Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1109/VISUAL.2004.32acmconferencesArticle/Chapter ViewAbstractPublication PagesvisConference Proceedingsconference-collections
Article

Flow Field Clustering via Algebraic Multigrid

Published: 10 October 2004 Publication History

Abstract

We present a novel multiscale approach for flow visualization. We define a local alignment tensor that encodes a measure for alignment to the direction of a given flow field. This tensor induces an anisotropic differential operator on the flow domain, which is discretized with a standard finite element technique. The entries of the corresponding stiffness matrix represent the anisotropically weighted couplings of adjacent nodes of the domain mesh. We use an algebraic multigrid algorithm to generate a hierarchy of fine to coarse descriptions for the above coupling data. This hierarchy comprises a set of coarse grid nodes, a multiscale of basis functions and their corresponding supports. We use these supports to obtain a multilevel decomposition of the flow structure. Standard streamline icons are used to visualize this decomposition at any user-selected level of detail. The method provides a single framework for vector field decomposition independent on the domain dimension or mesh type. Applications are shown in 2D, for flow fields on curved surfaces, and for 3D volumetric flow fields.

References

[1]
{1} D. Bauer and R. Peikert. Vortex tracking in scale space. Proc. Visualization'02, pp. 233-241, 2002.
[2]
{2} A. Brandt. Algebraic Multigrid Theory: The Symmetric Case. In Preliminary Procs. of the Intl. Multigrid Conf., Copper Mountain, Colorado, April 1983.
[3]
{3} A. Brandt. Algebraic Multigrid Theory: The Symmetric Case. Appl. Math. Comput., 19:23-56, 1986.
[4]
{4} A. Brandt, S. F. McCormick, and J. W. Ruge. Algebraic Multigrid for Automatic Multigrid Solutions with Application to Geodetic Computations. Technical Report, Institute for Computational Studies, Fort Collins, Colorado, October 1982.
[5]
{5} A. Brandt, S. F. McCormick, and J. W. Ruge. Algebraic Multigrid for Sparse Matrix Equations. In D. J. Evans, editor, Sparsity and Its Applications. Cambridge University Press, 1984.
[6]
{6} M. Brezina, A. J. Cleary, R. D. Falgout, V. E. Henson, J. E. Jones, T. A. Manteuffel, S. F. McCormick, and J. W. Ruge. Algebraic Multi-grid Based on Element Interpolation (AMGe). SIAM J. Sci. Comp., 22(5):1570-1592, 2000.
[7]
{7} T.P. Chartier. Spectral AMGe (¿AMGe). Abstracts of the Seventh Copper Mountain Conference on Iterative Methods, 2, 2002.
[8]
{8} U. Clarenz, M. Griebel, M. Rumpf, M. A. Schweitzer, and A. Telea. Feature sensitive multiscale editing on surfaces. to appear in The Visual Computer, 2004. numerik.math.uniduisburg.de/research/publications.htm.
[9]
{9} U. Diewald, T. Preußer, and M. Rumpf. Anisotropic diffusion in vector field visualization on euclidean domains and surfaces. IEEE TVCG, 6(2):139-149, 2000.
[10]
{10} J. Ebling and G. Scheuermann. Clifford convolution and pattern matching on vector fields. Proc. Visualization'03, pp. 193-200, 2003.
[11]
{11} H. Garcke, T. Preusser, M. Rumpf, A. Telea, U. Weikard, and J. J. van Wijk. A phase field model for continuous clustering on vector fields. IEEE TVCG, 7(3):230-241, 2000.
[12]
{12} T. Grauschopf, M. Griebel, and H. Regler. Additive Multilevel-Preconditioners based on Bilinear Interpolation, Matrix Dependent Geometric Coarsening and Algebraic Multigrid Coarsening for Second Order Elliptic PDEs. Appl. Num. Math., 23(1):63-96, 1997.
[13]
{13} M. Griebel, D. Oeltz, and M. A. Schweitzer. An Algebraic Multigrid Method for Linear Elasticity. SIAM J. Sci. Comp., 25(2):385-407, 2003.
[14]
{14} B. Heckel, G. Weber, B. Hamann, and K. I. Joy. Construction of vector field hierarchies. Proc. Visualization '99, IEEE Computer Society Press, pp. 19-25, 1999.
[15]
{15} A. Jain, M. Murty, and P. Flynn. Data clustering: a review. ACM Computer Surveys, 31(3):264-323, 1999.
[16]
{16} B. Jobard and W. Lefer. Creating evenly-spaced streamlines of arbitrary density. Visualization in Scientific Computing '97, 1997.
[17]
{17} K. Polthier and E. Preuss. Variational approach to vector field decomposition. Proc. VisSym'00, pp. 147-156, 2000.
[18]
{18} J. W. Ruge and K. Stüben. Efficient Solution of Finite Difference and Finite Element Equations by Algebraic Multigrid. In D. J. Paddon and H. Holstein, editors, Multigrid Methods for Integral and Differntial Equations, The Institute of Mathematics and its Applications Conference Series. Clarendon Press, 1985.
[19]
{19} W. Schroeder, K. Martin, and B. Lorensen. The Visualization Toolkit: An Object-Oriented Approach to 3D Graphics. Prentice Hall, 1995.
[20]
{20} A. Telea and J. J. van Wijk. 3D IBFV: Hardware-accelerated 3d flow visualization. Proc. Visualization '03, pp. 233-240, 2003.
[21]
{21} A. C. Telea and J. J. van Wijk. Simplified representation of vector fields. Proc. Visualization '99, IEEE CS Press, pp. 35-42, 1999.
[22]
{22} H. Theisel and H. P. Seidel. Feature flow fields. Proc. EG/IEEE Vis-Sym'03, pp. 141-148, 2003.
[23]
{23} Y. Tong, S. Lombeyda, A. Hirani, and M. Desbrun. Discrete multi-scale vector field decomposition. ACM TOG, 22(3), pages 445-452, 2003.
[24]
{24} X. Tricoche, G. Scheuermann, and H. Hagen. Continuous simplification of planar vector fields. Proc. Visualization, pp. 159-166, 2001.
[25]
{25} U. Trottenberg, C. W. Osterlee, and A. Schüller. Multigrid, Appendix A: An Introduction to Algebraic Multigrid by K. Stüben, pages 413- 532. Academic Press, San Diego, 2001.
[26]
{26} G. Turk and D. Banks. Image-guided streamline placement. In Proc. SIGGRAPH, pages 453-460, 1996.
[27]
{27} J. J. van Wijk. Image based flow visualization. Computer Graphics (Proc. SIGGRAPH '01), ACM Press, pp. 263-279, 2001.
[28]
{28} J. J. van Wijk. Image based flow visualization for curved surfaces. Proc. Visualization'03, pages 123-130, 2003.

Cited By

View all
  1. Flow Field Clustering via Algebraic Multigrid

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    VIS '04: Proceedings of the conference on Visualization '04
    October 2004
    667 pages
    ISBN:0780387880

    Sponsors

    Publisher

    IEEE Computer Society

    United States

    Publication History

    Published: 10 October 2004

    Check for updates

    Author Tags

    1. algebraic multigrid
    2. flow visualization
    3. multiscale visualization

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)1
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 10 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2016)2D Vector field approximation using linear neighborhoodsThe Visual Computer: International Journal of Computer Graphics10.1007/s00371-015-1140-932:12(1563-1578)Online publication date: 1-Dec-2016
    • (2010)Technical SectionComputers and Graphics10.1016/j.cag.2010.07.00434:6(719-728)Online publication date: 1-Dec-2010
    • (2009)Extreme simplification and rendering of point sets using algebraic multigridComputing and Visualization in Science10.5555/3220919.322123112:1(9-22)Online publication date: 1-Jan-2009
    • (2007)Visual exploration and evaluation of climate-related simulation dataProceedings of the 39th conference on Winter simulation: 40 years! The best is yet to come10.5555/1351542.1351673(703-711)Online publication date: 9-Dec-2007
    • (2007)Parallel hierarchical visualization of large time-varying 3D vector fieldsProceedings of the 2007 ACM/IEEE conference on Supercomputing10.1145/1362622.1362655(1-12)Online publication date: 16-Nov-2007
    • (2007)Interactive Glyph Placement for Tensor FieldsAdvances in Visual Computing10.1007/978-3-540-76858-6_33(331-340)Online publication date: 26-Nov-2007
    • (2006)Segmentation of flow fields using pattern matchingProceedings of the Eighth Joint Eurographics / IEEE VGTC conference on Visualization10.5555/2384796.2384819(147-154)Online publication date: 8-May-2006
    • (2006)Streamline PredicatesIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2006.10412:6(1601-1612)Online publication date: 1-Nov-2006
    • (2005)Vector field analysis and visualization through variational clusteringProceedings of the Seventh Joint Eurographics / IEEE VGTC conference on Visualization10.5555/2384060.2384066(29-35)Online publication date: 1-Jun-2005

    View Options

    Get Access

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media