
Statistics for Cost-Based XML Query Optimization
Jose de Aguiar Moraes Filho, Theo Härder

University of Kaiserslautern
{ aguiar | haerder}@informatik.uni-kl.de

Abstract. Cost-based query optimization (CBO) is a very important area for data management in gen-
eral and for XML data management in particular. For native XML database management systems
(XDBMS), CBO techniques are harder than for relational databases, because the underlying tree-based
data model is much more complex and the relative order (document order) between XML elements
(nodes) matters. In this paper, we present our first ideas on statistics data structures supporting CBO,
that is, the mapping of a logical access model with algebraic operators to the physical access model. In
our prototype system called XTC (XML Transaction Coordinator), the physical access model is em-
bodied by a toolbox of path processing operators from which the best performing operators have to be
selected based on statistic information for the construction of the query execution plan.

1� Introduction
The increasing use of XML urges DB research to improve query processing on natively stored XML
data. Regarding current XML research, several approaches are focusing on heuristic or algebraic
query processing techniques. However, only a few of them are taking into account the so-called cost-
based XML query optimization (XML CBO). To the best of our knowledge, there are hardly any pub-
lished research projects coping specifically with this subject. CBO is a very important area for data
management in general and for XML data management in particular. With CBO, a query processor
can choose a better query execution plan (QEP) based on information (the so-called statistics) about
the data to be queried. Hence, query execution may be improved with respect to response time and/or
transaction throughput. On the other hand, we have learned from relational database use that it is not
always easy to derive appropriate data statistics and to keep them accurate. For native XDBMSs, this
task is even harder because the underlying tree-based data model is much more complex and the rela-
tive order (document order) between XML elements (nodes) matters.

This paper is structured as follows. We briefly present in Section 2 the XTC system serving as our
runtime environment for all optimization considerations. Then, Section 3 studies XML Query Proc-
essing. In section 4, we sketch our proposal to store statistical data in a XDBMS. Related works on
XML CBO are referenced in Section 5, before we wrap up the paper.

2� The XTC XDBMS
XTC is a full-fledged native XML database
manager already proven as an engine effective
for storing and controlling concurrent access to
XML documents in a multi-user environment
[5, 10]. It allows the use of several XML APIs,
such as DOM and SAX, and querying XML
data through descriptive languages such as
XPATH [14] and XQuery [15]. The XTC de-
sign strictly adheres to the well-known layered
database architecture [3]. In the following, we
briefly sketch the most important XTC compo-
nents for our work (see Fig. 1). Above a con-
ventional solution for File Services and Propa-
gation Control, the Access Service layer main-
tains all physical object representations, that is,
data records, fields, etc. as well as access paths
structures, such as lists, B- and B*-trees, as)LJXUH����;7&�$UFKLWHFWXUH�

well as internal catalog information. The Node Processing Services (NPS) layer provides navigational
and set-oriented physical operations (such as structural joins) to be used in the physical access model.
The XML Services layer directly supports the various XML language models offered to the applica-
tions and internally provides the logical access model together with its mapping to the layer below.

In XTC, an XML document is stored into a B*-
tree in which prefix-based labelling, the SPLID
scheme (stable path labeling identifier) in XTC
terminology, is used. The resulting structure is
called document store (Fig.2a). Thus, XTC con-
trols the document order and enables fast direct
and navigational accesses (parent/child/sibling)
to XML data. To encode the element names in an
XML document, XTC maintains a vocabulary
which is represented by an ordered list of (Vo-
cID, name) pairs where VocID contains the in-
ternal numeric representation of an element
name or attribute name. Using B-tree indexes, an
element index is additionally created and main-
tained by XTC. The element index keeps a Name
Directory with (potentially) all element names –
so-called tags – occurring in an XML document.
Each tag entry in the Name Directory points to a
set of SPLIDs (or DeweyIDs [4, 6]) in document
order, which address all corresponding element
nodes in the document store (Fig. 2b). In fact, all
SPLIDs indexing the nodes of a single element name are organized as a B*-tree which maintains the
document order among the SPLIDs and enables direct access to each of them. With these storage
mechanisms, XTC provides all “external” input sets for querying data in document order.

3� XML Query Processing
Declarative query languages, such as XPath and XQuery, are supported by XTC in its XML Services
layer. Because this kind of query processing is a complex activity, it requires appropriate levels of
abstraction. The top-most level corresponds to the language model, where syntactic and semantic
analyses have to be applied to the query statement processed. Furthermore, it is necessary to build an
internal graph representation (logical algebra) of each query statement to enable graph transforma-
tions towards an equivalent, but more efficient processing structure and to allow for a kind of proce-
dural evaluation.

Once the internal graph representation is built, optimization by rewriting the query can start at the
level of the logical access model. Rewriting is primarily accomplished by use of algebraic transforma-
tions. Another possible optimization is applying sequence heuristics by which selective algebraic op-
erations can be executed as early as possible. So far, no system-specific issue was taken into account.

For the next level, the physical access model, our NPS layer provides a set of path processing opera-
tors performing a variety of structural joins. Hence, each logical algebraic operator is mapped to one
or more physical operators, yielding several possible query QEPs. Each physical operator embodies a
specific algorithm that relies on the existence of indexes, document structure, element order, etc. In
order to choose the optimal QEP, it is necessary to enumerate the set of “promising” plans and, for
each of them, to estimate the cost by applying a tailored cost model. The cost model in turn relies on
statistical information of XML data. For example, statistics might reflect the cardinality of XML ele-
ments, the number of physical pages in which the XML document is stored and the selectivity of
paths in the document. The cost estimate takes I/O costs, CPU costs, and communication costs (rele-
vant to distributed settings) into account. In fact, the costs of I/O and CPU usage heavily depend on
the underlying storage model. After having computed a set of candidate QEPs, the cheapest QEP is
chosen and evaluated.

)LJXUH����;7&�6WRUDJH�0RGHO�

1DPH�'LUHFWRU\�

In general, the use of statistics implies a trade-off between statistics accuracy and storage space /
maintenance effort needed. The more accurate the statistics should be, the more space is necessary to
store it and the more frequent it has to be adjusted to the existing data structures.

4� Statistics for Cost-Based XML Query Processing
To illustrate these concepts and to show the use of statistical
information, consider an XML document stored in XTC a
sample fragment of which is depicted in Figure 3. We can
use XPath or XQuery statements to query this document. In
Figure 4, we illustrate a query statement in both languages
that requests authors of books having the value (name)
“ Ende” and whose books have the title “ Momo” . Here, two
characteristics of XML query processing are revealed: Que-
ries referring to structure represented by path steps and those
referring to values represented by where-clause predicates of
an XQuery statement or brackets of an XPath expression.
Whatever language in which the query is submitted, the
query statement has to be internally translated into logical
algebra expressions [8, 9]. In Figure 4, the query graph con-
sists of a set of join operations () and indicates a kind of
logical precedence structure. Based on this logical algebraic
expression, the optimizer should generate physical plans by
combining existing physical operators.

For optimization purposes, the NPS
layer provides an extensive set of
structural joins and other path proc-
essing operators in a so-called PPO
(path processing operators) toolbox.
Because there are at least three or-
thogonal dimensions for building and
classifying these operators, for each
logical operator we can make several
physical operators available whose
optimal use is dependent on the specific characteristics of the XML document. The axis operator
dimension has 8 entries and regards the various XPath axes (e.g. ancestor, descendant, etc.). The
evaluation sequence dimension considers the PPO use for the optimal selectivity-dependent process-
ing sequence of path expressions: bottom-up (leaf-to-root), top-down (root-to-leaf), or starting in the
middle. Note, although a logical precedence structure for the path processing operators is given by the
query formulation, query evaluation may deviate from it, as long as the same final result can be guar-
anteed. Finally, we have the dimension evaluation type where two kinds of algorithms are possible to
evaluate a path expression: binary structural join and holistic twig join. The former structurally joins
each pair of axis operators; whereas the latter evaluates the whole (or larger parts of the) path expres-
sion. Each of these approaches can in turn operate in navigational mode (i.e., node at a time) or in set-
oriented mode (i.e., sequence at a time). For example, [9] proposes eight structural hash join algo-
rithms in the axes parent, ancestor, child and descendant, whether in bottom-up or top-down fashion,
namely ParHashA, AncHashB, ParHashB, AncHashB, ChildHashA, DescHashB, ChildHashB, and
DescHashB. The endings A and B define which input sequence is hashed.

In order to drive the logical-to-physical mapping, we also need a data structure to store statistics. Due
to the dual characteristics (structure and value) of XML documents and to make a complete coverage,
we want to use two kinds of statistics: structural statistics and value statistics. The former is tailored to
the evaluation of path expressions, whereas the latter is useful to evaluate predicates. Whatever the
kind of statistics, the storage structure should combine the benefits of both: capturing the concept of
document order and being compact enough to be stored in memory.

<bib>
 <book year="1994">
 <title>TCP/IP Illustrated</title>
 <author>
 <last>Stevens</last>
 <first>W.</first>
 </author>
 <publisher>Addison-Wesley</publisher>
 <price> 65.95</price>
 </book>
 <book year="1992">
 <title>Advanced Programming in the…</title>
 <author>
 <last>Stevens</last>
 <first>W.</first>
 </author>
 <publisher>Addison-Wesley</publisher>
 <price>65.95</price>
 </book>
 <book year="2000">
 …
 </book>
……
</bib>

)LJXUH����6DPSOH�;0/�'RFXPHQW�

Title Momo

Book

Ende

Author

Figure 4. A Query and its Logical Algebraic Plan

Queries

XPath) //book[/title=“ Momo”]//author[“ Ende”]
XQuery) For $i in //book, $a in $i//author

Where $i/title=“ Momo” and $a=“ Ende”
Return ($i, $a)

4

3

2

1

Author

Book

Title

PathD Count

/Ende 100

PathA Count

/Fili 10

PathD Count

/Momo 10

PathA Count

/name 77

PathD Count

/Title 200

PathA Count

/isbn 150

Figure 5. XML Statistical Data Structure

In XTC, we can initially figure out a data structure to store statistics in which we capture distinct
XML elements in a structure similar to the Name Directory. Each element points to a set of pairs
(path, count) for each ancestor and descendant axis. Path contains the encoded distinct path rooted by
the element, whether ancestor(PathA) or descendant (PathD). Count, also called frequency, represents
the number of ancestor (descendant) paths. We call it AXS-Stat (An XML Structural Statistics, see
Figure 5). This approach has the potential to consume much memory space, since some redundancy is

allowed. However, this problem can
be overcome by using adaptive tech-
niques. For example, given a mem-
ory budget, paths with lowest fre-
quencies could be deleted and
PathD-tables with no path should not
be stored. If the budget changes
more information can be stored in
the AXS-Stat. In the worst case,
there would be only one encoded
PathD-table rooted by document
root.

Continuing the query optimization, each join operation in Fig.
4 can be mapped to one or more algorithms yielding several
possible query plans (QEP). Based on a cost model and statis-
tics, a cost is computed for each QEP. For illustration, let us
pick up the last join operation of the plan (number 1 in Fig. 4).
This operation can be performed by a Nested Loop join algo-
rithm [2], a ParHashA algorithm or a ParHashB algorithm. The
statistics structure indicates that the cardinality of title is 200
and that of Momo is 10. Thus, Momo´s selectivity is 0.05 un-
der title. For the first algorithm, the cost would be 2000 in the
worst case. For the second one (ChildHashA), the cost would
be 1000, in case it builds a hash table, because of the lesser
selectivity, on title being the parent of Momo, and then probes
with the SPLIDs of the Momo values. The third one, ParHashB hashes child (Momo), having much
higher selectivity than title, and probes title. Let us assume its cost is 500. Thus, the algorithm of
choice to process the join is ParHashB. This optimization process is recursively executed for all op-
erations in the plan. The final optimized QEP would look like Figure 6. Here, the ChildHashA algo-
rithm was selected for join 3, again based on statistics, because the book element is more selective
than the author element and this algorithm builds a hash table for parent/ancestor (book).

5� Related Work
So far, there are only a few publications coping specifically with XML CBO: Data Guide in [11]; Path
Tree (PT) and Markov Tables (MT) [1]; XPathLearner in [7]; XSKETCH in [12] and Bloom Histo-
gram in [13]. All of these proposals summarize XML data by the use of a tree-based structure and
once the structure cannot be stored in memory, they prune paths with length up to K, where K is a
tuning parameter. All of them propose pruning at level 2 (K=2). Some of them, such as Markov Ta-
bles and XPathLearner, use a Markov model to estimate longer paths. Even though, they use pruned
paths in table entries. Others use histograms, as in XSKETCH and Bloom Histograms, to model selec-
tivity of paths and element values. Besides, only Data Guides have focused their use on a semi-
structured DBMS. Empirical results for these proposals, especially on their quality to guide the query
optimization phase, on their memory consumption, as well as on the maintenance overhead to be
taken into account, are hardly available.

4

3

2

1

Figure 6. The Optimized QEP

Title Momo

Book

Ende

Author

ParHashB

ParHashB

ParHashB

ChildHashA

6� Conclusion
In this paper, we studied important aspects of XML cost-based query processing. We proposed, as our
first idea, a specific structure to store statistical information for XML documents to be integrated into
our prototype system XTC. This structure called AXS-Stat tries to capture the structural relationships
among XML elements within a memory space budget. Moreover, AXS-Stat can be used in an adap-
tive fashion. We outlined the use of this statistical information in the course of the query optimization
process.

Our future work includes the development and implementation of an algorithm for building and main-
taining AXS-Stat. Furthermore, we will design and explore appropriate cost models for a cost-based
query mechanism. XTC can be considered as an ideal testbed for comparative studies, because we can
easily implement alternative approaches and run them under identical conditions. Therefore, by run-
ning benchmarks and comparative experiments against competing approaches (see Section 5), we can
stepwise improve our approach based on empirical evidence and quantify to what extent it is competi-
tive. Most important for this proceeding is the definition of suitable baseline experiments at the be-
ginning to observe progress in the optimization endeavor at all.

References
1. Aboulnaga, A., Alameldeen, A. R., Naughton, J. F.: Estimating the Selectivity of XML Path Ex-

pressions for Internet Scale Applications. In Proceedings of the 27th VLDB Conference. Roma,
Italy, 2001, pp.591-600.

2. Al-Khalifa, S., Jagadish, H. V., Patel, J. M., Wu, Y., Koudas, N., Srivastava, D.: Structural Joins:
A Primitive for Efficient XML Query Pattern Matching. In Proceedings of the 18th Int. Conf. on
Data Engineering. San Jose, 2002, pp. 141-152.

3. Härder, T., Reuter, A.: Concepts for Implementing a Centralized Database Management System.
In Proceedings of the Int. Comp. Symposium on Application Systems Development, 1983, Nürn-
berg, pp. 28-60.

4. Härder, T., Haustein, M. P., Mathis, C., Wagner, M.: Node Labeling Schemes for Dynamic XML
Documents Reconsidered. In Data & Knowledge Engineering, Elsevier, 2006.

5. Haustein, M. P.: Feingranulare Transaktionsisolation in nativen XML-Datenbanksystemen, Ver-
lag Dr. Hut, München, Januar 2006.

6. Haustein, M. P., Härder, T., Mathis, C., Wagner, M.: DeweyIDs - The Key to Fine-Grained Man-
agement of XML Documents. In Proc. 20th Brazilian Symposium on Databases, Uberlandia, Mi-
nas Gerais, Brazil, October 2005, pp.85-99.

7. Lim, L., Wang, M., Padmanabahn, S., Vitter, Jeffrey S., Parr, R.: XPathLearner: An On Line
Self-Tuning Markov Histogram for XML Path Selectivity Estimation. In Proceedings of the 28th
VLDB Conference. Hong Kong, China, 2002, pp.442-453.

8. Mathis, C., Härder, T.: Hash-Based Structural Join Algorithms. In Proceedings of the 2nd Int.
Workshop on Database Technologies for Handling XML Information on the Web, Munich,
March 2006.

9. Mathis, C., Härder, T., Haustein, M.: Locking-Aware Structural Join Operators for XML Query
Processing. In Proceedings of the ACM SIGMOD International Conference on Management of
Data, Chicago, June 2006.

10. Mathis, C., Härder, T.: A Query Processing Approach for XML Database Systems. In Proc. 17th
Workshop "Grundlagen von Datenbanken", Wörlitz, Sachsen-Anhalt, Mai 2005, pp. 89-93.

11. McHugh, J., Widow, J.: Query Optimization for XML. In Proceedings of the 25th VLDB Confer-
ence. Edinburgh, Scotland, 1999, pp. 315-326.

12. Polyzotis, N., Garofalakis, M.: Structure and Value Synopses for XML Data Graphs. In Proceed-
ings of the 28th VLDB Conference. Hong Kong, China, 2002, pp. 466-477.

13. Wang, W., Jiang, H., Lu, H., Yu, Jeffrey Xu.: Bloom Histogram: Path Selectivity Estimation for
XML Data with Updates. In Proceedings of the 30th VLDB Conference. Toronto, Canada, 2004,
pp.240-251.

14. XPATH XML Path Language 2.0. W3C Candidate Release (Nov. 2005).
15. XQuery 1.0: An XML Query Language. W3C Candidate Release (Nov. 2005).

