Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1109/VISUAL.2004.51acmconferencesArticle/Chapter ViewAbstractPublication PagesvisConference Proceedingsconference-collections
Article

Interactive Exploration of Large Remote Micro-CT Scans

Published: 10 October 2004 Publication History

Abstract

Datasets of tens of gigabytes are becoming common in computational and experimental science. This development is driven by advances in imaging technology, producing detectors with growing resolutions, as well as availability of cheap processing power and memory capacity in commodity-based computing clusters. In this article we describe the design of a visualization system that allows scientists to interactively explore large remote data sets in an efficient and flexible way. The system is broadly applicable and currently used by medical scientists conducting an osteoporosis research project. Human vertebral bodies are scanned using a high resolution micro-CT scanner producing scans of roughly 8 GB size each. All participating research groups require access to the centrally stored data. Due to the rich internal bone structure, scientists need to interactively explore the full dataset at coarse levels, as well as visualize subvolumes of interest at the highest resolution. Our solution is based on HDF5 and GridFTP. When accessing data remotely, the HDF5 data processing pipeline is modified to support efficient retrieval of subvolumes. We reduce the overall latency and optimize throughput by executing high-level operations on the remote side. The GridFTP protocol is used to pass the HDF5 requests to a customized server. The approach takes full advantage of local graphics hardware for rendering. Interactive visualization is accomplished using a background thread to access the datasets stored in a multi-resolution format. A hierarchical volume renderer provides seamless integration of high resolution details with low resolution overviews.

References

[1]
{1} W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I. Foster, C. Kesselman, S. Meder, V. Nefedova, D. Quesnel, and S. Tuecke. Data management and transfer in highperformance computational grid environments. Parallel Comput., 28(5):749-771, 2002.
[2]
{2} W. Allcock, J. Bester, J. Bresnahan, S. Meder, P. Plaszczak, and S. Tuecke. GridFTP: Protocol extensions to FTP for the Grid. GWD-R (Recommendation), April 2003.
[3]
{3} C. Baru, R. Moore, A. Rajasekar, and M. Wan. The SDSC Storage Resource Broker. Proc. CASCON'98, Toronto, Canada, 1998.
[4]
{4} W. Benger, H.-C. Hege, A. Merzky, T. Radke, and E. Seidel. Efficient distributed file I/O for visualization in grid environments. In B. Engquist, L. Johnsson, M. Hammill, and F. Short, editors, Simulation and Visualization on the Grid, volume 13 of Lect. Notes Comput. Sci. Eng., pages 1-6. Springer Verlag, 2000.
[5]
{5} W. Bethel, B. Tierney, J. Lee, D. Gunter, and S. Lau. Using high-speed WANs and network data caches to enable remote and distributed visualization. In Supercomputing. IEEE, 2000.
[6]
{6} M. D. Beynon, R. Ferreira, T. Kurc, A. Sussman, and J. Saltz. DataCutter: Middleware for filtering very large scientific datasets on archival storage systems. In Proc. Mass Storage Systems, pages 119- 133, College Park, MD, March 2000. IEEE.
[7]
{7} I. Boada, I. Navazo, and R. Scopigno. Multiresolution volume visualization with a texture-based octree. The Visual Computer, 17(5):185- 197, 2001.
[8]
{8} B. Cabral, N. Cam, and J. Foran. Accelerated volume rendering and tomographic reconstruction using texture mapping hardware. In A. Kaufman and W. Krueger, editors, IEEE VolVis, pages 91-98, 1994.
[9]
{9} J. B. Charles and Critical Path Control Panel. Bioastronautics critical path roadmap. Baseline Document Rev D, NASA, 2003.
[10]
{10} M. Cox and D. Ellsworth. Application-controlled demand paging for out-of-core visualization. In Visualization. IEEE, 1997.
[11]
{11} T. Cullip and U. Neumann. Accelerating volume reconstruction with 3D texture mapping hardware. Technical Report TR93-027, Department of Computer Science, UNC-Chapel Hill, 1993.
[12]
{12} K. Engel, P. Hastreiter, B. Tomandl, K. Eberhardt, and T. Ertl. Combining Local and Remote Visualization Techniques for Interactive Volume Rendering in Medical Applications. In Visualization, pages 449- 452. IEEE, 2000.
[13]
{13} I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. Grid Services for Distributed System Integration. Computer, 35(6):37-46, 2002.
[14]
{14} L. A. Freitag and R. M. Loy. Adaptive, multiresolution visualization of large data sets using a distributed memory octree. In Proc. SC99: High Performance Networking and Computing, Portland, OR, November 1999. ACM Press and IEEE Computer Society Press.
[15]
{15} M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cacheoblivious algorithms (extended abstract). In Proc. Symp. Found. Comp. Sci., pages 285-397. IEEE, 1999.
[16]
{16} S. Guthe, M. Wand, J. Gonser, and W. Straßer. Interactive rendering of large volume data sets. In IEEE Visualization, page 53, Boston, 2002.
[17]
{17} H.-C. Hege, A. Hutanu, R. Kähler, A. Merzky, T. Radke, E. Seidel, and B. Ullmer. Progressive retrieval and hierarchical visualization of large remote data. In Proc. Workshop on Adaptive Grid Middleware, pages 60-72, September 2003.
[18]
{18} N. Jensen, S. Olbrich, H. Pralle, and S. Raasch. An efficient system for collaboration in tele-immersive environments. In Proc. Fourth Eurographics Workshop on Parallel Graphics and Visualization, pages 123-131. Eurographics Association, 2002.
[19]
{19} N. T. Karonis, M. E. Papka, J. Binns, J. Bresnahan, J. A. Insley, D. Jones, and J. M. Link. High-resolution remote rendering of large datasets in a collaborative environment. Future Gener. Comput. Syst., 19(6):909-917, 2003.
[20]
{20} J. Kniss, S. Premoze, C. Hansen, and D. Ebert. Interactive translucent volume rendering and procedural modeling. In IEEE Visualization, pages 109-116. IEEE, 2002.
[21]
{21} E. C. LaMar, B. Hamann, and K. I. Joy. Multiresolution techniques for interactive texture-based volume visualization. In IEEE Visualization, pages 355-362, San Francisco, 1999.
[22]
{22} C. Charles Law, William J. Schroeder, Kenneth M. Martin, and Joshua Temkin. A multi-threaded streaming pipeline architecture for large structured data sets. In Visualization, pages 225-232. IEEE, 1999.
[23]
{23} J. Li, W. Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp, R. Latham, A. Siegel, B. Gallagher, and M. Zingale. Parallel netCDF: A scientific high-performance I/O interface. In Proc. Supercomputing Conference, Phoenix, Arizona, November 2003.
[24]
{24} E. J. Luke and C. D. Hansen. Semotus visum: a flexible remote visualization framework. In Visualization, pages 61-68. IEEE, 2002.
[25]
{25} NCSA. HDF5 virtual data access layer. http://hdf.ncsa.uiuc.edu/HDF5/planning/DP/VirtualDataset.html.
[26]
{26} NCSA. HDF5 - a new generation of HDF, 2003. http://hdf.ncsa.uiuc.edu/HDF5/.
[27]
{27} Osteoporosis prevention, diagnosis, and therapy. NIH Consensus Statement, 17(1):1-45, March 2000.
[28]
{28} V. Pascucci and R. J. Frank. Hierachical indexing for out-of-core access to multi-resolution data. In Hierachical and Geometrical Methods in Scientific Visualization, page 225, 2003.
[29]
{29} C. Rezk-Salama, K. Engel, M. Bauer, G. Greiner, and T. Ertl. Interactive volume rendering on standard PC graphics hardware using multi-textures and multi-stage rasterization. In In Proc. SIGGRAPH/Eurographics Graphics Hardware, pages 109-118, 2000.
[30]
{30} T. Richardson, Q. Stafford-Fraser, K. R. Wood, and A. Hopper. Virtual network computing. IEEE Internet Computing, 2(1):33-38, January/February 1998.
[31]
{31} P. Rüegsegger, B. Koller, and R. Müller. A microtomographic system for the nondestructive evaluation of bone architecture. Calcif. Tissue Int., 58:24-29, 1996.
[32]
{32} Silicon Graphics, Inc., 1600 Amphitheatre Pkwy, Mountain View, CA 94043, United States. OpenGL Vizserver 3.1 White Paper - Application-Transparent Remote Interactive Visualization and Collaboration , April 2003.
[33]
{33} D. Stalling, M. Westerhoff, and H.-C. Hege. Amira - a highly interactive system for visual data analysis. 2004. to appear in: C.R. Johnson and C.D. Hansen (eds.), Visualization Handbook, Academic Press.
[34]
{34} R. Thakur, W. Gropp, and E. Lusk. Optimizing noncontiguous accesses in MPI-IO. Parallel Computing, 28(1):83-105, 2002.
[35]
{35} J. S. Thomsen, E. N. Ebbesen, and Li. Mosekilde. A new method of comprehensive static histomorphometry applied on human lumbar vertebral cancellous bone. Bone, 27(1):129-138, 2000.
[36]
{36} UNIDATA. netCDF - network common data format, 2004. http://my.unidata.ucar.edu/content/software/netcdf.
[37]
{37} J. S. Vitter. External memory algorithms and data structures: Dealing with massive data. ACM Computing Surveys, 33(2):209-271, 2001.
[38]
{38} M. Weiler, R. Westermann, C. Hansen, K. Zimmerman, and T. Ertl. Level-of-detail volume rendering via 3D textures. In IEEE VolVis, pages 7-13, 2000.

Cited By

View all
  • (2015)A Survey of Interactive Remote Rendering SystemsACM Computing Surveys10.1145/271992147:4(1-29)Online publication date: 26-May-2015
  • (2015)State-of-the-Art in GPU-Based Large-Scale Volume VisualizationComputer Graphics Forum10.1111/cgf.1260534:8(13-37)Online publication date: 1-Dec-2015
  • (2012)SkuareViewProceedings of the 2012 workshop on High-Performance Computing for Astronomy Date10.1145/2286976.2286984(25-32)Online publication date: 18-Jun-2012
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
VIS '04: Proceedings of the conference on Visualization '04
October 2004
667 pages
ISBN:0780387880

Sponsors

Publisher

IEEE Computer Society

United States

Publication History

Published: 10 October 2004

Check for updates

Author Tags

  1. large data
  2. multiresolution visualization
  3. out-of-core-methods
  4. remote visualization

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 10 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2015)A Survey of Interactive Remote Rendering SystemsACM Computing Surveys10.1145/271992147:4(1-29)Online publication date: 26-May-2015
  • (2015)State-of-the-Art in GPU-Based Large-Scale Volume VisualizationComputer Graphics Forum10.1111/cgf.1260534:8(13-37)Online publication date: 1-Dec-2015
  • (2012)SkuareViewProceedings of the 2012 workshop on High-Performance Computing for Astronomy Date10.1145/2286976.2286984(25-32)Online publication date: 18-Jun-2012
  • (2010)A high-quality low-delay remote rendering system for 3D videoProceedings of the 18th ACM international conference on Multimedia10.1145/1873951.1874011(601-610)Online publication date: 25-Oct-2010
  • (2009)Interactive remote large-scale data visualization via prioritized multi-resolution streamingProceedings of the 2009 Workshop on Ultrascale Visualization10.1145/1838544.1838545(1-10)Online publication date: 16-Nov-2009
  • (2008)Stereo pseudo 3D rendering for web-based display of scientific volumetric dataProceedings of the Fifth Eurographics / IEEE VGTC conference on Point-Based Graphics10.5555/2386410.2386423(73-80)Online publication date: 10-Aug-2008
  • (2006)Multi-layered image caching for distributed rendering of large multiresolution datasetsProceedings of the 6th Eurographics conference on Parallel Graphics and Visualization10.5555/2386124.2386153(171-177)Online publication date: 11-May-2006

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media