Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, a subset of a preordered set is said to be cofinal or frequent in if for every it is possible to find an element in that is "larger than " (explicitly, "larger than " means ). Cofinal subsets are very important in the theory of directed sets and nets, where “cofinal subnet” is the appropriate generalization of "subsequence". They are also important in order theory, including the theory of cardinal numbers, where the minimum possible cardinality of a cofinal subset of is referred to as the cofinality of

Property Value
dbo:abstract
  • In mathematics, a subset of a preordered set is said to be cofinal or frequent in if for every it is possible to find an element in that is "larger than " (explicitly, "larger than " means ). Cofinal subsets are very important in the theory of directed sets and nets, where “cofinal subnet” is the appropriate generalization of "subsequence". They are also important in order theory, including the theory of cardinal numbers, where the minimum possible cardinality of a cofinal subset of is referred to as the cofinality of (en)
  • In matematica, sia A un insieme e sia ≤ una relazione binaria su A. Allora un sottoinsieme B di A si dice cofinale se soddisfa la seguente condizione: . (it)
  • 순서론에서 공종 집합(共終集合, 영어: cofinal set)은 그 하폐포가 전체 집합인, 원순서 집합의 부분 집합이다. (ko)
  • 在數學裡,共尾子集是一個预序集合 A 的子集 B,使得任一在 A 內的元素 a,總有一在 B 內的元素 b 會有 a ≤ b。B 因此被稱為共尾於 A。相對地,共首子集則是一预序集合 A 的子集 B,使得任一在 A 內的元素 a,總有一在 B 內的元素 b 會有 a ≥ b。通常这个预序集合要么是偏序集合要么是有向集合。 一個共尾函數則指一函數 f: X → A,其中 A 為预序陪域,其值域 f(X) 共尾於此一陪域。一個共尾序列是指一由 A 的元素組成的序列,其元素共尾於 A。一個共尾網指一由 A 的元素組成的網,其元素共尾於 A。 關於共尾子集的勢,請見共尾性。 (zh)
dbo:wikiPageID
  • 1633290 (xsd:integer)
dbo:wikiPageLength
  • 8075 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1109395497 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • In mathematics, a subset of a preordered set is said to be cofinal or frequent in if for every it is possible to find an element in that is "larger than " (explicitly, "larger than " means ). Cofinal subsets are very important in the theory of directed sets and nets, where “cofinal subnet” is the appropriate generalization of "subsequence". They are also important in order theory, including the theory of cardinal numbers, where the minimum possible cardinality of a cofinal subset of is referred to as the cofinality of (en)
  • In matematica, sia A un insieme e sia ≤ una relazione binaria su A. Allora un sottoinsieme B di A si dice cofinale se soddisfa la seguente condizione: . (it)
  • 순서론에서 공종 집합(共終集合, 영어: cofinal set)은 그 하폐포가 전체 집합인, 원순서 집합의 부분 집합이다. (ko)
  • 在數學裡,共尾子集是一個预序集合 A 的子集 B,使得任一在 A 內的元素 a,總有一在 B 內的元素 b 會有 a ≤ b。B 因此被稱為共尾於 A。相對地,共首子集則是一预序集合 A 的子集 B,使得任一在 A 內的元素 a,總有一在 B 內的元素 b 會有 a ≥ b。通常这个预序集合要么是偏序集合要么是有向集合。 一個共尾函數則指一函數 f: X → A,其中 A 為预序陪域,其值域 f(X) 共尾於此一陪域。一個共尾序列是指一由 A 的元素組成的序列,其元素共尾於 A。一個共尾網指一由 A 的元素組成的網,其元素共尾於 A。 關於共尾子集的勢,請見共尾性。 (zh)
rdfs:label
  • Cofinal (mathematics) (en)
  • Sottoinsieme Cofinale (it)
  • 공종 집합 (ko)
  • 共尾 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License