
Fast mining of frequent tree structures by hashing and indexing

Dimitrios Katsaros, Alexandros Nanopoulos, Yannis Manolopoulos*

Department of Informatics, Aristotle University, Thessaloniki 54124, Greece

Received 13 January 2003; revised 26 May 2004; accepted 28 June 2004

Available online 3 August 2004

Abstract

Hierarchical semistructured data arise frequently in the Web, or in biological information processing applications. Semistructured objects

describing the same type of information have similar but not identical structure. Usually they share some common ‘schema’. Finding the

common schema of a collection of semistructured objects is a very important task and due to the huge amount of such data encountered, data

mining techniques have been employed.

In this paper, we study the problem of discovering frequently occurring structures in semistructured objects using the notion of association

rules. We identify that discovering the frequent structures in the early phases of the mining procedure is the dominant cost and we provide a

fast algorithm addressing this issue. We present experimental results, which demonstrate the superiority of the proposed algorithm and also

its efficiency in reducing dramatically the processing cost.

q 2004 Elsevier B.V. All rights reserved.

Keywords: Tree mining; Hashing; Semistructured data; Association rules
1. Introduction

The recent advances in networking and storage

technologies enabled a tremendous growth in the amount

of data that need to be retrieved from the network and

subsequently be processed. Characteristic examples

include the XML and HTML documents and the biological

data. An intrinsic feature possessed by all these data is that

they do not have a rigid, well-defined structure. There are

several reasons for that. For instance, the data source may

not impose any structure upon them, e.g. the Web data,

genome sequences. The data may be extracted from

various heterogeneous information sources, e.g. business-

to-business product catalogs, where data from multiple

suppliers (each with their own schema) must be integrated

so that buyers can query them. The term that prevailed in

order to characterize such kind of information is semi-

structured data [2].
0950-5849/$ - see front matter q 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.infsof.2004.06.006

* Corresponding author. Tel.: C30-231-099-6363; fax: C30-231-099-

6360.

E-mail addresses: dimitris@skyblue.csd.auth.gr (D. Katsaros), alex@

skyblue.csd.auth.gr (A. Nanopoulos), manolopo@skyblue.csd.auth.gr

(Y. Manolopoulos).
Although, semistructured data do not obey a strict

structure, it is very usual to share some common

substructures. Consider, for instance, a university’s portal,

which organizes the Web sites of its faculty members.

Usually, these sites are constructed in such a way that all

individual sites have some Web pages in common (e.g.

biographical information page, projects’ page, publications

page, etc.), but each member is allowed to add other pages

as well, like family info, hobbies pages, etc. Another

motivating example can be retrieved from the application of

Web usage mining [21]. Given a database of Web accesses,

we can form sequences of visited links, which have, in

general, the form of a graph. Since most of the time the

users’ interests have some overlap, we deduce that these

graphs share some common substructures. Common sub-

structures, in particular tree patterns, arise also in bioinfor-

matics. Researchers have collected vast amounts of RNA

structures, which are essentially trees. Whenever they are

interested in getting some information about a newly

sequenced RNA, they investigate whether it shares some

common topological patterns with other known RNA

structures.

Discovering frequently occurring or common (sub)struc-

tures in collections of semistructured data is a very
Information and Software Technology 47 (2005) 129–140
www.elsevier.com/locate/infsof

http://www.elsevier.com/locate/infsof


Fig. 1. A portion of ‘fish’ objects.

D. Katsaros et al. / Information and Software Technology 47 (2005) 129–140130
important task for numerous applications. It has applications

on querying/browsing information sources [10], on building

wrappers [29] and indexes [20], in storage for relational or

object-oriented database systems [8], on query processing

[19], on clustering documents based on their common

structure, and on caching [33].

Semistructured data are usually modeled by a graph [24]

or a tree [29], where a data object is represented by a node

and a connection or relationship between objects is encoded

by an edge between them. For the sake of convenience, we

illustrate a small example of semistructured objects in

Fig. 1, which is retrieved from the ‘Catalogue of Life’ site

(located at http://www.sp2000.org). The example shows a

portion of semistructured ‘fish’ objects.

In this work, we are interested in treating these data as

rooted, ordered and node-labeled trees, and study the

problem of discovering all frequent tree-like patterns that

appear a minimum number of times in a given collection of

semistructured data.
1.1. Schema discovery for semistructured data

Initial works on structural pattern discovery in collec-

tions of semistructured objects are described in Refs. [10,22,

23,30]. The major drawback of these methods is that they

are inherently unscalable, which is a serious problem due to

the huge volume of semistructured data and due to their

irregularity.

To deal with the huge volume of data, the exploitation of

data mining methodologies offered a robust solution.

Numerous algorithms were proposed to deal with the

problem of discovering frequent tree or graph (sub)struc-

tures. The discovery of common substructures in graph-

based data (graph mining) is investigated in the following

works [13–16,18,28,32], whereas research work on tree

mining is described in Refs. [1,5–7,29,31,34]. As pointed
out in Ref. [34], graph mining algorithms are likely to be too

general for tree mining. Considering the works, which

address tree mining, some of them deal with unordered trees

[6,31], and the rest with ordered trees [1,5,7,29,34], which is

the focus of this paper.

We can classify the works that address the problem of

ordered tree mining in two generic categories. The first

includes the algorithm of Wang et al. [7,29]. This method is

based on the original Apriori association rule mining

paradigm and implements a generate-and-test strategy.

The second category includes the works that devised an

incremental algorithm that simultaneously constructs the set

of frequent patterns and their occurrences level by level.

Examples of this category are the TREEMINER [34] and

the FREQT algorithm with its variations [1,5].

In this paper, we focus on the work of Wang et al. [7,29],

which considers mining collections of paths in ordered trees

with Apriori-style [3] techniques. We will refer to their method

as the WL algorithm. Our interest stems from the special kind

of patterns it discovers, that is, collections of paths.
1.2. Motivation

The WL algorithm is a multipass method, similar in

nature to the Apriori [3]. WL first determines the frequent

path expressions, which are sequences of node labels. The

path expressions are called 1-tree-expressions, because

they contain only one ‘leaf’, if we consider that every path

expression is a tree, in which every node has only one

child. Then, WL makes several iterations; at the kth (kR1)

iteration, it constructs a set of candidate (kC1)-tree-

expressions using the frequent k-sequences and applying

some pruning criteria. Each (kC1)-tree-expression is a

tree, which contains exactly kC1 leaves. This set is a

superset of the actual frequent (kC1)-tree-expressions.

Then, it determines the support of the candidates by

http://us.imdb.com


D. Katsaros et al. / Information and Software Technology 47 (2005) 129–140 131
scanning over the database of transaction objects. We can

easily see the similarities between WL and Apriori, if we

consider that each 1-tree-expression (i.e. path expression)

corresponds to a plain item of the Apriori, and each k-tree-

expression to an Apriori’s plain itemset of length k.

Though, the involvement of trees in WL—instead of

Apriori’s plain sets—introduces several challenges. Firstly,

we need a novel criterion to test ‘containment’ of tree-

expressions in the context of WL; Apriori dealt with it using

the usual ‘set containment’ criterion. WL dealt with it

providing the ‘weaker than’ relation (cf. Section 2), which is

essentially a subtree testing algorithm. Secondly, we need a

data structure to store the candidate tree-expressions, which

will facilitate the ‘containment’ testing and the generation of

new candidate tree-expressions; Apriori dealt with it using

the hash-tree. WL dealt with it providing the Pk tree, a

condensed data structure (cf. Section 2). Thirdly, we need to

address the problem related to the combinatorial explosion in

the number of candidate itemset of length 2; Apriori dealt

with it providing a solution based on hashing [25], which

substantially reduces the number of itemsets of length 2, that

must be tested for containment in the database. WL though,

does not provide any mechanism for dealing with the

combinatorial explosion in the number of candidate 2-tree-

expressions. As we prove in Section 5, this issue is present in

the context of WL and it is very important, because the

‘weaker than’ testing is much more time-consuming, since it

involves subtree testing. In the next paragraphs, we describe

in more detail the aspects of this defficiency of WL.

The execution cost of WL is determined by the number of

database scans (I/O cost) and the number of candidate tree-

expressions generated in each phase (CPU cost). Although

WL follows a multiphase approach which requires several

database scans (analogous to the Apriori paradigm), it has to

be noticed that the I/O cost can be drastically reduced by a

straightforward application of other multiphase approaches,

like the ones described in Refs. [26,27], which will require

up to two scans (or one at the best case for Ref. [27]).1

However, regardless of the number of scans, the CPU cost

can be significantly large, especially for low support values,

as it is the case for mining association rules from itemsets

[25]. Moreover, in the case of discovering frequent tree-

expressions the CPU cost is increased due to two reasons:
(a)
1 F

simi
it involves the costly operation of tree matching

required by the ‘weaker than’ criterion, and
(b)
 the number of candidates can increase very rapidly as a

result of the large number of possible combinations due

to the ordering and structuring of labels (differently

from plain itemsets).
For the reduction of CPU cost at each phase k, the

generated candidate k-sequences should have high
or reasons of fair comparison, we adopt the Apriori-like paradigm,

lar to WL.
probability of being frequent and also to avoid generating

k-sequences that represent the same k-tree-expressions.

The former requirement is addressed by combining only

frequent (kK1)-sequences (downward closure or anti-

monotonicity property [29]) and the latter by applying

some pruning strategies introduced in Ref. [29,

p. 361–362].

In the first iteration, we must construct the set of

candidate 2-tree-expressions. In general, the cardinality of

this set would be L1!(L1K1)/2, where L1 is the cardinality

of the set of frequent one-tree-expressions (path

expressions). The anti-monotonicity, which states the only

combinations of frequent k-tree-expressions can produce

frequent (kC1)-tree-expressions, is not able to prune

effectively the number of candidates in this early phase

(see also Ref. [3]). Thus, the number of candidate 2-tree-

expressions remains very large compared with that for later

phases (for kO2). Our experiments (see Fig. 3) attest that

the cardinality of the set of candidate 2-tree-expressions is

as much as two orders of magnitude larger than the

respective cardinality for k-tree-expressions (kO2). In WL,

candidates are indexed with a trie structure (Pk trie) which

requires a large number of tree matching operations,

especially during the second phase when the number of

candidates is large (see also Section 2.2). The breakdown of

the processing cost of each phase (see Section 5.1.2) shows

that the second phase corresponds to a performance

bottleneck for the WL algorithm.

The above observations come in accordance with

analogous ones for the problem of discovering frequent

(large) itemsets from basket data [3]. In that case, it was

found that support counting for candidates in the early

phases is the dominant processing cost, since the principle

of anti-monotonicity could not help in pruning many of

them. Algorithm DHP proposed in Ref. [25], during the kth

pass (usually kZ1 or 2), estimates the support of (kC1)-

large itemsets so as to avoid generating too many candidates

in the next phase. The estimation is derived by hashing

during the kth phase, all the (kC1)-itemsets contained in

each transaction so as to estimate their support during the

(kC1)th phase by the size (number of entries) of the

corresponding hash bucket. Another technique employed by

DHP is the database ‘trimming’, i.e. the reduction in the

number of transactions to be scanned and reduction in the

number of items in each transactions, if it can be identified

that some transactions or some items cannot contribute to

the support of any candidate. Though, the issue of database

trimming is orthogonal to our work and could be effectively

combined with our technique.

However, the direct application of hashing pairs of

1-tree-expressions, contained in each transaction, into the

same bucket of a hash table, in a way analogous to DHP, is

not efficient in the case of 2-tree-expressions, because there

are pairs of path-expressions that will never be combined to

generate a candidate. Moreover, since DHP was proposed

for itemsets, the hashing of 2-itemsets can be easily



D. Katsaros et al. / Information and Software Technology 47 (2005) 129–140132
performed (e.g. by applying a function on the two items). In

contrast, tree-expressions have structure and ordering,

which have to be taken into account.

Finally, some recent works which proposed methods

that avoid generating candidates, like the FP-tree [12],

cannot be adapted in a straightforward manner to this

problem, because of the structural properties of the tree-

expressions.

Therefore, a new method is required that will consider

the particular problems of the discovery of frequent tree-

expressions and that will address the overhead presented

during the early phase of the process, i.e. during the phase of

the testing of 2-tree-expressions. Therefore, we seek for an

indexing scheme for the space of candidate 2-tree-

expressions, in order to discover very fast the set of

candidates that satisfy the ‘weaker than’ relationship

without the need to examine this costly relationship of

tree matching between almost every pair of a candidate and

a transaction (due to non-effective pruning).

1.3. Contributions

The focus of this paper is on the problem of how to

efficiently index the search space of the candidate 2-tree-

expressions. We are seeking for a hashing scheme for tree-

expressions that takes into account the structural properties

of each candidate, i.e. labels, ordering and nesting.

The present work makes the following contributions.

Firstly, it identifies that support counting for 2-tree-

expressions is the major performance bottleneck for the

WL algorithm. Moreover, it identifies that the number of

candidate 2-tree-expressions is the factor responsible for the

running-time behavior of the algorithm.

Then, the paper describes an efficient hashing scheme for

ordered labeled trees that can help to avoid repetitively

performing a tree-matching algorithm. Finally, it presents

experimental results for the proposed method in order to

evaluate its efficiency.

The rest of this paper is organized as follows: Section 2

gives a comprehensive overview of the WL algorithm and a

formal description of the problem we are addressing. Section

3 describes a hashing scheme for ordered labeled trees, which

is an efficient solution for our problem and Section 4 presents

the complete algorithm for the efficient discovery of

structural associations between semistructured data. Finally,

Section 5 presents the experimental results and Section 6

concludes with a summary of the paper and its contributions,

and some issues that future work could address.
2 Order does matter in a list but it does not in a bag. Label repetition is

allowed both in a bag and a list node. In tile present paper we deal only with

nodes of list type, since our target is ordered semistructured data (e.g.

XML).
2. Preliminaries

2.1. Overview of WL algorithm

For our convenience we recall some definitions and give

a comprehensive description of the WL algorithm [29].
The data model employed for the representation of

semistructured data is that of labeled directed graphs. We

adopt the Object Exchange Model [24] for the representation

of semistructured objects. In this model, each object is

identified by a unique identifier &a and its value val(&a). Its

value may be either atomic (e.g. integer, string, float), a list

hl1:&a1,l2:&a2,.,ln:&ani or a bag hl1:&a1,l2:&a2,.,ln,:&ani.
2

For the schema discovery problem (to be defined shortly after)

the user must specify some objects, called transaction objects

and denoted as u, whose common structure we are interested

in identifying (e.g. in Fig. 1 the target objects are the fish

objects (&1) and (&2)).

Definition 1 (Tree expressions [29]). Consider an acyclic

OEM graph. For any label l, let l* denote either l or the wild

card label ?, which matches any label.
1.
 The nil structure t (that denotes containment of no label

at all) is a tree-expression.
2.
 Suppose that tei are tree expressions of objects ai, 1%i%p.

If val(&a)Zhl1:&a1,l2:&a2,.,lp:&api and hi1,i2,.,iqi is a

subsequence of h1,.,pi qO0, then hl*
i1
: tei1

;.; l*
iq
: teiq

i is

a tree-expression of object a.

Therefore, a tree expression represents a partial

structure of the corresponding object, since it can ignore

some references of the object and can stop at any level

[29]. A k-tree-expression is a tree-expression containing

exactly k leaf nodes. Each leaf node corresponds to a label

path emanating from a transaction object. Hence, a 1-tree-

expression is the familiar notion of a path expression, that

is, a sequence of labels. Each k-tree-expression can be

constructed by a sequence of k paths (p1,p2,.,pk), called

k-sequence, where no pi is a prefix of another. In order to

account for the fact that some children have repeating

outgoing labels, WL introduced superscripts for these

labels. Hence, for each label l in val(&a), li represents the

ith occurrence of label l in val(&a). Consequently, a

k-tree-expression can be constructed by a k-sequence

(p1,p2,.,pk), each pi of the form ½u; l1j1 ;.; ln
jn
;t�:

Although Definition 1 holds for acyclic graphs, in Ref.

[29] cyclic OEM graphs are mapped to acyclic ones by

treating each reference to an ancestor (that creates the

cycle) as a reference to a terminating leaf node. In this

case, the leaf obtains a label, which corresponds to the

distance of the leaf from its ancestor (i.e. the number of

intermediate nodes). For this reason, henceforth, we

consider only acyclic OEM graphs. Additionally, WL

replicates each node that has more than one ancestor.

The result of the above transformation is that each object

is equivalently represented by a tree structure.



D. Katsaros et al. / Information and Software Technology 47 (2005) 129–140 133
Definition 2 (Weaker than [29]). The nil structure t is

weaker than every tree-expression.
1.
 Tree-expression hl1:te1,l2:te2,.,ln:teni is weaker than

tree-expression hl01 : te01; l
0
2 : te02;/; l0m : te0mi if for

1%i%n, tei is weaker than some te0ji; where either l0ji Z
li or liZ? and hj1,j2,.,jni is a subsequence of h1,2,.,mi.
2.
 Tree-expression te is weaker than identifier &a if te is

weaker than val(&a).

This definition captures the fact that a tree-expression te1

is weaker than another tree-expression te2 if all information

regarding labels, ordering and nesting present in te1 is also

present in te2. Intuitively, by considering the paradigm of

association rules [3], the notion of tree expression

(Definition 1) is analogous of the itemset of a transaction

and the notion of weaker than relationship (Definition 2)

corresponds to the containment of an itemset by a

transaction (or by another itemset). Wang and Liu in Ref.

[29] introduced the use of wild card label ? in order to

discover more general patterns. However, the label ? can

produce non-meaningful patterns, because tree-expressions

containing many ? tend to become frequent dominating the

result. Moreover, as mentioned in Ref. [29], it increases the

complexity of the problem. Thus, we focus on the paradigm

of Ref. [3] where itemsets are drawn from a specified

domain where no wild cards exist. The consideration of this

topic is a subject of future work, in light of the results

produced in Ref. [9].

Definition 3 (Discovery problem). Consider a collection of

transaction objects in an OEM graph and a user specified

minimum support MINSUP. The support of a tree-

expression te is the percentage of transaction objects t

such that te is weaker than t. We denote that t is frequent

(also called large) if its support is above MINSUP. The

discovery problem is to find all frequent tree-expressions.

WL first determines the frequent path expressions, that is,

frequent 1-tree-expressions. Then it makes several iter-

ations. At the kth (kR1) iteration WL constructs a set of

candidate (kC1)-tree-expressions using the frequent

k-sequences and applying some pruning criteria. This set

is a superset of the actual frequent (kC1)-tree-expressions.

Then, it determines the support of the candidates by

scanning over the database of transaction objects. The

number of generated candidates is crucial to performance,

since it involves the costly to compute weaker than

relationship between tree-expressions, i.e. between pairs

of candidate and transaction objects.
3 It has to be noticed that PkK1 is different from tile candidate-trie used

for the case of plain itemsets, due to tile weaker than relationship used for

the discovery of frequent tree expressions.
2.2. Problem description

The structure employed by WL for indexing the

candidate tree-expressions of the kth phase is called

(kK1)-candidate-trie (or PkK1). It facilitates efficient

retrieval of pairs of (kK1)-sequences (p1,.,pkK2,pkK1)
and (p1,..., pkK2,pk), and the dynamic growth from FkK1 to

Fk. Each sequence is mapped to an ID number, and each node

of PkK1 contains the ID of the corresponding sequence so as

to minimize the storage requirements. During support

counting, PkK1 attains some pruning based on the downward

closure property. This is because, while descending PkK1 in a

top down fashion, we are able to deduce that a candidate

k-sequence is not weaker than a transaction object, if at least

one of its constituent j-sequences, 1%j%k is not weaker than

the transaction object.3 Nevertheless, as mentioned in Section

2.1, for the candidate 2-tree-expressions little pruning can be

accomplished based on this property, because for every

candidate 2-tree-expression, its first constituting 1-tree-

expression is present in too many transaction objects.

Whenever PkK1 cannot prune the searching of a node, a

tree matching operation is performed to test the weaker than

relationship between the transaction and the corresponding

candidate tree-expression that the examined sequences, up to

this node, comprise. Thus, PkK1 cannot reduce the processing

cost for the support counting of candidate 2-tree-expressions,

which is the most requiring step (with respect to the execution

time) of the discovery of frequent tree-expressions.

Therefore, our objective is to have an indexing scheme

for the space of candidate 2-tree-expressions, in order to

discover very fast the set of candidates that satisfy the

weaker than relationship without the need to examine this

costly relationship of tree matching between almost every

pair of a candidate and a transaction (due to non-effective

pruning). Therefore, access to the leaves of the trie is

required in such a selective manner, that for every

transaction object we could locate those candidates

contained in it. In other words, we would like to ‘break-

breakdown’ the transaction into its component 2-tree-

expressions and then increase their support, if they exist

as candidates. Therefore, we can formally define the

examined problem as follows:

Definition 4 (Containment searching problem). Let C be

a set of trees with exactly two leaf nodes and with labels on

edges drawn from a set of character strings. A member

of this set will be called pattern tree. Let T be another set of

trees with labels on edges drawn from the same set of

character strings. Each member of this set may have from 1

to as many leaf nodes. A member of this set will be called

subject tree. A pattern tree c is said to ‘be contained’ into a

subject tree t if and only if it is ‘weaker than’ t, with list

semantics. The problem is for each t2T to locate all c2C

that are contained in it.

Our concern is to have a scheme, which incurs only a

small computational overhead while dealing with the

candidate discovery procedure. We would like our scheme



D. Katsaros et al. / Information and Software Technology 47 (2005) 129–140134
to avoid tree matchings and rely upon number comparisons.

Additionally, to take into account the special characteristics

of our problem, which are the nested structure of the 2-tree-

expressions, the ordering between sibling nodes of a

candidate, and the absence of regular expressions in our

pattern trees. In other words, we seek for a hashing scheme

for ordered labeled trees.
3. The hashing scheme for labeled trees

Katzenelson et al. [17] described an encoding scheme for

solving the problem of type matching, i.e. the search of

identical data types in programming languages. Data types

are modeled with rooted labeled graphs, which are called

type-graphs. The scheme initially maps type-graphs into

multivariable polynomials, then each variable is assigned a

number from the sequence of the logarithms of prime

numbers. With this assignment, according to the Schanuel

conjecture [17], the resulting value of the polynomial

uniquely identifies the type-graph and is called magic

number. The CMP algorithm is proposed in Ref. [17] for the

calculation of magic numbers. CMP addresses the existence

of back edges in the graph structure (i.e. edges of the type

v/u, where u is an ancestor of v) and the possibility of a

node to have more than one ancestors. More details can be

found in Ref. [17].

Ordered labeled trees examined in the present work are a

special kind of type-graphs. An encoding scheme for

ordered labeled trees can exploit the characteristics of

magic numbers, which consider the ordering between

sibling nodes and the nesting of edges. Nevertheless, the

specialties of the labeled tree structure, compared to type-

graph, and the requirement for a hashing scheme with low

computational overhead (due to large database size in

contrast to a programming language environment) call for a

modified algorithm. The algorithm should produce identical

results to those of CMP. However, it has to be more efficient

than CMP for the case of ordered labeled trees. Thus, we

develop a new algorithm based on the original CMP, which

takes into account the special properties of our targeted

structures, i.e. ordered, labeled trees. We first present
Fig. 2. Labeled tree enc
the proposed algorithm for encoding labeled trees with

magic numbers and then we describe the hashing scheme.

3.1. Encoding algorithm

Let T be a labeled tree. For each vertex v of T we denote

the following:
†

odi
v.e: the label of the node v; recall that we deal with node-

labeled trees. We assume that there exists a mapping of

labels into the set of positive integers.
†
 v.S: the scan number assigned by an ordered depth first

search tree traversal (i.e. children of a node are visited

according to their order).
†
 v.l: the level of v (root is at level one and each child of a v

is at level v.1C1)
†
 v.O(u): (where u is a child of v) the index of u among the

sequence of v’s children.
†
 v.M: the magic number corresponding to the sub-tree

rooted at v.

For the calculation of magic numbers we use the TLP

variable, which is a table containing the sequence of

logarithms of prime numbers (precomputed). Based on the

above, the proposed algorithm, called Labeled Tree

Encoding (LTE), is presented in Fig. 2.

LTE algorithm traverses the labeled tree in an depth-first

order. The initial call of LTE (not shown in Fig. 2)

commences from the root vertex. Compared to CMP, LTE

follows a different approach. CMP separately produces the

multivariate polynomial and then, in a second stage, it

calculates the magic number. LTE calculates at each node

the magic number and then propagates it to the parent node,

up to the root. The magic number of the root corresponds to

the magic number of the entire labeled tree. This approach is

more efficient than maintaining a multivariate polynomial

(using specialized data structures) during the tree traversal

and calculating the magic number in a second stage. Also,

differently from CMP, the depth-first traversal of LTE

naturally corresponds to the structure of labeled trees.

Considering a vertex v during the traversal, step 1 of LTE

initializes the v.M value to v.eCv.S!TLP [1]. Thus, both

the fact that the tree is labeled and the nesting of vertices

(through their scan number) are taken into account. The scan
ng algorithm.



Fig. 3. (a) An example of three labeled trees. (b) The corresponding probe

structure.

D. Katsaros et al. / Information and Software Technology 47 (2005) 129–140 135
number v.S is multiplied by TLP [1] based on the approach

of CMP, because in the later the scan number is multiplied

by the variable that is assigned to the logarithm of the first

prime. If v is a leaf node (step 2), the traversal stops and the

magic number v.M is equal to value calculated at step 1.

Otherwise, the traversal continues to all children of v, at step

3 (children are visited according to their order in v, hence

the ordered depth-first traversal). Having calculated the u.M

of a child u, it is multiplied by the (v.lCv.O(u))(v.lC
v.O(u)K1)/2Kv.O(u)C3 element of TLP (step 5). This is

based on CMP algorithm, since this is the TLP value

assigned to the corresponding variable in the polynomial.

Finally, all u.M values are added to v.M (step 6). Therefore,

the ordering of v’s children is taken into account, because

each u.M is assigned to a different TLP value.
3.2. Hashing scheme

The magic number of a multivariate polynomial that

results after assigning to its variables values from the

sequence of logarithms of prime numbers, can be considered

as an irrational number. The Schanuel conjecture for the case

of type-graphs, ensures no collisions, i.e. no two different

type-graphs have the same magic number [17]. Therefore,

the same can be stated for the case of LTE and ordered labeled

trees. However, by using floating-point arithmetic (e.g. 64 bit

double precision float numbers) instead of irrational ones, the

resulting magic number is an approximation, which may

produce collisions. Experimental results in Ref. [17],

however, illustrate that for the case of type-graphs with one

million instances (with heights in the range 5–20 and

maximum number of a node’s children equal to 10), no

collisions were produced. Thus, the approximation of magic

numbers with float numbers is a hashing scheme, mapping

irrational magic numbers to floating-point ones that presents

good quality in terms of collisions. Moreover, it has to be

guaranteed that a magic number can fit within the limits of the

specified floating-point arithmetic. For the latter issue more

details can be found in Ref. [17], where normalization

techniques are proposed.

For large databases of ordered labeled trees, the

collection of magic numbers have to be maintained in a

probe structure, so that their matching can be examined

efficiently. We store the magic numbers in a hash table, the

size of which is determined by the size of available main

memory. However, due to the possibility of collisions

resulted by the floating-point arithmetic, the matching of

two magic numbers is verified by the actual matching of the

corresponding labeled trees, which is examined by applying

a tree-matching algorithm (based on the tree-matching

algorithm used in Ref. [29]). The whole procedure is

exemplified below:

Example 1. Let three labeled trees, t1, t2 and t3, be depicted

in Fig. 3a. Upon the incoming edge of each node, the

corresponding label is drawn (assuming a mapping of labels
to integer numbers). By applying LTE on this collection of

labeled trees, we get the resulting magic numbers m1Z
19.2628, m2Z26.5046 and m3Z26.4013, respectively. It

has to be noticed that although t2 and t3 consist of the same

set of labels (i.e. {0, 3,4}), due to different structure and

ordering, m2 is different from m3. The magic numbers are

stored in hashing structure, depicted in Fig. 3b. Assuming a

query tree q that is identical to t2, we first apply LTE on q.

Then, we probe the hash structure with the resulting magic

number and we get the entries in position 3 of the structure

as candidates. Since only m2 matches the query, we perform

a tree matching operation between q and t2 in order to verify

the actual matching of the labeled trees.
4. The complete mining algorithm

The complete mining algorithm for the discovery of

structural associations consists of two different stages. The

first one is the discovery of large path expressions (called

1-tree-expressions, which are trivial sequences), denoted as

F1. This stage does not involve nesting and ordering.

Therefore, traditional techniques [4] can be applied. A

straightforward method was adopted in Ref. [29], which

selects all path-expressions and counts their support in a

single pass. For purposes of fair comparison, we also follow

this approach, although other optimizations can be applied

(e.g. Web 1og mining algorithms).

The second stage, including phases Fk, k%2, introduces

the new Containment searching problem (Definition 4),

involving tree-expressions. During the second-phase F2 of

the complete algorithm, 2-tree-expressions are examined.

Since the number of candidates in this phase corresponds to

the bottleneck of the overall procedure, we apply the labeled

tree encoding algorithm and the representation with the hash

structure, presented in Section 3. This representation

facilitates the efficient support counting. Although this

approach can be followed for the forthcoming phases as

well, based on the observation in Ref. [25] that in phases

larger than two the DHP algorithm does not produce

significant improvements (and as verified by experiments

we performed for the case of labeled trees), we follow the

procedure of WL algorithm for the support counting of

k-tree-expressions for kO2. The complete mining algorithm

is depicted in Fig. 4.

As illustrated, steps 2–5 discover the set of frequent

1-tree-expressions (F1). In steps 3 and 4 each transaction is



Fig. 4. Complete algorithm.

D. Katsaros et al. / Information and Software Technology 47 (2005) 129–140136
trimmed against F1 by removing all path sequences that do

not belong to F1 This optimization helps the forthcoming

phases, since the complexity of the tree matching procedure

depends on the tree sizes (this optimization is also

applicable to WL algorithm).

For all candidates generated from F1, the magic number is

found with the LTE algorithm, and it is stored in a hash
structure together with a pointer to the corresponding labeled

tree (steps 8–12). The size of the hash structure depends on

the available main memory. To count the support of

candidate 2-tree-expressions, the 2-tree-expressions com-

ponents of each transactions are found and the corresponding

magic numbers are calculated (step 14). For each such magic

number the hash structure is probed and when a matching

among magic numbers is found (steps 15 and 16), the

corresponding trees are examined with the tree-matching

algorithm (step 17). In case of a match, the support of the

candidate is increased by one (step 18). The set of large

candidates comprise the set of large 2-tree-expressions,

denoted as F2 (step 22). As described, for the next phases, the

procedure of WL for the candidate support counting is

followed (steps 25-42). Based on Ref. [29], support counting

is facilitated by the Pk structure.

Since the selectivity of the Pk structure is not high (see

Section 1.2), by considering the very large number of

candidates in the second phase which is the bottleneck of the

whole mining procedure, the WL algorithm presents a

significantly larger cost compared to the procedure followed

by the Mabers algorithm of Fig. 4. The objective of

encoding labeled trees with magic numbers is to result in

fast operations of probing the hash structure instead of

performing tree matchings as in the case of WL and the Pk

structure. Experimental results in Section 5 verify this

conjecture.
5. Experiments

This section presents the experimental results on the

performance of the Mabers and the WL algorithm. Similar to

Ref. [29], we used synthetic as well as real data in order to

evaluate the performance of the algorithms over a range of

data characteristics. For the synthetic data, it was pointed

out in Ref. [29] that the performance of the algorithms is

affected by the number of candidates of each phase and not

from the number of transaction objects or the number of

labels. Thus, we present experiments where the independent

variable is the number of candidates. In this way, we are

able to ‘capture’ a wide range of different database

configurations (small/large databases, many/few labels,

many/few nodes, etc.) by varying the number of candidates.

As for the real datasets, similar to Ref. [29], we used a

portion of the Image Database (found at us.imdb.com).

In the Section 5.1, we describe the experiments with

synthetic data and in Section 5.2 we present the results for

real datasets.

5.1. Experiments with synthetic data

5.1.1. Generation of synthetic workloads

We generated acyclic transaction objects whose nodes

have list semantics only. Each workload is a set of

transaction objects. The method used to generate synthetic

http://us.imdb.com


Table 2

Data sets used for the experimental evaluation

Symbol Data set

D1 h100,5K,1,3,100i, h1K,5K,15,3,300i, h1K,5K,15,3,700i,

h1K,5K,15,3,700i, h1,30K,15,0,0i

D2 h100,5K,1,3,100i, h500,5K,15,3,300i, h500,5K,15,3,700i,

h500,5K,15,3,700i, h1,30K,15,0,0i

D3 h100,5K,1,3,100i, h750,5K,15,3,300i, h750,5K,15,3,700i,

h750,5K,15,3,700i, h1,30K,15,0,0i

D4 h100,5K,1,3,100i, h500,5K,15,3,300i, h500,5K,15,3,700i,

h500,5K,15,7,700i, h1,30K,15,0,0i

D. Katsaros et al. / Information and Software Technology 47 (2005) 129–140 137
transaction objects is based on Refs. [3,29] to the extent

possible, since not all details are clearly documented.

In the next paragraphs, we give a comprehensive overview

of the workload generator.

Each transaction object is essentially a hierarchy of

objects. Atomic objects are the objects having no descen-

dants. The height of an object is the length of the longest

path from that object to a descendant atomic object. Atomic

objects are at level 1. The level of a non-atomic object

equals the length of the longest path from that object to a

descendant atomic object. All transaction objects are at the

same level m, which is the maximal nesting level. Each

object is recognized by an identifier. The number of

identifiers for objects of level i is Ni. Each object is assigned

one (incoming) label which represents a ‘role’ for that

object. Any object i that has as subobject an object j, will be

connected to j through an edge labeled with the label of

object j. This means that once we select the subobjects for

an object we immediately have decided about the label of

their linking edge. All transaction objects have the same

incoming label. Next we describe how to draw labels for

object identifiers and how we select the subobjects of any

non-atomic object.

Objects belonging to the same level are assigned labels

drawn from a set which is different for each level and its

cardinality is Li for the ith level. We treat each object

serially and draw a label using a self-similar (fractal)

distribution [11]. This power law provides the means to

select some labels more frequently than others and thus to

simulate the fact that some ‘roles’ appear more frequently.

A parameter of this distribution determines the skewness of

the distribution ranging from uniform to highly skewed. In

our experiments, we used a parameter equal to 0.36, so as to

simulate a situation where labels are not equiprobably

selected, but on the other hand almost all labels are used

when the number of selections is large enough compared to

the set of labels.

The next issue that must be addressed is how many and

which lower level objects to select as subobjects for any

given object at level i. First, the number of its subobject

references is decided to be uniformly distributed with mean

equal to Ti. The selection of subobjects must model the fact

that some structures appear in common in many objects. In

order to achieve this, we used the notion of potentially large

sets [3]. Thus, subobject references for an object at level i

are not completely random, but instead are drawn from
Table 1

Notation used for the generation of synthetic data

Symbol Explanation

Li Number of level-i labels

Ni Number of level-I object identifiers

Ti Average size of val(o) for level-i identifiers o

Ii Average size of potentially large sets in Gi

Pi Number of potentially large sets in Gi

m Maximal nesting level
a pool of potentially large sets. If the maximum nesting level

equals m, then this pool is comprised by mK1 portions,

namely G1,G2,.,GmK1. Each Gi is comprised by sets of

level-i identifiers. The average size of such a set is Ii. For

more details regarding the distribution of cardinality of

these sets and the method for selecting object identifiers can

be found in Ref. [3]. The construction of the objects is a

bottom-up process. Starting from level-2, we must construct

N2 objects. For each object, we first choose the number of its

subobject references (that is, its size) and then pick several

potential large sets from G1 until its size is reached.

Recursively, we construct the level-3 objects and so on.

For any object belonging to any level, say level iO2, we

obligatorily choose one potentially large set from GiK1 and

then we choose the rest potentially large sets equiprobably

from all Gj, 1%j!i.

Thus, a generated data set in which transaction objects

are at level m will be represented as: hL1,N1,I1,P1i,hL2,N2,-

T2,I2,P2i,.,hNm,Tmi.
4 Table 1 summarizes the meaning of

various parameters used by the generator, whereas Table 2

describes the datasets we used, according to the notation of

Table 1. The examined values were selected along the lines

of those used by Wang and Liu [29].

5.1.2. Cost breakdown

The first experiment aimed at identifying the compu-

tational requirements of each phase for WL. Due to reasons

explained in Section 4, we focus on phases Fk, kR2 (second

stage). Table 3 depicts the number of candidates jCkj for

phase k for the data sets D1 and D2. We can observe that jC2j

is as much as two orders of magnitude larger than the number

of candidates for the other phases. Notice also that the

difference in jC2j between D1 and D2 is due to the smaller

number of labels in D2, which increases the search space, as

indicated in Ref. [29]. The large size of jC2j comprises the

bottleneck of the whole procedure, as illustrated in Fig. 5

which presents the execution times of each phase. This

verifies the motivation stated in Section 1.2.

5.1.3. Comparison of Mabers and WL

Next, we conducted an experiment to compare the

performance of Mabers and WL with respect to the number
4 Remember that T1Z0, LmZ1 and that there is no Gm.



Fig. 5. Execution time for each phase.

Table 3

Number of candidate tree-expressions for each phase

D1 D2

C2 33,016 117,870

L2 146 161

C3 364 358

L3 20 28

C4 15 29

L4 0 0

D. Katsaros et al. / Information and Software Technology 47 (2005) 129–140138
of candidates. Both algorithms were implemented using

the same components (wherever feasible). However, in

order to decouple the comparison from specific software and

hardware implementations, we used as performance

measure the number of numerical operations executed by

each algorithm.

Fig. 6 depicts the results of the comparison with respect

to the number of candidates. We used the data sets D1–D4,

which produce number of candidates in the range from a few
Fig. 6. Comparison betwe
tenths to a hundred of thousands. As depicted, the cost of

both algorithms increases with increasing number of

candidates. However, the increase for WL is much more

noticeable indicating that it is affected by the bottleneck.

On the other hand, Mabers is not affected as much as WL

and it achieves a performance improvement up to two orders

of magnitude.
5.2. Experiments with real data

In order to test our finding about the combinatorial

explosion in the number of candidate 2-tree-expressions and

the relative performance of the algorithms over real datasets,

we extracted a small subset of the movie objects found at

the Image Database (http://us.imdb.com). We extracted the

relevant information about the movies produced in the

United States during the last 20 years, i.e. (1983%Released_-

Year%2003 AND CountryZUSA). In response we got

around 11,000 movie titles. Along the lines of Ref. [29], we

retrieved the most common fields of these movies for the

OEM graph we built. We set the support threshold to 30% and

run the two algorithms. Firstly, we examined the number of

candidate tree-expressions of each phase, to test whether the

combinatorial explosion problem still persists, because real

data are ‘denser’ than synthetically generated. Although, we

found a small alteration in the relative number of candidates

in each phase and a larger number of phases, as can be seen in

Table 4, the combinatorial explosion problem is still present.

As for the relative performance of the algorithms, the WL

algorithm performs as much as 3!108 numerical operations

(node comparisons), whereas the Mabers algorithm per-

forms around 9!106 node comparisons, which is more than

an order of magnitude faster than WL.
en Mabers and WL.

http://us.imdb.com


Table 4

Number of candidate tree-expressions for each phase in real data

D1

C2 17,612

L2 503

C3 913

L3 328

C4 164

L4 107

C5 96

L5 60

C6 44

L6 11

C7 4

L7 0

D. Katsaros et al. / Information and Software Technology 47 (2005) 129–140 139
6. Conclusion

We considered the problem of the efficient discovery of

structural associations for semistructured data. Motivated by

the overhead incurred by the early phases of the discovery

procedure, we examined how to efficiently index the search

space of candidate tree-expressions.

We recognized that support counting for candidate

2-tree-expressions is the main performance bottleneck.

We proposed a new algorithm, called Mabers, which uses

a hashing scheme for ordered labeled trees in order to

efficiently carry out the support counting procedure for the

second phase. It compares favorably with a previously

proposed algorithm, namely WL [29].

Using a synthetic data generator, the experimental results

showed that Mabers clearly outperforms WL. For data sets

with large number of candidates, Mabers is up to two orders

of magnitude better than WL.
References

[1] K. Abe, S. Kawasoe, T. Asai, H. Arimura, S. Arikawa, Optimized

substructure discovery for semi-structured data, in: Proceedings of the

Sixth European Conference on Principles of Data Mining and

Knowledge Discovery (PKDD), Lecture Notes in Artificial Intelli-

gence, vol. 2431, 2002, pp. 1–14.

[2] S. Abiteboul, P. Buneman, D. Suciu, Data on the Web: From

Relations to Semistructured Data and XML, Morgan Kaufmann, Los

Altos, CA, 2000.

[3] R. Agrawal, R. Srikant, Fast algorithms for mining association rules in

large databases, in: Proceedings of the 20th International Conference

on Very Large Data Bases (VLDB), 1994, pp. 487–499.

[4] R. Agrawal, R. Srikant, Mining sequential patterns, in: Proceedings of

the IEEE International Conference on Data Engineering (ICDE),

1995, pp. 3–14.

[5] T. Asai, K. Abe, S. Kawasoe, H. Arimura, H. Sakamoto, S. Arikawa,

Efficient substructure discovery from large semi-structured data, in:

Proceedings of the Second SIAM Conference on Data Mining (SDM),

2002, pp. 158–174.

[6] T. Asai, H. Arimura, T. Uno, S. Nakano, Discovering frequent

substructures in large unordered trees, in: Proceedings of the Sixth

International Conference on Discovery Science (DS), Lectures Notes

in Artificial Intelligence, vol. 2843, 2003, pp. 47–61.
[7] G. Cong, L. Yi, B. Liu, K. Wang, Discovering frequent substructures

from hierarchical semi-structured data, in: Proceedings of the Second

SIAM Conference on Data Mining (SDM), 2002, pp. 175–192.

[8] A. Deutsch, M.F. Fernandez, D. Suciu, Storing semistructured data

with STORED, in: Proceedings of the ACM International Conference

on Management of Data (SIGMOD), 1999, pp. 431–442.

[9] M. Garofalakis, R. Rastogi, K. Shim, Mining sequential patterns with

regular expression constraints, IEEE Transactions on Knowledge and

Data Engineering 14 (3) (2002) 530–552.

[10] R. Goldman, J. Widom, Dataguides: enabling query formulation and

optimization in semistructured databases, in: Proceedings of the 23rd

International Conference on Very Large Data Bases (VLDB), 1997,

pp. 436–445.

[11] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, P.J. Weinberger,

Quickly generating billion-record synthetic databases, in: Proceedings

of the ACM International Conference on Management of Data (SIG-

MOD), 1994, pp. 243–252.

[12] J. Han, J. Pei, Y. Yin, Mining frequent patterns without candidate

generation, in: Proceedings of the ACM International Conference on

Management of Data (SIGMOD), 2000, pp. 1–12.

[13] J. Huan, W. Wang, J. Prins, Efficient mining of frequent subgraphs in

the presence of isomorphism, in: Proceedings of the Third IEEE

Conference on Data Mining (ICDM), 2003, pp. 549–552.

[14] A. Inokuchi, H. Kashima, Mining significant pairs of patterns from

graph structures with class labels, in: Proceedings of the Third IEEE

Conference on Data Mining (ICDM), 2003, pp. 83–90.

[15] A. Inokuchi, T. Washio, H. Motoda, An apriori-based algorithm for

mining frequent substructures from graph data, in: Proceedings of the

Fourth European Conference on Principles of Data Mining and

Knowledge Discovery (PKDD), Lecture Notes in Artificial Intelli-

gence, vol. 1910, 2000, pp. 13–23.

[16] A. Inokuchi, T. Washio, H. Motoda, Complete mining of frequent

patterns from graphs: mining graph data, Machine Learning 50 (3)

(2003) 321–354.

[17] J. Katzenelson, S.S. Pinter, E. Schenfeld, Type matching, type-graphs,

and the Schanuel conjecture, ACM Transactions on Programming

Languages and Systems 14 (2) (1992) 574–588.

[18] M. Kuramochi, G. Karypis, Frequent subgraph discovery, in:

Proceedings of the First IEEE Conference on Data Mining (ICDM),

2001, pp. 313–320.

[19] J. McHugh, J. Widom, Query optimization for XML, in: Proceedings

of the 25th International Conference on Very Large Data Bases

(VLDB), 1999, pp. 315–326.

[20] T. Milo, D. Suciu, Index structures for path expressions, in:

Proceedings of the Seventh International Conference on Database

Theory (ICDT), 1999, pp. 277–295.

[21] A. Nanopoulos, D. Katsaros, Y. Manolopoulos, A data mining

algorithm for generalized Wed prefetching, IEEE Transactions on

Knowledge and Data Engineering 15 (5) (2003) 1155–1169.

[22] S. Nestorov, S. Abiteboul, R. Motwani, Extracting schema from

semistructured data, in: Proceedings of the ACM International

Conference on Management of Data (SIGMOD), 1998, pp. 295–306.

[23] S. Nestorov, J.D. Ullman, J.L. Wiener, S.S. Chawathe, Representative

objects: concise representations of semistructured, hierarchical data,

in: Proceedings of the 13th International Conference on Data

Engineering (ICDE), 1997, pp. 79–90.

[24] Y. Papakonstantinou, H. Garcia-Molina, J. Widom, Object exchange

across heterogeneous information sources, in: Proceedings of the

IEEE International Conference on Data Engineering (ICDE), 1995,

pp. 251–260.

[25] J.S. Park, M.-S. Chen, P.S. Yu, Using a hash-based method with

transaction trimming for mining association rules, IEEE Transactions

on Knowledge and Data Engineering 9 (5) (1997) 813–825.

[26] A. Savasere, E. Omiecinski, S.B. Navathe, An efficient algorithm for

mining association rules in large databases, in: Proceedings of the 21st

International Conference on Very Large Data Bases (VLDB), 1995,

pp. 432–444.



D. Katsaros et al. / Information and Software Technology 47 (2005) 129–140140
[27] H. Toivonen, Sampling large databases for association rules, in:

Proceedings of the 22nd International Conference on Very Large Data

Bases (VLDB), 1996, pp. 134–145.

[28] N. Vanetik, E. Gudes, S.E. Shimony, Computing frequent graph

patterns from semistructured data, in: Proceedings of the Second IEEE

Conference on Data Mining (ICDM), 2002, pp. 458–465.

[29] K. Wang, H. Liu, Discovering structural association of semistructured

data, IEEE Transactions on Knowledge and Data Engineering 12 (3)

(2000) 353–371.

[30] Q.Y. Wang, J.X. Yu, K.-F. Wong, Approximate graph schema

extraction for semistructured data, in: Proceedings of the Seventh

International Conference on Extending Data Base Technology

(EDBT), Lecture Notes in Computer Science, vol. 1777, Springer,

Berlin, 2000, pp. 302–316.
[31] Y. Xiao, J.-F. Yao, Z. Li, M.H. Dunham, Efficient data

mining for maximal frequent subtrees, in: Proceedings of the

Third IEEE Conference on Data Mining (ICDM), 2003, pp.

379–386.

[32] X. Yan, J. Han, gSpan: graph-based substructure pattern mining, in:

Proceedings of the Second IEEE Conference on Data Mining (ICDM),

2002, pp. 721–724.

[33] L.H. Yang, M.L. Lee, W. Hsu, Efficient mining of XML query

patterns for caching, in: Proceedings of the International

Conference on Very Large Data Bases (VLDB), 2003,

pp. 69–80.

[34] M.J. Zaki, Efficiently mining frequent trees in a forest, in: Proceedings

of the Eighth ACM Conference on Knowledge Discovery and Data

Mining (SIGKDD), 2002, pp. 71–80.


	Fast mining of frequent tree structures by hashing and indexing
	Introduction
	Schema discovery for semistructured data
	Motivation
	Contributions

	Preliminaries
	Overview of WL algorithm
	Problem description

	The hashing scheme for labeled trees
	Encoding algorithm
	Hashing scheme

	The complete mining algorithm
	Experiments
	Experiments with synthetic data
	Experiments with real data

	Conclusion
	References


