dbo:abstract
|
- En geometria plana euclidiana, el problema d'Apol·loni consisteix a construir les circumferències tangents a tres punts donats. Els casos especials del problema d'Apol·loni són aquells en què almenys una de les circumferències donades és un punt o una recta, és a dir, és una circumferència de radi zero o infinit. Existeixen nou tipus de casos especials extrems del problema d'Apol·loni, que consisteixen a construir les circumferències tangents a: 1.
* tres punts (indicat PPP, generalment 1 solució) 2.
* tres rectes (indicat RRR, generalment 4 solucions) 3.
* una recta i dos punts (indicat RPP, generalment 2 solucions) 4.
* dues rectes i un punt (indicat RRP, generalment 2 solucions) 5.
* una circumferència i dos punts (indicat CPP, generalment 2 solucions) 6.
* una circumferència, una recta, i un punt (indicat CRP, generalment 4 solucions) 7.
* dues circumferències i un punt (indicat CCP, generalment 4 solucions) 8.
* una circumferència i dues rectes (indicat CRR, generalment 8 solucions) 9.
* dues circumferències i una recta (indicat CCR, generalment 8 solucions) En altres tipus diferents de casos especials, els tres elements geomètrics donats poden tenir una disposició especial, com ara dues rectes paral·leles i una circumferència donades. (ca)
- In Euclidean geometry, Apollonius' problem is to construct all the circles that are tangent to three given circles. Special cases of Apollonius' problem are those in which at least one of the given circles is a point or line, i.e., is a circle of zero or infinite radius. The nine types of such limiting cases of Apollonius' problem are to construct the circles tangent to: 1.
* three points (denoted PPP, generally 1 solution) 2.
* three lines (denoted LLL, generally 4 solutions) 3.
* one line and two points (denoted LPP, generally 2 solutions) 4.
* two lines and a point (denoted LLP, generally 2 solutions) 5.
* one circle and two points (denoted CPP, generally 2 solutions) 6.
* one circle, one line, and a point (denoted CLP, generally 4 solutions) 7.
* two circles and a point (denoted CCP, generally 4 solutions) 8.
* one circle and two lines (denoted CLL, generally 8 solutions) 9.
* two circles and a line (denoted CCL, generally 8 solutions) In a different type of limiting case, the three given geometrical elements may have a special arrangement, such as constructing a circle tangent to two parallel lines and one circle. (en)
|
rdfs:comment
|
- En geometria plana euclidiana, el problema d'Apol·loni consisteix a construir les circumferències tangents a tres punts donats. Els casos especials del problema d'Apol·loni són aquells en què almenys una de les circumferències donades és un punt o una recta, és a dir, és una circumferència de radi zero o infinit. Existeixen nou tipus de casos especials extrems del problema d'Apol·loni, que consisteixen a construir les circumferències tangents a: (ca)
- In Euclidean geometry, Apollonius' problem is to construct all the circles that are tangent to three given circles. Special cases of Apollonius' problem are those in which at least one of the given circles is a point or line, i.e., is a circle of zero or infinite radius. The nine types of such limiting cases of Apollonius' problem are to construct the circles tangent to: In a different type of limiting case, the three given geometrical elements may have a special arrangement, such as constructing a circle tangent to two parallel lines and one circle. (en)
|