
An Approach to the Example-based Consistency Checking of
Web Documents

Mirjana Jakšíc

Universität Passau, Fakultät für Mathematik und Informatik
D-94030 Passau, Germany

Mirjana.Jaksic@uni-passau.de

Abstract

In this paper we present a method for the end-user specification of consistency rules for Web doc-
uments. Temporal description logic is used as the internal formalism. It is difficult for an author
of a Web document to understand and use a formal logic. Therefore the goal is to develop an intu-
itive front-end allowing the authors of a document to specify their requirements and constraints at an
application-oriented level. To this end we propose a specification-by-example approach.

1 Introduction

Consider the process of authoring and revisingWeb documents, i.e. a collection of Web pages correlated
to each other regarding content and structure. We consider a Web documentconsistentif its argumenta-
tion structure and content conform to a set of target properties. For example, in a formal document every
termhas to bedefined beforeit is used.

In this paper we address the question how consistency rules for Web documents can be expressed in a
way that is both suitable for a formal verification system and intuitive enough to support an author in this
process. One possible approach is to use XML-based techniques. However, the XML presentation level
is too technical for users and it is not suitable for the specification of high-level properties like the one
mentioned above.

The argumentation structure and interrelationships of topics in the discussion domain can be represented
by knowledge representation formalisms like description logics [1]. Some formal logics have already
been shown to be suitable for expressing consistency rules for Web content: description logic (DL) is
used in SCHEMA ST4 system [2], temporal logic (TL) [3] in [4] and temporal description logic (TDL)
in [5].

Obviously, it is difficult for an author to understand and use formal logics. Therefore a high-level speci-
fication method for expressing consistency rules is required.

2 Consistency Checking of Web Documents

2.1 Consistency Checking System

Assume there are several text components that build a Web document. Individual components are indexed
with various metadata. The first step in the authoring process of the composite document is the metadata
extraction from text components and its integration into a knowledge base. We consider description logic
as a suitable formalism for this purpose.



Frequently, the authors of a Web document recycle fragments of existing documents to compose a new
document. In this case, the document’s components are most probably based on different information
models. The relations between different information models are represented in the form of an ontology,
which serves as a framework for formulation of consistency rules. An ontology for documents describes,
for example, typicalstructure units(chapters, sections, paragraphs, definitions, examples, comments)
and topicsof the domain of discourse. It also enables the specification of document properties on the
different abstraction levels.

Step two is the construction of the verification model, which reflects the narrative structure of the Web
document. The consistency rules are expressed in the temporal description logicALCCTL [6] and the
verification model is checked against consistency rules by model checking.

2.2 Consistency Rules

In our system, consistency rules constrain the content and structure of a Web document. They address cer-
tain more or less abstract document properties like content and function of a text unit. Content comprises,
for example,themesandconcepts, and a function can beexercise, solution, description of functionality,
etc. Examples of consistency rules are:

• "Every learning unit in a Web-based training begins with anintroductionand concludes with an
exercise, testandconclusion."

• "An exerciseshould come after the concepts needed for its solution are presented."

• "In every variant of a manual, everyfunctionlisted in the overview must be followed by the appro-
priatedescription."

3 Example-based High-level Specification

3.1 Solution to High-level Specification

To create a method for building the consistency rules in a way that is on the one hand adequate for
the verification system, and on the other hand "user friendly" enough for an author, we have decided
to combine several basic ideas - example-based and diagram-based approaches with already existing
specification patterns for reactive systems [7].

We are aware of the fact that the proposed approach cannot provide the full expressive power of the
formal specification. However, to obtain an intuitive and "user friendly" system, we have to sacrifice
some expressiveness.

3.2 Specification Patterns for Web Documents

A pattern-based approach to the presentation, codification and reuse of property specifications in reactive
systems has been presented in [7]. Until now, seven specification formalisms are supported, among
themCTL [8]. For each of the supported formalisms, a set of the possible constraints has been defined
and patterns have been created for them. The patterns together with descriptions of their meaning are
provided to the users who can identify similar requirements in their systems and select patterns that
address those requirements.

Altogether eight patterns have been defined, which are divided in two groups - Occurrence patterns
and Order patterns. Occurrence patterns are:Universality, Absence, ExistenceandBounded Existence.
Order patterns are:Response, Response Chain, PrecedenceandPrecedence Chain. Following scopes



are defined for every pattern:Global, Before X, After X, Between X and YandAfter X until Y. The scope
describes the extend of the program execution over which a pattern must hold.

According to performed research, we take all of the existing patterns into account for Web documents.
We add two scopes for all patterns from the Occurrence patterns group:Immediately Before Xand
Immediately After X. Our adaptation of patterns has already been tested on a small set of use cases.

3.3 Specification Process

The basic idea of our approach is to support the process of specifying the consistency rules, rather than
to build a new specification language. The entire process can be described as a stepwise refinement. The
specification process runs in seven steps alternately between the author and the system. At the beginning
of the process it is supposed that the author has specified the document he/she works with. Further, this
document will be referenced as thecurrent document.

Step 1: The author’s goal in this step is to choose a general example of a possible path through a Web
document that is most adequate for his/her needs. It comprehends the basic patterns and scopes. To make
it easier to the author, this decision is supported by a simple example that should be clear to most of the
users.

Step 2:The goal of this step is the visual presentation of the knowledge base content. To help the author
to build theALC part of anALCCTL formula, i.e. the ontological part, the system shows only concepts
relevant to thecurrent document. For every relevant concept its instances from thecurrent documentare
also presented.

Step 3:The author’s goal in this step is to extend the general path (chosen in the first step) to an example
path through thecurrent document. The example path represents the temporal component of anALCCTL
formula.

First, the author chooses the concept instances (presented in the previous step) and places them in the
general path. From now on, thecurrent documentwith its concepts and their instances is considered.
Further, this step is divided into smaller sub-steps, so that the author refines the example path stepwise.

The author’s second goal in this step is to determine the domain of objects - the class of concepts for
which is the rule valid.

Step 4: The goal of this step is the generalization of the DL part of the example path - from the in-
stances to the concept level, and the transformation of the entire rule from the high-level specification
intoALCCTL. The second goal is building of several correct example documents, in accordance to the
current document. These example documents are graphically presented to the author.

Step 5: The goal is to consider the example documents created in the previous step. If not satisfied with
the examples he/she can go back to the previous steps.

Step 6: The goal of this step is verification, i.e. a model-checking process follows.

Step 7: At the end the author gets the verification results. He/she can go back to one of the previous
steps if not satisfied.

3.4 An Example

Let us now consider the example of a Web-based training (WBT) unit about robots. Some of the concepts
in this system are:robot, topic, text fragment, load distribution, maintenance, description, example,
and test. Different properties, likeload distributionor maintenance, can be presented for every robot.
Every property is considered as a separatetopic, i.e. the concepttopic is a super-concept of all property
concepts. Everytopic can be subject of differenttext fragments, like for example of adescriptionor
example.



Figure 1: A part of an example WBT document

Figure 1 shows part of an abstract representation of a sample Web document. This document contains
information about robotR15. First Basic load distribution is described, followed byAdditional load
distributions, which in turn is followed by theExample of basic load distribution. At the end comesTest.
There are two possible paths through the document.

As an example, we want to express the following rule: "For every path holds: ADescription of a load
distributioncomes always before anExampleof it, if there is anExample of a load distributionat all. If
there is noExample, theDescriptionis optional."

The following describes steps 1-4 of the specification process for the above named specification rule.

Step 1: Concerning the offered examples, which representthe basic patterns and scopes, the author
chooses the pattern "Aterm definitioncomes always before aterm usage" in the context of the existence
of a term definition.

Step 2: Relevant concepts and their instances in thecurrent documentare: robot (instance: R15 ),
load distribution(instances:Basic load distribution for R15 andAdditional load distribution for R15 ),
description(instances:Description of a basic load distribution for R15 andDescription of an additional
load distribution for R15 ), example(instance:Example of a basic load distribution for R15 ), andtest
(instance:Test about load distribution for R15 ).

Step 3: For our example, an author chooses the following instances:Description of a basic load distri-
bution for R15 andExample of a basic load distribution for R15. Then he/she substitutes them forterm
definitionandterm usage, respectively, in the example chosen in the Step 1.

Now, we have a rule: "ADescription of a basic load distribution for R15 comes always before an
Example of a basic load distribution for R15 ". From the formal point of view the previous sentence is
incomplete in many respects. It is not clear whether aDescriptioncomes only before the firstExampleor
before someExample. Or is there actually oneDescriptionbefore everyExample? It is also not specified
whether aDescriptionand/or anExampleare optional or mandatory. Furthermore, does this rule hold
for all or only for some paths through the document? Each of these features is determined in separate
sub-steps. After all sub-steps are performed, we have the following pattern:A [¬Q W (P u ¬Q)] (Q



stands forExample of a basic load distribution for R15andP for Description of a basic load distribution
for R15). The domain of objects is the conceptload distribution.

Step 4: The following is the result of the generalization and transformation from the high-level specifi-
cation intoALCCTL:

loadDistribution v A [¬∃topicOf.Example W (∃topicOf.Description u ¬∃topicOf.Example)]

The system also generates examples of valid component documents (see Figure 1) like the following:

• "Basic load distribution for R15, Example of basic load distribution for R15, Test about basic and
additional load distribution for R15."

• "Basic load distribution for R15, Additional load distribution for R15, Example of basic load
distribution for R15, Test about basic and additional load distribution for R15."

4 Conclusion

To make the expression of consistency rules simple and understandable to an author of WBT materials,
we are developing an intuitive supporting system. The consistency rules are built as example paths
through thecurrent documentin the process of the stepwise refinement.

After completing the implementation of our system, the development of an error explanation component
is planned. The high-level specification formalism and the error explanation component together build
the complete authoring environment for WBT materials.

References

[1] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, editors.The Description
Logic Handbook - Theory, Implementation and Applications. Cambridge University Press, 2003.

[2] U. Egly, B. Schiemann, and J. Schneeberger. Technical documentation authoring based on Semantic
Web methods.Künstliche Inteligenz, (2/2005):56–59, 2005.

[3] E.A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor,Handbook of theoretical
Computer Science: Formal Models and Semantics, pages 996–1072. Elsevier, 1990.

[4] D. Stotts and J. Navon. Model checking cobweb protocols for verification of html frames behaviour.
In Proc. of the 11th Int. Conf. on WWW, pages 182–190. ACM Press, 2002.

[5] F. Weitl and B. Freitag. Checking semantic integrity constraints on integrated web documents. In
Proc. of the CoMWIM 2004, volume 3289, pages 198–209. Springer-Verlag, 2004.

[6] F. Weitl and B. Freitag. Model checking semantic properties of web documents based on temporal
description logics. Technical report, Teaching Chair of Information Management, University of
Passau, 2006. fortcoming.

[7] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns in property specifications for
finite-state verification. InProceedings of the 21st international conference on Software engineering,
pages 411–420. IEEE Computer Society Press, 1999.

[8] Property Pattern Mappings for CTL. http://www.patterns.projects.cis.ksu.edu/documentation/patterns/ctl.shtml,
February 2006. Last visited Feb. 2006.


