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Abstract

Binary data latent class models crucially assume local independence, violations

of which can seriously bias the results. We present two tools for monitoring local

dependence in binary data latent class models: the “Expected Parameter Change”

(EPC) and a generalized EPC, estimating the substantive size and direction of possi-

ble local dependencies. The asymptotic and finite sample behavior of the measures

is studied, and two applications to the U.S. Census estimation of Hispanic ethnicity

and medical experts’ ratings of x-rays demonstrate its value in arriving at a model

that balances realism and parsimony.

R code implementing our proposal and including both example datasets is avail-

able online as supplementary material.

KEY WORDS: local independence, finite mixture model; diagnostic error; score

test; generalized score
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1 Introduction

The latent class model for binary data is a discrete finite mixture of binomials (Agresti,

2002), and has a wide range of applications in a diverse number of fields. In the so-

cial sciences, Hill & Kriesi (2001) classified patterns of longitudinal change in Swiss

voters’ support for car pollution abatement policies, while Johnson (1990) evaluated the

measurement properties of alternative questions to measure ethnicity in the U.S. Census;

in machine learning, the model has been used for classifying documents based on word

events under the pseudonym “probabilistic latent semantic analysis” (Hofmann, 2001);

and in education, Dayton & Macready (1988) analyzed how elementary school children’s

ability to correctly answer questions on addition, subtraction, multiplication, and division

might indicate mastery of the subject. In the (bio)medical sciences, latent class analysis

(LCA) for binary data has proved key to describing prevalence and symptomatology of

diseases and assessing the accuracy of diagnoses (Faraone & Tsuang, 1994), and to eval-

uating the sensitivity, specificity, and predictive validity of diagnostic tests in the absence

of a gold standard (Walter & Irwig, 1988; Hui & Zhou, 1998; Garrett et al., 2002).

The essential assumption in LCA is local independence. One way of viewing the local

independence assumption is that it is assumed that, besides the latent class variable, there

are no other unobserved variables influencing at least two indicators. For instance, one

document “topic” may not suffice to explain the number of times pairs of words occur

together in it; addition and subtraction test items may be more strongly associated to one

another than to multiplication and division items; and a pair of radiologists might rate

x-rays similarly if they trained in the same hospital. For more detailed explanations of

how local dependence may arise, we refer to Biemer (2011, section 5.2). An important

distinction to make is then whether this additional unobserved variable is of substantive

interest or not (Oberski, 2013). For example, an educational researcher may, under cer-
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tain circumstances, wish to distinguish between “higher” and “lower” arithmetic skills,

whereas radiologist judgements’ dependence due to having trained in the same hospital is

likely to be no more than a nuisance.

Local dependence is a potential problem because it can severely bias LCA outcomes

of interest: estimates of classification error, class sizes, and the posterior classification of

cases are all affected when local dependence is present (Vacek, 1985; Torrance-Rynard

& Walter, 1998; Albert & Dodd, 2004). Hadgu et al. (2005, p. 610) argued that in the

application of LCA to diagnostic tests, bias has serious clinical consequences such as an

overrated degree of epidemic control, overtreatment, and unrecognized undertreatment.

The degree to which such estimates will be biased depends on the size of the local de-

pendence that is being ignored. Large local dependencies should not be ignored, whereas

small local dependencies are not particularly consequential for the outcomes of interest.

Local dependence leads to LCA model misfit, to which the standard reaction is to

increase the number of classes (McLachlan & Peel, 2000, chapter 6). The additional

classes then represent (absorb) the dependencies. An alternative method is to model the

additional variables explicitly (Hagenaars, 1993; Dendukuri et al., 2009). These methods

are applicable when the dependence is of substantive interest, but introduce a problem of

model interpretability when it is not (Yang & Becker, 1997; Oberski, 2013).

When local dependence is not of direct interest but represents a nuisance, a more

interpretable model may be obtained by modeling the dependence directly. A variety of

extended latent class models has been proposed to this end: additive probability models

(Harper, 1972); loglinear (logistic) direct effects between indicators (Hagenaars, 1988;

Formann, 1992); models with continuous random effects (Qu et al., 1996); and marginal

models (Bartolucci & Forcina, 2006; Reboussin et al., 2008). These modeling approaches

are in principle attractive when the local dependence is not of substantive interest, but

suffer from two problems. First, not all local dependencies may be globally identifiable
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from the data (Jones et al., 2010; Stanghellini & Vantaggi, 2013). Second, even when the

local dependencies are locally identifiable in some part of the parameter space, the model

estimates may become highly unstable; in particular, the substantive latent class variable

and the nuisance local dependencies may become difficult to separate.

Because it is not usually desirable to model all possible local dependencies, the ques-

tion arises as to which pairs of indicators should be modeled as dependent. Qu et al. (1996,

800-1) suggested plotting residual correlations with bootstrapped confidence intervals;

Formann (2003, pp. 556-7) proposed a hypothesis test on the odds ratio in the residual

bivariate crosstables, while Garrett & Zeger (2000, pp. 1063-4) discussed a Bayesian

posterior predictive check on the log of that odds ratio; Sepúlveda et al. (2008) proposed

a graphical method based on the log-odds ratios. Finally, Magidson & Vermunt (2004,

pp. 9–11) proposed using “bivariate residuals” (BVR’s), the Pearson chi-square in the

same crosstables (see also Vermunt & Magidson, 2005, pp. 72-4). An issue with the

BVR, posterior predictive checks, or hypothesis tests is that they focus on the statistical

significance of local dependence, while the substantive size of local dependencies is, in

our view, the primary motivation for local dependence models: small dependencies are

not likely to be relevant for the modeling goals whereas large dependencies should not

go undetected. An additional issue with all of these measures is that their development

has been ad hoc, in the sense that the connection between them and the local dependence

model has remained unclear.

We introduce the “expected parameter change” (EPC) measure for detecting local de-

pendencies in latent class models to resolve these problems. The EPC estimates the value

that a restricted local dependence parameter would take on if it were freed in an alter-

native model. The EPC therefore directly evaluates the substantive size and direction of

possible local dependencies. In addition, the EPC has a clear interpretation in terms of

the local dependence model parameterization chosen. For example, when the alternative
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is the loglinear latent class model with direct effects, the EPC has the interpretation of

a conditional log-odds ratio. Other parameterizations are, however, also possible – in-

cluding class-specific parameterizations as emphasized by Sepúlveda et al. (2008). In this

sense the EPC is a generalization of (log) odds ratio residual measures. In addition, a

hypothesis test on the EPC is equivalent to a score (“Lagrange multiplier”) test, which in

turn was shown to be a generalization of the bivariate Pearson residual (BVR) by Oberski

et al. (2013). The EPC therefore extends these existing local dependence measures while

providing a rigorous framework for interpretation in terms of the alternative model.

We propose two variations of the expected parameter change: the EPCL based on

the expected information matrix, which is well known in structural equation modeling

(Saris et al., 1987), and a novel “generalized” EPCGS, based on an information matrix

that can be expected to be more robust to model misspecification. The EPCL is closely

related to Rao’s classic efficient score test (Rao, 1948), while the EPCGS is related to the

generalized score test (White, 1982; Boos, 1992).

The article is organized as follows. Section 2 presents a local dependence latent class

model for binary variables. The EPCL and EPCGS for such models are introduced in

section 3. Asymptotic and sampling behavior of the EPCL and EPCGS under a range of

simulation conditions are then evaluated in section 4. In sections 5 and 6, two real data

applications from the literature, one in the social sciences and the other in diagnostic test

assessment, demonstrate how these measures can aid in the detection of local dependence

and yield different and more easily interpretable results.

2 Latent Class Model with local dependencies

Suppose a sample of size N is obtained on J observed binary variables, aggregated by

the R response patterns into Y. Let n be the R-vector of observed response pattern
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counts. The log-likelihood for the latent class model with T classes for the unobserved

discrete variable ξ can then be formulated (Formann, 1992) as the linear-logistic (log

linear) model,

`(θ) = n′ log Pr(Y) = n′ log

[
T∑
t=1

Pr(ξ = t)

(
exp(ηt)

1′R exp(ηt)

)]
, (1)

where log and exp denote elementwise operations, Pr(ξ = t) = exp(αt)/1
′
T exp(α), and

ηt = X(Y )τ +X(Y Y )ψ +X(Y ξt)λ, (2)

where X(Y ), X(Y Y ) and X(Y ξt) are design matrices for the observed variables’ main ef-

fects τ , bivariate associations ψ, and associations with the latent class variable λ, re-

spectively (Evers & Namboodiri, 1979). The vector α contains the logistic main effect

parameters for the latent class proportions. This parameterization of the local dependence

latent class model is similar to that adopted by Hagenaars (1988) and Formann (1992,

section 4.3).

When the observed variables are “dummy-coded”, the loglinear local dependencies

ψ can be interpreted as log-odds ratios between pairs of items within the latent classes.

The ψ parameters should in general be interpreted as “direct effect” parameters; in ef-

fect, they are regression coefficients in the Poisson regression of within-class response

pattern counts. Just as in regression analysis, when marginalized over all other response

variables, the within-class log-odds dependency between a pair of items may differ from

the direct effect parameter ψ. Furthermore, even though ψ is equal across classes, the

marginal log-odds need not be. The model therefore does allow the marginal log-odds

dependence to differ across classes to the extent allowed for by the model. This may

be seen as a parsimonious way of modeling dependence. On the other hand, when the
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goal of the analysis is to interpret the local dependence itself, marginal models such as

those discussed by Bartolucci & Forcina (2006) and Reboussin et al. (2008) may be more

appropriate.

The loglinear parameterization used here is equivalent to a parameterization in terms

of probabilities when ψ = 0, but has the advantage that probabilities below 0 and above

1 are not possible as sample estimates. For example, consider the T -class local indepen-

dence model for K binary items,

Pr(Y1, . . . , YK) =
T∑
t=1

[
Pr(ξ = t)

K∏
k=1

Pr(Yk|ξ = t)

]
,

in which the joint probability given the latent class
∏K

k=1 Pr(Yk|ξ = t) may be reparame-

terized following the usual logistic formulation by taking

ln
K∏
k=1

Pr(Yk|ξ = t) =
K∑
k=1

ln Pr(Yk|ξ = t) =
K∑
k=1

(τkxYk + λktxYkxξ) ,

where xYk is a design variable that depends on the value of Yk and xξ a design variable

depending on ξ. In dummy coding, for instance, xYk will equal 1 if Yk has the value 1,

and 0 otherwise, whereas in effects coding, the corresponding values are +1 and -1. Note

that the columns of the design matrices given in Equation (2) above are formed by xYk ,

xξ, and their products. However, the matrix formulation of the model given above is more

flexible as it can also include “interactions” (local dependencies) between any number of

variables, and can trivially be extended to include covariates predicting class membership.

In what follows we therefore use this convenient formulation of the latent class model.

The p-vector of parameters θ can be defined as θ′ = (α′, τ ′,λ′,ψ′). Thus, the full

unconstrained model for binary variables has p = T−1+JT+
(
J
2

)
parameters. Typically,

however, not all possible parameters are freed. The standard local independence latent
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class model, for example, is obtained by settingψ = 0. More generally, it is also possible

to specify parameter restrictions of the form a(θ) = 0. For the purposes of this paper,

however, we will assume that the restrictions take the form of fixing some or all elements

of ψ to a value (typically zero).

The parameter vector θ can then be partitioned into two parts: a part fixed to a value

and a part corresponding to the p free parameters of the model. We will denote the fixed

parameter vector by θ1 and the p free parameters by θ2. In the typical latent class model

assuming local independence θ1 = ψ and θ′2 = (α′, τ ′,λ′).

2.1 Estimation

The maximum likelihood estimates θ̂2 under the restricted model can be found by max-

imizing the likelihood Equation (1) with respect to θ2 while keeping θ1 fixed at θ̂1. In

the local independence model, θ̂1 = ψ̂ = 0. Different methods of maximizing Equation

(1) have been suggested in the literature, largely falling into the categories of expectation-

maximization on the one hand (Dempster et al., 1977) and (quasi-) Newton optimization

on the other. Either of these methods or a combination of them may be used to obtain

the local maximum when it exists (Vermunt & Magidson, 2013). Since the optimization

method used is inconsequential for our following discussion, we will simply assume that

the maximum likelihood estimates θ̂2 can be obtained by one or a combination of these

methods.

2.2 Identifiability of local dependence parameters

Local identifiability is a crucial issue for the interpretation of latent class model results

and the validity of asymptotic approximations (Forcina, 2008). A model is said to be

locally identifiable in an open neighborhood when, within this neighborhood, there is
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one unique set of parameter values that can generate a given likelihood (e.g. Skrondal &

Rabe-Hesketh, 2004, chapter 5).

Goodman (1974) noted that the latent class model will be locally identifiable if the

Jacobian, S, of the expected response patterns with respect to the parameters is of full

column rank (see also McHugh 1956, Theorem 1; Catchpole & Morgan 1997, Theorem

1; Bandeen-Roche et al. 1997, p. 1378; Huang & Bandeen-Roche 2004). The appendix

gives the precise form of this Jacobian for the latent class model in Equation (1) with

possible local dependencies. A necessary but not sufficient condition for identifiability

is that there should be a nonzero number of degrees of freedom. That is, the number of

parameters (columns of S) should not exceed the number of unique patterns (rows of S),

i.e., p ≤ R− 1.

Local identifiability of dependencies is of especial importance for the EPC measures.

The expected parameter change measures to be developed here are valid only when the

single hypothetical local dependency under investigation would be identifiable from the

data in the neighborhood of the maximum-likelihood solution. In general, additional pa-

rameters are not necessarily identifiable even when there are positive degrees of freedom.

Notwithstanding this general situation, however, for the class-independent local depen-

dencies considered in model (2), it can be proved that identification is possible as long as

there are positive degrees of freedom (Theorem 1).

Theorem 1. Consider the model in Equation (2) with local dependencies fixed to zero,

ψ = 0. Assume this model is locally identifiable and the number of degrees of freedom is

positive, d > 0. Then a model including at most d free elements ofψ is locally identifiable.

Proof. The proof can be found in Appendix A.

Theorem 1 is useful for the development of the EPC measures, since it greatly simpli-

fies the definition of situations in which EPC measures are appropriate.
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Table 1: Number of identifiable local dependence parameters out of total possible.
Number of observed variables (J)
J = 3 J = 4 J = 5 J = 6

Number of classes (T )
T = 2 0/3 6/6 10/10 15/15
T = 3 - - 10/10 15/15
T = 4 - - 8/10 15/15
T = 5 - - - 15/15
T = 6 - - - 15/15

To demonstrate this result, Table 1 shows local identifiability of models with an in-

creasing number of classes and variables assessed by the method of Forcina (2008, p.

5266). Identifiability is examined empirically by randomly sampling a large number of

parameter sets and examining the rank of the expected information matrix for each set. If

for each of these random points the information matrix is numerically of full rank, then

the model is locally identified with probability close to one (Formann, 1992). Shown are

the number of local dependencies (elements of ψ) that can be identified, where a dash

indicates that even the local independence model is not identifiable. Table 1 shows The-

orem 1 in action: for instance, since the local independence model with four classes and

five response variables is identifiable and has eight degrees of freedom, exactly eight out

of the ten pairwise local dependencies are identifiable.

As shown in model (2), we only consider loglinear local dependencies that are con-

stant over (do not interact with) classes. For loglinear local dependency parameters that

may differ over classes, as are considered in graphical models, identifiability conditions

are less straightforward. Stanghellini & Vantaggi (2013) provide such conditions for the

two-class model, as well as the subspace of parameters in which local identifiability oc-

curs. Jones et al. (2010) investigated identifiability of class-dependent parameters for a

particular set of models with covariates. In such cases the derivation of the EPC measures

given below will also be applicable, but identification needs to be assessed more carefully.
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3 Expected Parameter Change (EPC)

Our approach to monitoring possible local dependencies in latent class analysis sets out

from the observation that local dependencies that have not been parameterized will con-

stitute model misspecifications in the restriction ψ = 0. Assuming the local dependen-

cies would be identifiable from the data if parameterized, the expected parameter change

(EPC) is an approximately consistent estimate of local dependence misspecifications that

can be obtained after fitting the restricted model. In this section we derive the EPC and

the closely related score test for detecting local dependencies, following the literature on

the EPC for structural equation models (Saris et al., 1987; Sörbom, 1989), and on gen-

eralized score tests (Boos, 1992). The appendix provides the first and second derivative

matrices used in this section.

After estimation of the local independence latent class model, sample estimates θ̂

are obtained that we will assume converge in probability to a population value θ∗ as

sample size increases, i.e. θ̂ → θ∗. These estimates can be seen as having been obtained

under the model described in the previous section, but with the restriction that all local

dependencies are exactly zero, ψ = 0: this local independence model is the null model.

Consider the alternative model that one local bivariate dependence parameter, i.e.

some element ψ of the vector ψ, is nonzero. Hypothetically this additional parameter

ψ could be included in the model as a free parameter, and the model re-estimated. More

generally, the part of the parameter vector that is free in both the null and this alterna-

tive model is denoted θ2, while the additional part under consideration such as the local

dependence parameter(s) are collected in the vector θ1. The hypothetical parameter esti-

mates that would be obtained under this alternative model are denoted as θ̃ here. Using

the standard device of a sequence of local alternatives (e.g., Maydeu-Olivares & Joe 2005,

p. 721; Cameron & Trivedi 2005, p. 248), the alternative model estimates, as the sample
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size increases, also converge to the population value θ∗, that is, θ̃ → θ∗. This assump-

tion, common to derivations of the asymptotic distribution of Wald and score statistics,

can be informally stated as assuming that the model is “not too misspecified”, relative

to the sample size (e.g., Kolenikov et al., 2010, p. 6). Violation of this assumption may

occur when the local dependence in question is large and the sample size small, an issue

that will be investigated in the simulation study of Section 4.

We now examine the loglikelihood value obtained under the null model, from the

point of view of the restriction of interest that the local dependence equals zero. Using a

Taylor expansion of the log likelihood at the maximum-likelihood solution,

` ≈ ˆ̀+

 θ∗1 − θ̂1
θ∗2 − θ̂2


′  s1(θ

∗)

s2(θ
∗)

+1

2

 θ∗1 − θ̂1
θ∗2 − θ̂2


′  I∗Y 11 I∗Y 21

I∗Y 12 I∗Y 22


 θ∗1 − θ̂1
θ∗2 − θ̂2

 , (3)

where s(θ∗) = ∂`/∂θ is the score vector and I∗Y is the observed information matrix,

both evaluated at the population value θ∗. As demonstrated in Equation (3), both are

partitioned into parameters θ2 included in both the null and alternative models, and pa-

rameters θ1 that are being considered as possibly different from their restricted solution,

θ′ = (θ′1,θ
′
2).

To study what would happen if the restricted parameter vector θ1 were freed, we find

new estimates by maximizing ` (Equation (1)), this time with respect to both θ1 and θ2

(Sörbom, 1989, p. 373). This leads to the equality

 s1(θ
∗)

0

+

 I∗Y 11 I∗Y 21

I∗Y 12 I∗Y 22


 θ∗1 − θ̂1
θ∗2 − θ̂2

 =

 0

0

 . (4)

Note that I∗Y cannot be obtained from the maximum likelihood solution as it depends on

the unknown value θ∗. However, consistent estimates of the shift in parameter values
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if θ1 were freed can be obtained from the restricted solution as the “expected parameter

change” EPC = θ̂1 − θ∗1 ≈ V̂−1s1(θ̂), where V̂ is consistent estimate of I∗Y evaluated

at the restricted solution. This implies that V̂ consistently estimates the variance of the

score vector s1, so that a score statistic can be obtained as T = s1(θ̂)
′V̂−1s1(θ̂) which is

distributed as χ2
rk(S1)

under the null hypothesis.

Under the null hypothesis ψ = 0, the information matrix I∗Y is consistently estimated

by the expected information matrix evaluated at the restricted solution ÎL, so that (Rao,

1948)

EPCL = V̂−1L s1(θ̂) = Î−1L s1(θ̂)

= (ÎL11 − ÎL12Î
−1
L22ÎL21)

−1 s1(θ̂),

(5)

where the last step, following from the rules for inverting a partitioned non-singular ma-

trix, is computationally convenient since the partition ÎL22 of the information matrix cor-

responding to the free parameters will usually already be at hand in latent class mod-

eling software. The EPCL defined above is popular in the field of structural equation

modeling (Saris et al., 1987). Rao (1948)’s efficient score statistic can be obtained as

TL = s1(θ̂)
′Î−1L s1(θ̂), which under the null hypothesis has a chi square distribution with

rank(S1) degrees of freedom. The efficient score statistic is known in the structural equa-

tion modeling literature as the “modification index” (MI) (Sörbom, 1989), and in the

econometrics literature as the Lagrange multiplier test (Aitchison & Silvey, 1958; Breusch

& Pagan, 1980). By the same argument of consistency under the null hypothesis, the ex-

pected information matrix ÎL can be replaced by the observed information evaluated at

the restricted solution, ÎY (see Glas, 1999; van der Linden & Glas, 2010).

The derivation of V̂ under the null hypothesis suggests that when ψ 6= 0, the EPCL

is asymptotically biased. Under misspecified local independence, a “generalized”, i.e.

robust to misspecification, consistent estimate V̂GS of V can be used (White, 1982). As
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shown by Boos (1992, p. 329),

V̂GS = (1,−ÎY 12Î
−1
Y 22)D̂(1,−ÎY 12Î

−1
Y 22)

′

= D̂11 − ÎY 12Î
−1
Y 22D̂

′
12 − D̂12Î

−1
Y 22Î

′
Y 12 + ÎY 12Î

−1
Y 22D̂22Î

−1
Y 22Î

′
Y 12,

(6)

where D is the outer product matrix of first derivatives of the log-likelihood (see ap-

pendix) and ÎY and D̂ denote quantities evaluated at the sample estimates θ̂ under the

restricted model. A “generalized expected parameter change” EPCGS is obtained as

EPCGS = V̂−1GSs1(θ̂); the well known generalized score test (White, 1982) is TGS =

s1(θ̂)
′V̂−1GSs1(θ̂).

3.1 Form of the EPCL for a local dependence parameter

So far we have given the expected parameter change statistics in generality. That is, the

equations given above may, in fact, be applied to any restricted parameter, not only to

local dependencies. To gain more insight into the use of these statistics for the detection

of local dependence, we give here the form of the EPC for detecting local dependencies

between two variables Yj and Yj′ in the parameterization of Equation (2).

As noted above, the EPCL is defined as minus the derivative of the log-likelihood

with respect to the local dependence parameter, premultiplied by the inverse information

matrix under the alternative, both evaluated at the restricted solution,

EPCL = (IL|θ=θ̂)

(
∂`

∂ψjj′
|θ=θ̂

)
, (7)

where θ = (α′, τ ′,λ′, ψjj′)
′. In the derivatives involved in the information matrix IL

and ∂`/∂ψjj′ , a key role is played by the design matrices X(Y ), X(Y ξt), and X(Y Y ). For

example, the derivative ∂`/∂ψjj′ is determined by the corresponding column of the design

matrix X(Y Y ): with dummy coding, this column will be a vector that equals 1 for all
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patterns in which both Yj and Yj′ equal 1, and 0 otherwise; using effects coding, the

corresponding values will be 1 and -1.

The derivative with respect to a hypothetical local dependence parameter between two

variables is closely related to the raw residual in the bivariate crosstable between these two

variables. Since in the current model all residuals in the bivariate crosstable will be equal

to each other in absolute value, we shall consider r11, that is, the observed minus the

expected number of observations in which the two variables Yj and Yj′ are both equal to

1, i.e., r11 = n11 − µ̂11, where nkl and µ̂11 respectively denote the observed and expected

number of observations in cell (k, l) of the crosstable.

From the general form of the derivatives, given in the Appendix, it can then be shown

that using effects coding,

∂`

∂ψjj′
= n′

∑
t∈1..T

Pr(ξ = t|Y)[x(yjyj′ )
− x′(yjyj′ )Pr(Y|ξ)]

= n′[x(yjyj′ )
− x′(yjyj′ )Pr(Y)]

=
∑
k=l

(nkl − µ̂kl)−
∑
k 6=l

(nkl − µ̂kl) = 4r11

(8)

where the second step is due to the fact that ψjj′ is class-independent, and the last step

follows because the off-diagonal residuals have a sign opposite to the diagonal residuals.

If dummy coding is chosen instead of effect coding, ∂`/∂ψjj′ = r11. The precise form of

the information matrix IL is given in the Appendix.

There is, therefore, a close relationship between the residual in the bivariate crosstable

and the expected parameter change. The EPC equals the raw residual “divided by” its vari-

ance under the alternative model. This finding is in close correspondence with the finding

of Oberski et al. (2013) that the score test is closely related to the bivariate residuals.
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4 Asymptotic and finite sample evaluation of expected

parameter change

In this section we evaluate both the asymptotic and sampling performance of the sug-

gested EPCL and EPCGS statistics for detecting relevant local dependencies. The goal

of this investigation is to evaluate the feasibility of the EPC as a measure of the size of

possible local dependencies.

EPC measures when applied to population data should approximate the true size of

the local dependence. EPC measures calculated on samples should be sample estimates

of the population EPC. Under different conditions, we examine:

• To what extent the population EPC corresponds to the true local dependence;

• To what extent the average sample EPC corresponds to the population EPC.

By performing both a population and a finite sample analysis, we can separate errors due

to the approximation inherent in the EPC on the one hand from errors due to sampling

fluctuations on the other.

4.1 Setup

The population model is specified as a two-class model with five binary indicators and

one local dependence between a pair of indicators. In our setup, all design matrices

in equation (2) are chosen such that the columns sum to zero (“effect coding”). The

intercepts τ = 0, the latent class intercept α = 0.20, and the “loadings” and bivariate

local dependence are varied across conditions:

1. Local dependence size (ψ): -0.50 (high-negative), -0.20 (middle-negative) , -0.05

(low-negative), 0 (none), +0.05 (low-positive), +0.20 (middle-positive), 0.50 (high-

positive);
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Figure 1: Effect of local dependence. Shown is the conditional probability that an ob-
served variable Yj = 1 given the latent class variable ξ and a different observed variable
Yj′ (j 6= j′), for six conditions. (Only conditions with positive slopes are shown here.)

λ = 0.50, ψ = 0.05

ξ

P
r(
Y
j
=

1|
ξ,
Y
j′
)

-1
.0

-0
.5 0.
0

0.
5

1.
0

0.0
0.2
0.4
0.6
0.8
1.0

Yj′ = 1
Yj′ = 0

λ = 0.80, ψ = 0.05

ξ

P
r(
Y
j
=

1|
ξ,
Y
j′
)

-1
.0

-0
.5 0.
0

0.
5

1.
0

0.0
0.2
0.4
0.6
0.8
1.0 Yj′ = 1

Yj′ = 0

λ = 0.50, ψ = 0.20

ξ

P
r(
Y
j
=

1|
ξ,
Y
j′
)

-1
.0

-0
.5 0.
0

0.
5

1.
0

0.0
0.2
0.4
0.6
0.8
1.0 Yj′ = 1

Yj′ = 0

λ = 0.80, ψ = 0.20

ξ

P
r(
Y
j
=

1|
ξ,
Y
j′
)

-1
.0

-0
.5 0.
0

0.
5

1.
0

0.0
0.2
0.4
0.6
0.8
1.0 Yj′ = 1

Yj′ = 0

λ = 0.50, ψ = 0.50

ξ

P
r(
Y
j
=

1|
ξ,
Y
j′
)

-1
.0

-0
.5 0.
0

0.
5

1.
0

0.0
0.2
0.4
0.6
0.8
1.0 Yj′ = 1

Yj′ = 0

λ = 0.80, ψ = 0.50

ξ

P
r(
Y
j
=

1|
ξ,
Y
j′
)

-1
.0

-0
.5 0.
0

0.
5

1.
0

0.0
0.2
0.4
0.6
0.8
1.0 Yj′ = 1

Yj′ = 0

2. Effect of latent variable on indicators (λ): 0.5 (medium-low), 0.8 (high).

A subsequent Monte Carlo simulation crosses these 14 conditions with sample size,

3 Sample size (nobs): 128, 256, 512, 1024, 2048.

We therefore examine the sampling performance of the two statistics for 70 conditions in

total.

To give the reader an idea of the implications of these conditions, Figure 1 shows the

effect of choosing different combinations of the slope parameter λ and the local depen-

dence parameter ψ on the conditional probability for one observed variable. For illustra-

tive purposes, many different values for the latent class variable ξ are plotted; in practice

there will be only T points along the horizontal axis. The Figure shows that ψ = 0.05

constitutes a rather small local dependency, while choosing ψ = 0.5 has a very large ef-

fect on the implied conditional probability. This effect is larger in absolute terms when

the slope parameter λ is small.
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To illustrate the implications of these conditions, Figure 1 depicts how the class-

specific response probability for variable Yj is affected by the value of a different variable

Yj′ for particular values of λ and the local dependence, ψ, between the two items. For

illustrative purposes, the latent variable ξ is treated as continuous, but in fact it takes on

only the values 0 and 1. It can be seen that ψ = 0.05 constitutes a rather small local de-

pendency (lines are close to one another), while choosing ψ = 0.5 has a very large effect

on the implied class-specific response probabilities. This effect is larger in absolute terms

when the slope parameter λ is small.

4.2 Asymptotic performance

We will first evaluate the asymptotic performance of the EPCL and EPCGS obtained from

theH0 model which omits the local dependence. For this purpose, we compute maximum

likelihood estimates under the H0 model using the population proportions under the H1

model as data. Since this amounts to minimizing the Kullback-Leibler distance, we refer

to this model as the “KL-model”. The KL-model provides the asymptotic value (as the

sample size approaches infinity) of the EPC and score statistic given H1.

The top parts of Tables 2 and 3 show the obtained EPCL and EPCGS values under the

different conditions. It can be seen that when there is no misspecification, i.e. when the

true local dependence parameter is zero, both EPC’s will also estimate zero. When there

is a small misspecification of -0.05 or +0.05, both EPC’s have population values that are

very close to the true local dependence. The top part of Table 2 shows that with larger

local dependencies in absolute value, the population EPCL is a biased estimate of the

true local dependence parameter. The percentage relative bias in the EPCL is shown in

the bottom part of Table 2. Local dependencies of +0.2 and +0.5 cause larger asymptotic

biases than their negative counterparts. Under the condition with lower slopes and the

largest positive misspecification, the EPCL is an 338% overestimate of the true local
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Table 2: Population EPCL statistics under the 14 simulation conditions.
Local dependence (ψ)

λ -0.5 -0.2 -0.05 0 0.05 0.2 0.5
0.5 -0.374 -0.165 -0.047 -0.000 0.054 0.313 2.190
0.8 -0.329 -0.159 -0.047 -0.000 0.054 0.277 1.425

Percent relative bias in EPCL

0.5 -25 -17 -6 - 9 56 338
0.8 -34 -20 -6 - 7 39 185

Table 3: Population EPCGS statistics under the 14 simulation conditions.
Local dependence (ψ)

λ -0.5 -0.2 -0.05 0 0.05 0.2 0.5
0.5 -0.403 -0.186 -0.050 -0.000 0.050 0.181 0.694
0.8 -0.439 -0.209 -0.051 -0.000 0.048 0.167 0.344

Percent relative bias in EPCGS

0.5 -19 -7 -1 - -1 -10 39
0.8 -12 5 3 - -4 -17 -31

dependence. In contrast, with negative local dependencies, the EPCL is underestimated

in absolute terms.

Table 3 shows the population EPCGS estimates (top part) as well as the percentage

bias relative to the true population local dependence (bottom part). The table shows that

the relative asymptotic bias in the EPCGS is uniformly much lower than that in the EPCL:

on average it is 60% lower. Overall the EPCGS has much better asymptotic performance.

4.3 Finite sample performance

In finite samples, sampling fluctuations in the score and the V matrix will influence the

EPC’s as well. We therefore performed a Monte Carlo simulation to evaluate the sam-

pling behavior of these statistics. From each of the 70 populations, a sample ofN observa-

tions was drawn and the EPCL and EPCGS were calculated. This process was replicated
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Table 4: Monte Carlo simulation results: median EPCL statistics over 400 replications
for each condition. For comparison, the bottom rows provide population values obtained
from the KL-model.

Local dependence (ψ)
ψ = −0.05 ψ = −0.20 ψ = −0.50

Loading (λ)
No. obs. 0.5 0.8 0.5 0.8 0.5 0.8

128 -0.053 -0.054 -0.164 -0.163 -0.377 -0.330
256 -0.040 -0.046 -0.157 -0.159 -0.374 -0.333
512 -0.055 -0.045 -0.166 -0.158 -0.380 -0.332

1024 -0.041 -0.047 -0.164 -0.160 -0.378 -0.328
2048 -0.045 -0.051 -0.163 -0.162 -0.376 -0.330

Population -0.047 -0.047 -0.165 -0.159 -0.374 -0.329

ψ = +0.05 ψ = +0.20 ψ = +0.50
No. obs. 0.5 0.8 0.5 0.8 0.5 0.8

128 0.032 0.030 0.212 0.235 1.235 0.993
256 0.053 0.045 0.278 0.282 1.695 1.199
512 0.052 0.049 0.282 0.292 1.962 1.330

1024 0.049 0.051 0.294 0.271 2.079 1.358
2048 0.055 0.057 0.302 0.276 2.110 1.351

Population 0.054 0.054 0.313 0.277 2.190 1.425

400 times to yield a sampling distribution for EPCL and EPCGS.

Table 4 shows the median EPCL estimates over each of the 400 samples in each of

the conditions. For the EPCL to be unbiased with respect to the true local dependence,

these values should correspond to the size of the ψ local dependence parameter shown

in the table headers. Considering the population bias reproduced in the rows marked

“population”, we would not expect unbiasedness with respect to ψ in general. Except in

conditions with sample sizes 128 and 256, the median sample estimates in Table 4 are

close to the population values.

With a small sample size of N = 128, the sample estimates of the EPCL are biased

with respect to the population values. Paradoxically, the small-sample estimates can be

20



Table 5: Monte Carlo simulation results: median EPCGS statistics over 400 replications
for each condition. For comparison, the bottom rows provide population values obtained
from the KL-model.

Local dependence (ψ)
ψ = −0.05 ψ = −0.20 ψ = −0.50

Loading (λ)
No. obs. 0.5 0.8 0.5 0.8 0.5 0.8

128 -0.052 -0.053 -0.155 -0.196 -0.330 -0.424
256 -0.040 -0.049 -0.168 -0.207 -0.350 -0.432
512 -0.057 -0.051 -0.185 -0.202 -0.375 -0.439

1024 -0.044 -0.052 -0.186 -0.208 -0.388 -0.438
2048 -0.048 -0.055 -0.183 -0.211 -0.396 -0.440

Population -0.050 -0.051 -0.186 -0.209 -0.403 -0.439

ψ = +0.05 ψ = +0.20 ψ = +0.50
No. obs. 0.5 0.8 0.5 0.8 0.5 0.8

128 0.027 0.027 0.102 0.136 0.305 0.214
256 0.047 0.042 0.130 0.158 0.468 0.263
512 0.046 0.045 0.152 0.164 0.605 0.298

1024 0.044 0.046 0.165 0.162 0.619 0.321
2048 0.049 0.050 0.171 0.166 0.670 0.326

Population 0.050 0.048 0.181 0.167 0.694 0.344

closer to the true misspecification than the population values are (see for example the

conditions with ψ = +0.20 and ψ = +0.50). As expected, increasing the sample size

brings the median EPCL closer to the population value. It is clear that the conditions

with the larger slopes perform much better than those with lower slopes, both in the

population and in finite samples. With five indicators and true slopes equal to 0.8, the

EPCL provides reasonable estimates in all conditions. Whether this condition is satisfied

cannot be verified from a given restricted sample solution, since the restriction itself may

bias the loading estimates.

Table 5 shows the Monte Carlo simulation results for EPCGS. Even for small sample

sizes, the median EPCGS over simulated samples is close to the population EPCGS. The
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sample EPCGS estimates are close to the true local dependence parameters. The EPCGS

clearly performs better than the EPCL both in the population and in finite samples overall.

An exception occurs in the case of ψ = 0.20 with small samples1: here the average EPCL

values are closer to 0.20 than are the average EPCGS values, which are downwards biased.

This occurs due to the interplay of an upwards bias in the asymptotic value of EPCL

combined with a downwards small-sample bias. These approximate bias canceling effects

only appear to occur in a few circumstances and in practice one may not want to rely on

their occurrence, however. Overall the bias in the EPCGS can be viewed as acceptable for

the purpose of detecting the substantive size of local dependencies.

The EPCGS appears preferable to EPCL. However, if in practice the observed in-

formation matrix is close to singular, EPCGS will not be computable so that EPCL may

be an alternative in those cases. On the other hand, when the model is very large, the

expected information matrix, which involves all possible response patterns, may require

a prohibitively large amount of computer resources; in such cases EPCL may not be

computable.

5 Application 1: Measurement of Hispanic ethnicity in

the U.S. Census

Johnson (1990) performed a latent class analysis of four indicators of Hispanic ethnicity in

the U.S. Census. For 9701 respondents to the 1986 National Content Test, two indicators

were obtained during an initial interview (at time point t = 1): whether Spanish was

spoken at home during childhood (“Languaget=1”) and Hispanic origin (“Origint=1”).

In a subsequent reinterview (t = 2), two additional indicators of ethnicity were obtained:

Hispanic ancestry (“Ancestryt=2”) and a repetition of the “Origin” measure (“Origint=2”).

1We thank an anonymous reviewer for pointing out this finding.
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Following Johnson (1990), we analyze the group of 9485 respondents not born in an

Hispanic country. Of interest are false positive rates, Pr(Y = Yes|ξ = No), and false

negative rates, Pr(Y = No|ξ = Yes), for the alternative question formulations.

Johnson (1990) first fitted a two-class model to these data, yielding a deviance of

103.6 with 6 degrees of freedom (p < 10−5), and a Bayesian Information Criterion (BIC)

of 48.7. The two class model’s lack of fit to the data led the authors to subsequently fit a

model with two separate two-class latent variables corresponding to the two measurement

occasions. In terms of probabilities their model can be written

Pr(Languaget=1,Origint=1,Ancestryt=2,Origint=2) =∑
{j,k}∈{1,2}×{1,2}

[
Pr(ξt=1 = j, ξt=2 = k)Pr(Languaget=1|ξt=1 = j)Pr(Origint=1|ξt=1 = j)×

Pr(Ancestryt=2|ξt=2 = k)Pr(Origint=2|ξt=2 = k)
]
. (9)

It can be seen in Equation (9) that instead of one single ξ variable, two latent discrete vari-

ables ξt=1 and ξt=2 are defined. Crucially, the conditional probability of an item at a time

point only depends on the latent variable corresponding to that time point. Conditional in-

dependence given the time-specific latent variable is assumed. The relationship between

the two latent variables Pr(ξt=1 = j, ξt=2 = k) is freely estimated, but could equally well

be viewed as a set of four class proportions. An alternative way of viewing this model

is therefore as a highly restricted four-class model, where each of the four classes corre-

sponds to a cell in the cross-table of the two latent variables (Hagenaars, 1988). Due to

these restrictions the model parameters are identifiable.

Johnson (1990)’s final analysis is model (9) applied to the Hispanic ethnicity data.

This indeed improved the deviance to 3.1 with 4 degrees of freedom (p = 0.54; BIC

equals -33.5). Conditional probability estimates based on the two-variable model are
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Table 6: Conditional probability estimates in Johnson’s (1990) two-variable model.
Shown are the conditional probabilities for each item given its corresponding latent vari-
able (ξt=1 or ξt=2).

Class Ancestryt=2 Languaget=1 Origint=1 Origint=2

# No Yes No Yes No Yes No Yes
1 0.999 0.001 0.995 0.005 0.998 0.002 0.999 0.001
2 0.186 0.814 0.171 0.829 0.218 0.782 0.075 0.925

shown in Table 6. For conciseness, the probabilities in Table 6 are conditional on the

latent class variable corresponding to the item in question (i.e., ξt=1 or ξt=2).

The latent variables represent a nuisance dependency due to the measurement occa-

sion (also remarked by the original authors, p. 64). The resulting conditional probabil-

ities from model (9) in Table 6 are therefore difficult to interpret in sociological terms,

because we obtain measurement properties of each item as a measurement of the specific

time point, Pr(Yt=1,2|ξt=1,2), but not the false positive and false negative rates of interest,

Pr(Yt|ξ). Instead of the multiple latent variable model (9), it may therefore be preferable

to fit a model with a single dichotomous latent class variable but that does account for the

time dependence between items.

The question is now whether, starting from the independence model, the score and

EPC measures discussed above could have succeeded in detecting the relevant dependen-

cies. Table 7 shows the results of calculating the EPCL, EPCGS, and the corresponding

score statistics after fitting the two-class independence model. The dependence between

items measured at the same time point is clearly indicated as the primary source of mis-

fit. Moreover, the other pairs of items exhibit negative dependence. Such negative de-

pendence is commonly thought to occur when there is multidimensionality among items

measuring different latent variables (e.g., Yen, 1984, p. 127). Here, however, the multi-

dimensionality in question is not of substantive interest. It merely represents extraneous

factors of the measurement occasion which are not the focus of the investigation. An
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Table 7: Expected parameter changes (EPC’s) and score tests (T) for local dependence
between indicators of Hispanic ethnicity in the Census.

Local dependence EPCL TL EPCGS TGS

Languaget=1 ↔ Ancestryt=2 -0.92 5.0 -1.45 7.9
Origint=1 ↔ Ancestryt=2 -1.08 7.9 -1.76 12.8
Origint=2 ↔ Ancestryt=2 4.14 97.1 1.59 37.2
Origint=1 ↔ Languaget=1 2.94 45.6 1.32 20.5
Origint=2 ↔ Languaget=1 -0.76 2.5 -1.23 4.1
Origint=2 ↔ Origint=1 -1.10 6.1 -2.20 12.2

Table 8: Conditional probability estimates in final model including local dependencies.
Class Ancestryt=2 Languaget=1 Origint=1 Origint=2

# Size No Yes No Yes No Yes No Yes
1 0.976 0.999 0.001 0.995 0.005 0.998 0.002 0.999 0.001
2 0.024 0.383 0.617 0.288 0.712 0.329 0.671 0.299 0.701

alternative to the multidimensional model is therefore a model that frees the two large

and positive local dependence parameters, Origint=2 ↔ Ancestryt=2 and Origint=1 ↔

Languaget=1. Such a model retains its interpretability as a measurement model for His-

panic ethnicity while also accounting for time dependence.

Based on the dependencies indicated as substantively relevant in Table 7, we fit the

loglinear latent class model with two classes and two loglinear local dependencies. The

class sizes and conditional probability estimates from this model are shown in Table 8.

Contrary to those in Table 6, the conditional probabilities in Table 8 can be interpreted as

sensitivity and specificity estimates. This model produces identical expected frequencies

and deviance to the multidimensional model chosen by Johnson (1990), and is therefore

equivalent to it. Crucially, however, the false negative rates of interest differ considerably.

Since the nuisance dependencies due to measurement occasions are absorbed by the local

dependence parameters ψ, the false negative rates can be interpreted as being with respect

to a common latent class variable that might be labeled “Hispanic ethnicity”.
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Table 9: Local dependence estimates in final model including two log-odds local depen-
dencies.

Local dependence Est. Wald
Origint=2 ↔ Ancestryt=2 3.166 50.2
Origint=1 ↔ Languaget=1 1.677 19.3

Table 9 shows the loglinear dependence parameter estimates obtained from the two-

class dependence model. The Wald test under this model indicates the same as the score

test under the independence model: that these local dependencies differ significantly from

zero. These estimates can be interpreted as the log-odds ratio between two items condi-

tional on the latent class. In this particular model, these log-odds ratios are also the

marginal log-odds ratios within classes over all possible response patterns. It can be seen

that the local dependencies are rather strong, especially at time t = 2.

The final model results in Table 8 show that Origint=1 and Origint=2 have very similar

measurement properties. This appears reasonable given that we are dealing with the same

measure at two different time points. In contrast, Table 6 shows large differences between

the measurement properties of the same question at different time points. The final model,

thus, yields results that are easier to interpret than Johnson’s (1990) model, but does

account for the local dependencies due to measurement occasion. It leads to two new

conclusions for the U.S. Census: 1) Considering the false positive and negative rates in

Table 8, Origin and Language may be the better measures of ethnicity, where the choice

of measurement occasion is inconsequential; 2) the false negative rates in all indicators

are considerable, meaning that the number of U.S. residents of Hispanic ethnicity is likely

to be underestimated.

6 Application 2: Dentistry x-ray ratings

Espeland & Handelman (1989) used latent class modeling to explain 3869 ratings given
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by five dentists (y1–y5) to x-rays that may show incipient caries (1) or not (0). Each rating

is a binary observed variable, and two latent classes represent true caries state. Fitting the

two-class local independence model, which we callM0, to these data yields a badly fitting

model with a deviance (L2) of 129.9 on 20 degrees of freedom (bootstrap p < 10−10) and

a BIC of -35.4. These authors then suggested to increase the number of classes to four.

Qu et al. (1996, pp. 804-6) re-analyzed these data, and argued that the two-class

model taking into account local dependencies is easier to interpret than the four class

model suggested by Espeland & Handelman (1989). Qu et al. (1996, p. 799) introduced

an alternative approach to taking local dependency into account, whereby the dependen-

cies are parameterized as arising from a Gaussian random effect variable, whose effects

are allowed to differ over classes. A reformulation of their model can be obtained by

modifying Equation (2) as

ηt = X(Y )τ +X(Y ξt)λ+ bt · η, (10)

where η is a Gaussian latent factor (random effects) variable, η ∼ N(0, 1), the latent

variables ξ and η are assumed to be independent, and bt are vectors of class-specific factor

loadings. That is, instead of using direct loglinear effect parameters to model the local

dependencies, a continuous latent factor on which all items load is posited. Parameter

estimates can be obtained through numerical integration (Vermunt & Magidson, 2013).

Qu et al. (1996, p. 805) fit their random effects model under the restriction that the

loadings for y1 and y2, the first two items, are equal, i.e., b(1,t) = b(2,t). This model,

MQu, appears to fit the data quite well, with a deviance of 15.8 on 12 degrees of freedom

(bootstrap p = 0.38). The BIC is equal to -83.4, so that the improvement in model fit

appears to somewhat outweigh the added complexity of this model.

While it appears to fit the data well, the random effects model MQu has two problems.
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First, the maximum-likelihood solution given by Qu et al. (1996) involves boundary esti-

mates that prevent the estimation of asymptotic standard errors. When standard errors are

estimated using nonparametric bootstrapping, four (out of eight) factor loadings do not

differ statistically significantly from zero. There thus appears to be considerable room

for model simplification and additional parsimony. Second, even under the already rather

complexMQu, a score test for the local dependence parameters reveals one strong and sta-

tistically significant residual dependence between y3 and y4 (TL = 10.5, EPCL = −1.22).

This indicates that the random effects model cannot completely account for all local de-

pendencies.

It is in principle possible to formulate a model that includes local dependence param-

eters as well as a random effect, but it would be preferable to find a more parsimonious

model using loglinear local dependence parameters that also fits the data well. We now

demonstrate that the EPC measures together with the score tests can be used to find a

model that does not have the disadvantages of the random effects model, but that does ac-

count for local dependence while also retaining the easier-to-interpret two-class solution.

Under the local independence model M0, we calculated EPC measures and score

tests, shown in Table 10. It can be seen that EPC’s and score statistics are large for the

five bivariate local dependencies in rows 2, 3, 5, 7, and 9 of the Table.

Based on the EPC and score test values underM0 in Table 10, we proceed to formulate

a model in which the loglinear local dependence parameters corresponding to rows 2, 3, 5,

7, and 9 of the Table are freed. This model, which we call M1, has 15 degrees of freedom,

a deviance of 35.7 (p = 0.0019), and a BIC of -88.2. Although the BIC would prefer this

model over the random effects model, there still appears to be model misfit. The largest

EPCL (0.93) and score test (TL = 8.8) are those for the fixed local dependence between

y1 and y5 (row 4 in the Table). Moreover, the free local dependence parameter between y1

and y4 (row 3 in the Table) is estimated at a small (0.16) and not statistically significant
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Table 10: EPC and score tests for loglinear local dependence parameters between five
dentists’ x-ray ratings for caries under the local independence model M0.

Number Bivariate dependence EPCL TL EPCGS TGS

1 1 ↔ 2 0.32 3.1 0.35 3.4
2 1 ↔ 3 1.04 34.0 0.97 31.6
3 1 ↔ 4 0.59 13.1 0.59 13.1
4 1 ↔ 5 0.47 2.7 0.44 2.6
5 2 ↔ 3 0.56 6.8 0.53 6.4
6 2 ↔ 4 0.23 1.8 0.22 1.7
7 2 ↔ 5 0.63 16.4 0.48 12.6
8 3 ↔ 4 -0.30 2.7 -0.35 3.2
9 3 ↔ 5 0.76 5.1 0.55 3.7
10 4 ↔ 5 0.42 3.5 0.27 2.3

value (p = 0.59) under M1.

Our final model (M2) therefore fixed the y1 ↔ y4 dependence parameter to zero

and freed the y1 ↔ y5 dependence, as suggested by the EPC measures obtained under

M1. The final model M2 has a deviance of 28.4 with 15 degrees of freedom (bootstrap

p = 0.07) and a BIC of -95.5. This model therefore appears to fit the data well, and is

strongly preferred by BIC over MQu, M0, and M1.

Although the local dependence parameters are not of scientific interest in this applica-

tion, it may aid understanding of the loglinear local dependence model to examine these

values. Table 11 provides the estimates of the local dependence parameters under M2,

together with their corresponding Wald tests. In addition to these parameter estimates, it

is possible to compute the within-class log-odds ratio between a pair of items, marginal-

ized over all other variables (we thank an anonymous reviewer for this suggestion). These

marginal log-odds ratios are given in the final two columns of Table 11. Because the lo-

cally dependent item pairs overlap, the ψ parameters no longer correspond to the marginal

dependence within classes, as can be seen in the Table. Furthermore, the marginalized lo-

cal dependencies differ over classes even though the loglinear dependence parameters ψ
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Table 11: Final local dependence latent class model (M2) results. Estimates of log-odds
dependencies (ψ̂) between pairs of items with Wald tests under M2. Also shown is the
implied marginal dependence between pairs of items within classes.

Log-odds ratios within classes
Conditional Marginal

Number Bivariate dependence Est. (ψ̂) Wald Class 1 Class 2
1 1 ↔ 2 - 0.25 0.68
2 1 ↔ 3 1.38 49.7 1.48 1.66
3 1 ↔ 4 - 0 0
4 1 ↔ 5 0.74 60.4 0.84 1.25
5 2 ↔ 3 1.29 8.0 1.40 1.57
6 2 ↔ 4 - 0 0
7 2 ↔ 5 0.73 34.4 0.79 1.21
8 3 ↔ 4 - 0 0
9 3 ↔ 5 1.38 59.0 1.58 1.85
10 4 ↔ 5 - 0 0
-: Fixed to zero.

do not. Finally, it can be seen that the marginalized within-class dependence between y1

and y2 (row 1 of Table 11) is nonzero even though the loglinear dependence parameter

is fixed to zero. This shows that the loglinear dependence model can account for certain,

possibly class-dependent, marginal local dependencies in a rather parsimonious manner.

The estimates of specificity, sensitivity, and prevalence under M2 are given in Table

12. It can be seen that specificity values are quite high, with few false negatives, except

for dentist #5 (0.68). At the same time, dentist #5 appears to have a rather high sensitivity

(0.82) of x-ray judgments compared with his or her colleagues, who appear to err on the

side of non-detection of caries. The estimated values under M2 in Table 12 differ from

those under MQu especially for dentist #4: MQu would estimate this dentist’s sensitivity at

0.68, whereas Table 12 shows that under the M2 model this estimate is 0.57. If this model

is indeed to be preferred, it would appear that this dentist’s performance with regard to

false negatives is even worse than was previously thought.
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Table 12: Local dependence latent class model results. Prevalence (class sizes), and
sensitivity, Pr(y = Yes|ξ = 2), and specificity, Pr(y = No|ξ = 1), estimates for the five
dentists’ judgments of x-rays for caries under M2.

Class Dentist 1 Dentist 2 Dentist 3 Dentist 4 Dentist 5
# Size No Yes No Yes No Yes No Yes No Yes
1 0.79 0.99 0.01 0.88 0.12 0.96 0.04 1.00 0.00 0.68 0.32
2 0.21 0.63 0.37 0.39 0.61 0.53 0.47 0.43 0.57 0.18 0.82

7 Conclusion

We have shown how the EPCL and EPCGS can aid in the detection of local dependence

when the commonly made local independence assumption in latent class analysis of bi-

nary data does not hold. The asymptotic and finite sample properties of these measures

appear adequate for this purpose. Applications to two real datasets previously analyzed

by other authors demonstrated the advantage of this approach in trading off model real-

ism and parsimony, and showed that different and more easily interpretable results can be

obtained.

Extensions to polytomous data are possible in our framework by adjusting the relevant

design matrices. Unless additional restrictions are imposed, the local dependence param-

eter for a pair of variables will then become multivariate. Class-specific and trivariate

local dependencies can likewise be accommodated, as can latent class models including

covariates. Finally, the EPCL and EPCGS could be applied to other parameters than local

dependencies. For example, Glas (1999) suggested examining item bias (direct effects

of covariates on response variables) in item response models. Based on our findings, the

EPCL, EPCGS, and corresponding score statistics have been implemented in the standard

latent class modeling software Latent GOLD 5, which allows for the above extensions

(Vermunt & Magidson, 2013, pp. 133–4). The online supplement provides R code (R

Core Team, 2012) for the applications.

Although Section 2 developed the EPC measures for restrictions in a general maximum-
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likelihood framework with misspecification, our simulation and applications have been

limited to the investigation of class-independent loglinear local dependence parameters

with exactly one misspecification. An evaluation of the performance of the EPC mea-

sures for such parameters, as well as in the case of more than one misspecification, remain

topics for future investigation.

When conditional dependencies are among non-overlapping pairs of items, the di-

rect loglinear effect parameters will equal the marginal local dependencies between pairs

of items conditional on the latent class. When pairs of items overlap, this is no longer

the case, but marginal dependence could be parameterized using the marginal model for-

mulation of Bartolucci & Forcina (2006) and Reboussin et al. (2008). This will be ad-

vantageous when the goal is to interpret the local dependence parameters, or when the

base model from which EPC’s are calculated already includes local dependencies itself.

Development of score tests and EPC measures for marginal models is therefore another

interesting topic for future study.

A Information matrices, Jacobian, and identification of

the locally dependent latent class model

This appendix defines the information matrices, Jacobian, and outer product matrix for

(partially) locally dependent latent class models used in the derivation of the EPC. We

also provide a theorem giving conditions under which the local dependence parameters

are locally identifiable.

By applying the rules of vector differentiation to model (1), the Jacobian of the pat-

ternwise likelihood vector with respect to one of the parameter vectors τ ,λ, or ψ is
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obtained as

S(.) =
∂ log Pr(Y)

∂(.)
=

T∑
t=1

[1′ ⊗ Pr(ξ = t|Y = y) ◦ (X(.) − ER[X(.)])], (11)

where ◦ denotes the elementwise (“Hadamard”) product, the kronecker product ⊗ here

serves to duplicate the posterior probabilities columnwise, X(.) is the design matrix cor-

responding to either τ ,λ, or ψ, and ER[X(.)] is a matrix with R rows, in which each row

equals X′(.)Pr(Y = y|ξ). For a two-class model with effect coding, the Jacobian with

respect to the latent class intercept parameter is

Sα =
∂ log Pr(Y)

∂α
= 2[Pr(ξ = 1|Y = y)− Pr(ξ = 1)]. (12)

That is, the Jacobian depends on the change in the latent class classification before and

after observation of Y. This change therefore plays a large role in the determinant of the

outer product of the patternwise score vectors used below.

Using obvious notation for the full Jacobian S(θ), the gradient (p-score vector) over

all response patterns will equal

s =
∂`(θ)

∂θ
=

N∑
i=1

∂`i(θ)

∂θ
= S(θ)′n. (13)

Define the observed and expected information matrices as

IY = − ∂s

∂θ′
= −∂

2`(θ)

∂θ∂θ′
, (14)

IL = EL(IY ) =
R∑
r=1

n̂rSr(θ)
′Sr(θ), (15)
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where n̂r = n · Pr(Y = yr) and the outer product matrix as

D =
R∑
r=1

nrSr(θ)
′Sr(θ). (16)

The form of the Jacobian in equation (11) can be used to determine identifiability.

Lemma 1. Assume that Sθ2 is of full column rank. Let Xnew denote a design matrix such

that:

(i.) Xnew is of full column rank;

(ii.) The number of columns in Xnew is smaller than or equal to the number of degrees

of freedom df = R− 1− rk(Sθ2);

(iii.) The columns of Xnew are linearly independent of the columns of the design matrix

Xθ2 corresponding to the parameters θ2;

(iv.) Xnew,t = Xnew for all t ∈ {1..T}.

Then the parameters θnew corresponding to Xnew in model (1) are locally identifiable.

Proof. To show local identifiability, it suffices to show that Snew is of full column rank

and its columns linearly independent of those in Sθ2 (Goodman, 1974). Since Xnew is

not class-specific by (iv), equation (11) reduces to Snew = Xnew − ER(Xnew), so that

rk(Snew) = rk(Xnew), implying full column rank by (i). Furthermore, by assumption

rk(Sθ2) = rk(Xθ2), so that by equation (11), (ii) and (iii) guarantee that the columns of

Snew are also independent of those in Sθ2 .

The proof of Theorem 1 follows directly from the Lemma and model (2). It suggests

that when the local independence model is identifiable and the number of local dependen-

cies ψ to be freed does not exceed the degrees of freedom, these additional parameters

will also be identifiable.
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B Supplemental materials

R code: Provides S4 classes to perform latent class analysis for binary variables with

local dependencies and obtain the EPCL and EPCGS and score tests. Includes both

data sets used as examples in the article. (GNU zipped tar file)
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