Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/1351542.1351673acmconferencesArticle/Chapter ViewAbstractPublication PageswscConference Proceedingsconference-collections
research-article

Visual exploration and evaluation of climate-related simulation data

Published: 09 December 2007 Publication History

Abstract

Large, heterogeneous volumes of simulation data are calculated and stored in many disciplines, e.g. in climate and climate impact research. To gain insight, current climate analysis applies statistical methods and model sensitivity analyzes in combination with standard visualization techniques. However, there are some obstacles for researchers in applying the full functionality of sophisticated visualization, exploiting the available interaction and visualization functionality in order to go beyond data presentation tasks. In particular, there is a gap between available and actually applied multi-variate visualization techniques. Furthermore, visual data comparison of simulation (and measured) data is still a challenging task. Consequently, this paper introduces a library of visualization techniques, tailored to support exploration and evaluation of climate simulation data. These techniques are integrated into the easy-to-use visualization framework SimEnvVis - designed as a front-end user interface to a simulation environment - which provides a high level of user support generating visual representations.

References

[1]
American Meteorological Society 1993. Guidelines for using Color to Depict Meteorological Information: IIPS Subcomitte for Color Guidelines. Bull. Amer. Meteor. Soc. 74:1709--1713.
[2]
Böhm, U. et al. 2006. CLM - the Climate Version of LM: Brief Description and long-term Applications. COSMO Newsletter (6): 225--235.
[3]
Böhm, U., F.-W. Gerstengarbe, D. Hauffe, M. Kücken, H. Österle, and P. Werner. 2003. Dynamic regional climate modeling and sensitivity experiments for the northeast of Brazil. In Global change and regional impacts, ed. Gaiser, Krol, Frischkorn, and Araujo, 153--170. Springer, Berlin.
[4]
Cooke, R., and J. van Noortwijk. 2000. Graphical Methods. In Sensitivity Analysis, ed. Saltelli, Chan, and Scott. Wiley.
[5]
Djurcilov, S., K. Kim, P. Lermusiaux, and A. Pang. 2001. Volume Rendering Data with Uncertainty Information. In Data Visualisation'01: Proceedings of the EG+IEEE VisSym in Ascona.
[6]
Doleisch, H., P. Muigg, and H. Hauser. 2004. Interactive Visual Analysis of Hurricane Isabel with SimVis. IEEE Visualization (Vis'04) Contest, http://vis.computer.org/vis2004contest/vrvis/.
[7]
Gelin, L. 2002. Evaluation of Added Value in Multidimensional Visualization for SMHI. In European Working Group on Operational Workstations (EGOWS), Rome.
[8]
Griebel, M., T. Preusser, M. Rumpf, M. Schweitzer, and A. Telea. 2004. Flow Field Clustering via Algebraic Multigrid. In Proceedings IEEE Visualization'04.
[9]
Griethe, H., and H. Schumann. 2005. Visualizing Uncertainty for Improved Decision Making. In 4th International Conference on Perspectives in Business Informatics Research (BIR'05). Skøde, Sweden.
[10]
Hattermann, F., V. Krysanova, F. Wechsung, and M. Wattenbach. 2005. Runoff simulations on the macroscale with the ecohydrological model SWIM in the Elbe catchment - validation and uncertainty analysis. Hydrological Processes 19:693--714.
[11]
Lange, S., T. Nocke, and H. Schumann. 2006. Visualisierungsdesign - ein systematischer Überblick. In Simulation and Visualization'06 (in German), 113--128.
[12]
Macédo, M., D. Cook, and T. Brown. 2000. Visual Data Mining In Atmospheric Science Data. Data Mining and Knowledge Discovery 4 (1): 69--80.
[13]
Montoya, M., A. Griesel, A. Levermann, J. Mignot, M. Hofmann, A. Ganopolski, and S. Rahmstorf. 2005. The Earth System Model of Intermediate Complexity CLIMBER-3α, Part I: description and performance for present day conditions. Climate Dynamics 25:237--263.
[14]
Morris, M. 1991. Factorial plans for preliminary computational experiments. Technometrics 33 (2): 161--174.
[15]
Mueller, W., and H. Schumann. 2003. Visualization Methods for Time-dependent Data - an Overview. In Proc. of the 2003 Winter Simulation Conference, New Orleans.
[16]
Nocke, T., S. Schlechtweg, and H. Schumann. 2005. Icon-based Visualization using Mosaic Metaphors. In Information Visualization (IV'05), London, 103--109.
[17]
Nocke, T., and H. Schumann. 2002, August. Meta data for visual data mining. In Proc. Computer Graphics and Imaging (CGIM'02), Kaua'i, Hawaii, USA.
[18]
Nocke, T., and H. Schumann. 2004. Goals of Analysis for Visualiz. and Visual Data Mining Tasks. In CODATA Worksh. Information, Presentation and Design, Praha.
[19]
Nocke, T., H. Schumann, and U. Böhm. 2004. Methods for the Visualization of Clustered Climate Data. Computational Statistics 19 (1): 75--94.
[20]
Pagendarm, H.-G., and F. Post. 1995. Comparative Visualization - Approaches and Examples. In Visualization in Scientific Computing, ed. M. Göbel, H. Müller, and B. Urban. Springer, Wien.
[21]
Pang, A., C. Wittenbrink, and S. Lodha. 1997. Approaches to Uncertainty Visualization. The Visual Computer 13 (8): 370--390.
[22]
Riley, K., D. Ebert, C. Hansen, and J. Levit. 2003. Visually Accurate Multi-Field Weather Visualization. In Proceedings IEEE Visualization 2003 279--286.
[23]
Saito, T., H. Miyamura, M. Yamamoto, H. Saito, and Y. Hoshiya. 2005. Two-Tone Pseudo Coloring - Compact Visualization for One-Dimensional Data. In Proceedings IEEE Symposium on Information Visualization (InfoVis'05), 173--180. Mineapolis, USA.
[24]
Schröder, F. 1997. Visualisierung meteorologischer Daten. Springer (in German).
[25]
Schulz, H.-J., H. Schumann, and T. Nocke. 2006. Visualizing and analyzing large systems of differential equations. In Poster Presentation at the Winter Simulation Conference (WSC'06) in Monterey, USA.
[26]
Shneiderman, B. 1996. The Eyes Have It: A Task by Data Type Taxonomy for Information Visualization. In Proceedings IEEE Symposium on Visual Languages '96, IEEE, Los Alamos.
[27]
Sitch, S. et al. 2003. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ Dynamic Vegetation Model. Global Change Biology 9:161--185.
[28]
Stier, P. et al. 2005. The aerosol-climate model ECHAM5-HAM. Atmosheric Chemistry and Physics, European Geosciences Union 5:1125--1156.
[29]
Treinish, L. 1999. Task-Specific Visualization Design. IEEE Computer Graphics and Applications 19 (5): 72--77.
[30]
Treinish, L. A. 1994. Severe Rainfall Events in Northwestern Peru: Visualization of Scattered Meteorological Data. In Proceedings of Visualization'94, ed. L. O'Connor and P. Storms.
[31]
Wong, P. C., and R. D. Bergeron. 1997. 30 Years of Multidimensional Multivariate Visualisation. In Scientific Visualisation, ed. G. Nielson, H. Hagen, and H. Müller, 3--33. IEEE Computer Society, Los Alamitos.
[32]
Zhou, H., M. Chen, and M. Webster. 2002. Comparative evaluation of visualization and experimental results using image comparison metrics. In Proceedings IEEE Visualization'02, 315--322.

Cited By

View all
  • (2019)Visual Analytics to Identify Temporal Patterns and Variability in Simulations from Cellular AutomataACM Transactions on Modeling and Computer Simulation10.1145/326574829:1(1-26)Online publication date: 24-Jan-2019
  • (2016)A surrogate visualization model using the tensor train formatSIGGRAPH ASIA 2016 Symposium on Visualization10.1145/3002151.3002167(1-8)Online publication date: 28-Nov-2016
  • (2012)Comparative Visual Analysis of 2D Function EnsemblesComputer Graphics Forum10.1111/j.1467-8659.2012.03112.x31:3pt3(1195-1204)Online publication date: 1-Jun-2012
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
WSC '07: Proceedings of the 39th conference on Winter simulation: 40 years! The best is yet to come
December 2007
2659 pages
ISBN:1424413060

Sponsors

  • IIE: Institute of Industrial Engineers
  • INFORMS-SIM: Institute for Operations Research and the Management Sciences: Simulation Society
  • ASA: American Statistical Association
  • IEEE/SMC: Institute of Electrical and Electronics Engineers: Systems, Man, and Cybernetics Society
  • SIGSIM: ACM Special Interest Group on Simulation and Modeling
  • NIST: National Institute of Standards and Technology
  • (SCS): The Society for Modeling and Simulation International

Publisher

IEEE Press

Publication History

Published: 09 December 2007

Check for updates

Qualifiers

  • Research-article

Conference

WSC07
Sponsor:
  • IIE
  • INFORMS-SIM
  • ASA
  • IEEE/SMC
  • SIGSIM
  • NIST
  • (SCS)
WSC07: Winter Simulation Conference
December 9 - 12, 2007
Washington D.C.

Acceptance Rates

WSC '07 Paper Acceptance Rate 152 of 244 submissions, 62%;
Overall Acceptance Rate 3,413 of 5,075 submissions, 67%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)5
  • Downloads (Last 6 weeks)0
Reflects downloads up to 01 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2019)Visual Analytics to Identify Temporal Patterns and Variability in Simulations from Cellular AutomataACM Transactions on Modeling and Computer Simulation10.1145/326574829:1(1-26)Online publication date: 24-Jan-2019
  • (2016)A surrogate visualization model using the tensor train formatSIGGRAPH ASIA 2016 Symposium on Visualization10.1145/3002151.3002167(1-8)Online publication date: 28-Nov-2016
  • (2012)Comparative Visual Analysis of 2D Function EnsemblesComputer Graphics Forum10.1111/j.1467-8659.2012.03112.x31:3pt3(1195-1204)Online publication date: 1-Jun-2012
  • (2010)Brushing moments in interactive visual analysisProceedings of the 12th Eurographics / IEEE - VGTC conference on Visualization10.1111/j.1467-8659.2009.01697.x(813-822)Online publication date: 9-Jun-2010
  • (2009)Information empowerment through mobile learningProceedings of the 11th International Conference on Human-Computer Interaction with Mobile Devices and Services10.1145/1613858.1613915(1-3)Online publication date: 15-Sep-2009

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media