Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/2133036.2133172acmconferencesArticle/Chapter ViewAbstractPublication PagessodaConference Proceedingsconference-collections
research-article

Improved bound for the union of fat triangles

Published: 23 January 2011 Publication History

Abstract

We show that, for any fixed δ > 0, the combinatorial complexity of the union of n triangles in the plane, each of whose angles is at least δ, is O(n2α(n) log* n), with the constant of proportionality depending on δ. This considerably improves the twenty-year-old bound O(n log log n), due to Matoušek et al. [24, 25].

References

[1]
P. K. Agarwal, J. Pach, and M. Sharir, State of the union (of geometric objects), In Proc. Joint Summer Research Conf. on Discrete and Computational Geometry: 20 Years Later, Contemp. Math. 452, Amer. Math. Society, pp. 9--48, 2008.
[2]
B. Aronov, M. de Berg, E. Ezra, and M. Sharir, Improved bound for the union of fat objects in the plane, in preparation.
[3]
B. Aronov, E. Ezra, and M. Sharir, Small-size ε-nets for axis-parallel rectangles and boxes, SIAM J. Comput., 39:3248--3282, 2010.
[4]
M. Bellare, S. Goldwasser, G. Lund, and A. Russell, Efficient probabilistically checkable proofs and applications to approximation, In Proc. 25th Annu. ACM Symp. Theory Comput., pp. 294--304, 1993.
[5]
H. Brönnimann and M. T. Goodrich, Almost optimal set covers in finite VC dimensions, Discrete Comput. Geom., 14:463--479, 1995.
[6]
M. de Berg, Improved bounds on the union complexity of fat objects, Discrete Comput. Geom., 40(1): 127--140, 2008.
[7]
M. de Berg, Better bounds on the union complexity of locally fat objects, Proc. 26th Annu. Sympos. Comput. Geom., pp. 39--47, 2010.
[8]
M. de Berg and O. Schwarzkopf, Cutting and applications, Int. J. Comput. Geom. Appl., 5:343--355, 1995.
[9]
V. Chvátal, A greedy heuristic for the set-covering problem, Math. Oper. Research, 4(3):233--235, 1979.
[10]
K. L. Clarkson, Algorithms for polytope covering and approximation, Proc. 3rd Workshop on Algorithms and Data Structures, pp. 246--252, 1993.
[11]
K. L. Clarkson and K. Varadarajan, Improved approximation algorithms for geometric set cover, Discrete Comput. Geom., 37:43--58, 2007.
[12]
H. Edelsbrunner, L. J. Guibas, and M. Sharir, The complexity and construction of many faces in arrangements of lines and of segments, Discrete Comput. Geom., 5(2):161--196, 1990.
[13]
A. Efrat, The complexity of the union of (α, β)-covered objects, SIAM J. Comput., 34:775--787, 2005.
[14]
A. Efrat and M. Katz, On the union of k-curved objects, Comput. Geom. Theory Appl. 14:241--254, 1999.
[15]
A. Efrat, G. Rote, and M. Sharir, On the union of fat wedges and separating a collection of segments by a line, Comput. Geom. Theory Appl. 3:277--288, 1993.
[16]
A. Efrat and M. Sharir, The complexity of the union of fat objects in the plane, Discrete Comput. Geom. 23:171--189, 2000.
[17]
G. Even, D. Rawitz, and S. Shahar, Hitting sets when the VC-dimension is small, Inform. Process. Letts., 95:358--362, 2005.
[18]
E. Ezra, On the union of cylinders in three dimensions, Proc. 49nd Annu. IEEE Sympos. Found. Comput. Sci., pp. 179--188, 2008.
[19]
E. Ezra and M. Sharir, Almost tight bound for the union of fat tetrahedra in three dimensions, J. ACM 57(1), Article No. 2, 2009.
[20]
U. Feige, A threshold of In n for approximating set cover, J. ACM, 45(4):634--652, 1998.
[21]
D. Haussler and E. Welzl, ε-nets and simplex range queries, Discrete Comput. Geom., 2:127--151, 1987.
[22]
M. J. Katz, M. H. Overmars, and M. Sharir, Efficient hidden surface removal for objects with small union size, Comput. Geom. Theory Appl., 2(4):223--234, 1992.
[23]
K. Kedem, R. Livne, J. Pach, and M. Sharir, On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles, Discrete Comput. Geom., 1:59--71, 1986.
[24]
J. Matoušek, N. Miller, J. Pach, M. Sharir, S. Sifrony, and E. Welzl, Fat triangles determine linearly many holes, Proc. 32nd Annu. IEEE Sympos. Found. Comput. Sci., pp. 49--58, 1991.
[25]
J. Matoušek, J. Pach, M. Sharir, S. Sifrony, and E. Welzl, Fat triangles determine linearly many holes, SIAM J. Comput., 23:154--169, 1994.
[26]
J. Pach and G. Tardos, On the boundary complexity of the union of fat triangles, SIAM J. Comput., 31:1745--1760, 2002.
[27]
M. Sharir and P. K. Agarwal, Davenport-Schinzel Sequences and Their Geometric Applications, Cambridge University Press, New York, 1995.
[28]
M. van Kreveld, On fat partitioning, fat covering and the union size of polygons, Comput. Geom. Theory Appl., 9(4):197--210, 1998.
[29]
K. Varadarajan, Epsilon nets and union complexity, Proc. 25th Annu. Sympos. Comput. Geom., pp. 11--16, 2009.
[30]
K. Varadarajan, Weighted geometric set cover via quasi-uniform sampling, Proc. 42th Annu. ACM Symp. Theory Comput., pp. 641--648, 2010.

Cited By

View all
  • (2019)Shallow Packings, Semialgebraic Set Systems, Macbeath Regions, and Polynomial PartitioningDiscrete & Computational Geometry10.1007/s00454-019-00075-061:4(756-777)Online publication date: 1-Jun-2019
  • (2013)Small-size relative (p,ε)-approximations for well-behaved range spacesProceedings of the twenty-ninth annual symposium on Computational geometry10.1145/2462356.2462363(233-242)Online publication date: 17-Jun-2013
  • (2013)The union of colorful simplices spanned by a colored point setComputational Geometry: Theory and Applications10.1016/j.comgeo.2012.01.00646:5(574-590)Online publication date: 1-Jul-2013
  • Show More Cited By
  1. Improved bound for the union of fat triangles

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    SODA '11: Proceedings of the twenty-second annual ACM-SIAM symposium on Discrete algorithms
    January 2011
    1785 pages

    Sponsors

    Publisher

    Society for Industrial and Applied Mathematics

    United States

    Publication History

    Published: 23 January 2011

    Check for updates

    Qualifiers

    • Research-article

    Conference

    SODA '11
    Sponsor:
    SODA '11: 22nd ACM-SIAM Symposium on Discrete Algorithms
    January 23 - 25, 2011
    California, San Francisco

    Acceptance Rates

    Overall Acceptance Rate 411 of 1,322 submissions, 31%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)1
    • Downloads (Last 6 weeks)1
    Reflects downloads up to 14 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2019)Shallow Packings, Semialgebraic Set Systems, Macbeath Regions, and Polynomial PartitioningDiscrete & Computational Geometry10.1007/s00454-019-00075-061:4(756-777)Online publication date: 1-Jun-2019
    • (2013)Small-size relative (p,ε)-approximations for well-behaved range spacesProceedings of the twenty-ninth annual symposium on Computational geometry10.1145/2462356.2462363(233-242)Online publication date: 17-Jun-2013
    • (2013)The union of colorful simplices spanned by a colored point setComputational Geometry: Theory and Applications10.1016/j.comgeo.2012.01.00646:5(574-590)Online publication date: 1-Jul-2013
    • (2012)Weighted capacitated, priority, and geometric set cover via improved quasi-uniform samplingProceedings of the twenty-third annual ACM-SIAM symposium on Discrete algorithms10.5555/2095116.2095241(1576-1585)Online publication date: 17-Jan-2012
    • (2012)Geometric packing under non-uniform constraintsProceedings of the twenty-eighth annual symposium on Computational geometry10.1145/2261250.2261253(11-20)Online publication date: 17-Jun-2012
    • (2011)Tight lower bounds for the size of epsilon-netsProceedings of the twenty-seventh annual symposium on Computational geometry10.1145/1998196.1998271(458-463)Online publication date: 13-Jun-2011
    • (2011)On the structure and composition of forbidden sequences, with geometric applicationsProceedings of the twenty-seventh annual symposium on Computational geometry10.1145/1998196.1998258(370-379)Online publication date: 13-Jun-2011

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media