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Abstract. Cost-based query optimization (CBO) is a very important area for data management in gen-
eral and for XML data management in particular. For native XML database management systems 
(XDBMS), CBO techniques are harder than for relational databases, because the underlying tree-based 
data model is much more complex and the relative order (document order) between XML elements 
(nodes) matters. In this paper, we present our first ideas on statistics data structures supporting CBO, 
that is, the mapping of a logical access model with algebraic operators to the physical access model. In 
our prototype system called XTC (XML Transaction Coordinator), the physical access model is em-
bodied by a toolbox of path processing operators  from which the best performing operators have to be 
selected based on statistic information for the construction of the query execution plan. 

1� Introduction 
The increasing use of XML urges DB research to improve query processing on natively stored XML 
data. Regarding current XML research, several approaches are focusing on heuristic or algebraic 
query processing techniques. However, only a few of them are taking into account the so-called cost-
based XML query optimization (XML CBO). To the best of our knowledge, there are hardly any pub-
lished research projects coping specifically with this subject. CBO is a very important area for data 
management in general and for XML data management in particular. With CBO, a query processor 
can choose a better query execution plan (QEP) based on information (the so-called statistics) about 
the data to be queried. Hence, query execution may be improved with respect to response time and/or 
transaction throughput. On the other hand, we have learned from relational database use that it is not 
always easy to derive appropriate data statistics and to keep them accurate. For native XDBMSs, this 
task is even harder because the underlying tree-based data model is much more complex and the rela-
tive order (document order) between XML elements (nodes) matters.  

This paper is structured as follows. We briefly present in Section 2 the XTC system serving as our 
runtime environment for all optimization considerations. Then, Section 3 studies XML Query Proc-
essing. In section 4, we sketch our proposal to store statistical data in a XDBMS. Related works on 
XML CBO are referenced in Section 5, before we wrap up the paper. 

2� The XTC XDBMS 
XTC is a full-fledged native XML database 
manager already proven as an engine effective 
for storing and controlling concurrent access to 
XML documents in a multi-user environment 
[5, 10]. It allows the use of several XML APIs, 
such as DOM and SAX, and querying XML 
data through descriptive languages such as 
XPATH [14] and XQuery [15]. The XTC de-
sign strictly adheres to the well-known layered 
database architecture [3]. In the following, we 
briefly sketch the most important XTC compo-
nents for our work (see Fig. 1). Above a con-
ventional solution for File Services and Propa-
gation Control, the Access Service layer main-
tains all physical object representations, that is, 
data records, fields, etc. as well as access paths 
structures, such as lists, B- and  B*-trees, as )LJXUH����;7&�$UFKLWHFWXUH�



well as internal catalog information. The Node Processing Services (NPS) layer provides navigational 
and set-oriented physical operations (such as structural joins) to be used in the physical access model. 
The XML Services layer directly supports the various XML language models offered to the applica-
tions and internally provides the logical access model together with its mapping to the layer below. 

In XTC, an XML document is stored into a B*-
tree in which prefix-based labelling, the SPLID 
scheme (stable path labeling identifier) in XTC 
terminology, is used. The resulting structure is 
called document store (Fig.2a). Thus, XTC con-
trols the document order and enables fast direct 
and navigational accesses (parent/child/sibling) 
to XML data. To encode the element names in an 
XML document, XTC maintains a vocabulary 
which is represented by an ordered list of (Vo-
cID, name) pairs where VocID contains the in-
ternal numeric representation of an element 
name or attribute name. Using B-tree indexes, an 
element index is additionally created and main-
tained by XTC. The element index keeps a Name 
Directory with (potentially) all element names – 
so-called tags – occurring in an XML document. 
Each tag entry in the Name Directory points to a 
set of SPLIDs (or DeweyIDs [4, 6]) in document 
order, which address all corresponding element 
nodes in the document store (Fig. 2b). In fact, all 
SPLIDs indexing the nodes of a single element name are organized as a B*-tree which maintains the 
document order among the SPLIDs and enables direct access to each of them. With these storage 
mechanisms, XTC provides all “external” input sets for querying data in document order. 

3� XML Query Processing 
Declarative query languages, such as XPath and XQuery, are supported by XTC in its XML Services 
layer. Because this kind of query processing is a complex activity, it requires appropriate levels of 
abstraction. The top-most level corresponds to the language model, where syntactic and semantic 
analyses have to be applied to the query statement processed. Furthermore, it is necessary to build an 
internal graph representation (logical algebra) of each query statement to enable graph transforma-
tions towards an equivalent, but more efficient processing structure and to allow for a kind of proce-
dural evaluation.  

Once the internal graph representation is built, optimization by rewriting the query can start at the 
level of the logical access model. Rewriting is primarily accomplished by use of algebraic transforma-
tions. Another possible optimization is applying sequence heuristics by which selective algebraic op-
erations can be executed as early as possible. So far, no system-specific issue was taken into account.  

For the next level, the physical access model, our NPS layer provides a set of path processing opera-
tors performing a variety of structural joins. Hence, each logical algebraic operator is mapped to one 
or more physical operators, yielding several possible query QEPs. Each physical operator embodies a 
specific algorithm that relies on the existence of indexes, document structure, element order, etc. In 
order to choose the optimal QEP, it is necessary to enumerate the set of “promising” plans and, for 
each of them, to estimate the cost by applying a tailored cost model. The cost model in turn relies on 
statistical information of XML data. For example, statistics might reflect the cardinality of XML ele-
ments, the number of physical pages in which the XML document is stored and the selectivity of 
paths in the document. The cost estimate takes I/O costs, CPU costs, and communication costs (rele-
vant to distributed settings) into account. In fact, the costs of I/O and CPU usage heavily depend on 
the underlying storage model. After having computed a set of candidate QEPs, the cheapest QEP is 
chosen and evaluated.  
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In general, the use of statistics implies a trade-off between statistics accuracy and storage space / 
maintenance effort needed. The more accurate the statistics should be, the more space is necessary to 
store it and the more frequent it has to be adjusted to the existing data structures. 

4� Statistics for Cost-Based XML Query Processing 
To illustrate these concepts and to show the use of statistical 
information, consider an XML document stored in XTC a 
sample fragment of which is depicted in Figure 3. We can 
use XPath or XQuery statements to query this document. In 
Figure 4, we illustrate a query statement in both languages 
that requests authors of books having the value (name) 
“ Ende”  and whose books have the title “ Momo” . Here, two 
characteristics of XML query processing are revealed: Que-
ries referring to structure represented by path steps and those 
referring to values represented by where-clause predicates of 
an XQuery statement or brackets of an XPath expression. 
Whatever language in which the query is submitted, the 
query statement has to be internally translated into logical 
algebra expressions [8, 9]. In Figure 4, the query graph con-
sists of a set of join operations ( ) and indicates a kind of 
logical precedence structure. Based on this logical algebraic 
expression, the optimizer should generate physical plans by 
combining existing physical operators.  

For optimization purposes, the NPS 
layer provides an extensive set of 
structural joins and other path proc-
essing operators in a so-called PPO 
(path processing operators) toolbox. 
Because there are at least three or-
thogonal dimensions for building and 
classifying these operators, for each 
logical operator we can make several 
physical operators available whose 
optimal use is dependent on the specific characteristics of the XML document. The axis operator 
dimension has 8 entries and regards the various XPath axes (e.g. ancestor, descendant, etc.). The 
evaluation sequence dimension considers the PPO use for the optimal selectivity-dependent process-
ing sequence of path expressions: bottom-up (leaf-to-root), top-down (root-to-leaf), or starting in the 
middle. Note, although a logical precedence structure for the path processing operators is given by the 
query formulation, query evaluation may deviate from it, as long as the same final result can be guar-
anteed. Finally, we have the dimension evaluation type where two kinds of algorithms are possible to 
evaluate a path expression: binary structural join and holistic twig join. The former structurally joins 
each pair of axis operators; whereas the latter evaluates the whole (or larger parts of the) path expres-
sion. Each of these approaches can in turn operate in navigational mode (i.e., node at a time) or in set-
oriented mode (i.e., sequence at a time). For example, [9] proposes eight structural hash join algo-
rithms in the axes parent, ancestor, child and descendant, whether in bottom-up or top-down fashion, 
namely ParHashA, AncHashB, ParHashB, AncHashB, ChildHashA, DescHashB, ChildHashB, and 
DescHashB. The endings A and B define which input sequence is hashed. 

In order to drive the logical-to-physical mapping, we also need a data structure to store statistics. Due 
to the dual characteristics (structure and value) of XML documents and to make a complete coverage, 
we want to use two kinds of statistics: structural statistics and value statistics. The former is tailored to 
the evaluation of path expressions, whereas the latter is useful to evaluate predicates. Whatever the 
kind of statistics, the storage structure should combine the benefits of both: capturing the concept of 
document order and being compact enough to be stored in memory. 
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Figure 4. A Query and its Logical Algebraic Plan 

Queries 
 
XPath)      //book[/title=“ Momo” ]//author[“ Ende” ] 
XQuery)   For $i in //book,  $a in $i//author  

Where $i/title=“ Momo”  and   $a=“ Ende”      
Return ($i, $a) 
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Author 

Book 

Title 

PathD Count 

/Ende  100 

PathA Count 

/Fili  10 

PathD Count 

/Momo  10 

PathA Count 

/name 77 

PathD Count 

/Title 200 

PathA Count 

/isbn 150 

Figure 5. XML Statistical Data Structure 

In XTC, we can initially figure out a data structure to store statistics in which we capture distinct 
XML elements in a structure similar to the Name Directory. Each element points to a set of pairs 
(path, count) for each ancestor and descendant axis. Path contains the encoded distinct path rooted by 
the element, whether ancestor(PathA) or descendant (PathD). Count, also called frequency, represents 
the number of ancestor (descendant) paths. We call it AXS-Stat (An XML Structural Statistics, see 
Figure 5). This approach has the potential to consume much memory space, since some redundancy is 

allowed. However, this problem can 
be overcome by using adaptive tech-
niques. For example, given a mem-
ory budget, paths with lowest fre-
quencies could be deleted and 
PathD-tables with no path should not 
be stored. If the budget changes 
more information can be stored in 
the AXS-Stat. In the worst case, 
there would be only one encoded 
PathD-table rooted by document 
root. 

Continuing the query optimization, each join operation in Fig. 
4 can be mapped to one or more algorithms yielding several 
possible query plans (QEP). Based on a cost model and statis-
tics, a cost is computed for each QEP. For illustration, let us 
pick up the last join operation of the plan (number 1 in Fig. 4). 
This operation can be performed by a Nested Loop join algo-
rithm [2], a ParHashA algorithm or a ParHashB algorithm. The 
statistics structure indicates that the cardinality of title is 200 
and that of Momo is 10. Thus, Momo´s selectivity is 0.05 un-
der title. For the first algorithm, the cost would be 2000 in the 
worst case. For the second one (ChildHashA), the cost would 
be 1000, in case it builds a hash table, because of the lesser 
selectivity, on title being the parent of Momo, and then probes 
with the SPLIDs of the Momo values. The third one, ParHashB hashes child (Momo), having much 
higher selectivity than title, and probes title. Let us assume its cost is 500. Thus, the algorithm of 
choice to process the join is ParHashB. This optimization process is recursively executed for all op-
erations in the plan. The final optimized QEP would look like Figure 6. Here, the ChildHashA algo-
rithm was selected for join 3, again based on statistics, because the book element is more selective 
than the author element and this algorithm builds a hash table for parent/ancestor (book). 

5� Related Work 
So far, there are only a few publications coping specifically with XML CBO: Data Guide in [11]; Path 
Tree (PT) and Markov Tables (MT) [1]; XPathLearner in [7]; XSKETCH in [12] and Bloom Histo-
gram in [13]. All of these proposals summarize XML data by the use of a tree-based structure and 
once the structure cannot be stored in memory, they prune paths with length up to K, where K is a 
tuning parameter. All of them propose pruning at level 2 (K=2). Some of them, such as Markov Ta-
bles and XPathLearner, use a Markov model to estimate longer paths. Even though, they use pruned 
paths in table entries. Others use histograms, as in XSKETCH and Bloom Histograms, to model selec-
tivity of paths and element values. Besides, only Data Guides have focused their use on a semi-
structured DBMS. Empirical results for these proposals, especially on their quality to guide the query 
optimization phase, on their memory consumption, as well as on the maintenance overhead to be 
taken into account, are hardly available.  
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Figure 6. The Optimized QEP 
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6� Conclusion 
In this paper, we studied important aspects of XML cost-based query processing. We proposed, as our 
first idea, a specific structure to store statistical information for XML documents to be integrated into 
our prototype system XTC. This structure called AXS-Stat tries to capture the structural relationships 
among XML elements within a memory space budget. Moreover, AXS-Stat can be used in an adap-
tive fashion. We outlined the use of this statistical information in the course of the query optimization 
process. 

Our future work includes the development and implementation of an algorithm for building and main-
taining AXS-Stat. Furthermore, we will design and explore appropriate cost models for a cost-based 
query mechanism. XTC can be considered as an ideal testbed for comparative studies, because we can 
easily implement alternative approaches and run them under identical conditions. Therefore, by run-
ning benchmarks and comparative experiments against competing approaches (see Section 5), we can 
stepwise improve our approach based on empirical evidence and quantify to what extent it is competi-
tive. Most important for this proceeding is the definition of suitable baseline experiments at the be-
ginning to observe progress in the optimization endeavor  at all. 
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