1 + z2) gf (2, x, 1) . . .
mf (1, z2) ⇒ gf (2, x, 2)

〈∆′′, Γ 〉 mf (2, x) gf (2, x, 2)

Fig. 1. Steps leading to T 4(I⊥), ∆, Γ �� fib(2, x).

Example 5. Let ∆ be the program in Example 2. Figure 1 shows some of the
goals that are forced by the first interpretations T i(I⊥) in the contexts 〈∆, Γ 〉,
where Γ = {z1 ≈ 1, z2 ≈ 1, x ≈ z1 + z2}, ∆′ = ∆ ∪ {mf (0, 1),mf (1, 1)} and
∆′′ = ∆ ∪ {mf (0, 1),mf (1, 1),mf (2, z1 + z2)}.

The chart shows the main steps leading to T 4(I⊥),∆, Γ �� fib(2, x). memfib
is abbreviated with mf, and getfib with gf.

This is not difficult to see, if such forcing relations are verified from left to
right. For instance,

T (I⊥),∆′, Γ �� mf (0, z1)

is checked in one step, since mf (0, 1) ∈ ∆′ and Γ `C z ≈ 1. The forcing relations
in each column justify those in the next. In order to verify that an existential
quantification is forced, it is required to introduce new fresh variables. However,
for the sake of readability, equivalent and more simple expressions have been
used instead.

Bear in mind that only some of the formulas forced are gathered in the
table, as it is indicated by the ellipses. In particular, since interpretations are
monotonous, any formula present in a position of such table is automatically
present in the whole rectangle that has that position as top-left corner.

Soundness and completeness The following theorems establish the full con-
nection between the fixed point semantics presented and the calculus UC. The
definitions below correspond to technicalities that will be used in the proof of
such soundness and completeness result.

Let S = {〈∆, Γ,G〉 ∈ W × P(LC) × G | lfp(T),∆, Γ �� G}. The function
ord : S −→ IN is defined as follows. Given any 〈∆, Γ,G〉 ∈ S, Lemma 3
guarantees that the set of natural numbers k such that T k(I⊥),∆, Γ �� G is
nonempty. Therefore, it is possible to define ord(〈∆, Γ,G〉) as the least element
of such set. Let us consider the partial order (S, <) defined as follows. Given
any 〈∆1, Γ1, G1〉 , 〈∆2, Γ2, G2〉 ∈ S, 〈∆1, Γ1, G1〉 < 〈∆2, Γ2, G2〉 if

- ord(〈∆1, Γ1, G1〉) < ord(〈∆2, Γ2, G2〉), or
- ord(〈∆1, Γ1, G1〉) = ord(〈∆2, Γ2, G2〉) and G1 is a renaming of a strict sub-

formula of G2.

12

Such partial order is well-founded, because (IN, <) is also well-founded and
formulas are finite sequences of symbols.

Theorem 2. For any ∆, Γ and G,

∆;Γ `UC G =⇒ lfp(T),∆, Γ �� G.

Proof. Since this is one of the main results presented, the whole proof is in-
cluded. Let h be the height of a UC-proof for ∆;Γ `UC G. The claim is proved
inductively on h.

Base case: h = 1. The only possibility is that G ≡ C ∈ LC . Then ∆;Γ `UC C
implies that Γ `C C, and therefore lfp(T),∆, Γ �� C holds.

Inductive case. We suppose that ∆;Γ |— G has a proof of height h. Let us
prove lfp(T),∆, Γ �� G by case analysis on the UC-rule employed in the bottom
of such proof.

(Clause) There must exist a variant ∀x(G⇒ A′) of a clause of ∆ such that the vari-
ables x ∈ x do not occur free in ∆, Γ , A, and that ∆;Γ |— ∃x(A ≈ A′ ∧G)
has a proof of height h−1. By induction hypothesis, lfp(T),∆, Γ �� ∃x(A ≈
A′ ∧ G). Using the definition of the operator T , the latter implies A ∈
(T (lfp(T)))(∆, Γ), which is equivalent to T (lfp(T)),∆, Γ �� A. But since
T (lfp(T)) = lfp(T), the proof is complete.

(∧R) There must exist goals G1, G2 such that G ≡ G1 ∧ G2 and the sequents
∆;Γ |— Gi has a proof of height less than h for each i ∈ {1, 2}. By induc-
tion hypothesis, lfp(T),∆, Γ �� Gi is assumed for each i ∈ {1, 2} and, as a
consequence, lfp(T),∆, Γ �� G.

(∨R) There must exist goals G1, G2 such that G ≡ G1 ∨ G2 and the sequent
∆;Γ |— Gi has a proof of height h − 1 for some i ∈ {1, 2}. By induction
hypothesis, lfp(T),∆, Γ �� Gi holds, which implies lfp(T),∆, Γ �� G.

(⇒R) Then G ≡ D ⇒ G′ and the sequent ∆, D;Γ |— G′ has a proof of height h−1.
By induction hypothesis, lfp(T),∆∪{D}, Γ �� G′. Therefore lfp(T),∆, Γ ��
D ⇒ G′.

(⇒CR
) Now G ≡ C ⇒ G′ and the sequent ∆;Γ, C |— G′ has a proof of height h−1.

By induction hypothesis, lfp(T),∆, Γ ∪{C} �� G′, therefore lfp(T),∆, Γ ��
C ⇒ G′.

(∃R) Then G ≡ ∃xG′, and there must exist a constraint C and a variable y not
occurring free in ∆, Γ , ∃xG′, such that ∆;Γ, C |— G′[y/x] has a proof of
height h− 1 and Γ `C ∃yC. Then lfp(T),∆, Γ∪{C} �� G′[y/x], by induction
hypothesis, and therefore lfp(T),∆, Γ �� ∃xG′.

(∀R) G must be of the form ∀xG′, and there must exist a variable y not occurring
free in ∆, Γ , ∀xG′ such that ∆;Γ |— G′[y/x] has a proof of height h −
1. By induction hypothesis, lfp(T),∆, Γ �� G′[y/x] and, as a consequence,
lfp(T),∆, Γ �� ∀xG′.

Theorem 3. For any ∆, Γ and G,

lfp(T),∆, Γ �� G =⇒ ∆;Γ `UC G.

13

Proof. By induction on the structural order (S, <). Let us take 〈∆, Γ,G〉 ∈ S
and assume that, for any other 〈∆′, Γ ′, G′〉 ∈ S, 〈∆′, Γ ′, G′〉 < 〈∆, Γ,G〉 implies
that ∆′;Γ ′ `UC G′. Then, let us conclude ∆;Γ `UC G by case analysis on the
structure of G.

C ∈ LC If 〈∆, Γ,C〉 ∈ S then Γ `C C, therefore ∆;Γ `UC C by (CR).
A ∈ At 〈∆, Γ,A〉 ∈ S implies that lfp(T),∆, Γ �� A. Let k = ord(〈∆, Γ,A〉), then

T k(I⊥),∆, Γ �� A, which is equivalent to A ∈ (T k(I⊥))(∆, Γ). Hence there
is a variant ∀x(G′ ⇒ A′) of a clause of ∆ such that the variables x do
not occur free in ∆, Γ , A, and T k−1(I⊥),∆, Γ �� ∃x(A ≈ A′ ∧G′). In this
reason, 〈∆, Γ,∃x(A ≈ A′ ∧G′)〉 < 〈∆, Γ,A〉, so the induction hypothesis
can be applied, obtaining that ∆;Γ `UC ∃x(A ≈ A′ ∧G′). Using the rule
(Clause) with the elaboration ∀x(G′ ⇒ A′), it follows that ∆;Γ `UC A.

G1 ∧G2 Then 〈∆, Γ,G1 ∧G2〉 ∈ S implies that lfp(T),∆, Γ �� Gi for each i ∈ {1, 2}.
Clearly, ord(〈∆, Γ,G1 ∧G2〉) = ord(〈∆, Γ,G1〉 = ord(〈∆, Γ,G2〉) and G1, G2

are strict subformulas of G1 ∧ G2, hence 〈∆, Γ,Gi〉 < 〈∆, Γ,G1 ∧G2〉, for
each i ∈ {1, 2}. Then, by the induction hypothesis, ∆;Γ `UC Gi, for each
i ∈ {1, 2}. So ∆;Γ `UC G1 ∧G2, applying the rule (∧R).

G1 ∨G2 〈∆, Γ,G1 ∨G2〉 ∈ S implies that lfp(T),∆, Γ �� Gi for some i ∈ {1, 2}. It is
true that ord(〈∆, Γ,G1 ∨G2〉) = ord(〈∆, Γ,Gi〉), Gi is a strict subformula
of G1 ∨G2 and, as a consequence, 〈∆, Γ,Gi〉 < 〈∆, Γ,G1 ∨G2〉. Therefore,
by the induction hypothesis we obtain ∆;Γ `UC Gi for some i ∈ {1, 2}.
Thanks to the rule (∨R), it follows that ∆;Γ `UC G1 ∨G2.

D ⇒ G′ Now 〈∆, Γ,D ⇒ G′〉 ∈ S implies that lfp(T),∆ ∪ {D}, Γ �� G′. Clearly,
ord(〈∆, Γ,D ⇒ G′〉) = ord(〈∆ ∪ {D}, Γ, G′〉) and G′ is a strict subformula
of D ⇒ G′, so 〈∆ ∪ {D}, Γ,G′〉 < 〈∆, Γ,D ⇒ G′〉. Therefore, by the induc-
tion hypothesis, ∆, D;Γ `UC G′. Thanks to the rule (⇒R), it follows that
∆;Γ `UC D ⇒ G′.

C ⇒ G′ Then 〈∆, Γ,C ⇒ G′〉 ∈ S implies that lfp(T),∆, Γ ∪ {C} �� G′. Clearly,
ord(〈∆, Γ,C ⇒ G′〉) = ord(〈∆, Γ ∪ {C}, G′〉) and G′ is a strict subformula
of C ⇒ G′, so 〈∆, Γ ∪ {C}, G′〉 < 〈∆, Γ,C ⇒ G′〉. Then, by the induction
hypothesis, ∆;Γ,C `UC G′, and ∆;Γ `UC C ⇒ G′ due to the rule (⇒CR

).
∃xG′ Then 〈∆, Γ,∃xG′〉 ∈ S implies that there is a constraint C and a variable y

such that:
– y does not occur free in ∆, Γ , ∃xG′.
– Γ `C ∃yC.
– lfp(T),∆, Γ ∪ {C} �� G′[y/x].

ord(〈∆, Γ,∃xG′〉) = ord(〈∆, Γ ∪ {C}, G′[y/x]〉) by definition, and G′[y/x]
is a renaming of a strict subformula of ∃xG′, so 〈∆, Γ ∪ {C ′}, G′[y/x]〉 <
〈∆, Γ,∃xG′〉. Therefore ∆;Γ, C ′ `UC G′[y/x] by the induction hypothesis.
Hence ∆;Γ `UC ∃xG′, by using the rule (∃R).

∀xG′ Then 〈∆, Γ,∀xG′〉 ∈ S implies that there is a variable y such that:
– y does not occur free in ∆, Γ , ∀xG′.
– lfp(T),∆, Γ �� G′[y/x].

14

Clearly, ord(〈∆, Γ,∀xG′〉) = ord(〈∆, Γ,G′[y/x]〉) and G′[y/x] is a renaming
of a strict subformula of ∀xG′, so 〈∆, Γ,G′[y/x]〉 < 〈∆, Γ,∀xG′〉. Therefore,
by the induction hypothesis, we obtain ∆;Γ `UC G′[y/x]. Applying (∀R), it
follows that ∆;Γ `UC ∀xG′. ut

This fixed point semantics supplies a framework in which properties of pro-
grams can be easily analyzed. For instance, the behavior of two programs can be
compared using the interpretation lfp(T). Let us consider that two programs
∆ and ∆′ are said to be equivalent if, for any Γ and G, ∆;Γ `UC G ⇐⇒
∆′;Γ `UC G. In other words, for every Γ , the same goals can be deduced from
them. Then the problem of check the equivalence between ∆ and ∆′ can be
reduced to prove that lfp(T)(∆, Γ) = lfp(T)(∆′, Γ), for every Γ . This is due
to the previous results, since intuitively lfp(T) provides the atoms that can be
proved from a program in the context of a set of constraints.

Example 6. Let ∆ =

p(x) :- x >= 0.
p(x) :- x < 0.

and ∆′ = p(x) :- x >= 0; x < 0.

two programs for the instance HH(R). ∆ and ∆′ are not equivalent because
lfp(T)(∆, ∅) = ∅, but p(y) ∈ lfp(T)(∆′, ∅). This happens since the entailment
relation in the constraint system R is classical deduction, but, for programs, an
intuitionistic interpretation approach is considered.

On the contrary, if ∆ ⊇
p(x) :- q(x).
p(x) :- q’(x).

and if ∆′ ⊇ p(x) :- q(x) ; q’(x).

then ∆ and ∆′ could be equivalent.

4.2 Another fixed point semantics approach

We have just described a fixed point semantics for HH(C). In it, the constraint
system has been used as a black box, through the entailment relation `C , which
is a syntactic tool. See, for example, the cases C and ∃xG of Definition 5.
This semantics is defined for any general constraint system C. The conditions
imposed in Subsection 2.1 are meant as minimal requirements for a C to be a
constraint system, but in many useful cases C satisfies additional properties, as
it was mentioned there. For instance, the entailment relation ` referred in such
subsection is known to be sound and complete w.r.t. the standard semantic
relation |=≈ of first-order logic with equality, hence, for the instance HH(R),
requirements like Γ `R C can be directly replaced by Γ ∪ AxR |=≈ C, in the
definition of the forcing relation.

15

As in the frame of CLP, we are interested in finding general conditions
for the constraint systems that would guarantee the existence of semantics for
constraints based on a model theory, in order to incorporate it into the fixed
point semantics of logic programs.

More precisely, the semantics of constraint logic programs are usually based
on the assumption that: the domain of computation (model), which is the struc-
ture used to interpret the constraints; the solver, which checks whether con-
straints are C-satisfiable; and the constraint theory, that describes the logical
semantics of the constraints, agree. See [9] for details.

From now on we will focus on constraint systems C for which an additional
condition is required: there is a standard structure AC such that `C and AC
agree in a sense, similar to that of [9], that will be specified soon. Additional
notation involving standard structures is now introduced for that purpose.

Given a standard structure AC over a signature Σ, which interprets the
symbols of Σ, and with domain AC, an assignment (for AC) is a function
ν : V → AC, where V is a set of variables. V = dom(ν) is said to be the
domain of ν. Assig is the set of assignments.

Given ν ∈ Assig , a variable y 6∈ dom(ν) and a ∈ AC, ν[y ← a] is the
assignment with domain dom(ν) ∪ {y} such that

ν[y ← a](x)
def=

{
a, if x ≡ y

ν(x), otherwise,

and it is said to be an extension of ν to y.
Given a first-order formula F over Σ, [[F]]ACν ∈ {true, false} is the classical

truth value of the formula F in the model AC under the assignment ν.

Definition 7. Let C be a constraint system and AC be a standard struc-
ture over Σ. AC and `C agree if for any Γ , ν and C, Γ `C C if and only if
[[
∧

Γ ⇒ C]]ACν = true4.

Intuitively, this means that the entailment in the constraint system can
be identified with (the universal closure of) the implication, in that specific
structure.

Constraints will be interpreted by the sets of assignments (for such AC)
that make them true. Formally, given a constraint C, the set [[C]] is defined as
follows:

[[C]] = {ν ∈ Assig | dom(ν) ⊇ free(C) and [[C]]ν = true}5.

Such definition is extended to finite sets of constraints in the natural way, i.e.
[[Γ]] = [[

∧
Γ]]. Furthermore, in some cases it will be necessary that the domains

4 Hereafter, the superscript AC may be omitted if it is clear from the context.
5 free(O) is the set of free variables in O, where O stands for a formula or set of formulas.

16

of such assignments include specific sets of variables, and in this reason we
define: [[Γ]]V = {ν ∈ [[Γ]] | dom(ν) ⊇ V }, where V is any set of variables.

Notice that if AC and `C agree, then Γ `C C ⇐⇒ [[
∧

Γ]]free(C) ⊆ [[C]],
and that Γ is C-satisfiable iff [[Γ]] 6= ∅.

For instance, let AR be the Σ-structure whose domain is IR and that in-
terprets constants for real numbers and arithmetic symbols in the natural way.
Then AR and R agree.

Example 7. Consider C = R and the Σ-structure AR above. If C ≡ x ∗ x +
y ∗ y ≈ 1, then [[C]] = {ν : {x, y} → IR2 | ν(x)2 + ν(y)2 = 1}. Once each
variable is associated to a coordinates axis, this can be assimilated to the set
{〈x, y〉 ∈ IR2 | x2 + y2 = 1}, the circle of radius 1 centered in the origin of the
real plane. Thus, the syntactic object x ∗x+ y ∗ y ≈ 1 is replaced in the forcing
relation by such circle, which is its intended meaning in AR.

The new semantics we will present combines a notion of forcing similar to
that used in Subsection 4.1 with the classical structure considered for C. New
definitions are needed for the concepts of forcing and interpretation.

The notion of C-interpretation of the algebraic semantics provided in [9]
associates sets of expressions of the form p(a1, . . . , an) to programs, where
each ai belongs to the domain of the structure, and p is a program predi-
cate symbol. The approach followed in this paper is close to that, because our
C-interpretations associate to each pair 〈∆, ν〉 a set of not necessarily ground
atoms, which can be assigned to elements of the domain of the structure via ν.

C-interpretations and guided forcing relations As in the case of �� ,
we are looking for a model IC and a relation ��C such that ∆;Γ `UC G iff
IC ,∆, [[Γ]] ��CG. Some technicalities, needed in the proof of such result, will be
promptly presented. In fact, the equivalence between ��C and `UC is proved
connecting ��C with �� , and using the equivalence between �� and `UC . But
such connection is established defining two guided versions of these forcing
relations, denoted by ��Cτ and ��τ , respectively, where τ is an index that play
the role of guide.

The introduction of those forcing relations demands the definition and ma-
nipulation of several notions of interpretations and fixed point operators. The
Figure 2 may help to identify the notation and to understand the connection
between the different induced semantics.

The index τ of the guided versions is closely related to the structure of goals.
The formal definition is the following:

Definition 8. The set of structural trees T , with elements τ , is recursively
defined by the rule:
τ ::= cst | and(τ1, τ2) | or(i, τ) | imp(τ) | impc(τ) | cl(n, τ) | exists(τ) | forall(τ),
where i ∈ {1, 2} and n ∈ IN.
T cl ⊆ T is the set of trees with the form cl(n, τ), where τ ∈ T and n ∈ IN.

17

Interpretations C-interpretations

non guided 〈I, �� 〉
˙
IC , ��C

¸
↑ ↑

Corollary 4 Definition 13

↓ ↓
guided 〈IT , ��τ 〉 ←Propositions 1,2→

˙
IC , ��Cτ

¸
Fig. 2. Different fixed point semantics

A new notion of interpretation is provided, because now context are not
pairs 〈∆, Γ 〉, but pairs 〈∆, ν〉. On the other hand, another remarkable difference
arises: in the range of the interpretations, each atom is tagged with a tree of
T cl .

Definition 9. A C-interpretation IC is a function IC : W × Assig → P(At ×
T cl) that is monotonous, i.e. for any ∆1,∆2 and ν1, ν2, if ∆1 ⊆ ∆2 and ν1 =
ν2|dom(ν1) then IC(∆1, ν1) ⊆ IC(∆2, ν2). Moreover, 〈A, cl(n, τ)〉 ∈ IC(∆, ν)
implies that free(∆ ∪ {A}) ⊆ dom(ν).

Let IC be the set of these C-interpretations.

A preorder v can be defined for IC similar to such of I, (IC ,v) is a complete
lattice and his infimum, denoted I⊥

C is the constant function ∅.
The guided forcing relation ��Cτ is defined from the concept of C-interpretation,

but such definition requires the notion of accordance below.

Definition 10. Given ∆, G and τ , τ is said to be in accordance with 〈∆, G〉
if one of the cases below applies:

- τ = cst and G ≡ C.
- τ = cl(n, τ ′), G ≡ A and there is a variant ∀x(G′ ⇒ A′) of the nth

clause of ∆ such that x do not occur in ∆, A, and τ ′ is in accordance with
〈∆, ∃x(A ≈ A′ ∧G′)〉

- τ = and(τ1, τ2), G ≡ G1 ∧G2 and τi is in accordance with 〈∆, Gi〉 for each
i ∈ {1, 2}.

- τ = or(i, τ ′), G ≡ G1 ∨G2 and τ ′ is in accordance with 〈∆, Gi〉.
- τ = impd(τ ′), G ≡ D ⇒ G′ and τ ′ is in accordance with 〈∆ ∪ {D}, G′〉.
- τ = impc(τ ′), G ≡ C ⇒ G′ and τ ′ is in accordance with 〈∆, G′〉.
- τ = exists(τ ′), G ≡ ∃xG′ and τ ′ is in accordance with 〈∆, G′[y/x]〉 for any

y not free in ∆, G.
- τ = forall(τ ′), G ≡ ∀xG′ and τ ′ is in accordance with 〈∆, G′[y/x]〉 for any

y not free in ∆, G.

Definition 11. Given G, IC ∈ IC , ∆ and ν such that free(∆∪{G}) ⊆ dom(ν),
G is said to be forced by IC ,∆ and ν with the guide τ , written IC ,∆, ν ��Cτ G, if
τ is in accordance with 〈∆, G〉 and ��Cτ satisfies the recursive rules below.

18

IC ,∆, ν ��CcstC⇐⇒
def

ν ∈ [[C]].
IC ,∆, ν ��Ccl(n,τ)A⇐⇒

def 〈A, cl(n, τ)〉 ∈ IC(∆, ν).

IC ,∆, ν ��Cand(τ1,τ2)G1 ∧G2⇐⇒
def

IC ,∆, ν ��Cτi
Gi for each i ∈ {1, 2}.

IC ,∆, ν ��Cor(i,τ)G1 ∨G2⇐⇒
def

IC ,∆, ν ��Cτ Gi.

IC ,∆, ν ��Cimp(τ)D ⇒ G⇐⇒def
IC ,∆ ∪ {D}, ν ��Cτ G.

IC ,∆, ν ��Cimpc(τ)C ⇒ G⇐⇒def
ν 6∈ [[C]] or IC ,∆, ν ��Cτ G.

IC ,∆, ν ��Cexists(τ)∃xG⇐⇒def given a variable y such that y 6∈ dom(ν), there is a
ν ′ extension of ν to y such that IC ,∆, ν ′ ��Cτ G[y/x].
IC ,∆, ν ��Cforall(τ)∀xG⇐⇒def given a variable y 6∈ dom(ν), for any ν ′ extension
of ν to y, IC ,∆, ν ′ ��Cτ G[y/x].

From this definition it is followed that the label τ is narrowly connected
with the structure of the goal and with the clauses used to prove it.

Intuitively, the subscript τ in ��Cτ plays the role of guide, fixing the choice
for the case when the goal is a disjunction or an atom.

This notion must be extended to sets of assignments, which henceforth are
denoted by Θ, as follows.

Definition 12. Given IC ,∆, τ and Θ ⊆ Assig , a goal G is said to be forced by
IC ,∆ and Θ,with the guide τ , written IC ,∆,Θ ��Cτ G, if IC ,∆, ν ��Cτ G for each
ν ∈ Θ.

Now the non guided forcing relation ��C can be defined:

Definition 13. Given ∆, IC and Θ ⊆ Assig , a goal G is said to be forced by
IC ,∆ and Θ, written IC ,∆,Θ ��CG, if there exists τ such that IC ,∆,Θ ��Cτ G.

The particular model we are looking for, fixing the connection between
��C and `C , will be defined as the least fixed point of the operator over C-
interpretations defined below. In this definition, and in the rest of the paper,
let us assume that, any program ∆ has its clauses ordered by an enumeration,
and when a clause is added to ∆, it will be the last one in the order. We will
frequently refer to the nth clause of ∆ according to that enumeration.

Definition 14. The operator T C : IC −→ IC transforms C-interpretations as
follows. For any IC ∈ IC , ∆, ν, τ and A such that free(∆ ∪ {A}) ⊆ dom(ν),
〈A, cl(n, τ)〉 ∈ T C(IC)(∆, ν) if

- ∀x(G ⇒ A′) is a variant D of the nth clause of ∆ and, for each x ∈ x,
x 6∈ dom(ν).

- IC ,∆, ν ��Cτ∃x(A ≈ A′ ∧G).

Notice that the subscript τ fixes which clause may be used to prove that an
atom is forced. Therefore, in order to check IC ,∆, ν ��Cτ G for some IC ,∆, ν, τ
and G, no choice is possible, since all of them are gathered in τ .

19

The operator T C is proved to be monotonous and continuous. Such proofs
are analogous to those for T (Lemmas 4 and 5). Therefore, T C has a least fixed
point, which is

⊔
i≥0 T C

i(I⊥C), and we denote it by lfp(T C).
The following examples intend to motivate and illustrate the behavior of

the operator T C , as well as the meaning of programs w.r.t. ��Cτ .

Example 8. This is a very simple example showing the necessity of τ in the
definition of IC and ��Cτ . Choosing the constraint system R and the structure
AR, let us consider the program ∆ in Example 6 and the goal G ≡ ∀y p(y).
For such program and goal ∆; ∅ 6`UC G. Let us suppose that no τ was used,
and so interpretations map pairs 〈∆, ν〉 to sets of atoms. Such hypothetical in-
terpretations and the correspondent operator will be overlined. Let r ∈ IR,
then T (I⊥)(∆, [y ← r]) would contain the atom p(y) if r ≥ 0, thanks to
the first clause. But using to the second one, it would be also happen when
r < 0. Therefore, if the forcing for a goal ∀xG is defined only in terms of
the forcing for G, it seems impossible to avoid that T (I⊥),∆, ∅ would force
∀y p(y). The intuitionism imposes that, in order to force ∀y p(y) from ∆ and
any Γ , the atom p(y) must be forced by all the assignments [y ← r]r∈IR

and using the same clause. Therefore, it is necessary to store information
regarding how atoms have been forced. That is why atoms A have been re-
placed by pairs 〈A, cl(n, τ)〉. For this example, let τi = forall(cl(i, cst)) for
i ∈ {1, 2}. It is easy to check that 〈p(y), τ1〉 ∈ T C(I⊥C)(∆, [y ← r]) if r ≥ 0,
and 〈p(y), τ2〉 ∈ T C(I⊥C)(∆, [y ← r]) if r < 0, but that does not lead to the fact
that, for some τ , T C(I⊥C),∆, ∅ ��Cτ∀y p(y).

Example 9. Let us consider the program ∆ of the instance HH(R):

circle(X, Y) :- X * X + Y * Y < 1.
parab(X, Y) :- X > 0, Y > 0, Y * Y < X.
sector(X, Y) :- circle(X, Y), parab(X, Y), X > 0.5.

Let us try to find for which τ and assignments [x← r], r ∈ IR,
lfp(T C),∆, [x← r] ��Cτ∀y((0.1 < y ∧ y < 0.2)⇒ sector(x, y)).

Let τ = τ0. That happens iff τ0 = forall(τ1) and
lfp(T C),∆, [x← r, y ← s0] ��Cτ1((0.1 < y ∧ y < 0.2)⇒ sector(x, y))

for each s0 ∈ IR ⇐⇒ τ1 = impc(τ2) and
lfp(T C),∆, [x← r, y ← s0] ��Cτ2sector(x, y)

for each s0 ∈ (0.1, 0.2) ⇐⇒ τ2 = cl(3, τ3) and
lfp(T C),∆, [x← r, y ← s0] ��Cτ3∃x1, y1(x ≈ x1 ∧ y ≈ y1 ∧ circle(x, y)∧

parab(x, y) ∧ x > 0.5)
for each s0 ∈ (0.1, 0.2) ⇐⇒ τ3 = exists(exists(τ4)) and for each s0 ∈ (0.1, 0.2)
there are s1, s2 ∈ IR such that

lfp(T C),∆, [x← r, y ← s0, x1 ← s1, y1 ← s2] ��Cτ4x ≈ x1 ∧ y ≈ y1∧
circle(x1, y1) ∧ parab(x1, y1) ∧ x1 > 0.5.

This can be easily simplified into:

20

lfp(T C),∆, [x← r, y ← s0] ��Cτ4circle(x, y) ∧ parab(x, y) ∧ x > 0.5
for each s0 ∈ (0.1, 0.2).

If this process is carried through, the only suitable τ is obtained, together
with the following condition obtained over r: for each s0 ∈ (0.1, 0.2), r > 0.5,
s2
0 < r and r2 + s2

0 < 1. So, if

Θ = {[x← r] | ∀s(0.1 < s < 0.2⇒ (r > 0.5 ∧ s2 < r ∧ r2 + s2 < 1))}, then

lfp(T C)(I⊥C),∆,Θ ��Cτ∀y((0.1 < y ∧ y < 0.2)⇒ sector(x, y)).
In fact, Θ is the largest set of assignments for which this holds.

Remember that we are interested in having two guided forcing relations
because, once a connection between them has been fixed, another connection
is derived between the non guided versions. The guided version of �� is now
defined, as in the previous cases, for a new notion of interpretation:

Definition 15. A guided interpretation IT is a function IT : W × P(LC) →
P(At × T cl) that is monotonous, i.e. for any ∆1,∆2 and Γ1, Γ2, if ∆1 ⊆ ∆2

and Γ1 ⊆ Γ2, then IT (∆1, Γ1) ⊆ IT (∆2, Γ2). Let IT be the set of guided inter-
pretations.

A partial order v can be defined for IT , similarly to that for I. (IT ,v) is
a complete lattice and has an infimum, denoted I⊥T , the constant function ∅.

Definition 16. Given IT ∈ IT , ∆, Γ , G and τ , the goal G is forced by IT ,∆
and Γ with the guide τ , which is written IT ,∆, Γ ��τ G, if τ is in accordance
with 〈∆, G〉 and ��τ is the relation recursively defined depending on the struc-
ture of G, as follows:

IT ,∆, Γ ��cst C⇐⇒def
Γ `C C.

IT ,∆, Γ ��cl(n,τ) A⇐⇒def 〈A, cl(n, τ)〉 ∈ IT (∆, Γ).
IT ,∆, Γ ��and(τ1,τ2) G1 ∧G2⇐⇒

def
IT ,∆, Γ ��τi Gi for each i ∈ {1, 2}.

IT ,∆, Γ ��or(i,τ) G1 ∨G2⇐⇒
def

IT ,∆, Γ ��τ Gi.
IT ,∆, Γ ��imp(τ) D ⇒ G⇐⇒def

IT ,∆ ∪ {D}, Γ ��τ G.
IT ,∆, Γ ��impc(τ) C ⇒ G⇐⇒def

IT ,∆, Γ ∪ {C} ��τ G.
IT ,∆, Γ ��exists(τ) ∃xG⇐⇒def there is a constraint C and a variable y such that:

- y does not occur free in ∆, Γ , ∃xG.
- Γ `C ∃yC.
- IT ,∆, Γ ∪ {C} ��τ G[y/x].

IT ,∆, Γ ��forall(τ) ∀xG⇐⇒def there is a variable y such that:
- y does not occur free in ∆, Γ , ∀xG.
- IT ,∆, Γ ��τ G[y/x].

Now the corresponding operator, whose least fixed point will help us to
establish the equivalence between ��Cτ and ��τ , is defined.

21

Definition 17. The operator TT : IT −→ IT transforms interpretations as
follows. For any IT ∈ IT , ∆, Γ , τ and A ∈ At , 〈A, cl(n, τ)〉 ∈ TT (IT)(∆, Γ) if
there is a variant ∀x(G⇒ A′) of the nth clause of ∆ such that the variables x
do not occur free in ∆, Γ , A, and IT ,∆, Γ ��τ ∃x(A ≈ A′ ∧G).

The operator TT is proved to be monotonous and continuous. The proofs
are analogous to those for T (Lemmas 4 and 5). Therefore, TT has a least fixed
point, which is

⊔
i≥0(TT)i(I⊥T), and we denote it by lfp(TT).

Below we enunciate a property of this semantics that will be useful in the
proofs of several technical lemmas.

Lemma 6. For any IT ,∆,G, Γ1, Γ2 and τ , if Γ1 `C Γ2 and IT ,∆, Γ2 ��τ G
then IT ,∆, Γ1 ��τ G.

Proof. It is straightforward by induction on the structure of G.

The following lemma and corollary justify why the interpretations IT were
said to be a guided version of those in I.

Lemma 7. Given ∆, Γ , G and n ≥ 0, Tn(I⊥),∆, Γ �� G ⇐⇒ there exists τ
such that (TT)n(I⊥T),∆, Γ ��τ G.

Proof. The proof is inductive on the order relation between pairs 〈m,G〉 defined
below, where m ≥ 0. 〈m1, G1〉 < 〈m2, G2〉 iff i) m1 < m2 or ii) m1 = m2 and
G1 is an strict subformula of G2 up to renaming of free variables. So, assuming
the claim for every pair 〈n′, G′〉 < 〈n, G〉, it must be proved for 〈n, G〉, by case
analysis on the structure of G.

C ∈ LC
⇒) Tn(I⊥),∆, Γ �� C implies Γ `C C. So, (TT)n(I⊥T),∆, Γ ��τ C, taking τ =

cst.
⇐) There exists τ for which (TT)n(I⊥T),∆, Γ ��τ C. Due to the way in which

��τ was defined, such τ is bound to be cst, and so Γ `C C. Therefore,
Tn(I⊥),∆, Γ �� C holds.

A ∈ At
⇒) Tn(I⊥),∆, Γ �� A implies A ∈ Tn(I⊥)(∆, Γ). So, n ≥ 1 and there is a

variant ∀x(G′ ⇒ A′) of a clause of ∆ such that the variables x do not
occur free in ∆, Γ , A, and Tn−1(I⊥),∆, Γ �� ∃x(A ≈ A′ ∧ G′). Let m be
the order number of such clause in ∆. Since 〈n− 1,∃x(A ≈ A′ ∧G′)〉 <
〈n, A〉, by induction hypothesis we can assume that there is τ ′ such that
(TT)n−1(I⊥T),∆, Γ ��τ ′ ∃x(A ≈ A′ ∧ G′). So, defining τ = cl(m, τ ′), it is
true that (TT)n(I⊥T),∆, Γ ��τ A.

⇐) There exists τ for which (TT)n(I⊥T),∆, Γ ��τ A. Due to the way in which
��τ was defined, such τ must be of the form cl(m, τ ′), where ∀x(G′ ⇒ A′)
is a variant of the mth clause of ∆ such that the variables x do not occur free

22

in ∆, Γ , A, and (TT)n−1(I⊥T),∆, Γ ��τ ′ ∃x(A ≈ A′ ∧G′). By induction hy-
pothesis, Tn−1(I⊥),∆, Γ �� ∃x(A ≈ A′ ∧ G′). Therefore, Tn(I⊥),∆, Γ �� A
is satisfied.

G1 ∧G2 Tn(I⊥),∆, Γ �� G1 ∧G2 ⇐⇒ Tn(I⊥),∆, Γ �� Gi for each i ∈ {1, 2} ⇐⇒
there exist τ ′i for each i ∈ {1, 2}, for which (TT)n(I⊥T),∆, Γ ��τ ′i

Gi for each
i ∈ {1, 2}, by induction hypothesis ⇐⇒ there exists τ = and(τ ′1, τ

′
2) such

that (TT)n(I⊥T),∆, Γ ��τ G1 ∧G2.
G1 ∨G2 Tn(I⊥),∆, Γ �� G1∨G2 ⇐⇒ Tn(I⊥),∆, Γ �� Gi, for some i ∈ {1, 2} ⇐⇒

there exist i ∈ {1, 2} and τ ′ for which (TT)n(I⊥T),∆, Γ ��τ ′ Gi, by induction
hypothesis ⇐⇒ (TT)n(I⊥T),∆, Γ ��τ G1 ∨G2, where τ = or(i, τ ′).

D ⇒ G′ Tn(I⊥),∆, Γ �� D ⇒ G′ ⇐⇒ Tn(I⊥),∆ ∪ {D}, Γ �� G′ ⇐⇒ there exists
τ ′ for which (TT)n(I⊥T),∆∪ {D}, Γ ��τ ′ G′, by induction hypothesis ⇐⇒
there exists τ = imp(τ ′) such that (TT)n(I⊥T),∆, Γ ��τ D ⇒ G′.

C ⇒ G′ Tn(I⊥),∆, Γ �� C ⇒ G′ ⇐⇒ Tn(I⊥),∆, Γ ∪ {C} �� G′ ⇐⇒ there exists
τ ′ for which (TT)n(I⊥T),∆, Γ ∪ {C} ��τ ′ G′, by induction hypothesis ⇐⇒
there exists τ = impc(τ ′) such that (TT)n(I⊥T),∆, Γ ��τ C ⇒ G′.

∃xG′ Tn(I⊥),∆, Γ �� ∃xG′ ⇐⇒ there is a constraint C and a variable y such
that:

- y does not occur free in ∆, Γ , ∃xG′.
- Γ `C ∃yC.
- Tn(I⊥),∆, Γ ∪ {C} �� G′[y/x].
⇐⇒ there exists τ ′ for which
- y does not occur free in ∆, Γ , ∃xG′.
- Γ `C ∃yC.
- (TT)n(I⊥T),∆, Γ ∪ {C} ��τ ′ G′[y/x],

by induction hypothesis ⇐⇒ (TT)n(I⊥T),∆, Γ ��τ ∃xG′, for τ = exists(τ ′).
∀xG′ Tn(I⊥),∆, Γ �� ∀xG′ ⇐⇒ there is a variable y such that:

- y does not occur free in ∆, Γ , ∀xG′.
- Tn(I⊥),∆, Γ �� G′[y/x].
⇐⇒ there exists τ ′ for which
- y does not occur free in ∆, Γ , ∀xG′.
- (TT)n(I⊥T),∆, Γ ��τ ′ G′[y/x],

by induction hypothesis ⇐⇒ (TT)n(I⊥T),∆, Γ ��τ ∀xG′, for τ = forall(τ ′).
ut

Example 10. In the Example 1, TT
2(I⊥T),∆, {C} ��τ G, where

τ = imp(forall(impc(cl(2, ex(and(cst, cl(1, ex(cst)))))))).

Lemma 8. Let {IT i}i≥0 be a denumerable family of interpretations such that
IT 0 v IT 1 v IT 2 v . . ., and let G be a goal. Then, for any ∆, Γ and τ ,⊔

i≥0 IT i,∆, Γ ��τ G ⇐⇒ there exists k ≥ 0 such that IT k,∆, Γ ��τ G.

Proof. Analogous to that for Lemma 3. ut

23

Theorem 4. Given ∆, Γ and G, lfp(T),∆, Γ �� G ⇐⇒ there exists τ such
that lfp(TT),∆, Γ ��τ G.

Proof. lfp(T),∆, Γ �� G ⇐⇒ there is k > 0 such that T k(I⊥),∆, Γ �� G, by
Lemma 3 ⇐⇒ there are k > 0 and τ such that TT

k(IT ⊥),∆, Γ ��τ G, by
Lemma 7 ⇐⇒ there is τ such that lfp(TT),∆, Γ ��τ G, by Lemma 8.

Connecting the forcing relations Our next task is to establish the connec-
tion between the guided semantics, and finally the non guided ones.

The following proposition states one of the implications of the particular
equivalence between ��τ and ��Cτ .

Proposition 1. Given ∆, Γ,G, τ ,

lfp(TT),∆, Γ ��τ G =⇒ lfp(T C),∆, [[Γ]]free(∆∪{G}) ��Cτ G.

Proof. Let V = free(∆ ∪ {G}) and ν ∈ [[Γ]]V . We prove lfp(T C),∆, ν ��Cτ G by
induction on the structure of τ :

• τ ≡ cst and G ≡ C. lfp(TT),∆, Γ ��cst C ⇐⇒ Γ `C C ⇐⇒ [[Γ]]free(C) ⊆
[[C]], because AC agrees with C. Then, since [[Γ]]V ⊆ [[Γ]]free(C), ν ∈ [[C]]
holds, and hence lfp(T C),∆, ν ��CcstC.
• τ ≡ cl(n, τ ′) and G ≡ A. lfp(TT),∆, Γ ��cl(n,τ ′) A ⇐⇒ A ∈ lfp(TT)(∆, Γ)
⇐⇒ there is variant ∀x(G′ ⇒ A′) of the nth clause in ∆ such that the
variables x do not occur free in ∆, Γ , A, and lfp(TT),∆, Γ ��τ ′ ∃x(A ≈ A′∧
G′). lfp(T C),∆, [[Γ]]free(∆∪{∃x(A≈A′∧G′)}) ��Cτ ′∃x(A ≈ A′ ∧G′), by induction
hypothesis. [[Γ]]free(∆∪{A}) ⊆ [[Γ]]free(∆∪{∃x(A≈A′∧G′)}), because free(∆ ∪
{∃x(A ≈ A′ ∧ G′)}) ⊇ free(∆ ∪ {A}), so ν ∈ [[Γ]]free(∆∪{∃x(A≈A′∧G′)}) and
lfp(T C),∆, ν ��Cτ ′∃x(A ≈ A′∧G′). Now, using the definition of ��Cτ we obtain
that lfp(T C),∆, ν ��Cτ A.
• τ ≡ and(τ1, τ2) and G ≡ G1 ∧ G2. lfp(TT),∆, Γ ��τ G ⇐⇒ for each

i ∈ {1, 2}, lfp(TT),∆, Γ ��τi Gi. Then, by induction hypothesis, for each
i ∈ {1, 2}, lfp(T C),∆, [[Γ]]free(∆∪{Gi}) ��Cτi

Gi. In addition free(∆ ∪ {Gi}) ⊆
free(∆∪{G}) so [[Γ]]free(∆∪{G}) ⊆ [[Γ]]free(∆∪{Gi}), then ν ∈ [[Γ]]free(∆∪{Gi}),
for each i ∈ {1, 2}. Therefore lfp(T C),∆, ν ��Cτi

Gi for each i ∈ {1, 2} and
hence lfp(T C),∆, ν ��Cτ G.

• τ ≡ or(i, τ ′) and G ≡ G1 ∨G2. Similar to the previous case.
• τ ≡ imp(τ ′) and G ≡ D ⇒ G′. lfp(TT),∆, Γ ��τ G ⇐⇒ lfp(TT),∆ ∪
{D}, Γ ��τ ′ G′. Then lfp(T C),∆∪{D}, [[Γ]]free(∆∪{D,G′}) ��Cτ ′G

′, due to the
induction hypothesis. Since free(∆ ∪ {D,G′}) = free(∆ ∪ {G}), it follows
that lfp(T C),∆, ν ��Cτ G.
• τ ≡ impc(τ ′) and G ≡ C ′ ⇒ G′. lfp(TT),∆, Γ ��impc(τ ′) C ′ ⇒ G′ ⇐⇒

lfp(TT),∆, Γ ∪{C ′} ��τ ′ G′. Then, the induction hypothesis can be applied,
obtaining lfp(T C),∆, [[Γ ∪ {C ′}]]free(∆∪{G′}) ��Cτ ′G

′. Notice that free(C ′) ⊆
dom(ν). There are two cases:

24

i) ν ∈ [[C ′]]. Then ν ∈ [[Γ ∪ {C ′}]]free(∆∪{G′}), so lfp(T C),∆, ν ��Cτ ′G
′ and

so lfp(T C),∆, ν ��Cτ G.
ii) ν 6∈ [[C ′]]. Then, it is immediately true that lfp(T C),∆, ν ��Cimpc(τ ′)G.
• τ ≡ exists(τ ′) and G ≡ ∃xG′. lfp(TT),∆, Γ ��exists(τ ′) ∃xG′ ⇐⇒ for

any variable y not free in ∆, Γ nor G, there is a constraint C such that
Γ `C ∃yC and lfp(TT),∆, Γ ∪ {C} ��τ ′ G′[y/x]6. By induction hypothesis,
lfp(T C),∆, [[Γ ∪ {C}]]free(∆∪{G′[y/x]}) ��Cτ ′G

′[y/x](†). Now we use the fact
that, since `C agrees with AC , Γ `C ∃yC and ν ∈ [[Γ]]free(∆∪{G}) imply
ν ∈ [[∃yC]]. As a consequence, there is an extension ν ′ of ν to y that makes
C true, so ν ′ ∈ [[Γ ∪ {G}]]free(∆∪{G})∪{y} and, thanks to (†) and the fact
free(∆∪ {G′[y/x]}) = free(∆∪ {G})∪ {y}, lfp(T C),∆, ν ′ ��Cτ ′G

′[y/x], hence
lfp(T C),∆, ν ��Cτ∃xG′.

• τ ≡ forall(τ ′) and G ≡ ∀xG′. lfp(TT),∆, Γ ��forall(τ ′) ∀xG′ ⇐⇒ for any
variable y not free in ∆, Γ nor G, lfp(TT),∆, Γ ��τ ′ G′[y/x]. Then, by induc-
tion hypothesis, lfp(T C),∆, [[Γ]]free(∆∪{G′[y/x]}) ��Cτ ′G

′[y/x]. Any ν ′ exten-
sion of ν to y belongs to [[Γ]]free(∆∪{G′[y/x]}), hence lfp(T C),∆, ν ′ ��Cτ ′G[y/x]
for any such ν ′. Thus lfp(T C),∆, ν ��Cforall(τ ′)∀xG. ut

In order to prove the remaining implication, some particular constraints
c(∆, τ,G) are introduced. c is defined as a partial function such that for any
∆, G and τ , c(∆, τ,G) is only defined if τ is in an accordance with 〈∆, G〉. In
addition, if lfp(T C),∆, ν ��Cτ G for some ν, then c(∆, τ,G) is defined, ν satisfies
it, and it is the weakest constraint that, together with ∆, forces G guided by
τ , when there is any.

Definition 18. The partial function c :W×T ×G → LC is recursively defined
by the rules below.

- c(∆, cst, C) = C.
- c(∆, cl(n, τ ′), A) = c(∆, τ ′,∃x(A ≈ A′∧G′)), where ∀x(G′ ⇒ A′) is a variant

of the nth clause of ∆ and for each x ∈ x, x 6∈ free(∆ ∪ {A}).
- c(∆, and(τ1, τ2), G1 ∧G2) = c(∆, τ1, G1) ∧ c(∆, τ2, G2).
- c(∆, or(i, τ ′), G1 ∨G2) = c(∆, τ ′, Gi).
- c(∆, imp(τ ′), D′ ⇒ G′) = c(∆ ∪ {D′}, τ ′, G′).
- c(∆, impc(τ ′), C ′ ⇒ G′) = C ′ ⇒ c(∆, τ ′, G′).
- c(∆, exists(τ ′),∃xG′) = ∃y c(∆, τ ′, G′[y/x]) where y 6∈ free(∆ ∪ {∃xG′}).
- c(∆, forall(τ ′),∀xG′) = ∀y c(∆, τ ′, G′[y/x]) where y 6∈ free(∆ ∪ {∀xG′}).

Such partial function is well defined, in the sense that given any ∆, τ and
G, if c(∆, τ,G) is defined it is unique up to renaming of bounded variables.

Lemma 9. Given ∆, G and τ ,
6 Without loss of generality, we may assume that free(∃yC) ⊆ free(∆ ∪ {G}).

25

c(∆, τ,G) is defined ⇐⇒ τ is in accordance with 〈∆, G〉.

In that case, free(c(∆, τ,G)) = free(∆ ∪ {G}).

Proof. Straightforward by induction on the structure of τ . ut

Example 11. Let ∆, τ and G be those in Example 9. Then c(∆, τ,G) is defined
and [[c(∆, τ,G)]] = [[∀s(0.1 < s ∧ s < 0.2⇒ (s ∗ s < x ∧ x ∗ x + s ∗ s < 1))]].

The following lemmas correspond to the technicalities we have announced
in order to prove that, in the sense of Proposition 1, ��Cτ implies ��τ .

The lemma below states the essential property of the constraint c(∆, τ,G)
w.r.t. the semantics ��Cτ .

Lemma 10. Given ∆, G, τ and ν such that τ is in accordance with 〈∆, G〉 and
free(∆ ∪ {G}) ⊆ dom(ν),

lfp(T C),∆, ν ��Cτ G ⇐⇒ ν ∈ [[c(∆, τ,G)]].

Proof. We analyze cases according to the structure of τ . Applying Lemma 9, we
may assume, in any case, that c(∆, τ,G) is defined because τ is in accordance
with 〈∆, G〉 by hypothesis.

• τ ≡ cst, G ≡ C. In this case c(∆, τ,G) = C and lfp(T C),∆, ν ��CcstC ⇐⇒
ν ∈ [[C]] = [[c(∆, τ,G)]].

• τ ≡ and(τ1, τ2), G ≡ G1 ∧G2. lfp(T C),∆, ν ��Cτ G ⇐⇒ lfp(T C),∆, ν ��Cτi
Gi

for each i ∈ {1, 2} ⇐⇒ ν ∈ [[c(∆, τi, Gi)]] for i ∈ {1, 2}, by induction
hypothesis ⇐⇒ ν ∈ [[c(∆, τ,G)]].
• τ ≡ or(i, τ ′), G ≡ G1 ∨ G2. lfp(T C),∆, ν ��Cτ G ⇐⇒ lfp(T C),∆, ν ��Cτ ′Gi

⇐⇒ ν ∈ [[c(∆, τ ′, Gi)]], by induction hypothesis ⇐⇒ ν ∈ [[c(∆, τ,G)]].
• τ ≡ imp(τ ′), G ≡ D ⇒ G′. lfp(T C),∆, ν ��Cτ G ⇐⇒ lfp(T C),∆∪{D}, ν ��Cτ ′G

′

⇐⇒ ν ∈ [[c(∆ ∪ {D}, τ ′, G′)]], by induction hypothesis ⇐⇒ ν ∈ [[c(∆, τ,G)]].
• τ ≡ impc(τ ′), G ≡ C ⇒ G′. lfp(T C),∆, ν ��Cτ C ⇒ G′ ⇐⇒ ν 6∈ [[C]]

or lfp(T C),∆, ν ��Cτ ′G
′ ⇐⇒ ν 6∈ [[C]] or ν ∈ [[c(∆, τ ′, G′)]], by induction

hypothesis ⇐⇒ ν ∈ [[C ⇒ c(∆, τ ′, G′)]] = [[c(∆, τ,G)]].
• τ ≡ exists(τ ′), G ≡ ∃xG′. lfp(T C),∆, ν ��Cτ G ⇐⇒ there is an extension

ν ′ of ν to y such that lfp(T C),∆, ν ′ ��Cτ ′G
′[y/x] ⇐⇒ there is an exten-

sion ν ′ of ν to y such that ν ′ ∈ [[c(∆, τ ′, G′[y/x])]], by induction hypoth-
esis ⇐⇒ there is a ∈ AC such that [[c(∆, τ ′, G′[y/x])]]ν[y←a] = true
⇐⇒ [[∃y c(∆, τ ′, G′[y/x])]]ν = true ⇐⇒ ν ∈ [[∃y c(∆, τ ′, G′[y/x])]] =
[[c(∆, τ,G)]].
• τ ≡ forall(τ ′), G ≡ ∀xG′. lfp(T C),∆, ν ��Cforall(τ ′)∀xG′ ⇐⇒ given a vari-

able y 6∈ dom(ν), for any extension ν ′ of ν to the variable y, lfp(T C),∆, ν ′ ��Cτ ′
G′[y/x] holds ⇐⇒ ν ′ ∈ [[c(∆, τ ′, G′[y/x])]] for any extension ν ′ of ν, by
induction hypothesis ⇐⇒ for any a ∈ AC, [[c(∆, τ ′, G′[y/x])]]ν[y←a] =
true ⇐⇒ [[∀y c(∆, τ ′, G′[y/x])]]ν = true ⇐⇒ ν ∈ [[∀y c(∆, τ ′, G′[y/x])]]
= [[c(∆, τ,G)]]. ut

26

Now we establish the connection between c(∆, τ,G) and the semantics ��τ .

Lemma 11. Given ∆, Γ , G and τ ,

lfp(TT),∆, Γ ��τ G ⇐⇒ Γ `C c(∆, τ,G).

Proof. Both implications are proved below.

⇒) lfp(TT),∆, Γ ��τ G implies that c(∆, τ,G) is defined, applying Lemma 9,
and in virtue of Proposition 1, lfp(T C),∆, [[Γ]]free(∆∪{G}) ��τ G. Then from
Lemma 10, [[Γ]]free(∆∪{G}) ⊆ [[c(∆, τ,G)]], but again from Lemma 9, free(∆∪
{G}) = free(c(∆, τ,G)). So [[Γ]]free(c(∆,τ,G)) ⊆ [[c(∆, τ,G)]] which is equiva-
lent to Γ `C c(∆, τ,G).

⇐) First of all, let us prove that lfp(TT),∆, c(∆, τ,G) ��τ G, by induction of
the structure of τ . In any case, it is verified that τ is in accordance with
〈∆, G〉, because we are assuming that c(∆, τ,G) is defined and Lemma 9.
– τ ≡ cst and G ≡ C. Then c(∆, τ,G) = C, and lfp(TT),∆,C ��τ C holds

by definition of ��τ .
– τ ≡ cl(n, τ ′) and G ≡ A. Let ∀x(G′ ⇒ A′) be a variant of the nth

clause of ∆ such that no x ∈ x is free in ∆, c(∆, cl(n, τ ′), A) nor A.
In that case, lfp(TT),∆, c(∆, cl(n, τ ′), A) ��τ A happens if and only if
lfp(TT),∆, c(∆, cl(n, τ ′), A) ��τ ′ ∃x(A ≈ A′∧G′), which is true by induc-
tion hypothesis, because c(∆, cl(n, τ ′), A) ≡ c(∆, τ ′,∃x(A ≈ A′ ∧G′)).

– τ ≡ and(τ1, τ2) and G ≡ G1 ∧ G2. Now c(∆, τ,G) = c(∆, τ1, G1) ∧
c(∆, τ2, G2). By induction hypothesis, lfp(TT),∆, c(∆, τi, Gi) ��τi Gi for
each i ∈ {1, 2}. Since c(∆, τ,G) `C c(∆, τi, Gi) for each i ∈ {1, 2}, thanks
to Lemma 6 it follows that lfp(TT),∆, c(∆, τ,G) ��τi Gi for i = 1, 2, and
hence lfp(TT),∆, c(∆, τ,G) ��τ G.

– τ ≡ or(i, τ ′) and G ≡ G1 ∨ G2. Applying the induction hypothesis,
lfp(TT),∆, c(∆, τ ′, Gi) ��τ ′ Gi, so lfp(TT),∆, c(∆, τ,G) ��τ ′ Gi, because
c(∆, τ,G) = c(∆, τ ′, Gi), therefore lfp(TT),∆, c(∆, τ,G) ��τ G.

– τ ≡ imp(τ ′) and G ≡ D ⇒ G′. lfp(TT),∆∪{D}, c(∆∪{D}, τ ′, G′)��τ ′ G
′,

by the induction hypothesis. Then lfp(TT),∆ ∪ {D}, c(∆, τ,G) ��τ ′ G′,
since c(∆, τ,G) = c(∆ ∪ {D}, τ ′, G′), hence lfp(TT),∆, c(∆, τ,G) ��τ

D ⇒ G′.
– τ ≡ impc(τ ′) and G ≡ C ⇒ G′. lfp(TT),∆, c(∆, τ ′, G′) ��τ ′ G′, by the in-

duction hypothesis. Therefore, lfp(TT),∆, {C,C ⇒ c(∆, τ ′, G′)} ��τ ′ G′,
by Lemma 6. Then lfp(TT),∆, {C, c(∆, τ,G)} ��τ ′ G′, since c(∆, τ,G) =
C ⇒ c(∆, τ ′, G′). Hence lfp(TT),∆, c(∆, τ,G) ��τ C ⇒ G′, by definition
of ��τ .

– τ ≡ exists(τ ′) and G ≡ ∃xG′. lfp(TT),∆, c(∆, exists(τ ′),∃xG′) ��τ ∃xG′

⇐⇒ there is a constraint C ′ and a variable y, not free in ∆, c(∆, τ,G)
nor G, such that:
i) c(∆, exists(τ ′),∃xG′) `C ∃yC ′,

ii) lfp(TT),∆, c(∆, exists(τ ′),∃xG′) ∪ {C ′} ��τ ′ G′[y/x].

27

Let us choose C ′ to be c(∆, τ ′, G′[y/x]). Since c(∆, exists(τ ′),∃xG′) ≡
∃y c(∆, τ ′, G′[y/x]), i) boils down to the evidence ∃yC ′ `C ∃yC ′. On
the other hand, by induction hypothesis, lfp(TT),∆,C ′ ��τ ′ G′[y/x], and
thanks to Lemma 6 this implies ii).

– τ ≡ forall(τ ′) and G ≡ ∀xG′. Let y 6∈ free(∆ ∪ {G}). Applying the
induction hypothesis, lfp(TT),∆, c(∆, τ ′, G′[y/x]) ��τ ′ G′[y/x]. By defi-
nition c(∆, τ,G) ≡ ∀y c(∆, τ ′, G′[y/x]), so it is clear that c(∆, τ,G) `C
c(∆, τ ′, G′[y/x]). Hence it follows lfp(TT),∆, c(∆, τ,G) ��τ ′ G′[y/x], in
virtue of Lemma 6. Since y 6∈ free(c(∆, τ,G)) and y 6∈ free(∆ ∪ {G}),
lfp(TT),∆, c(∆, τ,G) ��τ G.

Therefore, lfp(TT),∆, c(∆, τ,G) ��τ G is satisfied for any ∆, G and τ . Then
lfp(TT),∆, Γ ��τ G, thanks to Lemma 6 and Γ `C c(∆, τ,G). ut

Finally, we are ready to prove the counterpart of Proposition 1.

Proposition 2. Given ∆, Γ , G and τ ,

lfp(T C),∆, [[Γ]]free(∆∪{G}) ��Cτ G =⇒ lfp(TT),∆, Γ ��τ G.

Proof. lfp(T C),∆, [[Γ]]free(∆∪{G}) ��Cτ G implies [[Γ]]free(∆∪{G}) ⊆ [[c(∆, τ,G)]],
thanks to Lemma 10. But free(∆∪{G}) = free(c(∆, τ,G)), by Lemma 9. Then
[[Γ]]free(c(∆,τ,G)) ⊆ [[c(∆, τ,G)]]). Thus Γ `C c(∆, τ,G), because AC and `C
agree, and finally, from Lemma 11, lfp(T),∆, Γ ��τ G is obtained. ut

The main theorem below, which establishes the relation between the non
guided semantics, is a consequence of the previous results.

Theorem 5. For any ∆, Γ and G,

lfp(T),∆, Γ �� G ⇐⇒ lfp(T C),∆, [[Γ]]free(∆∪{G}) ��CG.

Proof. lfp(T),∆, Γ �� G ⇐⇒ there exists τ such that lfp(TT),∆, Γ ��τ G by
Theorem 4 ⇐⇒ exists τ such that lfp(T C),∆, [[Γ]]free(∆∪{G}) ��Cτ G by Proposi-
tions 1 and 2 ⇐⇒ lfp(T C),∆, [[Γ]]free(∆∪{G}) ��CG by definition of the forcing
relation ��C . ut

Corollary 1. (Soundness and completeness) For any ∆, Γ and G,

lfp(T C),∆, [[Γ]]free(∆∪{G}) ��CG ⇐⇒ ∆;Γ `UC G.

Proof. The claim is a simple combination of Theorems 2, 3 and 5. ut

28

5 Conclusions

In previous papers [11,10] combinations of HH and CLP were proposed, pro-
ducing first and higher order schemes HH(C) parametric w.r.t. the constraint
system. These amalgamated languages gather the expressivity and the efficiency
advantages of HH and CLP, respectively. A proof system that merges inference
rules from intuitionistic sequent calculus with the entailment relation of a con-
straint system was defined. This proof system guarantees uniform proofs, which
are the basis of abstract logic programming languages [14]. A goal solving pro-
cedure that is sound and complete w.r.t. the proof system was also presented.
Such procedure could be seen as an operational semantics of HH(C), however
the absence of a more declarative semantics for this new language was evident.
In [6,7] we defined semantics for HH(C) based on fixed point constructions as
is usually done in the LP and CLP fields [12,1,2,9,4].

As far as we know, our works have been the first attempts to give declara-
tive semantics to an amalgamated logic that combines the Hereditary Harrop
fragment of intuitionistic first-order logic with a constraint system. Due to the
embedding of implications and universal quantifiers inside goals (and so in-
side programs), finding a fixed point semantics becomes a hard task, further
obstructed by the presence of constraints.

In [13] a model theory is presented for an extension of Horn clauses includ-
ing implications in goals based on a fixed point construction, and it is proved
that the operational meaning of implication is sound and complete w.r.t. this
semantics. Our approach is close to this framework, but it incorporates the
semantics of universal quantifiers and constraints in goals. The universal quan-
tifier is also handled in [3], but the presence of universal constraints involves
further difficulties that we have solved.

A semantics for the fragment of λ-prolog —that is based on the higher-order
logic HH without constraints—, in which classical and intuitionistic theories co-
incide, is presented in [20]. But this is not the case if implications and universal
quantifiers are considered.

Referring to CLP, most of the defined semantics use different fixed point
constructions. For instance in [9] fixed point semantics constitutes a bridge be-
tween operational and algebraic semantics. This is also our aim. But notice that
in traditional CLP the programs are limited to be Horn clauses with constraints.
So in the frame of constraint systems which are complete w.r.t. a theory, pro-
grams (with embedded constraints) may be interpreted using classical logical
inference. However, this is not the case in our language. A classical theory can
be considered for the constraint system, but anyway the intuitionism remains,
even in the interpretation of pure programs.

Formalizing the two fixed point semantics we have introduced for HH(C)
requires a lot of intermediate technical definitions and results, mainly for the
second one for which, assignments for some structure in accordance with the
constraint system are incorporated to the forcing relation to interpret con-

29

straints. In this paper we have included every lemma and definition used to
prove the foundations of the two semantics and their connection between they
and with the proof system.

References

1. A. Bossi, M. Gabrielli, G. Levi, and M. C. Meo. A compositional semantics for logic
programs. Theoretical Computer Science, 122(1-2):3–47, 1994.

2. M. Comini, G. Levi, and M. C. Meo. A theory of observables for logic programs. Infor-
mation and Computation, 69(1–2):23–80, 2001.

3. M. de Marco. Intuitionistic Semantics for Hereditarily Harrop Logic Programming. PhD
thesis, Wesleyan University, 1999.

4. M. Gabbrielli, G. M. Dore, and G. Levi. Observable semantics for constraint logic pro-
grams. Journal of Logic and Computation, 5(2):133–171, 1995.

5. M. Garcia-Diaz and S. Nieva. Solving constraints for an instance of an extended CLP
language over a domain based on real numbers and herbrand terms. Journal of Functional
and Logic Programming, 2003(2), September 2003.

6. M. Garćıa-Dı́az and S. Nieva. A fixed point semantics for an extended CLP language
In 13th International Workshop on Functional and (Constraint) Logic Programming
(WFLP’04) Herbert Kuchen editor. Technical Report AIB-2004-05 pages 118–136, RWTH
Aachen, jun 2004.

7. M. Garćıa-Dı́az and S. Nieva. Providing declarative semantics for HH extended constraint
logic programs. In Proc. Sixth ACM SIGPLAN Conference on Principles and Practice of
Declarative Programming (PPDP04), pages 55–66. ACM Press, 2004.

8. J. Jaffar and M. J. Maher. Constraint logic programming: a survey. Journal of Logic
Programming, 19/20:503–581, 1994.

9. J. Jaffar, M. J. Maher, K. Marriott, and P. J. Stuckey. The semantics of constraint logic
programs. Journal of Logic Programming, 37(1-3):1–46, 1998.

10. J. Leach and S. Nieva. A higher-order logic programming language with constraints. In
H. Kuchen and K. Ueda, editors, FLOPS’01, LNCS 2024, pages 108–122. Springer, 2001.

11. J. Leach, S. Nieva, and M. Rodŕıguez-Artalejo. Constraint logic programming with hered-
itary Harrop formulas. Theory and Practice of Logic Programming, 1(4):409–445, 2001.

12. J. W. Lloyd. Foundations of logic programming. Springer-Verlag, 1987.
13. D. Miller. A logical analysis of modules in logic programming. Journal of Logic Program-

ming, 6(1-2):79–108, 1989.
14. D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. uniform proofs as a foundation for

logic programming. Annals of Pure and Applied Logic, 51:125–157, 1991.
15. G. Nadathur. A proof procedure for the logic of hereditary Harrop formulas. Journal of

Automated Reasoning, 11:111–145, 1993.
16. G. Smolka and R. Treinen. Records for logic programming. Journal of Logic Programming,

18(3):229–258, 1994.
17. A. Tarski. A decision method for elementary algebra and geometry. University of California

Press, 1951.
18. A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of

Mathematics, 5:285–309, 1955.
19. M. H. van Emden and R. A. Kowalski. The semantics of predicate logic as a programming

language. Journal of the ACM, 23(4):733–742, 1976.
20. D. A. Wolfram. A semantics for λ-prolog. Theoretical Computer Science, 136:277–288,

1994.

30

