dbo:abstract
|
- Der Satz von Steinitz, englisch Steinitz’s theorem, ist ein mathematischer Lehrsatz, welcher sowohl dem Gebiet der Topologischen Graphentheorie als auch dem der Geometrischen Graphentheorie zuzurechnen ist. Der Satz geht zurück auf eine Veröffentlichung des Mathematikers Ernst Steinitz (1871–1928) aus dem Jahre 1916 und zählt zusammen mit dem eulerschen Polyedersatz, dem Satz von Kuratowski und dem Satz von Wagner zu den klassischen Ergebnissen der Graphentheorie über plättbare Graphen. (de)
- In polyhedral combinatorics, a branch of mathematics, Steinitz's theorem is a characterization of the undirected graphs formed by the edges and vertices of three-dimensional convex polyhedra: they are exactly the 3-vertex-connected planar graphs. That is, every convex polyhedron forms a 3-connected planar graph, and every 3-connected planar graph can be represented as the graph of a convex polyhedron. For this reason, the 3-connected planar graphs are also known as polyhedral graphs. This result provides a classification theorem for the three-dimensional convex polyhedra, something that is not known in higher dimensions. It provides a complete and purely combinatorial description of the graphs of these polyhedra, allowing other results on them, such as Eberhard's theorem on the realization of polyhedra with given types of faces, to be proven more easily, without reference to the geometry of these shapes. Additionally, it has been applied in graph drawing, as a way to construct three-dimensional visualizations of abstract graphs. Branko Grünbaum has called this theorem "the most important and deepest known result on 3-polytopes." The theorem appears in a 1922 publication of Ernst Steinitz, after whom it is named. It can be proven by mathematical induction (as Steinitz did), by finding the minimum-energy state of a two-dimensional spring system and lifting the result into three dimensions, or by using the circle packing theorem.Several extensions of the theorem are known, in which the polyhedron that realizes a given graph has additional constraints; for instance, every polyhedral graph is the graph of a convex polyhedron with integer coordinates, or the graph of a convex polyhedron all of whose edges are tangent to a common midsphere. (en)
- Теорема Штайница — это комбинаторное описание неориентированных графов, образованных рёбрами и вершинами трёхмерного выпуклого многогранника — они в точности являются (простыми) вершинно 3-связными планарными графами (по меньшей мере с четырьмя вершинами). То есть любой выпуклый многогранник образует 3-связный планарный граф, и любой 3-связный планарный граф может быть представлен как выпуклый многогранник. По этой причине 3-связные планарные графы называют также полиэдральными. Теорема Штайница названа именем Эрнста Штайница, который опубликовал первое доказательство этого результата в 1916 году. Бранко Грюнбаум назвал эту теорему «наиболее важным и глубочайшим результатом о 3-мерных многогранниках». Название «Теорема Штайница» также применимо к другим результатам Штайница:
* — о том, что любой базис векторного пространства имеет одно и то же число векторов;
* теорема, что если выпуклая оболочка множества точек содержит единичную сферу, то существует конечное подмножество точек, выпуклая оболочка которого содержит концентрическую сферу меньшего размера;
* векторное обобщение Штайница теоремы Римана о перегруппировке условно сходящихся рядов. (ru)
- Теорема Штайніца — це комбінаторний опис неорієнтованих графів, утворених ребрами й вершинами тривимірного опуклого многогранника — вони точно є (простими) вершинно 3-зв'язними планарними графами (щонайменше з чотирма вершинами). Тобто будь-який опуклий многогранник утворює 3-зв'язний планарний граф, і будь-який 3-зв'язний планарний граф можна подати як опуклий многогранник. З цієї причини 3-зв'язні планарні графи називають також поліедральними. Теорему названо ім'ям , який опублікував перше доведення цього результату 1916 року. Бранко Ґрюнбаум назвав цю теорему «найважливішим і найглибшим результатом про тривимірні політопи». Назву «теорема Штайніца» також застосовують до інших результатів Штайніца:
* лема Штайніца про заміщення — про те, що будь-який базис векторного простору має однакове число векторів;
* теорема, що якщо опукла оболонка множини точок містить одиничну сферу, існує скінченна підмножина точок, опукла оболонка якої містить концентричну сферу меншого розміру;
* векторне узагальнення Штайніца теореми Рімана про перегрупування умовно збіжних рядів. (uk)
|
rdfs:comment
|
- Der Satz von Steinitz, englisch Steinitz’s theorem, ist ein mathematischer Lehrsatz, welcher sowohl dem Gebiet der Topologischen Graphentheorie als auch dem der Geometrischen Graphentheorie zuzurechnen ist. Der Satz geht zurück auf eine Veröffentlichung des Mathematikers Ernst Steinitz (1871–1928) aus dem Jahre 1916 und zählt zusammen mit dem eulerschen Polyedersatz, dem Satz von Kuratowski und dem Satz von Wagner zu den klassischen Ergebnissen der Graphentheorie über plättbare Graphen. (de)
- In polyhedral combinatorics, a branch of mathematics, Steinitz's theorem is a characterization of the undirected graphs formed by the edges and vertices of three-dimensional convex polyhedra: they are exactly the 3-vertex-connected planar graphs. That is, every convex polyhedron forms a 3-connected planar graph, and every 3-connected planar graph can be represented as the graph of a convex polyhedron. For this reason, the 3-connected planar graphs are also known as polyhedral graphs. (en)
- Теорема Штайница — это комбинаторное описание неориентированных графов, образованных рёбрами и вершинами трёхмерного выпуклого многогранника — они в точности являются (простыми) вершинно 3-связными планарными графами (по меньшей мере с четырьмя вершинами). То есть любой выпуклый многогранник образует 3-связный планарный граф, и любой 3-связный планарный граф может быть представлен как выпуклый многогранник. По этой причине 3-связные планарные графы называют также полиэдральными. Название «Теорема Штайница» также применимо к другим результатам Штайница: (ru)
- Теорема Штайніца — це комбінаторний опис неорієнтованих графів, утворених ребрами й вершинами тривимірного опуклого многогранника — вони точно є (простими) вершинно 3-зв'язними планарними графами (щонайменше з чотирма вершинами). Тобто будь-який опуклий многогранник утворює 3-зв'язний планарний граф, і будь-який 3-зв'язний планарний граф можна подати як опуклий многогранник. З цієї причини 3-зв'язні планарні графи називають також поліедральними. Назву «теорема Штайніца» також застосовують до інших результатів Штайніца: (uk)
|