Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
An Entity of Type: Abstraction100002137, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In statistics, the Vuong closeness test is a likelihood-ratio-based test for model selection using the Kullback–Leibler information criterion. This statistic makes probabilistic statements about two models. They can be nested, strictly non-nested or partially non-nested (also called overlapping). The statistic tests the null hypothesis that the two models are equally close to the true data generating process, against the alternative that one model is closer. It cannot make any decision whether the "closer" model is the true model.

Property Value
dbo:abstract
  • Der Vuong-Test ist ein statistischer Test zur Modellselektion, der auf dem Bayesschen Informationskriterium basiert. Er ist nach dem Mathematiker benannt, der den Test im Jahr 1989 vorschlug. (de)
  • In statistics, the Vuong closeness test is a likelihood-ratio-based test for model selection using the Kullback–Leibler information criterion. This statistic makes probabilistic statements about two models. They can be nested, strictly non-nested or partially non-nested (also called overlapping). The statistic tests the null hypothesis that the two models are equally close to the true data generating process, against the alternative that one model is closer. It cannot make any decision whether the "closer" model is the true model. (en)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 1788013 (xsd:integer)
dbo:wikiPageLength
  • 6067 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1079941407 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dct:subject
rdf:type
rdfs:comment
  • Der Vuong-Test ist ein statistischer Test zur Modellselektion, der auf dem Bayesschen Informationskriterium basiert. Er ist nach dem Mathematiker benannt, der den Test im Jahr 1989 vorschlug. (de)
  • In statistics, the Vuong closeness test is a likelihood-ratio-based test for model selection using the Kullback–Leibler information criterion. This statistic makes probabilistic statements about two models. They can be nested, strictly non-nested or partially non-nested (also called overlapping). The statistic tests the null hypothesis that the two models are equally close to the true data generating process, against the alternative that one model is closer. It cannot make any decision whether the "closer" model is the true model. (en)
rdfs:label
  • Vuong-Test (de)
  • Vuong's closeness test (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License