Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/1339264.1339707acmconferencesArticle/Chapter ViewAbstractPublication PageswiConference Proceedingsconference-collections
Article

Classification and Ontology Maintenance in Agent-Based Knowledge Management Frameworks: A Prototypical Approach

Published: 02 November 2007 Publication History

Abstract

Being able to create views on the document space via grouping the documents is a key functionality in intelligent document management in view of browsing and querying. Hierarchically grouped sets of Documents can be viewed as simple extensionally defined ontological concepts. In an example Knowledge Management system (KnowCat) developed at UAM, Madrid, we investigate how agents for the maintenance of this ontology (these document groupings) can be constructed. We discuss two examples: A classification agent and a maintenance agent support users and administrators of the system to keep the ontology tight and functional. The agents are tested, developed targeted toward Spanish natural language documents, which requires adapted NLP techniques.

References

[1]
X. Alamán and R. Cobos, "KnowCat: A web application for knowledge organization". Lecture Notes in Computer Science 1727, P. P. Chen, et. al. (Eds.) Springer, 1999, pp. 348-359.
[2]
R. A. Baeza-Yates and B. A. Ribeiro-Neto, Modern Information Retrieval. ACM Press/Addison-Wesley, 1999.
[3]
R. Cobos. Mecanismos para la cristalización del conocimiento, una propuesta mediante un sistema de trabajo colaborativo (Mechanisms for the Crystallisation of Knowledge, a proposal using a collaborative system). PhD. thesis, Universidad Autónoma de Madrid, 2003.
[4]
C. Falge. Agent and Ontology based Classification of Information Items in the KnowCat framework. Diploma thesis, Technische Universität München. 2007.
[5]
G. Garcia and R. Cobos. "ESMAP: A Multi-agent Platform for Extending a Knowledge Management System". In WI'06: Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence, IEEE Computer Society. pp. 59-65.
[6]
T. Joachims, Learning to classify text using support vector machines. Kluwer Academic Publishers, 2001.
[7]
D. D. Lewis and M. Ringuette, "A comparison of two learning algorithms for text categorization," in Proceedings of SDAIR-94, 3rd Annual Symposium on Document Analysis and Information Retrieval, Las Vegas, US, 1994, pp. 81-93.
[8]
K. Nigam, J. Lafferty, and A. McCallum, "Using maximum entropy for text classification" in IJCAI-99 Workshop on Machine Learning for Information Filtering, 1999. pp. 61-67.
[9]
J. Rocchio, Jr., Relevance Feedback in Information Retrieval. Prentice-Hall, 1971.
[10]
M. Steinbach, G. Karypis and V. Kumar, "A comparison of document clustering techniques" in KDD Workshop on Text Mining, 2000.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
WI-IATW '07: Proceedings of the 2007 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology - Workshops
November 2007
513 pages
ISBN:0769530281

Sponsors

Publisher

IEEE Computer Society

United States

Publication History

Published: 02 November 2007

Check for updates

Author Tag

  1. Text processingclusteringclassificationmulti-agent systemknowledge managementCSCW

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 103
    Total Downloads
  • Downloads (Last 12 months)1
  • Downloads (Last 6 weeks)0
Reflects downloads up to 23 Feb 2025

Other Metrics

Citations

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media