
AzureBlast: A Case Study of Developing Science
Applications on the Cloud

Wei Lu
Cloud Computing Futures

Microsoft Research
weilu@microsoft.com

Jared Jackson
Cloud Computing Futures

Microsoft Research
jaredj@microsoft.com

Roger Barga
Cloud Computing Futures

Microsoft Research
barga@microsoft.com

ABSTRACT
Cloud computing has emerged as a new approach to large
scale computing and is attracting a lot of attention from the
scientific and research computing communities. Despite its
growing popularity, it is still unclear just how well the cloud
model of computation will serve scientific applications. In
this paper we analyze the applicability of cloud to the sci-
ences by investigating an implementation of a well known
and computationally intensive algorithm called BLAST.
BLAST is a very popular life sciences algorithm used com-
monly in bioinformatics research. The BLAST algorithm
makes an excellent case study because it is both crucial to
many life science applications and its characteristics are rep-
resentative of many applications important to data intensive
scientific research. In our paper we introduce a methodol-
ogy that we use to study the applicability of cloud plat-
forms to scientific computing and analyze the results from
our study. In particular we examine the best practices of
handling the large scale parallelism and large volumes of
data. While we carry out our performance evaluation on
Microsoft’s Windows Azure the results readily generalize to
other cloud platforms.

Categories and Subject Descriptors
D.1.3 [PROGRAMMING TECHNIQUES]: Concurrent
Programming—Distributed programming ; J.3 [Life and Med-
ical Sciences]: Biology and genetics

General Terms
Performance, Design

Keywords
BLAST, Cloud Computing, Windows Azure

1. INTRODUCTION
Increasingly, scientific breakthroughs will be powered by ad-
vanced computing capabilities that help researchers manip-
ulate and explore massive datasets. Today while the largest

and best funded research projects are able to afford expen-
sive computing infrastructure, most other projects are forced
to opt for cheaper resources such as commodity clusters or
simply limit the scope of their research. Cloud comput-
ing [2] proposes an alternative in which resources are no
longer hosted locally, but leased from big data centers only
when needed. This offers the promise of “democratizing” re-
search as a single researcher or small team can have access to
the same large-scale compute resources as large, well-funded
research organizations without the need to invest in purchas-
ing or hosting their own physical infrastructure. Despite the
existence of several cloud computing vendors, such as Ama-
zon AWS, GoGrid, and more recently Microsoft Windows
Azure, the potential of cloud platforms for research com-
puting remains largely unexplored.

While cloud computing holds promise for the seemingly in-
satiable computational demands of the scientific community,
there are unanswered questions in the applicability of cloud
platforms, including performance, which is the focus of this
work. In this paper we present an experimental prototype,
AzureBlast, which is designed to assess the applicability of
cloud platforms for science applications. BLAST [1] is one
of the most widely used bioinformatics algorithms in life
science applications. The BLAST algorithm can discover
the similarities between the two bio-sequences (e.g.,Protein).
BLAST makes an excellent case study not only because of
its popularity but also because of its representative charac-
teristics of many applications important to data intensive
scientific research. AzureBlast is a parallel BLAST engine
running on the Windows Azure cloud fabric. Instead of us-
ing some high-level programming models or runtimes such
as MapReduce[8], AzureBlast is built directly on the fun-
damental services of Windows Azure so that we are able to
examine each individual building-block. Our ultimate goal
is to provide a characterization of science applications ap-
propriate for cloud computing platforms and best practices
for deploying science applications on cloud platforms.

The structure of this paper is as follows. In Section 2 we
briefly discuss the Windows Azure cloud platform and capa-
bilities it offers to a computational scientist. In this section
we also highlight aspects of modern data centers and the
implications for high performance computing. In Section
3 we introduce the background of BLAST, and then detail
our implementation of AzureBLAST, and identify how we
matched the requirements of the algorithm to capabilities
and limitations of the cloud platform. Throughout Section



3 we identify general patterns to follow in implementing the
similar science applications on a cloud platform. In Section
4 we carry out a detailed performance of AzureBLAST and
discuss implications for what science applications are appro-
priate for cloud computing platforms. Finally, we list the
related work and conclude with a summary of best practices
and application patterns for science applications on cloud
platform.

2. CLOUD SERVICES WITH AZURE
Windows Azure is a cloud computing platform offering by
Microsoft. In contrast to Amazon’s suite of “Infrastructure
as a Service” offerings (c.f., EC2, S3), Azure is a “Platform
as a Service” that provides developers with on-demand com-
pute and storage to host, scale, and manage web applications
on the internet through Microsoft datacenters. A primary
goal of Windows Azure is to be a platform on which ISVs
can implement Software as a Service (SaaS) applications.
Amazon’s EC2, in contrast, provides a host for virtual ma-
chines, but the user is responsible for outfitting the virtual
machine with the software needed for their task.

Windows Azure has three parts: a Compute service that
runs applications, a Storage service, and a Fabric that sup-
ports the Compute and Storage services. To use the Com-
pute service, a developer creates a Windows application con-
sisting of Web Role instances and Worker Role instances
using, say, C# and .NET or C++ and the Win32 APIs.
A Web Role instance responds to user requests and may
include an ASP.NET web application. A Worker Role in-
stance, perhaps initiated by a Web Role, runs in the Azure
Application Fabric to implement parallel computations and
has the ability to execute native code including the abil-
ity to launch hosted executable applications. Unlike those
high level parallel programming frameworks such as MapRe-
duce[8] or Dryad[10], Worker Roles are not constrained in
how they communicate with other workers. Each Azure in-
stance, representing a virtual server, is managed by the Fab-
ric for the failover and recovery.

For persistent storage, Windows Azure provides three stor-
age options: Tables, Blobs, and Queues, all accessed via a
RESTful HTTP interface.

• An Azure table is akin to a scalable key-value store. A
table can contain billions of entities and terabytes of
data; the service efficiently scales out by automatically
scaling to thousands of servers as traffic grows.

• A Blob[6] is a file-like object that can be retrieved, in
its entirety, by name. Azure enables applications to
store large blobs, up to 50GB each in the cloud. It
supports a massively scalable blob system, where hot
blobs will be served from many servers to scale out
and meet the traffic needs of an application. Further,
each blob is highly available and durable as the data
is replicated in the data center at least three times.

• A Queue[14] provides a reliable message delivery mech-
anism between the compute roles, which can asyn-
chronously communicate via messages placed in the
queue. The queue effectively decouples the roles of an
application. Therefore the instance failure of one role

Figure 1: Illustration of the suggested Azure appli-
cation model

is isolated from all others. And resources (e.g. num-
ber of instances) can be scaled out or in for each role
independently, and traffic bursts between roles can be
absorbed in the queue. Equally important, when re-
trieving a message from the queue a user can spec-
ify the visibilitytimeout argument. This means the
message will remain invisible during this timeout pe-
riod, and will reappear in the queue if it has not been
deleted by the end of the timeout period. This fea-
ture ensures that no message will be lost even if the
instance which is processing the message crashes, pro-
viding fault tolerance for the application.

Figure 1 illustrates the suggested application model, in which
one Web Role instance interacts with the web users and com-
municates work requests to the background Worker Role in-
stances through durable Queues.

2.1 Windows Azure for Research Applications
There are striking differences between scientific application
workloads and the workloads for which Azure and other
cloud platforms were originally designed, specifically long
lived web services with modest intra-cluster communica-
tions. Scientific application workloads, on the other hand,
define a wide spectrum of system requirements. There is
a very large and important class of “parameter sweep” or
“ensemble computations” that only require a large number
of fast processors and have little inter-process communica-
tion requirements. At the other extreme there are parallel
computations, such as fluid flow simulations, where the mes-
saging requirements are so extensive that execution time is
dominated by communication. These differences in work-
loads are reflected in the underlying hardware architectures.
For example, in networking and storage the architecture of
today’s Azure network and storage service is optimized for
scalability and cost efficiency, whereas the primary determi-
nants of performance in an HPC system network are com-
munications latency and bisectional bandwidth.

Most datacenter networks that support cloud platforms such
as Windows Azure are built without high communication
complexity computations in mind. They are optimized for
scalable access by external clients. As illustrated in Figure 2,
each rack of servers in a typical data center is connected to a
switch with 48 1Gbps ports and two to four 10Gbps up-link



ports. Those are connected to layer 2 (L2) switches which
connect up to slower layer 3 (L3) routers. When viewed as
an interconnection switch for the servers, this network will
have an oversubscription factor of 5:1 or more. Furthermore
any routing that has to go to L3 will have greatly increased
latency.

Figure 2: Structure of Data Center networks

Overall, current data center network architectures are op-
timized for high scalability at low cost, and are not
optimized for low latency communication between ar-
bitrary compute nodes. In the request/response workloads
found in many internet services, these over-subscription lev-
els and resulting network latencies can be tolerable and work
reasonably well. They are never ideal but they can be suf-
ficient to support the workload. But, for workloads that
move massive amounts of data between nodes oversubscrip-
tion can impair performance. Adding compute nodes to an
application that performs extensive communication relative
to computation can actually reduce throughput as the net-
work is often the limiting factor in job performance and
scalability.

3. AZUREBLAST
3.1 BLAST
BLAST (Basic Local Alignment Search Tool) [1] is one of
the most widely used bioinformatics algorithms in life sci-
ence applications. Given one nucleotide or peptide sequence,
the BLAST algorithm searches against a database of sub-
ject sequences and discovers all the local similarities be-
tween the query sequence and subject sequences. The result
of BLAST can identify the function of the query sequence.
NCBI (National Center for Biotechnology Information) pro-
vides one reference implementation of BLAST algorithm,
blastall, which is publicly downloadable from their website.

A BLAST run can be very computationally intensive due to
the large number of the pairwise genome alignment opera-
tions. It can also be data-intensive because of the large size
of the reference databases and query output, which usually
determined by the size of the database rather than the by
the length of the query sequence. For example, GenBank,
a well-known DNA sequence repository, doubled in size in
about 15 months and contains 108,431,692 sequences as of
August 2009. Moreover, the NCBI blastall implementation,

when invoked, will map the entire subject sequence database
into the invoker’s virtual memory space for the subsequent
sequence-searching operations. This leads to a very large
memory footprint.

Fortunately, the BLAST implementation is also relatively
easy to parallelize since every pairwise alignment can be
conducted independently. Two parallel schemes [7] have
been widely adopted and applied to BLAST, query segmen-
tation and database segmentation. For instance the NCBI
blastall program can parallelize the searching on a SMP or
multi-core machine by partitioning the database into seg-
mentations and spawning multiple threads to search against
each of them in parallel [11]. To further leverage large
scale computing resources, several solutions have been pro-
posed to run the algorithm on a cluster [7, 4]. However, the
large-scale resources required to perform this parallelization
are usually unavailable to the majority of researchers. The
emergence of Cloud computing provides the potential op-
portunity to expand the availability of large-scale alignment
search to a much larger set of researchers.

3.2 Basic Design
AzureBlast is a parallel BLAST engine running on the Win-
dows Azure that can marshal the compute power of thou-
sands of Azure instances. To run BLAST on multiple in-
stances, we adopt the query-segmentation data-parallel pat-
tern. Given an input file which contains a number of query
sequences, AzureBlast will first split the input sequences
into multiple partitions, each of which will be delivered to
one worker instance to execute. Once all partitions have
been processed, the results will be merged together. Com-
pared with the alternative database segmentation scheme,
which needs the inter-node communication for each query,
the query segmentation is more suitable for the cloud plat-
form as it needs little communication between instances,
thus presenting a pleasingly parallel pattern which is easy
to scale on the cloud.

AzureBlast follows the application model suggested for gen-
eral Azure development. One or more web role instances re-
ceive the requests from the user through either the web por-
tal or the web service interface, and a number of worker role
instances running behind do the heavy lifting work, which in
this case is executing the NCBI blastall program. However
unlike most business applications, BLAST imposes several
challenges in managing the long-running job, massive paral-
lelism and large data volumes.

3.3 Batch Job
A BLAST query over a normal size genomics database can
take several hours or even days. Therefore a batch system
which allows the user to submit jobs and to periodically
query the status of the submitted jobs is required. When
the user submits a long-running job request he will receive a
job ID. This ID is used to track the job, manage its execution
and group the resulting job output.

In AzureBlast, the batch job management consists of two
separate components (Fig. 3), i) the job submission por-
tal and ii) the job scheduler. The job submission portal,
via which the user submits his job request, is hosted by a
web role instance. Before returning the job ID to the user,



Figure 3: Architecture of AzureBlast

the portal will register the job into a dedicated Azure table
called the job table. This immediate persistence is useful to
mitigate against loss in the case of a worker role crash. The
job scheduler, which is an independent process, fetches the
job from the job table, schedules its execution, and main-
tains the job state. Likewise, all the job states are also
persistent in the Azure table to prevent the data loss caused
by instance failure. The scheduling policy is customizable
and can integrate simple first-in-first-out mechanisms or in-
clude task priority assignment. Since the job scheduler and
the job submission portal are decoupled by the job table, we
are able to run them on two different instances. This iso-
lation provides better fault tolerance as the loss of one will
not affect the other as the failover mechanism of the cloud
platform can keep the entire system working.

The Azure job scheduler takes responsibility for job dispatch
by enqueuing the job’s task into a global queue called dis-
patch queue. All worker role instances poll against this queue
seeking available work. Unlike the traditional batch job sys-
tems, such as PBS [9], the job scheduling on the cloud plat-
form can remain unaware of most resource management is-
sues, such as failure recovery and health monitoring, which
are taken care of by the cloud fabric.

3.4 Task Parallelism
Both Windows Azure and Amazon EC2 recommend using a
reliable message queue (i.e., Azure Queue or Amazon SQS)
as the communication method between instances. The ad-
vantage of using reliable messaging for building large-scale
applications in the Cloud are well recognized [14, 17]. Queues
provide the buffer necessary to manage workload bursts.
They decouple the components to make the system more
resilient to the instance failure, and they allow the applica-
tion to operate without having to know the exact number
of worker instances. This last feature allows for transparent
scaling of the system, which is the most desirable feature for
scientific applications where data inputs can vary greatly
between runs.

The API of reliable messaging, however, is still inconvenient
and unintuitive for developing the parallel science applica-
tions. For example, care needs to be taken when handling er-
rors and exceptions, and to implement coordination among

multiple queues as so on. The task parallel programming
model, initially developed to improve the parallel program-
ming productivity on SMP processor (e.g.,Cilk[3] and Mi-
crosoft TPL[16]), has proven to be more suitable for build-
ing applications on the large scale distributed system such
as data center (e.g., MapReduce, Dryad) than the tradition
parallel programming model such as MPI.

For our implementation of AzureBlast we developed our own
task parallel library for Azure. This library actually is a thin
abstraction layer upon Azure messages with the necessary
concurrency and coordination support required for the task
parallelism patterns (e.g., Join/Fork) widely used in science
applications. A task can be serialized into an Azure mes-
sage and all task messages are then enqueued into the global
dispatch queue. All worker instances compete for tasks from
this dispatch queue. Maintaining one global dispatch queue
enables the system to dynamically scale to the number of
worker instances based on the length of the queue. Once a
worker instance gets a message containing a task, it dese-
rializes the message and then executes the associated task.
Built upon the Azure messages, tasks automatically gain
fault tolerance brought by the durable nature of messages
in Azure Queues. If one instance failed, the task which was
being processed by this instance will reappear in the dispatch
queue after the expiration of the visibilitytimeout period and
then will be picked by another instance. It is important to
notice that the execution of each task has to be idempotent
as we can’t tell whether the instance fails or not.

In order to ease exception handling and coordination among
multiple tasks, we adopt the activity semantics in WS-BPEL
workflow [12]. In our model, each task owns two queues
(Fig. 4): 1) the result queue and 2) the cancellation token
queue. Whenever the task execution completes, either the
result or the exception will be put into its own result queue.
Meanwhile, during the execution the task can detect a can-
cellation request by probing for messages in its cancellation
queue. The result queue or the cancellation queue also can
be redirected to a shared queue among multiple tasks.

Figure 4: The queues of a task

To implement the Fork/Join pattern, a task spawns multi-
ple child-tasks. The spawning is just serializing the child-
task into the message and then putting the message into the
dispatch queue. After spawning child tasks, the parent task
can wait for their completion by checking each output queue.
Waiting can be either synchronously or asynchronously, and
in fact the asynchronous wait case turns to be very appealing
as it saves one valuable instance resources from busy waiting.
However when the child task is a long-running one, the tra-
ditional asynchronous/ callback pattern is not robust in the
Cloud because if the instance that is asynchronously wait-
ing for results crashes all asynchronous state is lost. This
would forces the re-execution of the parent task and all child
tasks, which can be very expensive for a typical science ap-



plication. An alternative pattern that has proven to be very
useful based on our experiences, is using the continuation
task. In this pattern, the parent task specifies a continua-
tion task before spawning child tasks and this continuation
task, which inherits the result queue from the parent queue,
is stored in one Azure table first. Once all child-tasks have
completed, the continuation task will be fetched out and
put into the dispatch queue for the execution. Hence, any
instance failure does not affect the overall job progress. The
best practice is the hybrid of these two patterns: for quick
child tasks the asynchronous wait is preferred for ease of pro-
grammability and smaller overhead; while for a long-running
child-task the continuation task is preferred for the better
fault tolerance.

If one exception message is detected from any of the child
task output queues, the parent task should have multiple op-
tions: canceling all child-tasks (i.e., job abortion), ignoring
the exception and keeping other tasks running, or retrying
the failed child-task later. In practice, we have found the
ability to promptly abort a long-running job is more desir-
able. This is especially true when running experiments that
involve a massive number of parallel instances as in Cloud
time is money.

3.5 AzureBlast Tasks
With the aforementioned task library, it becomes quite straight-
forward to implement the data-parallel BLAST on Azure.
The main task of a BLAST job is the data-partitioning task
which splits the input sequences into multiple partitions,
each of which will be stored as one Azure blob. The data-
partitioning task then spawns one child task, called BLAST
task, for each partition, and then sets up a continuation task
to merge the results from all child tasks. Each BLAST task
downloads the partition from the blob storage, and simply
executes the NCBI blastall binary over it. After the execu-
tion is done, the BLAST task puts the output result back to
blob storage and puts the completion message into its own
result queue. Once completion messages are received from
all child-tasks, the merging task downloads all results from
blob storage and merges them together to form the final re-
sult, which is again pushed back to the Azure blob. Finally
the job scheduler is notified that the job has completed.

Figure 5: Workflow of AzureBlast tasks

Although the workflow is straightforward, some subtle is-

sues arise when considering the failure situation on Cloud.
One consideration is partitioning the work across a pool of
Azure worker nodes. The number of partitions has a subtle
impact on the system performance. In general, the num-
ber of partitions should be large enough that all worker in-
stances can work in parallel. A simple scheme is to set the
number of partitions to be equal to the number of worker
instances available. This scheme, however, may cause load
imbalance as the processing time of each partition may vary
significantly. Moreover, a failure in any one instance re-
quires the entire ensemble to wait for the visibilitytimeout
period to expire before the task will once again become visi-
ble in the Azure queue. In order to improve load balancing,
one can create a large number of small partitions. However,
the NCBI blastall program must repeat loading the entire
database into virtual memory for every execution, so the
overall performance suffers from the cold cache overhead.
Through practical experience, we have found the ideal num-
ber of partitions to be 2x or 3x the number of instances,
and the resulting size of each partition is large enough to
mitigate the overhead of database loading.

Another consideration is setting the value of visibilitytime-
out, which essentially is the estimation of the task running
time, for each BLAST task. If the value is too small, one
task that is being processed by one instance will reappear in
the dispatch queue, thus leading to a repeated computation;
if this value is too large the entire ensemble has to wait a
unnecessary long period of time in case of the instance fail-
ure. For the BLAST task, one reasonable way to estimate
its running time, thus the visibilitytimeout value, is based on
the number of total letters (i.e., pair-bases) in the partition.

3.6 Managing read-only large databases
One key component in BLAST application is the subject se-
quence database, over which the input sequence will be com-
pared. NCBI provides a set of reference BLAST databases
of Nucleotide and Protein via FTP for download. Most ref-
erence databases are large. For instance, the size of the
NR database, which is a non-redundant protein sequence
database, is about 10GB. Moreover, these databases are pe-
riodically updated by NCBI to offer up to date reference
data to the biologist.

The NCBI blastall treats the sequence database just as a
regular local file, thus each worker role instance must have
local file system access to the database files. The simplest
solution is to embed the required database as a part of de-
ployment package (or image in Amazon EC2 term) as [13]
does. However considering the frequently updated charac-
teristic of NCBI BLAST database, this solution is far from
optimal. Another näıve way is having each worker role in-
stance download databases when needed directly from NCBI
site. Since Azure, and other cloud platforms, charge for data
transfers to/from the data center, this approach would be
cost prohibitive. Moreover, when a number of worker role
instances download large databases from NCBI simultane-
ously, the NCBI ftp server can be easily overwhelmed.

In AzureBlast, we take an indirect scheme which leverages
the highly scalable Azure blob storage. A background database
updating process, which runs on its own role instance, peri-
odically refreshes the NCBI databases into Azure blob stor-



age. Specified by the user, the database can be staged dur-
ing the initialization phase of each instance, or it can staged
in a lazy manner when the instance is going to execute a
BLAST task. In either case, if the timestamp of local replica
has expired, the database will be updated from blob stor-
age. As Azure blobs are designed to provide highly scalable
throughput, this indirect solution actually provides the best
performance.

Another simple but effective optimization is data compres-
sion. Most Blast databases can have very high compress
ratio. For example after running ZIP, the NR database is
only about 2.8GB, 28% of its original size. Compression
decreases the blob storage size, thus being more economic.
More importantly, the smaller files actually save significant
bandwidth between the blob storage and multiple concur-
rent instances.

Another option that one could consider for managing a large
database is using AzureDrive [5], which is akin to the Ama-
zon EBS. The AzureDrive allows the role instance to mount
a blob (actually it is page blob) as a NTFS local disk drive.
When multiple instances want to mount the same read-only
blob, the recommended solution is first creating a snap-
shot for the shared blob and then each instance mounts the
snapshot as a local AzureDrive. Certainly using AzureDrive
brings interesting advantages. For example, the system de-
velopment is greatly simplified as there is no need for the
explicit data staging. Moreover, the size of databases is
not limited by the size of local instance disk and the drive
automatically takes care of the caching, paging and other
non-trivial issues. However as the drive hides most low-level
parameters (e.g., data transfer implementation, caching im-
plementation) from the user, its I/O performance hardly
compete with a fine-tuned blob client implementation built
directly on the Azure Blob API. In addition, the data com-
pression optimization can no longer be applied.

4. EVALUATION AND DISCUSSION
In this section we present an evaluation of AzureBLAST
and discuss implications for what science applications are
appropriate for cloud computing platforms. To evaluate the
performance and scalability of AzureBlast, we deploy our
implementation on the Windows Azure platform. Windows
Azure compute instances come in four unique sizes to enable
complex applications and workloads. Each Azure instance
represents a virtual server and the hardware configurations
of each size are listed in Fig. 6. In term of software, every
Azure instance , no matter the size, runs a specially tai-
lored Microsoft Windows Server 2008 Enterprise operating
system as the guest OS, referred to as the Azure Guest OS.
Azure provides several geo-location choices and all experi-
ments reported in this paper were conducted on our South
Central US regional data center. The NCBI blastall used
in the experiments presented below is the Windows 64-bit
binary version 2.2.2 and the test subject database is the
most recent NR database, a non-redundant protein sequence
database that contains 10,427,007 sequences (3,558,078,962
total letters and about 10 Giga total bytes), downloaded
from NCBI. Our AzureBlast implementation is written for
the Azure SDK (February 2010).

For our evaluation, we first measure the performance of

Figure 6: Azure Instance size and configuration

Figure 7: Performance of Blast on one instance

BLAST on an individual Azure instance as it is important
to get the best local optimization before we scale the sys-
tem out with massive instances. As mentioned earlier, the
NCBI blastall program can parallelize the single query on the
multi-core processor. AzureBlast takes advantage of this lo-
cal parallelization by automatically adjusting the command
line argument -a of blastall, which tells the BLAST imple-
mentation how many processors it can use, according to the
size of the running instance. That means for the small, me-
dian, large and extra-large size instances, the value of argu-
ment -a is 1, 2, 4 and 8 respectively. In order to quantify
the performance impact of the task granularity, we deploy
AzureBlast on Azure with one single worker role instance
and measure the elapsed time of one submitted job, which
splits all input sequences into one single partition. We vary
the size of the input query from one sequence to 300 se-
quences, each of which is around 110 base-pairs in length.
The database staging is completed during the instance ini-
tialization phase so we are guaranteed that each instance
has a local replica and the database staging time is excluded
from our measurement. Moreover, we also vary the size of
the worker instance to identify the performance difference
caused by the instance size. The measurements are summa-
rized in Figure 7. The smallest task, which only contains one
sequence, is an order of magnitude slower than that of a large
task which contains 100 sequences. After the task granular-
ity is more than 100 sequences per partition the instance
is saturated and generates the constant throughput. The
result clearly demonstrates the benefit of the warm cache
effect.

Another interesting observation is the performance enhance-
ment achieved by increasing the instance size. We calculate



Figure 8: Cost of Running Blast on one instance

the throughput speedup of different sizes of instances against
the base case, which is the throughput of a one-core small
instance. Although it is predictable that the larger instance
performs better due to the provisioning of additional cores,
the values of obtained speedup are actually all larger than
the number of cores they have. This super-linear speedup is
primarily due to the memory capability. The test database,
NR, is around 10GB size while the small instanced only has
1.75GB, thus unable to load the database into memory. Con-
versely the large or extra-large instance has ample memory
to contain the database. Given the fact that Azure increases
the computation price of different sizes of instances in a pro-
portional manner, we can immediately derive an interesting
point that the larger instance is actually more economical
to use. In fact, the costs chart in Figure 8, which is liter-
ally converted from Figure 7, shows the extra-large instance
provides not only the largest throughput but also the most
economical throughput.

In the next experiment, we measure the scalability of Azure-
Blast. In this experiment, we use up to 64 large size in-
stances. The instances are allocated statically and again
the database staging takes place during the instance initia-
tion phase. We first deploy AzureBlast on Azure with one
worker instance to measure the throughput of one job; fol-
lowing this we then re-deploy the project with double num-
ber of instances and repeat the measurement. The input
query contains 4096 sequences and will be partitioned into
64 partitions. The measurement is summarized in Figure 9.
We see the throughput of AzureBlast increases almost lin-
early when given more instances. This is not surprising as
AzureBlast is essentially a pleasingly parallel solution, which
is one of most scalable patterns for cloud computing plat-
form.

Finally to understand and characterize the data staging per-
formance in AzureBlast, we measure the throughput of Azure
blobs. In this experiment a number of worker instances
are instantiated and each instance keeps reading or writing
large-volume data from/into Azure blob storage. The aggre-
gated throughput averaged and reported in Figure 10. Both
the blob and worker instances are all located in the South
Central US region and HTTP is used as the transport pro-
tocol. Azure blobs provide remarkable read throughput and
scale with increased number of instances. For example, to

Figure 9: Scalability of AzureBlast

Figure 10: Read and Write Throughput of Blob
Storage

stage the 2.8GB compressed NR database, it takes about 3
minutes for one instance and 13 minutes for all 64 instances
to complete the staging. This level of latency, compared
with the execution time of a single BLAST task, is tolera-
ble, thus the lazy data staging is feasible. The relatively low
throughput of blob writing, we believe, is caused by the data
consistency mechanism, which atomically maintains three
independent copies of each blob.

5. RELATED WORK
Running BLAST on local cluster has been well studied.
mpiBlast[7], built upon on MPI, takes the database seg-
mentation approach. In contrast, Braun et al.[4] present
a coarse-grained query segmentation approach, which uses
PBS as the batch-job scheduler for the local cluster. Like-
wise, CloudBLAST[13] also adopts the query-segmentation
data-parallel pattern. However CloudBLAST uses the MapRe-
duce approach to model this simple parallelism and relies
on the Hadoop runtime for the management of node fail-
ure, data and jobs. The experiments on CloudBLAST were
conducted in two virtual clusters connected by virtual net-
works and the test database is statically bound with the
deployment. With more emphasis on the cost, Wilkening et
al. [18] reports a feasibility study of running BLAST work-
flow on Amazon EC2. They compared the BLAST execu-
tion time on Amazon EC2 extra large nodes with the one
on the local cluster nodes; and then estimated the corre-



sponding running cost on these two resources. Their result
suggested that Cloud cost currently is slightly higher. How-
ever their estimation doesn’t count some Cloud-unique fea-
tures in, such as the capacity elasticity, the failover mech-
anism and the durable data storage service. Schatz pre-
sented a MapReduce based parallel sequence alignment al-
gorithm, CloudBurst [15], which servers the same goal of
the BLAST algorithm. Instead of using the NCBI BLAST
program, CloudBurst implements the alignment algorithm
directly in the Hadoop MapReduce programming model.
Its performance evaluation on Amazon EC2 shows a good
scalability. While this reimplementation of the algorithm
leads to a finer-grained parallelism, it is unclear that how it
performs and scales when comparing with the simple data-
parallel NCBI-BLAST based approach, especially consider-
ing NCBI-BLAST itself has been carefully optimized on the
multi-core machine.

Notice that those Cloud-enabled BLAST implementations
are all based on Hadoop MapReduce runtime. Conversely,
AzureBlast is built directly on the basic services of Windows
Azure. Our intension is to obtain a better understanding
of these building-blocks of Cloud from the experiments of
AzureBLAST. Meanwhile this approach also provides more
flexibility to help us identify useful practices and patterns,
such as exception handling, for developing science applica-
tions on cloud platforms.

6. CONCLUSION
In this paper we have described the implementation of Azure-
Blast, a parallel BLAST engine on Windows Azure. BLAST
is not only relevant to a large number of research com-
munities; it represents a large-number of science applica-
tions. These applications are usually computation intensive,
data intensive and can be parallelized by a simple coarse-
grained data-parallel computational pattern. While high
performance is often considered desirable, scalability and
reliability are usually more important for this class of appli-
cations. Our experience demonstrates that Windows Azure
can support the BLAST and associated class of applications
very well due to its scalable and fault-tolerant computation
and storage services. Moreover the pay-as-you-go model, to-
gether with elasticity scalability of cloud computing greatly
facilitates the democratization of research. Research ser-
vices in the cloud such as AzureBlast can make any research
group competitive with the best funded research organiza-
tions in the world. We have identified several general best
practices from AzureBlast throughout our paper. For ex-
ample, the task parallel programming model naturally fits
the characteristics of the cloud platform; decoupling com-
ponents via reliable queues or other durable storage so the
system can achieve better fault tolerance and resource op-
timization; position large data close to the geo-location of
computation for better throughput and lower cost; and last
but not least, allocating resources such as instance size based
on profiling characteristics of the application to achieve the
most cost-effective performance.

7. REFERENCES
[1] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and

D. J. Lipman. Basic local alignment search tool.
Journal of Molecular Biology, 215(3):403 – 410, 1990.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph,
R. Katz, A. Konwinski, G. Lee, D. A. Patterson,
A. Rabkin, I. Stoica, and M. Zaharia. Above the
clouds: A berkeley view of cloud computing, Feb 2009.

[3] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E.
Leiserson, K. H. Randall, and Y. Zhou. Cilk: an
efficient multithreaded runtime system. In PPOPP
’95: Proceedings of the fifth ACM SIGPLAN
symposium on Principles and practice of parallel
programming, pages 207–216, New York, NY, USA,
1995. ACM.

[4] R. C. Braun, K. T. Pedretti, T. L. Casavant, T. E.
Scheetz, C. L. Birkett, and C. A. Roberts.
Parallelization of local blast service on workstation
clusters. Future Generation Computer Systems,
17(6):745 – 754, 2001.

[5] B. Calder and A. Edwards. Windows azure drive.
Technical report, Microsoft, 2010.

[6] B. Calder, T. Wang, S. Mainali, and J. Wu. Windwos
azure blob. Technical report, Microsoft, 2009.

[7] A. E. Darling, L. Carey, and W. chun Feng. The
design, implementation, and evaluation of mpiblast. In
In Proceedings of ClusterWorld, 2003.

[8] J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters. Commun. ACM,
51(1):107–113, 2008.

[9] R. L. Henderson. Job scheduling under the portable
batch system. In IPPS ’95: Proceedings of the
Workshop on Job Scheduling Strategies for Parallel
Processing, pages 279–294, London, UK, 1995.
Springer-Verlag.

[10] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: distributed data-parallel programs from
sequential building blocks. In EuroSys ’07:
Proceedings of the 2nd ACM SIGOPS/EuroSys
European Conference on Computer Systems 2007,
pages 59–72, New York, NY, USA, 2007. ACM.

[11] H.-S. Kim, H.-J. Kim, and D.-S. Han. Performance
evaluation of blast on smp machines. pages 668–676.
2006.

[12] R. Lucchi and M. Mazzara. A pi-calculus based
semantics for ws-bpel. Journal of Logic and Algebraic
Programming, 70(1):96–118, January 2007.

[13] A. Matsunaga, M. Tsugawa, and J. Fortes. Cloudblast:
Combining mapreduce and virtualization on
distributed resources for bioinformatics applications.
eScience, IEEE International Conference on, 2008.

[14] Microsoft. Windows azure queue. Technical report,
Microsoft, 2008.

[15] M. C. Schatz. Cloudburst: highly sensitive read
mapping with mapreduce. Bioinformatics,
(11):1363–1369, June 2009.

[16] S. Toub. Patterns for parallel programming:
Understanding and applying parallel patterns with the
.net framework 4. Technical report, Microsoft, 2010.

[17] J. Varia. Architecting for the cloud: Best practices.
Technical report, Amazon, 2010.

[18] J. Wilkening, A. Wilke, N. Desai, and F. Meyer. Using
clouds for metagenomics: A case study. Proceedings
IEEE Cluster, 2009.


